5,680 research outputs found

    Measurement of vertebral rotation in adolescent idiopathic scoliosis with low-dose CT in prone position - method description and reliability analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To our knowledge there is no report in the literature on measurements of vertebral rotation with low-dose computed tomography (CT) in prone position.</p> <p>Aims</p> <p>To describe and test the reliability of this new method, compare it with other methods in use and evaluate the influence of body position on the degree of vertebral rotation measured by different radiological methods.</p> <p>Study design</p> <p>Retrospective study.</p> <p>Methods</p> <p>25 consecutive patients with adolescent idiopathic scoliosis scheduled for surgery (17 girls, 8 boys) aged 15 ± 2 years (mean ± SD) were included in the analysis of this study. The degree of the vertebral rotation was in all patients measured according to the method of Perdriolle on standing plain radiographs and on supine CT scanogram, and according to the method of Aaro and Dahlborn on axial CT images in prone position and on magnetic resonance imaging (MRI) in supine position. The measurements were done by one neuroradiologist at two different occasions. Bland and Altman statistical approach was used in the reliability assessment.</p> <p>Results</p> <p>The reliability of measuring vertebral rotation by axial CT images in prone position was almost perfect with an intraclass correlation coefficient of 0.95, a random error of the intraobserver differences of 2.3°, a repeatability coefficient of 3.2° and a coefficient of variation of 18.4%. Corresponding values for measurements on CT scanogram were 0.83, 5.1°, 7.2°, and 32.8%, respectively, indicating lower reliability of the latter modality and method. The degree of vertebral rotation measured on standing plain radiographs, prone CT scanogram, axial images on CT in prone position and on MRI in supine position were 25.7 ± 9.8°, 21.9 ± 8.3°, 17.4 ± 7.1°, and 16.1 ± 6.5°, respectively. The vertebral rotation measured on axial CT images in prone position was in average 7.5% larger than that measured on axial MRI in supine position.</p> <p>Conclusions</p> <p>This study has shown that measurements of vertebral rotation in prone position were more reliable on axial CT images than on CT scanogram. The measurement of vertebral rotation on CT (corrected to the pelvic tilt) in prone position imposes lower impact of the recumbent position on the vertebral rotation than did MRI in supine position. However, the magnitude of differences is of doubtful clinical significance.</p

    Validity and reliability of a computer-assisted system method to measure axial vertebral rotation

    Get PDF
    BACKGROUND: Axial vertebral rotation and Cobb’s angle are essential parameters for analysing adolescent idiopathic scoliosis. This study’s scope evaluates the validity and absolute reliability of application software based on a new mathematical equation to determine the axial vertebral rotation in digital X-rays according to Raimondi’s method in evaluators with different degrees of experience. METHODS: Twelve independent evaluators with different experience levels measured 33 scoliotic curves in 21 X-rays with the software on three separate occasions, separated one month. Using the same methodology, the observers re-measured the same radiographic studies three months later but on X-ray films and in a conventional way. RESULTS: Both methods show good validity and reliability, and the intraclass correlation coefficients are almost perfect. According to our results, the software increases 1.7 times the validity and 1.9 times the absolute reliability of axial vertebral rotation on digital X-rays according to Raimondi’s method, compared to the conventional manual measurement. CONCLUSIONS: The intra-group and inter-group agreement of the measurements with the software shows equal or minor variations than with the manual method, among the different measurement sessions and in the three experience groups. There is almost perfect agreement between the two measurement methods, so the equation and the software may be helpful to increase the accuracy in the axial vertebral rotation assessment

    Alterations in thoracolumbosacral movement when pain causing lameness has been improved by diagnostic analgesia

    Get PDF
    Lameness, thoracolumbosacral pain and reduced range of motion (ROM) often coexist; better understanding of their relationship is needed. The objectives were to determine if thoracolumbosacral movement of horses changes when pain causing lameness is improved by diagnostic analgesia. We hypothesised that reduction of lameness will increase ROM of the thoracolumbosacral region. Thirteen horses with different types of hind limb lameness were trotted in straight lines and lunged on a 10 m diameter circle on left and right reins before and after lameness was subjectively substantially improved by diagnostic analgesia. Inertial sensor data were collected from the withers, thirteenth (T13) and eighteenth thoracic (T18) vertebrae, third lumbar (13) vertebra, tubera sacrale (TS), left and right tubera coxae. ROM of flexion-extension, axial rotation, lateral bending, dorsoventral, lateral-lateral motion and vertical movement symmetry were quantified at each thoracolumbar site. Hiphike difference (HHD), maximum difference (MaxDiff) and minimum difference (MinDiff) for the pelvic sensors were measured. Percentage changes for before and after diagnostic analgesia were calculated; mean standard deviation (SD) or median [interquartile range] were determined. Associations between the change in pelvic versus thoracolumbar movement symmetry after each local analgesic technique were tested. After resolution of lameness, HHD decreased by 7% [68%] (P = 0.006). The MinDiff decreased significantly by 33%[61%] (P = 0.01), 45 +/- 13% (P = 0.005) and 52 +/- 23% (P = 0.04), for TS, L3 and T18, respectively. There was significantly increased ROM in flexion-extension at T13, in axial rotation at T13, T18, 13 and in lateral-lateral ROM at 13. Thoracolumbosacral asymmetry and reduced ROM associated with lameness were both altered immediately by improvement in lameness using diagnostic analgesia. (C) 2017 Elsevier Ltd. All rights reserved

    Vertebral rotation measurement: a summary and comparison of common radiographic and CT methods

    Get PDF
    Current research has provided a more comprehensive understanding of Adolescent Idiopathic Scoliosis (AIS) as a three-dimensional spinal deformity, encompassing both lateral and rotational components. Apart from quantifying curve severity using the Cobb angle, vertebral rotation has become increasingly prominent in the study of scoliosis. It demonstrates significance in both preoperative and postoperative assessment, providing better appreciation of the impact of bracing or surgical interventions. In the past, the need for computer resources, digitizers and custom software limited studies of rotation to research performed after a patient left the scoliosis clinic. With advanced technology, however, rotation measurements are now more feasible. While numerous vertebral rotation measurement methods have been developed and tested, thorough comparisons of these are still relatively unexplored. This review discusses the advantages and disadvantages of six common measurement techniques based on technology most pertinent in clinical settings: radiography (Cobb, Nash-Moe, Perdriolle and Stokes' method) and computer tomography (CT) imaging (Aaro-Dahlborn and Ho's method). Better insight into the clinical suitability of rotation measurement methods currently available is presented, along with a discussion of critical concerns that should be addressed in future studies and development of new methods

    Upper Lumbar Pedicle Screw Insertion Using Three-Dimensional Fluoroscopy Navigation:Assessment of Clinical Accuracy

    Get PDF
    We used a navigation system to insert 128 pedicle screws into 69 vertebrae (L1 to L3) of 49 consecutive patients. We assessed the pedicle isthmic width and the permission angle for pedicle screw insertion. The permission angle is the angle defined by the greatest medial and lateral trajectories allowable when placing the screw through the center of the pedicle. The rate of narrow-width pedicles (isthmic width less than 5mm) was 5 of 60 pedicles (8%) at L1, 4 of 60 pedicles (7%) at L2, and none (0%) at L3, L4 and L5. The rate of narrow-angle pedicles (a permission angle less than 15 degrees) was 21 of 60 pedicles (35%) at L1, 7 of 60 (12%) at L2, 3 of 60 (5%) at L3, and none (0%) at L4 and L5. Of 128 pedicle screws inserted into 69 vertebrae from L1 to L3, 125 (97.7%) were classified as Grade 1 (no pedicle perforation). In general, the upper lumbar vertebrae have more narrow-width and -angle pedicles. However, we could reduce the rate of pedicle screw misplacement in upper lumbar vertebra using a three-dimensional fluoroscopy and navigation system

    Evaluation of spinal posture during gait with inertial measurement units

    Get PDF
    The increasing number of postural disorders emphasizes the central role of the vertebral spine during gait. Indeed, clinicians need an accurate and non-invasive method to evaluate the effectiveness of a rehabilitation program on spinal kinematics. Accordingly, the aim of this work was the use of inertial sensors for the assessment of angles among vertebral segments during gait. The spine was partitioned into five segments and correspondingly five inertial measurement units were positioned. Articulations between two adjacent spine segments were modeled with spherical joints, and the tilt–twist method was adopted to evaluate flexion–extension, lateral bending and axial rotation. In total, 18 young healthy subjects (9 males and 9 females) walked barefoot in three different conditions. The spinal posture during gait was efficiently evaluated considering the patterns of planar angles of each spine segment. Some statistically significant differences highlighted the influence of gender, speed and imposed cadence. The proposed methodology proved the usability of inertial sensors for the assessment of spinal posture and it is expected to efficiently point out trunk compensatory pattern during gait in a clinical context

    2D-3D registration of CT vertebra volume to fluoroscopy projection: A calibration model assessment (doi:10.1155/2010/806094)

    Get PDF
    This study extends a previous research concerning intervertebral motion registration by means of 2D dynamic fluoroscopy to obtain a more comprehensive 3D description of vertebral kinematics. The problem of estimating the 3D rigid pose of a CT volume of a vertebra from its 2D X-ray fluoroscopy projection is addressed. 2D-3D registration is obtained maximising a measure of similarity between Digitally Reconstructed Radiographs (obtained from the CT volume) and real fluoroscopic projection. X-ray energy correction was performed. To assess the method a calibration model was realised a sheep dry vertebra was rigidly fixed to a frame of reference including metallic markers. Accurate measurement of 3D orientation was obtained via single-camera calibration of the markers and held as true 3D vertebra position; then, vertebra 3D pose was estimated and results compared. Error analysis revealed accuracy of the order of 0.1 degree for the rotation angles of about 1?mm for displacements parallel to the fluoroscopic plane, and of order of 10?mm for the orthogonal displacement.<br/
    corecore