11 research outputs found

    Changing upper irredundance by edge addition

    Get PDF
    AbstractDenote the upper irredundance number of a graph G by IR(G). A graph G is IR-edge-addition-sensitive if its upper irredundance number changes whenever an edge of Ḡ is added to G. Specifically, G is IR-edge-critical (IR+-edge-critical, respectively) if IR(G+e)<IR(G) (IR(G+e)>IR(G), respectively) for each edge e of Ḡ. We show that if G is IR-edge-addition-sensitive, then G is either IR-edge-critical or IR+-edge-critical. We obtain properties of the latter class of graphs, particularly in the case where β(G)=IR(G)=2 (where β(G) denotes the vertex independence number of G). This leads to an infinite class of IR+-edge-critical graphs where IR(G)=2

    Critical concepts in domination, independence and irredundance of graphs

    Get PDF
    The lower and upper independent, domination and irredundant numbers of the graph G = (V, E) are denoted by i ( G) , f3 ( G), 'Y ( G), r ( G), ir ( G) and IR ( G) respectively. These six numbers are called the domination parameters. For each of these parameters n:, we define six types of criticality. The graph G is n:-critical (n:+ -critical) if the removal of any vertex of G causes n: (G) to decrease (increase), G is n:-edge-critical (n:+-edge-critical) if the addition of any missing edge causes n: (G) to decrease (increase), and G is Ir-ER-critical (n:- -ER-critical) if the removal of any edge causes n: (G) to increase (decrease). For all the above-mentioned parameters n: there exist graphs which are n:-critical, n:-edge-critical and n:-ER-critical. However, there do not exist any n:+-critical graphs for n: E {ir,"f,i,/3,IR}, no n:+-edge-critical graphs for n: E {ir,"f,i,/3} and non:--ER-critical graphs for: E {'Y,/3,r,IR}. Graphs which are "I-critical, i-critical, "I-edge-critical and i-edge-critical are well studied in the literature. In this thesis we explore the remaining types of criticality. We commence with the determination of the domination parameters of some wellknown classes of graphs. Each class of graphs we consider will turn out to contain a subclass consisting of graphs that are critical according to one or more of the definitions above. We present characterisations of "I-critical, i-critical, "I-edge-critical and i-edge-critical graphs, as well as ofn:-ER-critical graphs for n: E {/3,r,IR}. These characterisations are useful in deciding which graphs in a specific class are critical. Our main results concern n:-critical and n:-edge-critical graphs for n: E {/3, r, IR}. We show that the only /3-critical graphs are the edgeless graphs and that a graph is IRcritical if and only if it is r-critical, and proceed to investigate the r-critical graphs which are not /3-critical. We characterise /3-edge-critical and r-edge-critical graphs and show that the classes of IR-edge-critical and r-edge-critical graphs coincide. We also exhibit classes of r+ -critical, r+ -edge-critical and i- -ER-critical graphs.Mathematical SciencesD. Phil. (Mathematics

    Protecting a Graph with Mobile Guards

    Full text link
    Mobile guards on the vertices of a graph are used to defend it against attacks on either its vertices or its edges. Various models for this problem have been proposed. In this survey we describe a number of these models with particular attention to the case when the attack sequence is infinitely long and the guards must induce some particular configuration before each attack, such as a dominating set or a vertex cover. Results from the literature concerning the number of guards needed to successfully defend a graph in each of these problems are surveyed.Comment: 29 pages, two figures, surve

    Aspects of distance and domination in graphs.

    Get PDF
    Thesis (Ph.D.-Mathematics and Applied Mathematics)-University of Natal, 1995.The first half of this thesis deals with an aspect of domination; more specifically, we investigate the vertex integrity of n-distance-domination in a graph, i.e., the extent to which n-distance-domination properties of a graph are preserved by the deletion of vertices, as well as the following: Let G be a connected graph of order p and let oi- S s;:; V(G). An S-n-distance-dominating set in G is a set D s;:; V(G) such that each vertex in S is n-distance-dominated by a vertex in D. The size of a smallest S-n-dominating set in G is denoted by I'n(S, G). If S satisfies I'n(S, G) = I'n(G), then S is called an n-distance-domination-forcing set of G, and the cardinality of a smallest n-distance-domination-forcing set of G is denoted by On(G). We investigate the value of On(G) for various graphs G, and we characterize graphs G for which On(G) achieves its lowest value, namely, I'n(G), and, for n = 1, its highest value, namely, p(G). A corresponding parameter, 1](G), defined by replacing the concept of n-distance-domination of vertices (above) by the concept of the covering of edges is also investigated. For k E {a, 1, ... ,rad(G)}, the set S is said to be a k-radius-forcing set if, for each v E V(G), there exists Vi E S with dG(v, Vi) ~ k. The cardinality of a smallest k-radius-forcing set of G is called the k-radius-forcing number of G and is denoted by Pk(G). We investigate the value of Prad(G) for various classes of graphs G, and we characterize graphs G for which Prad(G) and Pk(G) achieve specified values. We show that the problem of determining Pk(G) is NP-complete, study the sequences (Po(G),Pl(G),P2(G), ... ,Prad(G)(G)), and we investigate the relationship between Prad(G)(G) and Prad(G)(G + e), and between Prad(G)(G + e) and the connectivity of G, for an edge e of the complement of G. Finally, we characterize integral triples representing realizable values of the triples b,i,p), b,l't,i), b,l'c,p), b,l't,p) and b,l't,l'c) for a graph

    Index

    Get PDF

    Two conjectures on 3-domination critical graphs

    Get PDF
    For a graph G = (V (G), E (G)), a set S ~ V (G) dominates G if each vertex in V (G) \S is adjacent to a vertex in S. The domination number I (G) (independent domination number i (G)) of G is the minimum cardinality amongst its dominating sets (independent dominating sets). G is k-edge-domination-critical, abbreviated k-1- critical, if the domination number k decreases whenever an edge is added. Further, G is hamiltonian if it has a cycle that passes through each of its vertices. This dissertation assimilates research generated by two conjectures: Conjecture I. Every 3-1-critical graph with minimum degree at least two is hamiltonian. Conjecture 2. If G is k-1-critical, then I ( G) = i ( G). The recent proof of Conjecture I is consolidated and presented accessibly. Conjecture 2 remains open for k = 3 and has been disproved for k :::>: 4. The progress is detailed and proofs of new results are presented.Mathematical ScienceM. Sc. (Mathematics

    Proceedings of the Sixth Russian-Finnish Symposium on Discrete Mathematics

    Get PDF

    Distances and Domination in Graphs

    Get PDF
    This book presents a compendium of the 10 articles published in the recent Special Issue “Distance and Domination in Graphs”. The works appearing herein deal with several topics on graph theory that relate to the metric and dominating properties of graphs. The topics of the gathered publications deal with some new open lines of investigations that cover not only graphs, but also digraphs. Different variations in dominating sets or resolving sets are appearing, and a review on some networks’ curvatures is also present
    corecore