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Constructing simplicial branched covers
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Abstract. Izmestiev and Joswig described how to obtain a simplicial covering space (the partial

unfolding) of a given simplicial complex, thus obtaining a simplicial branched cover [Adv. Geom.

3:191–255, 2003]. We present a large class of branched covers which can be constructed via the par-

tial unfolding. In particular, for d ≤ 4 every closed oriented PL d-manifold is the partial unfolding

of some polytopal d-sphere.
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1 Introduction

Branched covers are applied frequently in topology – most prominently in the study, con-

struction and classification of closed oriented PL d-manifolds. First results are by Alexan-

der [1] in 1920, who observed that any closed oriented PL d-manifold M is a branched

cover of the d-sphere. Unfortunately Alexander’s proof does not allow for any (reason-

able) control over the number of sheets of the branched cover, nor over the topology of

the branching set: The number of sheets depends on the size of some triangulation of M
and the branching set is the codimension 2-skeleton of the d-simplex.

However, in dimension d ≤ 4, the situation is fairly well understood. By results of

Hilden [8] and Montesinos [17] any closed oriented 3-manifold M arises as 3-fold sim-

ple branched cover of the 3-sphere branched over a link. In dimension four the situation

becomes increasingly difficult. First Piergallini [21] showed how to obtain any closed ori-

ented PL 4-manifold as a 4-fold branched cover of the 4-sphere branched over a transver-

sally immersed PL-surface [21]. Iori & Piergallini [11] then improved the standing result

showing that the branching set may be realized locally flat if one allows for a fifth sheet

for the branched cover, thus proving a long-standing conjecture by Montesinos [18]. The
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question as to whether any closed oriented PL 4-manifold can be obtained as 4-fold cover

of the 4-sphere branched over a locally flat PL-surface is still open.

For the partial unfolding and the construction of closed oriented combinatorial 3-

manifolds we recommend Izmestiev & Joswig [14]. Their construction has recently been

simplified significantly by Hilden, Montesinos, Tejada & Toro [9]. For those able to read

German additional analysis and examples can be found in [24]. The partial unfolding is

implemented in the software package polymake [6].

This work has been greatly inspired by a paper of Hilden, Montesinos, Tejada & Toro

[9] and their bold approach. However, the techniques developed in the following turn out

to differ substantially from the ideas in [9], allowing for stronger results in dimension

three and generalization to arbitrary dimensions.

Outline of the paper. After some basic definitions and notations the partial unfolding

K̂ of a simplicial complex K is introduced. The partial unfolding defines a projection

p : K̂ → K which is a simplicial branched cover ifK meets certain connectivity assump-

tions. We define combinatorial models of key features of a branched cover, namely the

branching set and the monodromy homomorphism.

Sections 2 and 3 are related, yet self-contained. The main result of this paper is

presented in Theorem 2.1, and we give an explicit construction of a combinatorial d-

sphere S such that p : Ŝ → S is equivalent to a given simple, (d+1)-fold branched cover

r : X → S
d (with some additional restriction for the branching set of r). Theorem 2.1 is

then applied to the construction of closed oriented PL d-manifolds as branched covers for

d ≤ 4. The construction of S and the proof of its correctness take up the entire Section 2.

Finally, in Section 3 we discuss how to extend a k-coloring of a subcomplex L ⊂
K of a simplicial d-complex K to a max{k, d + 1}-coloring of a refinement K ′ of K
such that L is again a subcomplex of K ′. Since K ′ is constructed from K via finitely

many stellar subdivisions of edges, all properties invariant under these subdivisions are

preserved, e.g. polytopality, regularity, shellability, and others. This improves an earlier

result by Izmestiev [12].

1.1 Basic definitions and notations. A simplicial complex K is a combinatorial

d-sphere or combinatorial d-ball if it is piecewise linear homeomorphic to the boundary

of the (d+ 1)-simplex, respectively to the d-simplex. Equivalently, K is a combinatorial

d-sphere or d-ball if there is a common refinement of K and the boundary of the (d+ 1)-
simplex, respectively the d-simplex. A simplicial complex K is a combinatorial manifold

if the vertex link of each vertex of K is a combinatorial sphere or a combinatorial ball.

A manifold M is PL if and only if M has a triangulation as a combinatorial manifold.

For an introduction to PL-topology see Björner [2, Part II], Hudson [10], and Rourke &

Sanderson [22].

A finite simplicial complex is pure if all the inclusion maximal faces, called the facets,

have the same dimension. We call a codimension 1-face of a pure simplicial complex Ka

ridge, and the dual graph Γ∗(K) of K has the facets as its node set, and two nodes are

adjacent if they share a ridge. We denote the 1-skeleton of K by Γ(K), its graph.

Further it is often necessary to restrict ourselves to simplicial complexes with cer-

tain connectivity properties: A pure simplicial complex K is strongly connected if its
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dual graph Γ∗(K) is connected, and locally strongly connected if the star stK(f) of f
is strongly connected for each face f ∈ K. If K is locally strongly connected, then

connected and strongly connected coincide. Further we call K locally strongly simply

connected if for each face f ∈ K with codimension ≥ 2 the link lkK(f) of f is simply

connected, and finally, K is nice if it is locally strongly connected and locally strongly

simply connected. Observe that combinatorial manifolds are always nice.

Let (σ0, σ1, . . . , σl) be an ordering of the facets of a pure simplicial d-complex K,

and let Di =
⋃

0≤j≤i σj denote the union of the first i facets. We call the ordering

(σ0, σ1, . . . , σl) a shelling of K if Di−1 ∩ σi is a pure simplicial (d − 1)-complex for

1 ≤ i ≤ l. If K is the boundary complex of a simplicial (d+ 1)-polytope, then K admits

a shelling order which can be computed efficiently; see Ziegler [27, Chapter 8].

A simplicial complex obtained from a shellable complex by stellar subdivision of a

face is again shellable, a shellable sphere or ball is a combinatorial sphere or ball, and

for 1 ≤ i ≤ l the intersection Di−1 ∩ σi is a combinatorial (d − 1)-ball (or sphere).

A shellable simplicial complex K is a wedge of balls or spheres in general. If K is a

manifold, then Di is a combinatorial d-ball (or sphere) for 0 ≤ i ≤ l, and in particular we

have that Di−1 ∩ σi, Di, and hence K are nice. We call a face f ⊂ σi free if f 6∈ Di−1.

In particular the (inclusion) minimal free faces describe all free faces, and they are also

called restriction sets in the theory of h-vectors of simplicial polytopes.

1.2 The branched cover. The concept of a covering of a space Y by another spaceX is

generalized by Fox [4] to the notion of the branched cover. Here a certain subset Ysing ⊂ Y
may violate the conditions of a covering map. This allows for a wider application in the

construction of topological spaces. It is essential for a satisfactory theory of (branched)

coverings to make certain connectivity assumption for X and Y . The spaces mostly

considered are Hausdorff, path connected, and locally path connected; see Bredon [3,

III.3.1]. Throughout we will restrict our attention to coverings of manifolds, hence they

meet the connectivity assumptions in [3].

Consider a continuous map h : Z → Y , and assume the restriction h : Z → h(Z) to

be a covering. If h(Z) is dense in Y (and meets certain additional connectivity conditions)

then there is a surjective map p : X → Y with Z ⊂ X and p|Z = h. The map p is called

a completion of h, and any two completions p : X → Y and p′ : X ′ → Y are equivalent

in the sense that there exists a homeomorphism ϕ : X → X ′ satisfying p′ ◦ ϕ = p and

ϕ|Z = Id. The map p : X → Y obtained this way is a branched cover, and we call the

unique minimal subset Ysing ⊂ Y such that the restriction of p to the preimage of Y \Ysing

is a covering the branching set of p. The restriction of p to p−1(Y \ Ysing) is called the

associated covering of p. If h : Z → Y is a covering, then X = Z, and p = h is a

branched cover with empty branching set.

Example 1.1. For k ≥ 2 consider the map pk : C → C : z 7→ zk. The restriction pk|D2

is a k-fold branched cover D
2 → D

2 with the single branch point {0}.

We define the monodromy homomorphism

mp : π1(Y \ Ysing, y0) → Sym(p−1(y0))
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of a branched cover for a point y0 ∈ Y \ Ysing as the monodromy homomorphism of the

associated covering: If [α] ∈ π1(Y \Ysing, y0) is represented by a closed path α based at y0,

then mp maps [α] to the permutation (xi 7→ αi(1)), where {x1, x2, . . . , xk} = p−1(y0)
is the preimage of y0 and αi : [0, 1] → X is the unique lifting of α with p ◦ αi = α
and αi(0) = xi; see Munkres [19, Lemma 79.1] and Seifert & Threlfall [23, § 58]. The

monodromy group Mp is defined as the image of mp.

Two branched covers p : X → Y and p′ : X ′ → Y ′ are equivalent if there are

homeomorphisms ϕ : X → X ′ and ψ : Y → Y ′ with ψ(Ysing) = Y ′
sing such that

p′ ◦ ϕ = ψ ◦ p holds. The well-known Theorem 1.2 is due to the uniqueness of Ysing, and

hence the uniqueness of the associated covering; see Piergallini [20, p. 2].

Theorem 1.2. Let p : X → Y be a branched cover of a connected manifold Y . Then p
is uniquely determined up to equivalence by the branching set Ysing and the monodromy

homeomorphism mp. In particular, the covering space X is determined up to homeomor-

phisms.

Let Y be a connected manifold and Ysing a codimension 2 submanifold, possibly with

a finite number of singularities. We call a branched cover p simple if the image mp(m) of

any meridial loop m around a non-singular point of the branching set is a transposition in

Mp. Note that the k-fold branched cover pk|D2 : D
2 → D

2 presented in Example 1.1 is

not simple for k ≥ 3.

1.3 The partial unfolding. The partial unfolding K̂ of a simplicial complex K first

appeared in a paper by Izmestiev & Joswig [14], with some of the basic notions already

developed in Joswig [15]. The partial unfolding is closely related to the complete un-

folding, also defined in [14], but we will not discuss the latter. The partial unfolding is a

geometric object defined entirely by the combinatorial structure of K, and comes along

with a canonical projection p : K̂ → K.

However, the partial unfolding K̂ may not be a simplicial complex. In general K̂ is a

pseudo-simplicial complex: Let Σ be a collection of pairwise disjoint geometric simplices

with simplicial attaching maps for some pairs (σ, τ) ∈ Σ × Σ, mapping a subcomplex of

σ isomorphically to a subcomplex of τ . Identifying the subcomplexes accordingly yields

the quotient space Σ/∼, which is called a pseudo-simplicial complex if the quotient map

Σ → Σ/∼ restricted to any σ ∈ Σ is bijective. The last condition ensures that there are

no self-identifications within each simplex σ ∈ Σ.

The group of projectivities. Let σ and τ be neighboring facets of a finite, pure simplicial

complex K, that is, σ ∩ τ is a ridge. Then there is exactly one vertex in σ which is not

a vertex of τ and vice versa, hence a natural bijection 〈σ, τ〉 between the vertex sets of σ
and τ is given by

〈σ, τ〉 : V (σ) → V (τ) : v 7→

{
v if v ∈ σ ∩ τ,

τ \ σ if v = σ \ τ.

The bijection 〈σ, τ〉 is called the perspectivity from σ to τ .
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Figure 1. A projectivity from σ to τ along the facet path γ.

A facet path in K is a sequence γ = (σ0, σ1, . . . , σk) of facets such that the corre-

sponding nodes in the dual graph Γ∗(K) form a path, that is, σi ∩ σi+1 is a ridge for all

0 ≤ i < k; see Figure 1. Now the projectivity 〈γ〉 along γ is defined as the composition

of perspectivities 〈σi, σi+1〉, thus 〈γ〉 maps V (σ0) to V (σk) bijectively via

〈γ〉 = 〈σk−1, σk〉 ◦ · · · ◦ 〈σ1, σ2〉 ◦ 〈σ0, σ1〉.

We write γδ = (σ0, σ1, . . . , σk, σk+1, . . . , σk+l) for the concatenation of two facet

paths γ = (σ0, σ1, . . . , σk) and δ = (σk, σk+1, . . . , σk+l), denote by γ− = (σk, σk−1,
. . . , σ0) the inverse path of γ, and we call γ a closed facet path based at σ0 if σ0 = σk. The

set of closed facet paths based at σ0 together with the concatenation forms a group, and a

closed facet path γ based at σ0 acts on the set V (σ0) via γ ·v = 〈γ〉(v) for v ∈ V (σ0). Via

this action we obtain the group of projectivities Π(K,σ0) given by all permutations 〈γ〉
of V (σ0). The group of projectivities is a subgroup of the symmetric group Sym(V (σ0))
on the vertices of σ0.

The projectivities along null-homotopic closed facet paths based at σ0 generate the

subgroup Π0(K,σ0) of Π(K,σ0), which is called the reduced group of projectivities.

Finally, if K is strongly connected then Π(K,σ0) and Π(K,σ′
0), respectively Π0(K,σ0)

and Π0(K,σ
′
0), are isomorphic for any two facets σ0, σ

′
0 ∈ K. In this case we usually

omit the base facet in the notation of the (reduced) group of projectivities, and write

Π(K) = Π(K,σ0), respectively Π0(K) = Π0(K,σ0).

The odd subcomplex. LetK be locally strongly connected; in particular,K is pure. The

link of a codimension 2-face f is a graph which is connected since K is locally strongly

connected, and f is called even if the link lkK(f) of f is 2-colorable (i.e. bipartite as a

graph), and odd otherwise. We define the odd subcomplex of K as all odd codimension

2-faces (together with their proper faces), and denote it by Kodd (or sometimes odd(K)).
Assume that K is pure and admits a (d + 1)-coloring of its graph Γ(K), that is, we

assign one color of a set of d+ 1 colors to each vertex of Γ(K) such that the two vertices
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of any edge carry different colors. Observe that the (d+1)-coloring ofK is minimal with

respect to the number of colors, and is unique up to renaming the colors if K is strongly

connected. Simplicial complexes that are (d + 1)-colorable are called foldable, since a

(d+ 1)-coloring defines a non-degenerate simplicial map of K to the (d+ 1)-simplex. In

other places in the literature foldable simplicial complexes are sometimes called balanced.

Lemma 1.3. The odd subcomplex of a foldable simplicial complex K is empty, and the

group of projectivities Π(K,σ0) is trivial. In particular we have 〈γ〉 = 〈δ〉 for any two

facet paths γ and δ from σ to τ for any two facets σ, τ ∈ K.

We leave the proof to the reader. As we will see in Theorem 1.4 the odd subcomplex

is of interest in particular for its relation to Π0(K,σ0) of a nice simplicial complex K.

Consider a geometric realization |K| ofK. To a given facet path γ = (σ0, σ1, . . . , σk)
inK we associate a (piecewise linear) path |γ| in |K| by connecting the barycenter of σi to

the barycenters of σi∩σi−1 and σi∩σi+1 by a straight line for 1 ≤ i < k, and connecting

the barycenters of σ0 and σ0 ∩σ1, respectively σk and σk ∩σk−1. A projectivity around a

codimension 2-face f is a projectivity along a facet path γδγ−, where δ is a closed facet

path in stK(f) (based at some facet σ ∈ stK(f)) such that |γ| is homotopy equivalent to

the boundary of a transversal disc around |f | ⊂ | stK(f)|, and γ is a facet path from σ0

to σ. The path γδγ− is null-homotopic since K is locally strongly simply connected.

Theorem 1.4 (Izmestiev & Joswig [14, Theorem 3.2.2]). The reduced group of projec-

tivities Π0(K,σ0) of a nice simplicial complex K is generated by projectivities around

the odd codimension 2-faces. In particular, Π0(K,σ0) is generated by transpositions.

The fundamental group π1(|K| \ |Kodd|, y0) of a nice simplicial complex K is gen-

erated by paths |γ|, where γ is a closed facet path based at σ0, and y0 is the barycenter

of σ0; see [14, Proposition A.2.1]. Furthermore, due to Theorem 1.4 we have the group

homomorphism

hK : π1(|K| \ |Kodd|, y0) → Π(K,σ0) : [|γ|] 7→ 〈γ〉,

where [|γ|] is the homotopy class of the path |γ| corresponding to a facet path γ.

The partial unfolding. Let K be a pure simplicial d-complex and set Σ as the set of all

pairs (|σ|, v), where σ ∈ K is a facet and v ∈ σ is a vertex. Thus each pair (|σ|, v) ∈ Σ
is a copy of the geometric simplex |σ| labeled by one of its vertices. For neighboring

facets σ and τ of K we define the equivalence relation ∼ by attaching (|σ|, v) ∈ Σ and

(|τ |, w) ∈ Σ along their common ridge |σ ∩ τ | if 〈σ, τ〉(v) = w holds. Now the partial

unfolding K̂ is defined as the quotient space K̂ = Σ/∼. The projection p : K̂ → K is

given by the factorization of the map Σ → K : (|σ|, v) 7→ σ; see Figure 2.

The partial unfolding of a strongly connected simplicial complex is not strongly con-

nected in general. We denote by K̂(|σ|,v) the connected component containing the labeled

facet (|σ|, v). Clearly, K̂(|σ|,v) = K̂(|τ |,w) holds if and only if there is a facet path γ from

σ to τ in K with 〈γ〉(v) = w. It follows that the connected components of K̂ correspond

to the orbits of the action of Π(K,σ0) on V (σ0). Note that each connected component of
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Figure 2. The starred triangle and its partial unfolding. The complex on the right is the

non-trivial connected component of the partial unfolding, indicated by the labelling of the

facets by the vertices v1, v2, and v3. The second connected component is a copy of the

starred triangle with all facets labelled v0; see also Example 1.1 for k = 2.

the partial unfolding is strongly connected and locally strongly connected [24, Satz 3.2.2].

Therefore we do not distinguish between connected and strongly connected components

of the partial unfolding.

The problem that the partial unfolding K̂ may not be a simplicial complex can be

addressed in several ways. Izmestiev & Joswig [14] suggest barycentric subdivision of

K̂, or anti-prismatic subdivision of K. A more efficient solution (with respect to the size

of the resulting triangulations) is given in [24].

1.4 The partial unfolding as a branched cover. As preliminaries to this section we

state two theorems by Fox [4] and Izmestiev & Joswig [14]. Together they imply that

under the “usual connectivity assumptions” the partial unfolding of a simplicial complex

is indeed a branched cover as suggested in the heading of this subsection.

Theorem 1.5 (Izmestiev & Joswig [14, Theorem 3.3.2]). Let K be a nice simplicial

complex. Then the restriction of p : K̂ → K to the preimage of the complement of

the odd subcomplex is a simple covering.

Theorem 1.6 (Fox [4, p. 251]; Izmestiev & Joswig [14, Proposition 4.1.2]). Let J and

K be nice simplicial complexes and let f : J → K be a simplicial map. Then the

map f is a simplicial branched cover if and only if

codimKsing ≥ 2.

Since the partial unfolding of a nice simplicial complex is nice, Corollary 1.7 follows

immediately.

Corollary 1.7. Let K be a nice simplicial complex. The projection p : K̂ → K is a

simple branched cover with the odd subcomplex Kodd as its branching set.
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For the rest of this section letK be a nice simplicial complex and let y0 be the barycen-

ter of a fixed facet σ0 ∈ K. The projection p : K̂ → K is a branched cover with

Ksing = Kodd by Corollary 1.7, and Izmestiev & Joswig [14] proved that there is a bi-

jection ı : p−1(y0) → V (σ0) that induces a group isomorphism ı∗ : Sym(p−1(y0)) →
Sym(V (σ0)) such that the following Diagram (1) commutes.

π1(|K| \ |Kodd|, y0)

hK

((QQQQQQQQQQQQ

mp

��

Mp ı∗
// Π(K,σ0)

(1)

Let r : X → Y be a branched cover and assume that there is a homeomorphism of

pairs ϕ : (Y, Ysing) → (|K|, |Kodd|), that is, ϕ : Y → |K| is a homeomorphism with

ϕ(Ysing) = |Kodd|. Then Theorem 1.8 gives sufficient conditions for p : K̂ → K and

r : X → Y to be equivalent branched covers. It is the key tool in the proof of the main

Theorem 2.1 in Section 2.

Theorem 1.8. Let K be a nice simplicial complex and let r : X → Y be a (simple)

branched cover. Further assume that there is a homeomorphism of pairs ϕ : (Y, Ysing) →
(|K|, |Kodd|), and let y0 ∈ Y be a point such that ϕ(y0) is the barycenter of |σ0| for some

facet σ0 ∈ K. The branched covers p : K̂ → K and r : X → Y are equivalent if there is

a bijection ι : r−1(y0) → V (σ0) that induces a group isomorphism ι∗ : Mr → Π(K,σ0)
such that the diagram

π1(Y \ Ysing, y0)

mr

��

ϕ∗ // π1(|K| \ |Kodd|, ϕ(y0))

hK

��

Mr

ι∗ // Π(K,σ0)

(2)

commutes. In particular, we have K̂ ∼= X .

Proof. Corollary 1.7 ensures that p : K̂ → K is indeed a branched cover, and commuta-

tivity of Diagram (1) and Diagram (2) proves commutativity of their composition:

π1(Y \ Ysing, y0)

mr

��

ϕ∗ // π1(|K| \ |Kodd|, ϕ(y0))

hK

��

mp

''PPPPPPPPPPPPP

Mr

ι∗ // Π(K,σ0) Mp
ı∗oo

Theorem 1.2 completes the proof. 2

2 Constructing branched covers

Throughout this section let r : X → S
d be a branched cover of the d-sphere with branch-

ing set F . The main objective is to give a large class of branched covers r, such that there
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is a combinatorial sphere S with p : Ŝ → S equivalent to r as a branched cover. In partic-

ular this implies the existence of a homeomorphism of pairs ϕ : (Sd, F ) → (|S|, |Sodd|).

Note that by the nature of the partial unfolding and the projection p : Ŝ → S, any

branched cover r equivalent to p has to be simple and (d+ 1)-fold. A theorem similar to

Theorem 2.1 may easily be formulated for branched covers of d-balls.

Recall that we associate to a facet path γ in S the (realized) path |γ| in |S|, and that the

square brackets denote the homotopy class of a closed path. Thus we write mr([ϕ
−1(|γ|)])

for the image of an element in π1(S
d \ F, y0) represented by the closed path ϕ−1(|γ|),

which in turn is obtained from a closed facet path γ based at some facet σ0 ∈ S with

barycenter ϕ(y0) by first considering its realization |γ| and then its preimage under ϕ.

Theorem 2.1. For d ≥ 2 let r : X → S
d be a (d+ 1)-fold, simple branched cover of the

d-sphere, and assume that the branching set F of r can be embedded via a homeomor-

phism ϕ : S
d → |S′| into the codimension 2-skeleton of a shellable simplicial d-sphere

S′. Then there is a shellable simplicial d-sphere S such that p : Ŝ → S is a branched

cover equivalent to r. Furthermore, the d-sphere S can be obtained from S′ by a finite se-

ries of stellar subdivision of edges. If S′ is the boundary of a simplicial (d+ 1)-polytope,

then also S is the boundary of a simplicial (d+ 1)-polytope.

To make the proof of Theorem 2.1 more digestible we first give the (algorithmical)

back-bone of the proof and defer some of the more technical aspects to the Lemmas 2.2,

2.3, and 2.4. Fix a point y0 ∈ S
d \ F ; we may assume ϕ(y0) to be the barycenter of some

facet σ0 ∈ S′ and |σ0| ∩ϕ(F ) = ∅ to hold. Further fix a bijection ı between the preimage

{x0, x1, . . . , xd} = r−1(y0) of y0 and the vertices of σ0, and color the vertices of σ0 via ı
by the elements in r−1(y0).

The d-sphere S is constructed in a finite series (S′ = S0, S1, . . . , Sl = S) of shellable

d-spheres, and each d-sphere Si comes with a shelling of its facet with marked beginning

(σi,0, σi,1, . . . , σi,li). The complex Si+1 is obtained from Si by (possibly) subdividing

σi,li+1 in a finite series of stellar subdivisions of edges not contained in any σi,j for 0 ≤
j ≤ li. Thus we may choose the shelling of Si+1 such that it extends (σi,0, σi,1, . . . , σi,li)
and we denote the marked beginning of the shelling of Si simply by (σ0, σ1, . . . , σli).

Let Di =
⋃

0≤j≤li
σj . Then the main idea of the proof of Theorem 2.1 is to construct

Si such that the branched covers r : X → S
d (restricted to ϕ−1(|Di|)) and D̂i → Di are

equivalent. To this end we prove that ϕ restricted to ϕ−1(|Di|) is a homeomorphism of

pairs (ϕ−1(|Di|), F∩ϕ−1(|Di|)) → (|Di|, |odd(Di)|) and that the following Diagram (3)

commutes; see Figure 3.

π1(ϕ
−1(|Di|) \ F, y0)

ϕ∗ //

mr

��

π1(|Di| \ |odd(Di)|, ϕ(y0))

hDi

��

Mr

ı∗ // Π(Di, σ0)

(3)

Commutativity of Diagram (3) is obtained by ensuring that for each closed facet

path γ in Di (which is not a facet path in Di−1) the projectivity 〈γ〉 acts on V (σ0) as

mr([ϕ
−1(|γ|)]) acts on r−1(y0).



446 Nikolaus Witte

ϕ

Figure 3. The base space of the branched cover r : X → S
2 (left) and a polytopal 2-sphere

Si with marked beginning (σj)0≤j≤li of a shelling (right). On the left the preimage of

Di =
⋃

0≤j≤li
σj under the homomorphism ϕ : S

2 → |Si| is shaded and the branching

set is marked. The odd subcomplex of Di is marked on the right. The branched covers

r : X → S
2 (restricted to ϕ−1(|Di|)) and D̂i → Di are equivalent.

The pair (Si+1, (σj)0≤j≤li+1
) is constructed from the pair (Si, (σj)0≤j≤li) as follows.

Let σ = σli+1 be the first facet in the shelling of Si not contained in Di, let γ be a facet

path in Di ∪ σ from σ0 to σ, and let f ⊂ σ be a face. Further let Hf,γ be the subgroup of

Mr which is induced viamr by all elements of π1(S
d\F, y0) of the form [ϕ−1(|γδγ−1|)],

where δ is any closed facet path in stSi
(f) based at σ. The subgroup Hf,γ has at least

dim(f) + 1 trivial orbits, namely, the orbits corresponding to the vertices of f , and for

g ⊂ f we have that the set of trivial orbits of Hf,γ contains the trivial orbits of Hg,γ . We

consider the following three case:

(i) The intersection σ∩Di is a ridge f . Let γ be a facet path inDi∪σ from σ0 to σ, and

color σ (and hence f ) by the coloring induced along γ by the fixed coloring of σ0.

Now keep the coloring of f , but change the color of the remaining vertex v = σ \ f
to any trivial orbit of Hv,γ ; see Figure 4 (right).

(ii) The intersection σ ∩ Di equals two ridges f ∪ v and f ∪ w with a common codi-

mension 2-face f . Let σv ∈ Di be the facet intersecting σ in f ∪ v, let σw ∈ Di

be the facet intersecting σ in f ∪ w, and choose facet paths γ from σ0 to σv in Di

and δ from σv to σw in stDi
(f). The fixed coloring of σ0 induces along γ, respec-

tively γδ, colorings on f ∪ v and f ∪ w, and the colorings coincide on f . Now we

change the color of w according to mr([ϕ
−1(|γδ(σw, σ, σv)γ

−1|)]), which is either

a transposition (changing the color of w) or the identity; see Figure 4 (left).

(iii) Otherwise set Si+1 = Si and let (σ0, σ1, . . . , σli , σ) be the marked beginning of a

shelling of Si+1.

We obtained a (possibly inconsistent) coloring of the vertices of σ in the Cases (i) and

(ii). Note that the coloring of σ induces a consistent coloring on Di ∩ σ, and that there is

at most one conflicting edge {v, w}, that is, v and w are colored the same. A consistently

colored subdivision of σ is constructed in at most d − 1 subdivisions of σ with exactly
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σ0

x0

x1

x2

Di

γ

δ

x0

x0

x1

σ

f

v

w

γ

δ

x0

x1

x1

σ

σv

σw

f

v

w

Figure 4. Case (i): The 2-ball Di with the facet σ0 colored via ı by the preimage

{x0, x1, x2} of y0 and induced coloring of the ridge f on the right hand side of the figure.

The vertex v is colored x0 if any element of Mr corresponding via mr ◦ ϕ
−1 to a facet

path of the form γδγ−1 maps x0 to itself. Case (ii): The induced coloring of the codimen-

sion 2-face f and the vertices v and w on the left. The edge {v, w} is subdivided if the

facet path γδ(σw, σ, σv)γ
−1 corresponds via mr ◦ ϕ

−1 to the identity in Mr.

one conflicting edge e each, where each subdivision is obtained from the previous one

by stellar subdividing e: Let fe ⊂ σ be the unique minimal face such that |e| ⊂ |f |
holds and denote by Ce the set of trivial orbits of Hfe,γ . Now color the new vertex ve
with an element of Ce which is not the color of any vertex ve′ subdividing an edge e′

with fe′ ⊂ f . Note that Ce is the entire preimage r−1(y0) if fe is a codimension 1-face,

and that Ce has at least one element distinct from the colors of all ve′ for fe′ ⊂ fe. If

Ce contains the one color x ∈ r−1(y0) not used in the coloring of σ, color ve by x and

terminate the subdivision process.

{x2} v

{x2}

{x0}

{x1}

{x0, x2}

{x0, x1, x2,x3}

{x2} v

{x2}w

{x0}

{x0, x1, x2,x3}

Figure 5. Coloring of the vertices of the refinement of σ in Case (i) (on the left) and Case

(ii) (on the right). The minimal free face v, respectively {v, w}, is marked. Each vertex

ve is labeled by the trivial orbits of Hfe,γ and the vertex color is printed bold.
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This completes the construction of Si+1 in the Cases (i) and (ii), and we define the

marked beginning of a shelling of Si+1 by (σ0, σ1, . . . , σli) followed by the facets of the

refinement of σ in an appropriate order.

It remains to prove that the algorithm described above terminates and that p : Ŝ → S
is a branched cover equivalent to r : X → S

d. Since S is shellable and hence nice,

p is a branched cover by see Corollary 1.7. The following Lemmas 2.2 and 2.3 prove

the equivalence of p and r, while termination of the construction above is provided by

Lemma 2.4.

Lemma 2.2. The branched covers p : Ŝ → S and r : X → S
d are equivalent.

Proof. In order to show the equivalence of the branched covers p and r we prove by

induction that the following holds for 0 ≤ i ≤ l:

(I) For any closed facet path γ based at σ0 in Di we have 〈γ〉 = ı∗ ◦ mr([ϕ
−1(|γ|)]).

(II) Let v ∈ Di be a vertex, and let γ be a facet path in Di from σ0 to a facet σ
containing v. Then the color induced on v along γ by the fixed coloring of σ0 is a

trivial orbit of Hv,γ .

We remark that (I) implies that ϕ restricted to ϕ−1(|Di|) is a homeomorphism of pairs

(ϕ−1(|Di|), F ∩ ϕ−1(|Di|)) → (|Di|, |odd(Di)|) and that Diagram (3) commutes. Fi-

nally, (I) and (II) are met for the pair (S0,D0) = (S′, σ0), and commutativity of Diagram

(3) proves the equivalence of r : X → S
d and p : Ŝ → S for i = l; see Theorem 1.8.

We show that (I) and (II) hold for the pair (Si+1,Di+1) provided they hold for the pair

(Si,Di). Recall that we denote the first facet σli+1 of the shelling of Si not contained in

Di by σ. The simplicial complex Di is contractible and hence Π0(Di, σ0) = Π(Di, σ0)
is generated by closed facet paths around (odd) codimension 2-faces by Theorem 1.4.

Thus it suffices to verify (I) for closed facet paths around (interior) codimension 2-faces

by examining the three Cases (i), (ii), and (iii).

(i) The intersection σ∩Di is a ridge f . New interior codimension 2-faces inDi+1 arise

only in the refinement of σ, which is foldable by construction. Since ϕ(F ) does not

intersect the interior of |σ|, any facet path around a new interior codimension 2-face

corresponds to the identity of Mr and (I) holds by Lemma 1.3.

(ii) The intersection σ ∩ Di equals two ridges f ∪ v and f ∪ w with a common codi-

mension 2-face f . By induction hypothesis (II) holds for the vertices of f in Di and

thus (I) follows for the new interior codimension 2-face f of Di+1 by construction.

As for any new interior codimension 2-face in the refinement of σ, (I) holds (as in

Case (i)) since the refinement is foldable and ϕ(F ) does not intersect the interior of

|σ|.
(iii) Otherwise there is no codimension 2-faces f ⊂ σ with a free corresponding edge

ef = σ \ f and (I) follows from Lemma 2.3.

Having established (I), it suffices to verify (II) for a single facet path γ in Di+1 from

σ0 to any facet containing a given vertex v. Thus (II) holds by choice of color for any

vertex added to Di in the construction of the pair (Si+1,Di+1). 2

Lemma 2.3. If f ∈ σ is a codimension 2-face with a non-free corresponding edge ef =
σ \ f , then (I) holds for any closed facet path based at σ0 around f in Di+1.
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Proof. Let γδγ−1 be a closed facet path based at σ0 around f inDi+1, where δ is a closed

path around f in stDi+1
(f). Since {v, w} = ef is a non-free edge, there is a facet path

δ′ in Di with |δ′| homotopy equivalent to |{fe, f ∪ v, f ∪ w}| in |Di| \ |odd(Di)|, and

we assume δ and δ′ to have the same orientation; see Figure 6. Note that the complex

{fe, f ∪ v, f ∪ w} itself is homotopy equivalent to S
1.

x0

x1

x2

Di

σ0σ

f

ef

γ

δ

δ′

Figure 6. Case (iii): The paths γ, δ, and δ′ if the corresponding edge ef of a codimension

2-face f is non-free.

Without loss of generality let mr([ϕ
−1(|γδγ−1|)]) either be the identity or the trans-

position (x0, x1) ∈ Mr. Each transposition (xi, xj), for i 6= j, appears at most once in the

(unique) reduced representation of the element a = mr([ϕ
−1(|A|)]) ∈ Mr corresponding

to the facet path A = γδ′γ−1, since A is composed from facet paths around codimension

2-faces of σ. Let b = mr([ϕ
−1(|B|)]) ∈ Mr denote the element corresponding to the

facet path B = γδ′δ−1γ−1, then a = (x0, x1) ◦ b holds if and only if (x0, x1) is in the

reduced representation of a, and we have a = b otherwise. Since (I) holds for Di and

hence in particular for the facet path A, and with

A = γδ′γ−1 = γδ′δ−1γ−1γδγ−1 = Bγδγ−1,

we conclude that the projectivity along γδγ−1 is the identity on the vertices of σ0 if and

only if γδγ−1 corresponds via mr ◦ ϕ
−1 to the identity in Mr, and exchanges exactly the

vertices colored x0 and x1 otherwise. 2

The following Lemma 2.4 proves termination of the construction of the shellable d-

sphere S and completes the proof of Theorem 2.1.

Lemma 2.4. The shellable d-sphere S is obtained by finitely many stellar subdivisions of

edges.

Proof. We prove that no facet will be subdivided more than a finite number of times in the

construction of S. The facet σli+i is subdivided at most d − 1 times in the construction
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Si+1 from Si, and no facet in Di is subdivided. The refinement of σli+1 is added to Di to

define Di+1 and no facet in the refinement will be subdivided any further.

Problems may accrue since subdividing σli+1 results in subdividing other facets (not

in Di) intersecting σli+1, and each facet of the refinement of an intersecting facet appears

in the shelling, yet is not in Di+1. Thus a facet might get subdivided over and over again.

For a face f ∈ S′ let Lf,i ⊂ Si denote the refinement of f in Si. Without loss of

generality we may assume that the facets of the refinement Lσ,i of any facet σ ∈ S′

appear consecutively in the shelling order of Si. Let σ ∈ S′ be a fixed facet and let i0 be

the number such that Si0 is the d-sphere with σli0
+1 is the facet of Lσ,i0 appearing first in

the shelling order, that is, Si0+1 is constructed by adding (a refinement) of the first facet of

Lσ,i0 to Di0 . Thus we obtain an induced coloring of the boundary vertices of Lσ,i0 which

is consistent on Di0 ∩Lσ,i0 by construction. Since ϕ(F ) does not intersect the interior of

|Lσ,i0 | and by Lemma 1.3, it remains to prove that this coloring of Di0 ∩ Lσ,i0 extends to

a foldable refinement of Lσ,i0 obtained via a finite series of stellar subdivisions.

Observe that each facet of Lσ,i0 is the cone over a (d − 1)-simplex in the boundary

of Lσ,i0 and that Lσ,i0 has no interior vertices: This is obviously true for Lσ,0 = σ. For

1 ≤ i ≤ i0 let cone(f) be a facet of Lσ,i−1 with f is a boundary (d − 1)-simplex. Now

if cone(f) is subdivided via stellarly subdividing an edge e ∈ f , both facets replacing

cone(f) are cones over boundary (d− 1)-simplices which in turn are obtained from f by

replacing one vertex of e by the new vertex subdividing e.

We strengthen the statement above and claim that each facet of Lσ,i0 is the cone over

a (d − 1)-simplex in Di0 ∩ Lσ,i0 . To this end note the trivial fact that if e ∈ Lg,i is an

edge of the subdivision of a boundary k-face g ∈ σ and if {fj}1≤j≤d−k are the boundary

(d − 1)-faces of σ with g =
⋂

1≤j≤d−k fj , then there is a (d − 1)-simplex in each Lfj ,i

containing e. Thus if for some i < i0 an edge e is subdivided when adding the simplex

σli+1 to Di which intersects Lσ,i in a low dimensional face, then at least one of the

boundary (d − 1)-simplices of Lσ,i containing e will be added to Di′ ∩ Lσ,i′ at some

point i < i′ ≤ i0.

Returning to the consistent coloring of Di0 ∩ Lσ,i0 we conclude that all vertices of

Lσ,i0 are colored since there are no interior vertices, and that each facet cone(f) of Lσ,i0
has at most one conflicting edge since the boundary (d − 1)-simplex f ⊂ Di0 ∩ Lσ,i0 is

consistently colored. Hence stLσ,i0
(e) of a conflicting edge e does not contain any other

conflicting edges and we consider stLσ,i0
(e) independently.

Now stLσ,i0
(e) is subdivided only finitely many times sinceHv,γ is trivial for any new

vertex v (except for finitely many vertices in the boundary of | stLσ,i0
(e)|) and hence the

construction (Case (i) and (ii)) induces a linear order on the colors used to color the new

vertices. 2

Remark 2.5. It appears as if the shellable d-sphere S may be constructed along a span-

ning tree of the dual graph Γ∗(S′) instead of a shelling, though the construction would

become substantially more complicated. Using a spanning tree of Γ∗(S′) would eliminate

the somehow (to the theory of branched covers) alien concept of a shelling, and would

allow for more general base spaces, e.g. PL d-manifolds.
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Figure 7. Constructing the trefoil as odd subcomplex of a 3-sphere S with Π(S) isomor-

phic to the symmetric group on three elements. On the left the Schlegel diagram of the

cyclic 4-polytope C4,7 on seven vertices with the trefoil embedded in the 1-skeleton. On

the right S as a subdivision of the Schlegel diagram after stellarly subdividing eight edges

of C4,7. The odd subcomplex is marked and the f -vector of S reads (15, 63, 96, 48);
watch [25].

Applying Theorem 2.1 to the results of Hilden [8] and Montesinos [17], Piergallini

[21], and Iori & Piergallini [11] we obtain the following three corollaries.

Corollary 2.6. Let d = 2 or d = 3. For every closed oriented d-manifold M there is a

polytopal d-sphere S such that one of the connected components Ŝ of the partial unfolding

of S is a combinatorial d-manifold homeomorphic to M . The projection Ŝ → S is a

simple d-fold branched cover branched over finitely many points for d = 2, respectively

a link for d = 3.

Corollary 2.7. For every closed oriented PL 4-manifold M there is a polytopal 4-sphere

S such that one of the connected components Ŝ of the partial unfolding of S is a combi-

natorial 4-manifold PL-homeomorphic to M . The projection Ŝ → S is a simple 4-fold

branched cover branched over a PL-surface with a finite number of cusp and node singu-

larities.

Corollary 2.8. For every closed oriented PL 4-manifold M there is a polytopal 4-sphere

S such that the partial unfolding Ŝ of S is a combinatorial 4-manifold PL-homeomorphic

to M . The projection Ŝ → S is a simple 5-fold branched cover branched over a locally

flat PL-surface.

A weaker version of Corollary 2.6 was already established by Izmestiev & Joswig [14]

and later by Hilden, Montesinos, Tejada & Toro [9]. A weaker version of Corollary 2.7

can be found in [26].

Stellar subdivision of an edge e ∈ S of a combinatorial d-manifold S changes the

parity of the codimension 2-faces in lkS(e). Since the link of an edge of S is a (combi-

natorial) (d − 2)-sphere, we obtain the following Corollary 2.9. A topological proof for

arbitrary simple branched covers is available by Izmestiev [13].
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Corollary 2.9. The branching set of a branched cover r : X → S
d as described in

Theorem 2.1 is the symmetric difference of finitely many (d− 2)-spheres.

We conclude this section by a remark and a conjecture as to which branched covers

r : X → S
d may be obtained via the method presented above. In other words, which

branching sets can be embedded via a homeomorphism ϕ : S
d → |S′| into the codimen-

sion 2-skeleton of a shellable simplicial d-sphere S′.

Remark 2.10. For d ≥ 6 there are branching sets non-embedable into the codimension

2-skeleton of a shellable simplicial d-sphere: Freedman & Quinn [5] constructed a 4-

manifold which does not have a triangulation as a combinatorial manifold. In fact, there

are 4-manifolds which cannot be triangulated at all [16, p. 9].

The branching set of a branched cover r : X → S
d for d ≤ 5 is at most 3-dimensional

and since there is no difference between PL and non-PL topology up to dimension three,

we conjecture the following.

Conjecture 2.11. For d ≤ 5 every branched cover r : X → S
d can be obtained via the

partial unfolding of some polytopal d-sphere.

3 Extending triangulations

A first assault on how to extend triangulation and coloring is by Goodman & Onishi

[7], who proved that a 4-colorable triangulation of the 2-sphere may be extended to a

4-colorable triangulation of the 3-ball. Their result was improved independently by Iz-

mestiev [12] and [24] to arbitrary dimensions. Here we generalize the construction to

arbitrary simplicial complexes with k-colored subcomplexes.

Theorem 3.1. Given a simplicial d-complex K and a k-colored induced subcomplex L,

then there is a finite series of stellar subdivisions of edges such that the resulting simplicial

complexK ′ has a max{k, d+1}-coloring,K ′ contains L as an induced subcomplex, and

the max{k, d+ 1}-coloring of K ′ induces the original k-coloring on L.

Proof. We may assume K to be pure. Let K0 = K and assign 0 to all vertices not in L.

For 1 ≤ i ≤ dwe obtain the simplicial complexKi fromKi−1 by stellarly subdividing all

conflicting edges with both vertices colored i− 1 in an arbitrary order. The new vertices

are colored i. We prove by induction that for 0 ≤ j ≤ i− 1 and each facet σ ∈ Ki there

is exactly one vertex vj ∈ σ colored j. The assumption holds for K0 and completes the

proof for K ′ = Kd. Note that since L is properly colored, no edges in L are subdivided

and L is an induced subcomplex of any Ki for 0 ≤ i ≤ d.

To prove the induction hypothesis for Ki, we again use an inductive argument: Let σ
be a facet of a subdivision ofKi−1 produced in the making ofKi. Assume that each color

less than i− 1 appears exactly once in σ, and let l ≥ 2 be the number of (i− 1)-colored

vertices of σ. This assumption clearly holds for any facet of Ki−1 for some l ≤ d− i+ 2.

After subdividing an (i− 1)-colored conflicting edge of σ and assigning the color i to the
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new vertex, each of the two new facets has l − 1 vertices colored i − 1, and each color

less than i− 1 appears exactly once. Thus any facet of Ki−1 has to be subdivided into at

most 2d−i+1 simplices in order for Ki to meet the induction hypothesis. 2

Izmestiev gives a result similar to Theorem 3.1 in [12], but the following Remark 3.2

points out the advantage of using only stellar subdivisions of edges.

Remark 3.2. Since only stellar subdivisions of edges are used to construct K ′ from K,

all properties invariant under these subdivisions are preserved, e.g. polytopality, regular-

ity, shellability, and others. In the case that L is not induced, stellarly subdivide all edges

{v, w} ∈ K \ L with v, w ∈ L. In order to obtain a small triangulation, one can try to

(greedily) (d+ 1)-color a (large) foldable subcomplex first.

Corollary 3.3. The odd subcomplex of a closed combinatorial d-manifold is the symmet-

ric difference of finitely many (d− 2)-spheres.

Corollary 3.4. Given a k-colored simplicial (d − 1)-sphere S, then there is a simplicial

d-ball D with boundary equal to S such that there is a max{k, d + 1}-coloring of D
which induces the original k-coloring on S. The d-ball D is obtained from cone(S) by a

finite series of stellar subdivision of edges. In particular D is a combinatorial d-ball if S
is a combinatorial (d−1)-sphere, shellable if S is shellable, and regular if S is polytopal;

see Figure 8.
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Figure 8. Convex hull of the extended triangulation of a 3-colored 7-gon and its Schlegel

diagram.

Remark 3.5. Similar results as Corollary 3.4 may easily be obtained for partial triangula-

tions of a CW-complex and relative handle-body decompositions of a PL-manifold (with

boundary).
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The partial unfoldings of two homeomorphic simplicial complexes K and K ′ need

not to be homeomorphic in general. We present a notion of equivalence of simplicial

complexes which agrees with their unfolding behavior, that is, we give sufficient criteria

such that if p : K̂ → K and p′ : K̂ ′ → K ′ are branched covers, then p and p′ are

equivalent.

Assume K and K ′ to be strongly connected and that the odd subcomplexes Kodd and

K ′
odd are equivalent, that is, there is a homeomorphism of pairs ϕ : (|K|, |Kodd|) →

(|K ′|, |K ′
odd|). Let σ0 ∈ K be a facet, and y0 the barycenter of σ0, and assume that the

image y′0 = ϕ(y0) is the barycenter of |σ′
0| for some facet σ′

0 ∈ K ′. Now K and K ′ are

color equivalent if there is a bijection ψ : V (σ0) → V (σ′
0), such that

ψ∗ ◦ hK = hK′ ◦ ϕ∗ (4)

holds, where the maps ϕ∗ : π1(|K| \ |Kodd|, y0) → π1(|K
′| \ |K ′

odd|, y
′
0) and ψ∗ :

Sym(V (σ0)) → Sym(V (σ′
0)) are the group isomorphisms induced by ϕ and ψ, respec-

tively.

Observe that this is indeed an equivalence relation. The name “color equivalent”

suggests that the pairs (K,Kodd) and (K ′,K ′
odd) are equivalent, and that the “colorings”

ofKodd andK ′
odd by the Π(K)-action, respectively Π(K ′)-action, of projectivities around

odd faces are equivalent. Lemma 3.6 justifies this name.

Lemma 3.6. Let K and K ′ be color equivalent nice simplicial complexes. Then the

branched covers p : K̂ → K and p′ : K̂ ′ → K ′ are equivalent.

Proof. With the notation of Equation (4) we have that

π1(|K| \ |Kodd|, y0)
ϕ∗ //

mp

wwpppppppppppp

hK

��

π1(|K
′| \ |K ′

odd|, y
′
0)

mp′

''OOOOOOOOOOOO

hK′

��

Mp
ı∗ // Π(K,σ0)

ψ∗ // Π(K ′, σ′
0) Mp′

ı′
∗oo

commutes, since Diagram (1) commutes and Equation (4) holds. Theorem 1.2 completes

the proof. 2

Proposition 3.7. For every strongly connected simplicial complex K there is a simplicial

complex K ′, obtained from a foldable simplicial complex via a finite series of stellar

subdivision of edges, such that K and K ′ are color equivalent.

Theorem 2.1 proves Proposition 3.7 above for shellable spheres. We will not prove

the general case and only give a sketch of the construction for general K.

Let L be a foldable simplicial complex obtained from K via a finite series of stellar

subdivisions according to Theorem 3.1, that is, there is a series (K = K0,K1, . . . ,Kl =
L) where Ki is obtained from Ki−1 by stellarly subdividing a single edge ei−1 ∈ Ki−1.

The idea is to reverse the effect of the stellar subdivisions by subdividing each edge e
a second time in the reversed order, since stellarly subdividing e twice yields the anti-

prismatic subdivision of e (which does not alter the color equivalence class).
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We construct K ′ from L inductively in a series (L = Ll, Ll−1, . . . , L0 = K ′) of sim-

plicial complexes, where Li is obtained from Li+1 by a finite series of stellar subdivisions

of edges. The complexes Li and Ki are color equivalent: For a facet path (σ′
j)j∈J in Li

associate the facet path (σj)j∈J in Ki, where σj is the unique facet such that |σ′
j | lies in

|σj |.
We fix some notation in order to describe the construction of Li from Li+1. Subdivid-

ing the edge ei ∈ Ki in order to construct Ki+1 replaces ei by two edges in Ki+1, and we

call one of these two edges e′i. A facet in stKi+1
(e′i) might get subdivided further in the

process of constructing Ki+2,Ki+3, . . . ,Kl = Ll, Ll−1, . . . , Li+1, and we define Le′
i

as

the subcomplex of Li+1 which refines stKi+1
(e′i).

Note that e′i is an edge of Le′
i
, and that Le′

i
and stKi+1

(e′i) are color equivalent. It

follows that the group of projectivities of Le′
i

has at least two trivial orbits corresponding

to the vertices of e′i. Now Li is obtained from Li+1 by stellarly subdividing all edges with

vertices belonging to the same two trivial orbits as the vertices of e′i.
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