60 research outputs found

    Branched Coverings, Triangulations, and 3-Manifolds

    Full text link
    A canonical branched covering over each sufficiently good simplicial complex is constructed. Its structure depends on the combinatorial type of the complex. In this way, each closed orientable 3-manifold arises as a branched covering over the 3-sphere from some triangulation of S^3. This result is related to a theorem of Hilden and Montesinos. The branched coverings introduced admit a rich theory in which the group of projectivities plays a central role.Comment: v2: several changes to the text body; minor correction

    Infinite groups with fixed point properties

    Full text link
    We construct finitely generated groups with strong fixed point properties. Let Xac\mathcal{X}_{ac} be the class of Hausdorff spaces of finite covering dimension which are mod-pp acyclic for at least one prime pp. We produce the first examples of infinite finitely generated groups QQ with the property that for any action of QQ on any XXacX\in \mathcal{X}_{ac}, there is a global fixed point. Moreover, QQ may be chosen to be simple and to have Kazhdan's property (T). We construct a finitely presented infinite group PP that admits no non-trivial action by diffeomorphisms on any smooth manifold in Xac\mathcal{X}_{ac}. In building QQ, we exhibit new families of hyperbolic groups: for each n1n\geq 1 and each prime pp, we construct a non-elementary hyperbolic group Gn,pG_{n,p} which has a generating set of size n+2n+2, any proper subset of which generates a finite pp-group.Comment: Version 2: 29 pages. This is the final published version of the articl

    Constructing Simplicial Branched Covers

    Get PDF
    Branched covers are applied frequently in topology - most prominently in the construction of closed oriented PL d-manifolds. In particular, strong bounds for the number of sheets and the topology of the branching set are known for dimension d<=4. On the other hand, Izmestiev and Joswig described how to obtain a simplicial covering space (the partial unfolding) of a given simplicial complex, thus obtaining a simplicial branched cover [Adv. Geom. 3(2):191-255, 2003]. We present a large class of branched covers which can be constructed via the partial unfolding. In particular, for d<=4 every closed oriented PL d-manifold is the partial unfolding of some polytopal d-sphere.Comment: 15 pages, 8 figures, typos corrected and conjecture adde

    Metric combinatorics of convex polyhedra: cut loci and nonoverlapping unfoldings

    Full text link
    This paper is a study of the interaction between the combinatorics of boundaries of convex polytopes in arbitrary dimension and their metric geometry. Let S be the boundary of a convex polytope of dimension d+1, or more generally let S be a `convex polyhedral pseudomanifold'. We prove that S has a polyhedral nonoverlapping unfolding into R^d, so the metric space S is obtained from a closed (usually nonconvex) polyhedral ball in R^d by identifying pairs of boundary faces isometrically. Our existence proof exploits geodesic flow away from a source point v in S, which is the exponential map to S from the tangent space at v. We characterize the `cut locus' (the closure of the set of points in S with more than one shortest path to v) as a polyhedral complex in terms of Voronoi diagrams on facets. Analyzing infinitesimal expansion of the wavefront consisting of points at constant distance from v on S produces an algorithmic method for constructing Voronoi diagrams in each facet, and hence the unfolding of S. The algorithm, for which we provide pseudocode, solves the discrete geodesic problem. Its main construction generalizes the source unfolding for boundaries of 3-polytopes into R^2. We present conjectures concerning the number of shortest paths on the boundaries of convex polyhedra, and concerning continuous unfolding of convex polyhedra. We also comment on the intrinsic non-polynomial complexity of nonconvex polyhedral manifolds.Comment: 47 pages; 21 PostScript (.eps) figures, most in colo

    Grid Vertex-Unfolding Orthogonal Polyhedra

    Full text link
    An edge-unfolding of a polyhedron is produced by cutting along edges and flattening the faces to a *net*, a connected planar piece with no overlaps. A *grid unfolding* allows additional cuts along grid edges induced by coordinate planes passing through every vertex. A vertex-unfolding permits faces in the net to be connected at single vertices, not necessarily along edges. We show that any orthogonal polyhedron of genus zero has a grid vertex-unfolding. (There are orthogonal polyhedra that cannot be vertex-unfolded, so some type of "gridding" of the faces is necessary.) For any orthogonal polyhedron P with n vertices, we describe an algorithm that vertex-unfolds P in O(n^2) time. Enroute to explaining this algorithm, we present a simpler vertex-unfolding algorithm that requires a 3 x 1 refinement of the vertex grid.Comment: Original: 12 pages, 8 figures, 11 references. Revised: 22 pages, 16 figures, 12 references. New version is a substantial revision superceding the preliminary extended abstract that appeared in Lecture Notes in Computer Science, Volume 3884, Springer, Berlin/Heidelberg, Feb. 2006, pp. 264-27

    1-Safe Petri nets and special cube complexes: equivalence and applications

    Full text link
    Nielsen, Plotkin, and Winskel (1981) proved that every 1-safe Petri net NN unfolds into an event structure EN\mathcal{E}_N. By a result of Thiagarajan (1996 and 2002), these unfoldings are exactly the trace regular event structures. Thiagarajan (1996 and 2002) conjectured that regular event structures correspond exactly to trace regular event structures. In a recent paper (Chalopin and Chepoi, 2017, 2018), we disproved this conjecture, based on the striking bijection between domains of event structures, median graphs, and CAT(0) cube complexes. On the other hand, in Chalopin and Chepoi (2018) we proved that Thiagarajan's conjecture is true for regular event structures whose domains are principal filters of universal covers of (virtually) finite special cube complexes. In the current paper, we prove the converse: to any finite 1-safe Petri net NN one can associate a finite special cube complex XN{X}_N such that the domain of the event structure EN\mathcal{E}_N (obtained as the unfolding of NN) is a principal filter of the universal cover X~N\widetilde{X}_N of XNX_N. This establishes a bijection between 1-safe Petri nets and finite special cube complexes and provides a combinatorial characterization of trace regular event structures. Using this bijection and techniques from graph theory and geometry (MSO theory of graphs, bounded treewidth, and bounded hyperbolicity) we disprove yet another conjecture by Thiagarajan (from the paper with S. Yang from 2014) that the monadic second order logic of a 1-safe Petri net is decidable if and only if its unfolding is grid-free. Our counterexample is the trace regular event structure E˙Z\mathcal{\dot E}_Z which arises from a virtually special square complex Z˙\dot Z. The domain of E˙Z\mathcal{\dot E}_Z is grid-free (because it is hyperbolic), but the MSO theory of the event structure E˙Z\mathcal{\dot E}_Z is undecidable

    JSJ-decompositions of finitely presented groups and complexes of groups

    Full text link
    A JSJ-splitting of a group GG over a certain class of subgroups is a graph of groups decomposition of GG which describes all possible decompositions of GG as an amalgamated product or an HNN extension over subgroups lying in the given class. Such decompositions originated in 3-manifold topology. In this paper we generalize the JSJ-splitting constructions of Sela, Rips-Sela and Dunwoody-Sageev and we construct a JSJ-splitting for any finitely presented group with respect to the class of all slender subgroups along which the group splits. Our approach relies on Haefliger's theory of group actions on CAT(0)(0) spaces

    Epsilon-Unfolding Orthogonal Polyhedra

    Get PDF
    An unfolding of a polyhedron is produced by cutting the surface and flattening to a single, connected, planar piece without overlap (except possibly at boundary points). It is a long unsolved problem to determine whether every polyhedron may be unfolded. Here we prove, via an algorithm, that every orthogonal polyhedron (one whose faces meet at right angles) of genus zero may be unfolded. Our cuts are not necessarily along edges of the polyhedron, but they are always parallel to polyhedron edges. For a polyhedron of n vertices, portions of the unfolding will be rectangular strips which, in the worst case, may need to be as thin as epsilon = 1/2^{Omega(n)}.Comment: 23 pages, 20 figures, 7 references. Revised version improves language and figures, updates references, and sharpens the conclusio
    corecore