296 research outputs found

    Condition-based maintenance in hydroelectric plants: A systematic literature review

    Get PDF
    Industrial maintenance has become an essential strategic factor for profit and productivity in industrial systems. In the modern industrial context, condition-based maintenance guides the interventions and repairs according to the machine’s health status, calculated from monitoring variables and using statistical and computational techniques. Although several literature reviews address condition-based maintenance, no study discusses the application of these techniques in the hydroelectric sector, a fundamental source of renewable energy. We conducted a systematic literature review of articles published in the area of condition-based maintenance in the last 10 years. This was followed by quantitative and thematic analyses of the most relevant categories that compose the phases of condition-based maintenance. We identified a research trend in the application of machine learning techniques, both in the diagnosis and the prognosis of the generating unit’s assets, being vibration the most frequently discussed monitoring variable. Finally, there is a vast field to be explored regarding the application of statistical models to estimate the useful life, and hybrid models based on physical models and specialists’ knowledge, of turbine-generators

    Modeling and Optimal Operation of Hydraulic, Wind and Photovoltaic Power Generation Systems

    Get PDF
    The transition to 100% renewable energy in the future is one of the most important ways of achieving "carbon peaking and carbon neutrality" and of reducing the adverse effects of climate change. In this process, the safe, stable and economical operation of renewable energy generation systems, represented by hydro-, wind and solar power, is particularly important, and has naturally become a key concern for researchers and engineers. Therefore, this book focuses on the fundamental and applied research on the modeling, control, monitoring and diagnosis of renewable energy generation systems, especially hydropower energy systems, and aims to provide some theoretical reference for researchers, power generation departments or government agencies

    Information Theory and Its Application in Machine Condition Monitoring

    Get PDF
    Condition monitoring of machinery is one of the most important aspects of many modern industries. With the rapid advancement of science and technology, machines are becoming increasingly complex. Moreover, an exponential increase of demand is leading an increasing requirement of machine output. As a result, in most modern industries, machines have to work for 24 hours a day. All these factors are leading to the deterioration of machine health in a higher rate than before. Breakdown of the key components of a machine such as bearing, gearbox or rollers can cause a catastrophic effect both in terms of financial and human costs. In this perspective, it is important not only to detect the fault at its earliest point of inception but necessary to design the overall monitoring process, such as fault classification, fault severity assessment and remaining useful life (RUL) prediction for better planning of the maintenance schedule. Information theory is one of the pioneer contributions of modern science that has evolved into various forms and algorithms over time. Due to its ability to address the non-linearity and non-stationarity of machine health deterioration, it has become a popular choice among researchers. Information theory is an effective technique for extracting features of machines under different health conditions. In this context, this book discusses the potential applications, research results and latest developments of information theory-based condition monitoring of machineries

    Planning and Operation of Hybrid Renewable Energy Systems

    Get PDF

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing

    Machine learning for the sustainable energy transition: a data-driven perspective along the value chain from manufacturing to energy conversion

    Get PDF
    According to the special report Global Warming of 1.5 °C of the IPCC, climate action is not only necessary but more than ever urgent. The world is witnessing rising sea levels, heat waves, events of flooding, droughts, and desertification resulting in the loss of lives and damage to livelihoods, especially in countries of the Global South. To mitigate climate change and commit to the Paris agreement, it is of the uttermost importance to reduce greenhouse gas emissions coming from the most emitting sector, namely the energy sector. To this end, large-scale penetration of renewable energy systems into the energy market is crucial for the energy transition toward a sustainable future by replacing fossil fuels and improving access to energy with socio-economic benefits. With the advent of Industry 4.0, Internet of Things technologies have been increasingly applied to the energy sector introducing the concept of smart grid or, more in general, Internet of Energy. These paradigms are steering the energy sector towards more efficient, reliable, flexible, resilient, safe, and sustainable solutions with huge environmental and social potential benefits. To realize these concepts, new information technologies are required, and among the most promising possibilities are Artificial Intelligence and Machine Learning which in many countries have already revolutionized the energy industry. This thesis presents different Machine Learning algorithms and methods for the implementation of new strategies to make renewable energy systems more efficient and reliable. It presents various learning algorithms, highlighting their advantages and limits, and evaluating their application for different tasks in the energy context. In addition, different techniques are presented for the preprocessing and cleaning of time series, nowadays collected by sensor networks mounted on every renewable energy system. With the possibility to install large numbers of sensors that collect vast amounts of time series, it is vital to detect and remove irrelevant, redundant, or noisy features, and alleviate the curse of dimensionality, thus improving the interpretability of predictive models, speeding up their learning process, and enhancing their generalization properties. Therefore, this thesis discussed the importance of dimensionality reduction in sensor networks mounted on renewable energy systems and, to this end, presents two novel unsupervised algorithms. The first approach maps time series in the network domain through visibility graphs and uses a community detection algorithm to identify clusters of similar time series and select representative parameters. This method can group both homogeneous and heterogeneous physical parameters, even when related to different functional areas of a system. The second approach proposes the Combined Predictive Power Score, a method for feature selection with a multivariate formulation that explores multiple sub-sets of expanding variables and identifies the combination of features with the highest predictive power over specified target variables. This method proposes a selection algorithm for the optimal combination of variables that converges to the smallest set of predictors with the highest predictive power. Once the combination of variables is identified, the most relevant parameters in a sensor network can be selected to perform dimensionality reduction. Data-driven methods open the possibility to support strategic decision-making, resulting in a reduction of Operation & Maintenance costs, machine faults, repair stops, and spare parts inventory size. Therefore, this thesis presents two approaches in the context of predictive maintenance to improve the lifetime and efficiency of the equipment, based on anomaly detection algorithms. The first approach proposes an anomaly detection model based on Principal Component Analysis that is robust to false alarms, can isolate anomalous conditions, and can anticipate equipment failures. The second approach has at its core a neural architecture, namely a Graph Convolutional Autoencoder, which models the sensor network as a dynamical functional graph by simultaneously considering the information content of individual sensor measurements (graph node features) and the nonlinear correlations existing between all pairs of sensors (graph edges). The proposed neural architecture can capture hidden anomalies even when the turbine continues to deliver the power requested by the grid and can anticipate equipment failures. Since the model is unsupervised and completely data-driven, this approach can be applied to any wind turbine equipped with a SCADA system. When it comes to renewable energies, the unschedulable uncertainty due to their intermittent nature represents an obstacle to the reliability and stability of energy grids, especially when dealing with large-scale integration. Nevertheless, these challenges can be alleviated if the natural sources or the power output of renewable energy systems can be forecasted accurately, allowing power system operators to plan optimal power management strategies to balance the dispatch between intermittent power generations and the load demand. To this end, this thesis proposes a multi-modal spatio-temporal neural network for multi-horizon wind power forecasting. In particular, the model combines high-resolution Numerical Weather Prediction forecast maps with turbine-level SCADA data and explores how meteorological variables on different spatial scales together with the turbines' internal operating conditions impact wind power forecasts. The world is undergoing a third energy transition with the main goal to tackle global climate change through decarbonization of the energy supply and consumption patterns. This is not only possible thanks to global cooperation and agreements between parties, power generation systems advancements, and Internet of Things and Artificial Intelligence technologies but also necessary to prevent the severe and irreversible consequences of climate change that are threatening life on the planet as we know it. This thesis is intended as a reference for researchers that want to contribute to the sustainable energy transition and are approaching the field of Artificial Intelligence in the context of renewable energy systems

    Failure analysis informing intelligent asset management

    Get PDF
    With increasing demands on the UK’s power grid it has become increasingly important to reform the methods of asset management used to maintain it. The science of Prognostics and Health Management (PHM) presents interesting possibilities by allowing the online diagnosis of faults in a component and the dynamic trending of its remaining useful life (RUL). Before a PHM system can be developed an extensive failure analysis must be conducted on the asset in question to determine the mechanisms of failure and their associated data precursors that precede them. In order to gain experience in the development of prognostic systems we have conducted a study of commercial power relays, using a data capture regime that revealed precursors to relay failure. We were able to determine important failure precursors for both stuck open failures caused by contact erosion and stuck closed failures caused by material transfer and are in a position to develop a more detailed prognostic system from this base. This research when expanded and applied to a system such as the power grid, presents an opportunity for more efficient asset management when compared to maintenance based upon time to replacement or purely on condition

    Advances in Remote Sensing-based Disaster Monitoring and Assessment

    Get PDF
    Remote sensing data and techniques have been widely used for disaster monitoring and assessment. In particular, recent advances in sensor technologies and artificial intelligence-based modeling are very promising for disaster monitoring and readying responses aimed at reducing the damage caused by disasters. This book contains eleven scientific papers that have studied novel approaches applied to a range of natural disasters such as forest fire, urban land subsidence, flood, and tropical cyclones

    30th International Conference on Condition Monitoring and Diagnostic Engineering Management (COMADEM 2017)

    Get PDF
    Proceedings of COMADEM 201

    Flexible Automation and Intelligent Manufacturing: The Human-Data-Technology Nexus

    Get PDF
    This is an open access book. It gathers the first volume of the proceedings of the 31st edition of the International Conference on Flexible Automation and Intelligent Manufacturing, FAIM 2022, held on June 19 – 23, 2022, in Detroit, Michigan, USA. Covering four thematic areas including Manufacturing Processes, Machine Tools, Manufacturing Systems, and Enabling Technologies, it reports on advanced manufacturing processes, and innovative materials for 3D printing, applications of machine learning, artificial intelligence and mixed reality in various production sectors, as well as important issues in human-robot collaboration, including methods for improving safety. Contributions also cover strategies to improve quality control, supply chain management and training in the manufacturing industry, and methods supporting circular supply chain and sustainable manufacturing. All in all, this book provides academicians, engineers and professionals with extensive information on both scientific and industrial advances in the converging fields of manufacturing, production, and automation
    • …
    corecore