4 research outputs found

    Versatile interactions at interfaces for SPH-based simulations

    Get PDF
    The realistic capture of various interactions at interfaces is a challenging problem for SPH-based simulation. Previous works have mainly considered a single type of interaction, while real-world phenomena typically exhibit multiple interactions at different interfaces. For instance, when cracking an egg, there are simultaneous interactions between air, egg white, egg yolk, and the shell. To conveniently handle all interactions simultaneously in a single simulation, a versatile approach is critical. In this paper, we present a new approach to the surface tension model based on pairwise interaction forces; its basis is to use a larger number of neighboring particles. Our model is stable, conserves momentum, and furthermore, prevents the particle clustering problem which commonly occurs at the free surface. It can be applied to simultaneous interactions at multiple interfaces (e.g. fluid-solid and fluid-fluid). Our method is versatile, physically plausible and easy-to-implement. We also consider the close connection between droplets and bubbles, and show how to animate bubbles in air as droplets, with the help of a new surface particle detection method. Examples are provided to demonstrate the capabilities and effectiveness of our approach

    A Unified Particle System Framework for Multi-Phase, Multi-Material Visual Simulations

    Get PDF
    We introduce a unified particle framework which integrates the phase-field method with multi-material simulation to allow modeling of both liquids and solids, as well as phase transitions between them. A simple elasto-plastic model is used to capture the behavior of various kinds of solids, including deformable bodies, granular materials, and cohesive soils. States of matter or phases, particularly liquids and solids, are modeled using the non-conservative Allen-Cahn equation. In contrast, materials---made of different substances---are advected by the conservative Cahn-Hilliard equation. The distributions of phases and materials are represented by a phase variable and a concentration variable, respectively, allowing us to represent commonly observed fluid-solid interactions. Our multi-phase, multi-material system is governed by a unified Helmholtz free energy density. This framework provides the first method in computer graphics capable of modeling a continuous interface between phases. It is versatile and can be readily used in many scenarios that are challenging to simulate. Examples are provided to demonstrate the capabilities and effectiveness of this approach

    MPM simulation of interacting fluids and solids

    Get PDF
    The material point method (MPM) has attracted increasing attention from the graphics community, as it combines the strengths of both particle‐ and grid‐based solvers. Like the smoothed particle hydrodynamics (SPH) scheme, MPM uses particles to discretize the simulation domain and represent the fundamental unknowns. This makes it insensitive to geometric and topological changes, and readily parallelizable on a GPU. Like grid‐based solvers, MPM uses a background mesh for calculating spatial derivatives, providing more accurate and more stable results than a purely particle‐based scheme. MPM has been very successful in simulating both fluid flow and solid deformation, but less so in dealing with multiple fluids and solids, where the dynamic fluid‐solid interaction poses a major challenge. To address this shortcoming of MPM, we propose a new set of mathematical and computational schemes which enable efficient and robust fluid‐solid interaction within the MPM framework. These versatile schemes support simulation of both multiphase flow and fully‐coupled solid‐fluid systems. A series of examples is presented to demonstrate their capabilities and performance in the presence of various interacting fluids and solids, including multiphase flow, fluid‐solid interaction, and dissolution

    Animated surfaces in physically-based simulation

    Get PDF
    Physics-based animation has become a ubiquitous element in all application areas of computer animation, especially in the entertainment sector. Animation and feature films, video games, and advertisement contain visual effects using physically-based simulation that blend in seamlessly with animated or live-action productions. When simulating deformable materials and fluids, especially liquids, objects are usually represented by animated surfaces. The visual quality of these surfaces not only depends on the actual properties of the surface itself but also on its generation and relation to the underlying simulation. This thesis focuses on surfaces of cloth simulations and fluid simulations based on Smoothed Particle Hydrodynamics (SPH), and contributes to improving the creation of animations by specifying surface shapes, modeling contact of surfaces, and evaluating surface effects of fluids. In many applications, there is a reference given for a surface animation in terms of its shape. Matching a given reference with a simulation is a challenging task and similarity is often determined by visual inspection. The first part of this thesis presents a signature for cloth animations that captures characteristic shapes and their temporal evolution. It combines geometric features with physical properties to represent accurately the typical deformation behavior. The signature enables calculating similarities between animations and is applied to retrieve cloth animations from collections by example. Interactions between particle-based fluids and deformable objects are usually modeled by sampling the deformable objects with particles. When interacting with cloth, however, this would require resampling the surface at large planar deformations and the thickness of cloth would be bound to the particle size. This problem is addressed in this thesis by presenting a two-way coupling technique for cloth and fluids based on the simulation mesh of the textile. It allows robust contact handling and intuitive control of boundary conditions. Further, a solution for intersection-free fluid surface reconstruction at contact with thin flexible objects is presented. The visual quality of particle-based fluid animation highly depends on the properties of the reconstructed surface. An important aspect of the reconstruction method is that it accurately represents the underlying simulation. This thesis presents an evaluation of surfaces at interfaces of SPH simulations incorporating the connection to the simulation model. A typical approach in computer graphics is compared to surface reconstruction used in material sciences. The behavior of free surfaces in fluid animations is highly influenced by surface tension. This thesis presents an evaluation of three types of surface tension models in combination with different pressure force models for SPH to identify the individual characteristics of these models. Systematic tests using a set of benchmark scenes are performed to reveal strengths and weaknesses, and possible areas of applications.Physikalisch basierte Animationen sind ein allgegenwĂ€rtiger Teil in jeglichen Anwendungsbereichen der Computeranimation, insbesondere dem Unterhaltungssektor. Animations- und Spielfilme, Videospiele und Werbung enthalten visuelle Effekte unter Verwendung von physikalisch basierter Simulation, die sich nahtlos in Animations- oder Realfilme einfĂŒgen. Bei der Simulation von deformierbaren Materialien und Fluiden, insbesondere FlĂŒssigkeiten, werden die Objekte gewöhnlich durch animierte OberflĂ€chen dargestellt. Die visuelle QualitĂ€t dieser OberflĂ€chen hĂ€ngt nicht nur von den Eigenschaften der FlĂ€che selbst ab, sondern auch von deren Erstellung und der Verbindung zu der zugrundeliegenden Simulation. Diese Dissertation widmet sich OberflĂ€chen von Textil- und Fluidsimulationen mit der Methode der Smoothed Particle Hydrodynamics (SPH) und leistet einen Beitrag zur Verbesserung der Erstellung von Animationen durch die Beschreibung von OberflĂ€chenformen, der Modellierung von Kontakt von OberflĂ€chen und der Evaluierung von OberflĂ€cheneffekten von Fluiden. In vielen Anwendungen gibt es eine Referenz fĂŒr eine OberflĂ€chenanimation, die ihre Form beschreibt. Das Abgleichen einer Referenz mit einer Simulation ist eine große Herausforderung und die Ähnlichkeit wird hĂ€ufig visuell ĂŒberprĂŒft. Im ersten Teil der Dissertation wird eine Signatur fĂŒr Textilanimationen vorgestellt, die charakteristische Formen und ihre zeitliche VerĂ€nderung erfasst. Sie ist eine Kombination aus geometrischen Merkmalen und physikalischen Eigenschaften, um das typische Deformationsverhalten genau zu reprĂ€sentieren. Die Signatur erlaubt es, Ähnlichkeiten zwischen Animationen zu berechnen, und wird angewendet, um Textilanimationen aus Kollektionen anhand eines Beispiels aufzufinden. Interaktionen zwischen partikelbasierten Fluiden und deformierbaren Objekten werden gewöhnlich durch das Abtasten des deformierbaren Objekts mit Partikeln modelliert. Bei der Interaktion mit Textilien wĂŒrde dies jedoch ein neues Abtasten bei großen planaren Deformation erfordern und die StĂ€rke des Textils wĂ€re an die PartikelgrĂ¶ĂŸe gebunden. Mit diesem Problem befasst sich diese Dissertation und stellt eine Technik fĂŒr die wechselseitige Kopplung zwischen Textilien und Fluiden vor, die auf dem Simulationsnetz des Textils beruht. Diese erlaubt eine robuste Kontaktbehandlung und intuitive Kontrolle von Randbedingungen. Des Weiteren wird ein Lösungsansatz fĂŒr eine durchdringungsfreie OberflĂ€chenrekonstruktion beim Kontakt mit dĂŒnnen flexiblen Objekten prĂ€sentiert. Die visuelle QualitĂ€t von partikelbasierten Fluidanimationen hĂ€ngt stark von den Eigenschaften der rekonstruierten OberflĂ€che ab. Wichtig bei Rekonstruktionsmethoden ist, dass sie die zugrundeliegende Simulation genau reprĂ€sentieren. Die Dissertation prĂ€sentiert eine Evaluierung von OberflĂ€chen an GrenzflĂ€chen, die den Zusammenhang zum Simulationsmodell miteinbezieht. Ein typischer Ansatz aus der Computergrafik wird mit der OberflĂ€chenrekonstruktion in der Werkstoffkunde verglichen. Das Verhalten von freien OberflĂ€chen in Fluidanimationen wird stark von der OberflĂ€chenspannung beeinflusst. In dieser Dissertation wird eine Evaluierung von drei OberflĂ€chenspannungsmodellen in Kombination mit verschiedenen Druckmodellen fĂŒr SPH prĂ€sentiert, um die Charakteristika der jeweiligen Modelle zu identifizieren. Es werden systematische Tests mit Hilfe von Benchmark-Tests durchgefĂŒhrt, um StĂ€rken, SchwĂ€chen und mögliche Anwendungsbereiche deutlich zu machen
    corecore