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∂t
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Abstract

Physics-based animation has become a ubiquitous element in all application
areas of computer animation, especially in the entertainment sector. Anima-
tion and feature films, video games, and advertisement contain visual effects
using physically-based simulation that blend in seamlessly with animated or
live-action productions. When simulating deformable materials and fluids,
especially liquids, objects are usually represented by animated surfaces. The
visual quality of these surfaces not only depends on the actual properties of
the surface itself but also on its generation and relation to the underlying
simulation. This thesis focuses on surfaces of cloth simulations and fluid simu-
lations based on Smoothed Particle Hydrodynamics (SPH), and contributes to
improving the creation of animations by specifying surface shapes, modeling
contact of surfaces, and evaluating surface effects of fluids.

In many applications, there is a reference given for a surface animation in terms
of its shape. Matching a given reference with a simulation is a challenging task
and similarity is often determined by visual inspection. The first part of this
thesis presents a signature for cloth animations that captures characteristic
shapes and their temporal evolution. It combines geometric features with phys-
ical properties to represent accurately the typical deformation behavior. The
signature enables calculating similarities between animations and is applied
to retrieve cloth animations from collections by example.

Interactions between particle-based fluids and deformable objects are usually
modeled by sampling the deformable objects with particles. When interacting
with cloth, however, this would require resampling the surface at large planar
deformations and the thickness of cloth would be bound to the particle size.
This problem is addressed in this thesis by presenting a two-way coupling
technique for cloth and fluids based on the simulation mesh of the textile. It
allows robust contact handling and intuitive control of boundary conditions.
Further, a solution for intersection-free fluid surface reconstruction at contact
with thin flexible objects is presented.

The visual quality of particle-based fluid animation highly depends on the
properties of the reconstructed surface. An important aspect of the recon-
struction method is that it accurately represents the underlying simulation.

xix



xx abstract

This thesis presents an evaluation of surfaces at interfaces of SPH simulations
incorporating the connection to the simulation model. A typical approach
in computer graphics is compared to surface reconstruction used in material
sciences.

The behavior of free surfaces in fluid animations is highly influenced by surface
tension. This thesis presents an evaluation of three types of surface tension
models in combination with different pressure force models for SPH to identify
the individual characteristics of these models. Systematic tests using a set
of benchmark scenes are performed to reveal strengths and weaknesses, and
possible areas of applications.



German Abstract

—Zusammenfassung—

Physikalisch basierte Animationen sind ein allgegenwärtiger Teil in jeglichen
Anwendungsbereichen der Computeranimation, insbesondere dem Unterhal-
tungssektor. Animations- und Spielfilme, Videospiele und Werbung enthalten
visuelle Effekte unter Verwendung von physikalisch basierter Simulation, die
sich nahtlos in Animations- oder Realfilme einfügen. Bei der Simulation von
deformierbaren Materialien und Fluiden, insbesondere Flüssigkeiten, werden
die Objekte gewöhnlich durch animierte Oberflächen dargestellt. Die visuelle
Qualität dieser Oberflächen hängt nicht nur von den Eigenschaften der Flä-
che selbst ab, sondern auch von deren Erstellung und der Verbindung zu der
zugrundeliegenden Simulation. Diese Dissertation widmet sich Oberflächen
von Textil- und Fluidsimulationen mit der Methode der Smoothed Particle
Hydrodynamics (SPH) und leistet einen Beitrag zur Verbesserung der Erstel-
lung von Animationen durch die Beschreibung von Oberflächenformen, der
Modellierung von Kontakt von Oberflächen und der Evaluierung von Oberflä-
cheneffekten von Fluiden.

In vielen Anwendungen gibt es eine Referenz für eine Oberflächenanimation,
die ihre Form beschreibt. Das Abgleichen einer Referenz mit einer Simulati-
on ist eine große Herausforderung und die Ähnlichkeit wird häufig visuell
überprüft. Im ersten Teil der Dissertation wird eine Signatur für Textilanima-
tionen vorgestellt, die charakteristische Formen und ihre zeitliche Veränderung
erfasst. Sie ist eine Kombination aus geometrischen Merkmalen und physi-
kalischen Eigenschaften, um das typische Deformationsverhalten genau zu
repräsentieren. Die Signatur erlaubt es, Ähnlichkeiten zwischen Animationen
zu berechnen, und wird angewendet, um Textilanimationen aus Kollektionen
anhand eines Beispiels aufzufinden.

Interaktionen zwischen partikelbasierten Fluiden und deformierbaren Objek-
ten werden gewöhnlich durch das Abtasten des deformierbaren Objekts mit
Partikeln modelliert. Bei der Interaktion mit Textilien würde dies jedoch ein
neues Abtasten bei großen planaren Deformation erfordern und die Stärke
des Textils wäre an die Partikelgröße gebunden. Mit diesem Problem befasst

xxi
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sich diese Dissertation und stellt eine Technik für die wechselseitige Kopplung
zwischen Textilien und Fluiden vor, die auf dem Simulationsnetz des Textils
beruht. Diese erlaubt eine robuste Kontaktbehandlung und intuitive Kontrolle
von Randbedingungen. Des Weiteren wird ein Lösungsansatz für eine durch-
dringungsfreie Oberflächenrekonstruktion beim Kontakt mit dünnen flexiblen
Objekten präsentiert.

Die visuelle Qualität von partikelbasierten Fluidanimationen hängt stark von
den Eigenschaften der rekonstruierten Oberfläche ab. Wichtig bei Rekonstruk-
tionsmethoden ist, dass sie die zugrundeliegende Simulation genau reprä-
sentieren. Die Dissertation präsentiert eine Evaluierung von Oberflächen an
Grenzflächen, die den Zusammenhang zum Simulationsmodell miteinbezieht.
Ein typischer Ansatz aus der Computergrafik wird mit der Oberflächenrekon-
struktion in der Werkstoffkunde verglichen.

Das Verhalten von freien Oberflächen in Fluidanimationen wird stark von
der Oberflächenspannung beeinflusst. In dieser Dissertation wird eine Eva-
luierung von drei Oberflächenspannungsmodellen in Kombination mit ver-
schiedenen Druckmodellen für SPH präsentiert, um die Charakteristika der
jeweiligen Modelle zu identifizieren. Es werden systematische Tests mit Hilfe
von Benchmark-Tests durchgeführt, um Stärken, Schwächen und mögliche
Anwendungsbereiche deutlich zu machen.



chapter 1

Introduction

Reproducing physical phenomena is one of the most exciting and challeng-
ing disciplines in computer graphics. Especially physically-based simulation
techniques are a major field in computer graphics research and gained much
interest in many areas of application. One of the most important and promi-
nent fields that makes use of physics-based animation is in the production of
visual effects, for instance in the context of feature films or computer games.
With the present techniques, it is possible to create animations of physical
effects of almost arbitrary complexity that go beyond the capabilities of tradi-
tional key frame or procedural animation techniques. In many applications,
visual quality has already reached a level of realism, where animations are
indistinguishable from physical reality. Typical examples are the destruction of
buildings and structures with rigid body simulations, floodings and explosions
with fluid simulation, cloth or hair animations with elastic object simulations,
and the interaction between objects being simulated by the different simulation
techniques.

The fundamental process of creating animated surfaces with physically-based
simulation techniques is outlined in Figure .. Beginning with an observed
physical phenomenon, a mathematical model that governs the phenomenon is
established, usually the underlying physical laws. The mathematical model
is typically given by a set of ordinary differential equations (ODEs) or partial
differential equations (PDEs). Solving these governing equations numerically
requires a suitable discrete representation of the domain, such as a grid or
particles, that forms the basis for a numerical solution. The numerical ap-
proximation commonly involves a spatial and temporal discretization of the
governing equations in continuous forms to discrete forms and allows for


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Figure .: The process of creating an animation based on surfaces using
physically-based simulation.

a computational solution. This component of the process usually involves
iterative updates for a given time frame. Depending on the discretization of
the domain, a surface is obtained either directly by the representation or has
to be converted from an implicit representation. Further processing of the
surface is optional and rendering of selected frames can be performed for a
final animation given by a sequence of images.

Many research areas from scientific computing such as applied mathematics,
numerical analysis, and computational mechanics provide essential techniques
for physically-based simulations and, thereby, make it possible to reach a
high level of accuracy. However, for computer graphics purposes, transferring
those techniques is often not sufficient as there are special requirements and
challenges. Making the simulation methods robust in terms of numerical
computation and external manipulation is essential as well as computational
efficiency. Creating high-quality animations within several hours of computa-
tion on standard workstations and real-time techniques for computer games
are of major interest. For visual quality, accuracy is not necessarily the most
suitable measure, as the most important aspect is visual quality in terms of
the perception of the consumer. Another important topic from a computer
graphics perspective is extensibility and manipulation of the physically-based
simulations. For some applications, visual realism is the main goal, but often,
artistic freedom or meeting a predefined objective is more important for the
resulting animation. For animators, it should be possible to use the tools to
bend or even sacrifice physical correctness to create goal-oriented animations
or enrich them with artistic features.

The topic of thesis is in the context of animated surfaces based on physically-
based simulations with focus on cloth and fluid animations. For computer
graphics purposes, surfaces provide a good basis, especially since they are
convenient for further processing and well-suited for rendering. With solid
bodies, the surface is usually given explicitly and can be utilized directly for
subsequent tasks. In contrast, fluid surfaces are usually given implicitly, and
they are either converted into explicit representations or processed based on
their implicit functions. This thesis addresses open challenges in the field of
animated surfaces resulting from the aforementioned simulations. In particu-
lar, the improvement of surface representations of the simulated objects is of
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major interest in terms of whether the surface meets a given reference, whether
interfaces between simulations are handled in a suitable manner, and how
simulation models influence the resulting shapes of the surface.

In the following, important terms and concepts in the context of animated
surfaces are briefly discussed. Subsequently, the research challenges and
contributions of this thesis are presented in Section . and Section ..

 . animated surfaces

Surface representations can be classified in two major categories []: para-
metric and implicit representations. Given a D parameter domain Ω ⊂ R2,
parametric surfaces SP are defined by

F : Ω→ SP, (.)

SP =F (Ω) ⊂R3, (.)

where F maps the parameter domain to the surface SP. In contrast, an implicit
surface SI is defined as the zero set of a scalar function F and can be expressed
as

F : R3→R, (.)

SI = {x ∈R3|F (x) = 0}. (.)

For arbitrary shapes, it is usually more convenient to partition the domain
Ω into small segments and use a piecewise definition that approximates the
surface. Depending on the size and number of segments, the quality of the
approximation can be controlled. In computer graphics, triangles and quadri-
laterals are the most common types of segments for parametric surface defini-
tions. For implicit surfaces, the domain is typically subdivided by means of
hexahedra or tetrahedra.

Both representations exhibit properties that are advantageous or disadvanta-
geous for the use of animated surfaces. Deforming and animating parametric
surfaces is easily obtained by displacement of the surface points, which is easy
to control. Large deformations, however, can lead to undesired distortions and
could require time-consuming remeshing. Also, changes in topology and (self-)
intersections need to be taken care of. Implicit surfaces are not bound to a fixed
topology and, therefore, remain consistent. On the downside, manipulation
and tracing the surface require more effort.

For cloth simulations, an explicit surface representation is already given by
the finite element discretization, usually in the form of a regular or irregular
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triangle mesh. The number of nodes in the mesh and connectivity usually do
not change during simulation and animation is given by changes in position of
the nodes. Large deformations of individual elements (triangles) do not occur
since typical textiles show only small stretch deformations and (self-) collision
handling avoids intersections. To capture important details of textiles, mesh
resolution is usually sufficient and quality can be further increased by using
subdivision schemes such as Loop subdivision [].

In case of fluids, the surface is given implicitly by an isosurface of either a
distance field or a density field. The implicit surface can be rendered directly
by means of raycasting or be converted into an explicit mesh. Conversion
is usually done using the marching cubes (MC) algorithm [] or one of its
variants. The result is a triangle mesh for each frame of the animation. Quality
is mainly given by the resolution of the MC grid that has to be chosen by a
trade-off between mesh resolution and computational efficiency. The implicit
representation is particularly suitable for liquids as topology changes such as
splits and merges of droplets are handled naturally.

 . research challenges

Despite much progress in physics-based simulation methods to recreate real-
world phenomena, the research field is still of high importance. There are
many challenges, especially in the creation of animated surfaces that conform
to a reference and to gain knowledge of simulation results. Describing the
evolving shape of cloth simulations, modeling the interaction between fluids
and deformable surfaces, and improving the understanding of simulation
results are addressed in this thesis. The specific challenges of these topics
related to animated surfaces are given below.

Given a simulation system, the straightforward approach to create an anima-
tion is to setup the initial state, in particular defining the geometry or domain
of the dynamic object, setting initial positions of all objects in the scene, and
choosing a set of parameters for the simulation models and the material. Then,
the simulation is started to produce a sequence of simulation states. Based
on the defined parameters, the user has a rough idea how the result will look
like. However, even experienced animators cannot predict the outcome of the
simulation in detail, and if it corresponds to their expectations. Especially for
cloth simulations, the characteristic shape of the underlying mesh of the textile
and its temporal evolution are of major interest for the resulting animation.
It is not always possible to draw a link between the simulation settings and
the shape of resulting animated surface, which has a big impact on the final
visual quality of the animation. To this end, a descriptor for the shape of
cloth in a simulation that captures the changes during animation is required to
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perform an analysis of the simulation result. This descriptor enables a variety
of applications, such as measuring how good an animation is in agreement
with a given reference.

The interaction between dynamic objects is a common scenario and requires
dedicated models for boundary handling to achieve natural interaction. Cou-
pling particle-based fluids with cloth simulations is especially challenging
as cloth is modeled as a thin surface with a wide range of possible material
properties. At first, penetration of the highly deformable cloth surface by the
fluid has to be prevented. Depending on the fabrics’ material that ranges from
impermeable to porous, the behavior at the contact area can be very differ-
ent. Considering the special characteristics of cloth, boundary handling that
ensures intersection-free coupling and allows modeling varying cloth thick-
ness and different material properties at contact, is required. An additional
challenge is the surface representation of fluids at the interaction area with
cloth. The implicitly defined surface has to be intersection-free with the cloth
mesh and the distance between both surfaces is important for ray tracing-based
rendering of transparent liquids such as water.

When reconstructing fluid surface meshes from their implicit representations,
surface quality can be viewed from different points. For pure visual quality,
smoothness and the capability to preserve detailed features are certainly of
major interest. However, the accuracy how well the implicit surface represents
the simulated fluid is an important basis for the visual quality and is rarely
considered. Especially for free surfaces, ensuring an accurate reconstruction
of the surface with respect to the underlying fluid will help achieve the goal of
increased perceived realism. A quantitative analysis of the final surface at inter-
faces and comparison to simulation-bound surface reconstruction techniques
can provide valuable insights for visual quality.

In the development of simulation models, researchers normally set up a set
of test cases to show the performance of their method. If there are previous
approaches, they do a comparison using these tests. However, the set of tests is
built from scratch and there are no unified benchmarks. Further, quantitative
analysis and comparison are often not performed, which makes it difficult to
judge if the proposed method is suitable for a given production scenario or
as a basis for future research. An example of this situation are the different
surface tension models for particle-based fluids. Several methods exist based
on different underlying models, and it is difficult to estimate the specific
properties of the respective methods. In particular, to evaluate these properties
and compare the different approaches, there are no benchmark tests publicly
available.

The goal of this thesis is to extend and improve the possibilities of creating
animated surfaces with physically-based simulation in various ways. The cre-
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ation of animations with a given target is an interesting topic and is addressed
for cloth simulations. In addition, offering the user to influence the simulation
models at contact of cloth and fluid surfaces is given attention. Further, evalu-
ating existing methods that directly influence implicit surfaces to improve the
understanding of their properties and, therefore, facilitate their application, is
of particular interest.

 . outline and contributions

This section provides a short abstract for each chapter and the author’s con-
tributions to the related publications. Chapter  summarizes fundamental
principles and computational concepts of physics-based animation of fluids
and cloth. It is based on previous work, and therefore, is not part of the techni-
cal contribution of this thesis. The publications of Chapters , , and  were
co-authored with both of the author’s advisors, Bernhard Eberhardt and Daniel
Weiskopf. The publication of the contributions in Chapter  was co-authored
with Daniel Weiskopf.

Chapter  presents a descriptor to capture the time-dependent shape of cloth
surfaces and to describe the dynamic behavior of cloth animations. This motion-
shape signature given by a feature vector includes geometrical features and
physical properties of cloth, and therefore, encodes the changing shape of cloth
over time. It enables the description of the specific characteristics of cloth
witnessed in physics-based animations. With the signature, it is possible to
calculate similarities of cloth animations and it is shown how to retrieve cloth
animations from collections of simulations that feature the same characteristics
as the input. As a result, an animation that exhibits similar appearance in terms
of geometrical features and a parameter set that represents the properties of
the input animation can be found. With this technique, the creation of goal-
oriented animations can be facilitated, e.g., by matching animations to given
references or reproducing animations after changes in initial conditions were
made. The contribution of this work was published in a journal paper in IEEE
Computer Graphics and Applications [].

Chapter  introduces a robust and efficient method for the two-way coupling
between particle-based fluid simulations and infinitesimally thin surfaces
represented by triangular meshes. The interface handling is based on a hy-
brid method that combines a repulsion force approach with a continuous
intersection handling to prevent penetration. Boundary conditions for the
tangential component of the fluid’s velocity are implemented to model the
no-slip boundary condition. To account for the varying material properties
of different fabrics, the model is extended to allow boundary conditions that
exceed the standard slip or no-slip conditions. The method presented in this
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chapter is able to support textiles that can absorb fluid, which influences the
boundary condition. With the proposed technique, elastic surfaces do not
have to be sampled with particles and the interaction is handled separately
from the respective simulation systems. In addition, it is shown how stan-
dard fluid surface reconstruction algorithms can be modified to prevent the
extracted surface from intersecting surfaces of close objects. Results are shown
for the bidirectional interaction between liquid simulations based on SPH and
state-of-the-art mesh-based cloth simulation systems. The contributions of this
chapter were published in a conference paper at the International Workshop
on Vision, Modeling and Visualization [] that received a Best Paper Award
and in an extended journal paper in Computer Graphics Forum [].

Chapter  presents an evaluation of surface reconstruction techniques in the
context of multiphase SPH simulations. For a given simulation, the evolution
of the area of reconstructed surfaces is measured and compared to an analytic
power law for the given simulation. A quantitative analysis of a well-known
computer graphics approach for calculating the surface of a simulation is per-
formed, also in comparison to a model that is tailored to accurately represent
the underlying simulation. The contributions of this chapter were published in
a short paper at the Eurographics Conference on Visualization [], co-authored
with Michael Krone, Katrin Scharnowski, and Daniel Kauker, who provided
the dedicated surface reconstruction method for the simulation method, and
Manuel Hirschler, who provided the simulation data. Guido Reina, Ulrich
Nieken, and Thomas Ertl helped writing the paper. The author of this thesis
provided the surface reconstruction method and, together with Michael Krone,
performed the evaluation.

In Chapter , an evaluation of surface tension models in particle-based fluid
simulation systems using SPH is presented. Although visual quality is of major
interest in computer graphics applications and is considered as well, quantifi-
cation methods for the properties of these models using a benchmark test are
proposed. The benchmark consists of three experiments and a set of analysis
methods that allow for the comparison of surface tension models. The goal of
the evaluation is to identify if a certain model is suitable for a given scenario
and, by revealing the individual properties of a models, to support controlling
results in the creation of animations. Three existing surface tension models
from different classes in combination with different SPH techniques, state
equation Smoothed Particle Hydrodynamics (SESPH), predictive-corrective
incompressible Smoothed Particle Hydrodynamics (PCISPH), and implicit
incompressible Smoothed Particle Hydrodynamics (IISPH), are evaluated and
systematically tested to show the influence of different settings and parameter
choices. The surface tension models are chosen from a pure inter-particle force
model, a model based on surface curvature, and a model using a combination
of these. The results of the evaluation are presented and an elaborate discus-
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sion of the findings is given. The contributions of this chapter were published
in a paper at the Workshop on Virtual Reality Interaction and Physical Simula-
tion []. The paper was co-authored with Stefan Reinhardt, who provided most
of the implementations of the SPH and surface tension models and contributed
a modification to the inter-particle force model to improve its visual results.
The author of this dissertation developed the design of the benchmarks and
performed the quantitative analysis of the results of the tests.

During the author’s research period, further co-authored papers were pub-
lished with the author’s advisors that are related to this dissertation but are
not part of its core topic. Together with Stefan Reinhardt, Otilia Dumitrescu,
and Michael Krone, a visual debugging environment for SPH-based fluid
simulations has been developed and was published in a conference paper
at the International Conference on Information Visualization []. In addi-
tion, together with Stefan Reinhardt, a paper that introduces an asynchronous
time integration scheme for SPH simulations was published at the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation [].

Previous to the research period at the University of Stuttgart, co-authored work
presenting the simulation of wet cloth was published [], [] and is is used in
Chapter .

 . reused and copyrighted materi-

al

In this thesis, material from the following papers is partly reused where
copyright is owned by the author according to the respective EUROGRAPHICS
Exclusive License Forms:

n [] ©. M. Huber, B.Eberhardt, and D. Weiskopf, Cloth-Fluid Con-
tact, Vision, Modeling & Visualization, pp. –, .

n [] ©. M. Krone, M. Huber, K. Scharnowski, M. Hirschler, D.
Kauker, G. Reina, U. Nieken, D. Weiskopf, and T. Ertl, Evaluation of
Visualizations for Interface Analysis of SPH, EuroVis - Short Papers, pp.
–, .

n [] ©. M. Huber, S. Reinhardt, D. Weiskopf, and B. Eberhardt,
Evaluation of Surface Tension Models for SPH-Based Fluid Animations
Using a Benchmark Test, Workshop on Virtual Reality Interaction and
Physical Simulation, pp. –, .

In addition, material from a copyrighted paper is partly reused with the
kind permission of John Wiley and Sons following the license agreement for
Dissertation/Thesis use (License Number ):



 . . reused and copyrighted material 
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Boundary Handling at Cloth–Fluid Contact, Computer Graphics Forum,
(), -, .

Furthermore, material from an IEEE copyrighted paper is partly reused with
kind permission of IEEE (Thesis / Dissertation Reuse):

n [] © IEEE. Reprinted, with permission, from M. Huber, B. Eber-
hardt, and D. Weiskopf, Cloth Animation Retrieval Using a Motion-
Shape Signature, IEEE Computer Graphics and Applications, (),
-, .





chapter 2

Physically-based Simulation

of Fluids and Cloth

This chapter familiarizes the reader with the fundamental concepts and meth-
ods used in the physically-based simulation of fluids and cloth. It presents the
discretizations of the governing equations and illustrates techniques that allow
an efficient implementation in computer graphics applications. Hence, this
chapter forms the computational basis for the contributions of the subsequent
chapters of this thesis. The following derivations and summarization introduce
consistent terminology and provide theoretical background.

 . basics of sph-based fluid simu-

lation

This first section presents basic principles of fluid dynamics and the methods
for particle-based simulation of fluids using SPH. To begin with, the governing
equations of fluid dynamics are given in Section .., which lead to the
equation of motion for fluids. The concepts of SPH that are needed for an
application to fluid simulation are presented in Section ... In Section ..,
a typical spatial discretization of the governing equation of motion for fluids
using SPH is given, followed by the temporal discretization used in numerical
time integration (Section ..). An example of a basic SPH-based fluid solver
for computer graphics applications is given in Section ...


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.. Fluid Dynamics

The dynamics of fluids are based on three fundamental physical principles,
namely

n the conservation of mass,
n the conservation of momentum (Newton’s second law),
n and the conservation of energy.

These principles give rise to the governing equations of fluid dynamics, which
are the continuity equation, momentum equation, and energy equation. They
form a coupled system of nonlinear PDEs describing viscous flow.

Continuum mechanics offers two approaches to express the equation of motion
of fluids, the Lagrangian and the Eulerian formulation. In the Lagrangian
viewpoint, the fluid volume is represented by partial fluid volumes, often
called particles, that move through space and time. In the Eulerian formulation,
a fixed coordinate system is used to measure fluid quantities at fixed spatial
locations.

In this thesis, the focus is on simulating fluids using SPH, which is based on the
Lagrangian formulation. However, the following derivation of the equation of
motion for fluids is independent from the viewpoint and can be used for both
approaches. In the following, only those equations for the dynamics of fluids
are addressed that are relevant to this work. For example, thermodynamics
is neglected and, therefore, there is no need to consider the energy equation.
Comprehensive introductions to fluid dynamics can be found in dedicated
textbooks, e.g., by Batchelor [], Anderson [], or Kundu and Cohen [].

For the introduction of conservation laws, a control volume V in R3 of finite
size and fixed mass that moves with the fluid flow is considered, as illustrated
in Figure ..

Conservation of Mass

The control volume V contains infinitesimally small fluid elements of volume
dV of mass ρdV with mass density ρ. Hence, the overall mass of the control
volume is

mV =
∫
V

ρdV. (.)

Although the control volume itself can change as it moves with the flow, the
principle of conservation of mass states that mass remains constant during
motion. For the control volume, this means that all infinitesimally small fluid
elements have constant mass and conservation of mass can be expressed by the
continuity equation

D
Dt

mV =
D
Dt

∫
V

ρdV = 0, (.)



 . . basics of sph-based fluid simulation 

x

y

z

n

S

Figure .: A finite control volume V and its surface S that moves with the
fluid flow. The same material particles are always in the control volume. A
surface patch dS with surface normal n is depicted in red.

where D/Dt is the substantial derivative calculated by the sum of the local
and the convective derivative as

D
Dt
≡ ∂

∂t
+ v · ∇ (.)

for the velocity v = (u,v,w)T of a fluid element.

Conservation of Momentum

The principle of momentum conservation is based on Newton’s second law

F = ma, (.)

which, applied to this context, states that the mass m times the acceleration a
of an infinitesimal fluid element equals the net force F acting on the element.
For the finite control volume V of a fluid, this statement requires that the time
rate of change of its momentum mv equals the net force F acting on the control
volume. This can be written as

F
V

=
∫
V

fdV =
∫
V

ρDv
Dt

dV, (.)

where v is the fluids’ velocity. The force on a volume element is considered as
force per unit volume f = F/V which is used in the following. At this point,
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it also has to be noted that the substantial derivative can be moved inside
the integral in Equation ., because the elements of the volume V do not
change and mass is constant. The net force f consists of body forces fb and
surface forces fs. Body forces act on the entire control volume, usually without
contact. They act at a distance such as gravitational, magnetic, or electric
forces. Surface forces act directly and exclusively on the surface of the fluid
volume and are given as forces per unit area. They can be separated in normal
and tangential direction of the surface area. Examples of surface forces are
forces due to pressure and forces due to shearing, resulting from friction. The
surface force on a fluid element is given by

fs = σ · n, (.)

with the 3× 3 viscous stress tensor σ and the normal n of the surface area.
Splitting the net force into body forces and surface force, Equation . reads∫

V
ρ

Dv
Dt

dV =
∫
V

fbdV +
∫

∂V
fsdS

=
∫
V

fbdV +
∫

∂V
σ · ndS,

(.)

where surface forces are written in terms of force per area fs = Fs/A and are
zero inside of the volume. To transform the surface integral into a volume
integral, the divergence theorem (also known as Gauss’ theorem)∫

V
∇ ·UdV =

∫
∂V

U · ndS (.)

can be applied, which relates the volume integral of the divergence of a vector
field U to its surface integral. Hence, the formulation of change of momentum
for a control volume of a fluid can be expressed as∫

V
ρ

Dv
Dt

dV =
∫
V

fbdV +
∫
V
∇ · σdV

=
∫
V

(
fb +∇ · σ

)
dV.

(.)

Since the control volume V is arbitrary, the differential form of the above
equation follows from the integral form as

ρ
Dv
Dt

= fb +∇ · σ, (.)

which holds for an infinitesimally small fluid element. Equation . is also
known as the Cauchy momentum equation.
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In the above equation, the stress at a fluid element is specified by the symmetric
tensor

σ =

σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

 , (.)

with the individual components in terms of local coordinates (x,y,z)T for
normal and shear stress. In this stress matrix, normal stresses are the diagonal
elements, while off-diagonal elements represent tangential (shear) stresses.
Since forces due to pressure p act along the surface normal (in positive or
negative direction), σ can be split into two parts and be expressed as

σ =

−p 0 0
0 −p 0
0 0 −p

+

σxx + p τxy τxz
τyx σyy + p τyz
τzx τzy σzz + p

 . (.)

The difference between the pressure stress tensor and the total stress tensor is
called deviatoric stress and accounts for viscosity, which is the resistance of
the fluid against deformation. Thus, denoting the deviatoric stress tensor as T,
σ can be expressed as

σ = −pI + T, (.)

using the identity matrix I. Considering a Newtonian fluid, the stress T is
proportional to the rate of deformation, which is the change in velocity in
directions of stress. With the velocity vector v = (u,v,w)T, it is defined as

T = µ


∂u
∂x + ∂u

∂x
∂u
∂y + ∂v

∂x
∂u
∂z +

∂w
∂x

∂u
∂y + ∂v

∂x
∂v
∂y +

∂v
∂y

∂v
∂z +

∂w
∂y

∂u
∂z +

∂w
∂x

∂v
∂z +

∂w
∂y

∂w
∂z + ∂w

∂z

 , (.)

where µ is the dynamic viscosity constant. In order to use T in Equation .,
the divergence of the deviatoric stress tensor ∇ · T is needed. For the first
component of ∇ · T, the divergence is calculated by

(∇ · T)1 = µ

(
∂

∂x

(
∂u
∂x

+
∂u
∂x

)
+

∂

∂y

(
∂u
∂y

+
∂v
∂x

)
+

∂

∂z

(
∂u
∂z

+
∂w
∂x

))

= µ

(
∂2u
∂x2 +

∂2u
∂x2 +

∂2u
∂y2 +

∂2v
∂y∂x

+
∂2u
∂z2 +

∂2w
∂z∂x

)

= µ

(
∂

∂x

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)
+

∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

)

= µ
∂

∂x
(∇ · v) + µ∇2u.
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For an incompressible fluid, the rate of change, and therefore,∇ · v, is zero and
the first term on the right hand side vanishes. Performing the above calculation
for all components of the matrix, the divergence of the stress tensor results in
the vector Laplacian

∇ · T = µ∇2v. (.)

Using ∇(pI) =∇p and Equation ., Equation . reads

ρ
Dv
Dt

= fb −∇p + µ∇2v, (.)

also known as the Navier-Stokes equation for the motion of a fluid. By multi-
pling both sides of the equation with 1

ρ , Equation . leads to

Dv
Dt

=
Fb

m
− 1

ρ
∇p + ν∇2v, (.)

introducing the kinematic viscosity coefficient ν = µ
ρ .

.. Smoothed Particle Hydrodynamics

The governing equations that describe the motion of a fluid have been derived
assuming a continuous representation of the fluid. For a numerical solution
of these equations, the resulting PDE have to be discretized to obtain a set of
ODEs with respect to time. In this thesis, spatial discretization is performed by
a Lagrangian method in which a finite set of interpolation points represent the
fluid domain and move with the flow. The spatial derivatives of the governing
PDEs are approximated based on the sample points using the SPH method. In
this section, the derivation and the basic formulation of SPH are presented.
The review article by Monaghan [] and the text book by Liu and Liu [] are
recommended for further reading.

SPH was introduced independently by Gingold and Monaghan [] and Lucy
[] for the solution of dynamic astrophysical problems. The method is based
on kernel estimation techniques already known from statistics. The underlying
principle of the method is that a quantity A, such as a scalar or a vector, at a
position x can be represented by the integral formulation

A(x) =
∫

Ω
A(x′)δ(||x− x′||)dx′, (.)

where x, x′ are data points inside the domain Ω and δ is the Dirac or delta
function. For practical purposes, the Dirac function is replaced with a kernel
function W(||x− x′||, h) with support h, which leads to the kernel approxima-
tion

Ã(x) =
∫

Ω
A(x′)W(||x− x′||, h)dx′, (.)
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where Ã = A, if W equals the Dirac function. For a computer implementation,
the choice of the kernel function has a considerable influence on accuracy
and performance. A wide range of kernel functions can be found in literature
for different applications, but all of them are modeled to fulfill the following
conditions to produce valid approximations:

n for h→ 0, the kernel function converges to the Dirac function
n the kernel function is normalized∫

Ω
W(||x− x′||, h)dx′ = 1

n it has compact support

W(||x− x′||, h) = 0, if ||x− x′|| > h

n the kernel function is non-negative

W(||x− x′||, h) ≥ 0.

For numerical computation, the integral in the continuous setting (Equa-
tion .) can be discretized using a sum over the finite set of sampling points
of size N. With SPH, a material is represented with particles of volume V.
A quantity A at the position x can be calculated with the so called particle
approximation

A(x) ≈
N

∑
j=1

AjW(||xj − x||, h)Vj, (.)

where Aj = A(xj) for particle j is used. For the simulation of fluids, the
particles represent a part of the fluid volume. Replacing Vj by a particles’
mass mj divided its density ρj and using the short notations Ai = A(xi) and
Wij = W(||xj − xi||, h), fluid quantities can be calculated with

Ai ≈
N

∑
j=1

mj

ρj
AjWij, (.)

which is the basic form of SPH approximation for different quantities Ai.

To apply the SPH method for solving PDEs as the motion equation of a fluid
(Equation .), the first two spatial derivatives of the approximation Ai
are needed. Therefore, Ã and A are replaced with their respective spatial
derivatives in the integral formulation (Equation .), which leads to

∇x Ã(x) =
∫

Ω

(
∇x′A(x′)

)
W(||x− x′||, h)dx′. (.)
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Applying the product rule to the integrand on the right hand side of the
equation, the integral can also be written as∫

Ω

(
∇x′A(x′)

)
W(||x− x′||, h)dx′ =

∫
Ω
∇x′

(
A(x′)W(||x′ − x||, h)

)
dx′ −

∫
Ω

A(x′)
(
∇x′W(||x′ − x||, h)

)
dx′.

Using this substitution, Equation . reads

∇x Ã(x) =
∫

Ω
∇x′

(
A(x′)W(||x′ − x||, h)

)
dx′

−
∫

Ω
A(x′)

(
∇x′W(||x′ − x||, h)

)
dx′.

(.)

Gauss’ theorem (Equation .) is also applicable to the gradient scalar functions
in the alternate form [] ∫

V
∇UdV =

∫
∂V

U · ndS, (.)

with the surface ∂V and its normal n, and can be applied to the first integral in
Equation .:

∇x Ã(x) =
∫

∂V
A(x′)W(||x′ − x||, h) · ndS

−
∫

Ω
A(x′)

(
∇x′W(||x′ − x||, h)

)
dx′.

(.)

At this point, the kernel function condition of compact support can be utilized,
which implies that the surface integral is zero. Applied to Equation ., the
first spatial derivative of Ã is

∇Ã(x) =
∫

Ω
A(x′)∇W(||x′ − x||, h)dx′. (.)

Similarly, the Laplacian of Equation . can be obtained:

∇2Ã(x) =
∫

Ω
A(x′)∇2W(||x− x′||, h)dx′. (.)

It follows that the first and second derivative of a value Ai are easily calculated
using the particle approximation (Equation .) with

∇Ai =
N

∑
j=1

mj

ρj
Aj∇Wij, (.)

∇2Ai =
N

∑
j=1

mj

ρj
Aj∇2Wij, (.)

where N is the number of particles.
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.. Spatial Discretization Using SPH

The equations of the previous section can be applied for the spatial discretiza-
tion of the governing fluid equations. This section summarizes the methods
for calculating the most basic quantities needed for simulating fluids. A more
elaborate overview of varying methods and numerous extensions for computer
graphics can be found in the survey of Ihmsen et al. [].

If a fluid is discretized with Lagrangian particles that move with the fluid, the
equation of motion (Equation .) in the form of a PDE derived in Section ..
for a particle i can be written as

Dvi

Dt
=

Fb
i

mi
− 1

ρi
∇pi + ν∇2vi. (.)

Multiplying both sides of the above equation with mi results in the net force

Fi = Fb
i −

mi

ρi
∇pi︸    ︷︷    ︸
Fp

i

+miν∇2vi︸      ︷︷      ︸
Fv

i

(.)

acting on the particle. As it can be seen, the net force is the sum of body
forces Fb, pressure force Fp, and viscosity force Fv. To calculate the motion of a
fluid, the three forces have to be evaluated for each particle and integrated in
time. In the basic setting, only gravity is considered as a body force and can be
computed for each particle by Fb

i = mig using standard gravity.

Pressure Force

The pressure force term in Equation . can be calculated using the first
derivative of the particle approximation of SPH (Equation .) as

Fp
i = −mi

ρi

N

∑
j=1

mj

ρj
pj∇W(||xi − xj||, h). (.)

However, the force in this notation is not symmetric. In addition, linear and
angular momentum are not preserved since only the pressure of particle j is
considered for the pressure force acting on particle i. Monaghan [] proposes
symmetrizing the pressure gradient, which leads to

Fp
i = −mi

N

∑
j=1

mj

(
pj

ρ2
j
+

pi

ρ2
i

)
∇W(||xi − xj||, h) (.)

for the pressure force term.
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Density and Pressure

For the calculation of pressure forces (Equation .), density and pressure
values for all particles have to be known. The density can be evaluated for each
particle by applying the SPH approximation of Equation .

ρi =
N

∑
j=1

mj

ρj
ρjW(||xi − xj||, h)

=
N

∑
j=1

mjW(||xi − xj||, h).

(.)

Hence, density is determined by the weighted mass of all particles in the
influence radius.

One of the commonly used methods to evaluate pressure at a particle location
is by using an equation of state (EOS). With this approach, the pressure pi for
a particle i is calculated by

pi =
κρ0

γ

((
ρi

ρ0

)γ

− 1
)

, (.)

where κ is a stiffness constant, γ a pressure constant, and ρ0 is the rest or
reference density. In computer graphics literature, e.g. [][], γ is often
chosen to be 1, which leads to the simplified expression

pi = κ(ρi − ρ0). (.)

Viscosity Force

For the viscosity force, the Laplacian of the particle approximation (Equa-
tion .) can be applied, resulting in

Fv
i = νmi

N

∑
j=1

mj

ρj
vj∇2W(||xi − xj||, h). (.)

Similar to the pressure force evaluation, this standard formulation is non-
symmetric and leads to instabilities at surfaces and sparsely sampled regions.
These problems can be avoided using the artificial viscosity force evaluation
by Morris et al. []:

Fv
i = 2νmi

N

∑
j=1

mj

ρj
(vi − vj)

(
(xi − xj) · ∇W(||xi − xj||, h)

(xi − xj)2 + 0.01h2

)
. (.)
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h

Figure .: The fluid quantities of particles are approximated by their compact
neighborhood with a smoothing kernel of influence radius h. The influence of
a neighboring particle decreases with its distance.

Kernel Functions

In Section .., the desired properties for SPH kernel functions have been
discussed. The influence of the kernel with smoothing length h is illustrated
in Figure ., where the influence of the kernel is color-coded. For computer
graphics applications, different kernels have been proposed, e.g., by Desbrun
and Gascuel [] and Müller et al. []. Key factors for the choice of kernel
function are computational cost and accuracy. A popular choice for most
applications is the polynomial kernel

Wpoly6(r, h) =
315

64πh9

{(
h2 − r2)3 if r ≤ h

0 else,
(.)

presented by Müller et al. [], where r = ||x− x′||. For one dimension, a
plot of the kernel and its gradient is shown in Figure .(a). However, the
gradient of this kernel, which is needed for pressure force and viscosity force
evaluations (Equations . and .), has a major drawback: when the dis-
tance between two particles tends toward zero, the gradient gets smaller, and
close-by particles are underrepresented. Therefore, Müller et al. propose using
a spiky kernel for calculations that involve the kernel gradient which reads

Wspiky(r, h) =
15

πh6

{
(h− r)3 if r ≤ h
0 else.

(.)

The kernel and its gradient are depicted in Figure .(b).
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Figure .: Plots of the SPH kernel functions proposed by Müller et al. []:
(a) The polynomial kernel Wpoly6 and its derivative are shown. (b) The spiky
kernel Wspiky that is used for SPH calculations involving the kernel gradient.
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.. Numerical Time Integration

At this point, methods to solve each term in the spatially discrete equation of
motion (Equation .) in the static equilibrium setting are known and can
be transferred to the dynamics of the fluid particle system. The equation of
motion for each particle i with location xi(t) at time t reads

miai(t) = Fb
i (t)− Fp

i (xi(t)) + Fv
i (vi(t)), (.)

where ai is a particle’s acceleration. Equation . is an ODE of second order
with respect to time. Together with given initial conditions of starting position
and velocity for each particle, the equation is an initial value problem (IVP)
that describes the particles’ trajectories. A discrete approximation of particle
trajectories is obtained using numerical time integration methods. To facilitate
time integration, the second order ODE of Equation . is reduced to the
coupled system of first order ODEs, expressed as

d
dt

xi(t) = vi(t), (.)

mi
d
dt

vi(t) = Fi(t), (.)

where the forces on the right side of Equation . are combined in Fi. The
simplest representative for an integration scheme is the explicit Euler method.
Applied to the coupled system of ODEs, the state of the simulation is calculated
for each particle by

vi(t + ∆t) = vi(t) + ∆t
Fi(t)
mi

, (.)

xi(t + ∆t) = xi(t) + ∆tvi(t), (.)

with a given time step size ∆t. As it can be seen, the state of the system at
a future time t + ∆t is evaluated based on the state at the current time t. In
many computer graphics applications, the first order explicit Euler scheme is
replaced with the semi-implicit Euler expressed as

vi(t + ∆t) = vi(t) + ∆t
Fi(t)
mi

, (.)

xi(t + ∆t) = xi(t) + ∆tvi(t + ∆t). (.)

In contrast to the explicit Euler step, the velocity vi(t + ∆t) of the next time
step is used to evaluate the particle positions, which leads to second order
accuracy. Therefore, accuracy is increased with similar performance.
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The time step ∆t is usually determined such that it satisfies the Courant–
Friedrichs–Lewy (CFL) condition

∆t ≤ ϑ
h

||vmax|| , (.)

where ||vmax|| is the maximum velocity of all particles and ϑ is usually set to
0.4 [], [].

.. Fluid Animation Loop

With the techniques of the previous sections, all necessary building blocks are
available to build a basic SPH-based fluid solver as illustrated in Figure ..
Using the EOS (Equation .) for pressure evaluation, the algorithm is often
called SESPH. In each simulation step, four loops over all input particles
are performed: First, the neighborhood for each particle is calculated and
stored to ensure an efficient look-up of particles within the influence radius h
in the following kernel evaluations. Subsequently, density and pressure are
computed for all particles. In the third loop, all forces are calculated and
added together that are then used to numerically integrate the velocities and
positions of all particles in the last loop.

For realistic animations, surface tension has an major impact on the behavior
of a liquid. Surface tension is usually modeled as an additional force and
contributes to the net force. This thesis presents an evaluation of surface
tension models for SPH-based fluid simulations and the different approaches
are given in Chapter .

If there are other objects in the scene, interaction has to be modeled that may
include two-way coupling with special boundary conditions. Whereas the
interaction of rigid bodies and fluids was studied earlier [], [], [], [],
modeling the interaction between particle-based fluids and thin deformable ob-
jects faces additional challenges. An approach on this is presented in Chapter .

The fluid dynamics loop and interaction is usually based on the particle rep-
resentation of the fluid. As discussed in Section ., the surface is given as
an implicit representation by a density or distance field based on the particle
densities and positions. To obtain an explicit surface, the marching cubes (MC)
algorithm is applied to extract a surface mesh. Chapter  introduces a method
to prevent possible intersection of the fluids’ surface with interacting objects
at contact.
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For All Particles

For All Particles

Input Particles

Fluid Simulation (SESPH)

Find Neighbors

Compute Density (Eq. 2.35)

For All Particles

Compute Pressure (Eq. 2.36)

Compute Net Force (Eq. 2.42)

Update Particle States
(Eqs. 2.46 and 2.46)

Detect Contact

Boundary Handling
(Chapter 3)

Calculate Density or
Distance Field

Marching Cubes (MC)

Interaction Handling Surface Reconstruction

Output

For All Particles

Figure .: The fluid animation loop.
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 . basics of cloth simulation

Cloth is usually considered as a thin deformable object and planar deforma-
tions can be modeled based on continuum mechanics. Section .. starts
with the description of a suitable measure for deformation, followed by intro-
ducing the concept of stress and mechanical equilibrium. Then, the relevant
material laws of linear elastics for thin deformable objects are given. Spatial dis-
cretization of the equilibrium equations with the finite element method (FEM)
that lead to force computations for planar deformation is demonstrated in
Section ... Bending deformation is handled separately from planar defor-
mation and discrete models are described in Section ... In Section ..,
numerical time integration is discussed and finally, the building blocks are
assembled to a basic cloth solver (Section ..).

.. Continuous Representation of Deformable Objects

The foundations of deformable objects based on a continuous representation
are covered well in textbooks and for further reading, the extensive intro-
duction to continuum mechanics by Bonet and Wood [] is recommended.
For modeling cloth in computer graphics, a summary and additional related
topics can be found in the cloth simulation tutorial notes by Thomaszewski et
al. [].

Deformation and Strain

A deformable body B that covers a region in space Ω̄ ⊂R3 in its initial config-
uration and Ω ⊂R3 in its current, deformed configuration, can be described
by a time-dependent mapping

ϕ : Ω̄× [0,∞)→Ω ⊂R3 (.)

between initial configuration and current configuration, known as configura-
tion mapping (see Figure .). The function ϕ can be applied to the positions
xi of material particles of B in initial configuration, which leads to

xi(t) =ϕ(xi(t0), t) (.)

and maps the positions from initial configuration at time t0 to current config-
uration at time t. In the following, the notation for positions x̄i = xi(t0) and
xi = xi(t) is used.

Given the above description of the deformable object, the first step is to obtain
a measure for deformation. To this end, deformation is first described based
on the relative change of positions of material particles. Considering three
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Figure .: Motion and change of configuration at deformation of a body.
ϕ maps a deformable body from initial to current, deformed configuration.

material particles in rest configuration with positions x̄p, x̄1, and x̄2 (Figure .),
connecting vectors with respect to x̄p are given by

dx̄p1 = x̄1 − x̄p, (.)

dx̄p2 = x̄2 − x̄p, (.)

where dx̄p1 and dx̄p2 are infinitesimal vectors. The positions in deformed state
are expressed by the configuration mapping (Equation .) as

xp =ϕ(x̄p), x1 =ϕ(x̄1), x2 =ϕ(x̄2) (.)

and the corresponding vectors result as

dxp1 = x1 − xp =ϕ(x̄p + dx̄1)−ϕ(x̄p), (.)

dxp2 = x2 − xp =ϕ(x̄p + dx̄2)−ϕ(x̄p). (.)

To facilitate mapping vectors in initial configuration to their deformed config-
uration, the deformation gradient tensor F is introduced by

F =
∂ϕ

∂x̄
=∇ϕ. (.)

The vectors dxp1 and dxp2 can then be expressed in terms of F as

dxp1 = Fdx̄p1, (.)

dxp2 = Fdx̄p2. (.)
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To actually measure deformation, the change of the dot product between the
pair of vectors in initial and current configuration can be used. It encodes
changes in length as well as angular changes of the vectors. The dot product
of the vectors dxp1 and dxp2 using deformation gradient notation of Equations
. and . leads to

dxp1 · dxp2 = (Fdx̄p1) · (Fdx̄p2)

= dx̄p1(FTF)dx̄p2

= dx̄p1Cdx̄p2,

(.)

where C = FTF denotes the right Cauchy-Green deformation tensor. Alterna-
tively, the same procedure can be applied to the difference in dot products of
initial and current configuration that can be written as

dxp1 · dxp2 − dx̄p1 · dx̄p2 = (Fdx̄p1) · (Fdx̄p2)− dx̄p1 · dx̄p2

= dx̄p1(FTF)dx̄p2 − dx̄p1 · dx̄p2

= dx̄p1(FTF− I)dx̄p2,

(.)

with the identity matrix I ∈R3×3. In this case, the nonlinear and symmetric
Green strain tensor E can be identified, which is defined as

E =
1
2
(FTF− I) =

1
2
(C− I). (.)

A fundamental property of these deformation measures becomes evident when
a polar decomposition of F is performed: the deformation gradient can be
decomposed in a product of a rotation tensor and a pure stretch tensor as

F = RU. (.)

Applied to the Cauchy-Green tensor C, this leads to

FTF = UTRTRU = U2. (.)

As R is a pure rotation tensor, RTR equals the identity matrix I, hence, rota-
tional invariance of the deformation measures is given.

The Green strain tensor E can also be expressed in terms of the displacement
field u defined as u = x− x̄. With the deformation gradient given in terms of
u as

F = I +∇u, (.)
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it can be written as
E =

1
2
(∇uT +∇u +∇uT∇u). (.)

With this expression, the Green strain can be linearized by omitting the nonlin-
ear term ∇uT∇u, which is a valid approximation if only small displacements
are assumed. This leads to the definition of Cauchy strain

εC =
1
2
(∇uT +∇u), (.)

which has a widespread use in computer graphics literature. However, this
linearization has the drawback that it is no longer invariant regarding rotations,
which can lead to erroneous results. Therefore, several researchers propose
using the polar decomposition of the deformation gradient (Equation .)
and extract the rotational part of the deformation before the actual strain
computation [], [], [], []. The rotated linear strain tensor then reads

εCR(Ru) = ε(RTRu) = ε(u) (.)

and is known as co-rotational strain εCR.

Stress and Equilibrium

Strain is usually accompanied by forces in an equilibrium state. To derive
the differential static equilibrium equations, a volume element V of finite
size of a deformable body with boundary area ∂V = A is considered. The net
force acting on the volume element consists of body forces fb acting on the
entire volume and traction forces t acting on the boundary of the element. The
traction vector t is defined as the force vector on a differential surface area dA
and the symmetric Cauchy stress tensor

σ =

σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

 , (.)

relates the normal vector n to t as

t(x,n) = σ(x) · n. (.)

In translational equilibrium, the sum of body forces and traction forces is zero
and can be expressed as ∫

V
fbdV +

∫
∂V

tdA = 0. (.)

The traction force vector can be replaced by its notation in terms of the stress
tensor (Equation .), which leads to∫

V
fbdV +

∫
∂V

σ · ndA = 0. (.)
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The surface integral can be transformed into a volume integral using the
divergence theorem (Equation .) and the equation can be written as∫

V
(fb +∇ · σ)dV = 0. (.)

This statement must hold for any infinitesimally small element of the volume
V and, therefore, can be expressed in differential form as

fb +∇ · σ = 0, (.)

which is known as the pointwise spatial equilibrium equation for deformable
bodies in its strong form.

Material Laws

In the previous section, the concepts of strain and stress have been shown
separate from each other. With material laws, stress is linked to the measure of
deformation. A simple constitutive relation between stress and strain is given
by the linear law

σ = C : ε, (.)

where the relation is described by the elasticity tensor C. The above equation
uses double dot product notation for tensors and the entries of the stress tensor
can be calculated using the Einstein convention as

σij = Cijklεkl. (.)

Equation . is a generalization of Hooke’s law, which is the one-dimensional
case of this equation, i.e., a linear spring.

Given the linear Cauchy strain tensor (Equation .) as presented in Sec-
tion .. for a D material in matrix notation

εC =


∂ux
∂x

1
2

(
∂ux
∂y +

∂uy
∂x

)
1
2

(
∂ux
∂z + ∂uz

∂x

)
1
2

(
∂uy
∂x + ∂ux

∂y

)
∂uy
∂y

1
2

(
∂uy
∂z + ∂uz

∂y

)
1
2

(
∂uz
∂x + ∂ux

∂z

)
1
2

(
∂uz
∂y +

∂uy
∂z

)
∂uz
∂z



=

εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

 ,

(.)

normal strains are located on the diagonal, and off-diagonal elements are shear
strains. Due to its symmetry, the three-dimensional second-order tensor can
be written as six-dimensional vector using Voigt’s notation as

ε =
[
εxx εyy εzz εxy εyz εxz

]T . (.)
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The same holds for the Cauchy stress tensor and leads to

σ =
[
σxx σyy σzz σxy σyz σxz

]T . (.)

Hence, the linear material law in Equation . relates stress to strain by the
symmetric 6× 6 matrix C with 36 components.

As cloth is modeled as a thin elastic surface, stress and strain are reduced to
three entries in Voigt’s notation

ε =
[
εxx εyy εxy

]T (.)

and
σ =

[
σxx σyy σxy

]T . (.)

As it can be seen in Equation ., the elasticity tensor C then has 16 compo-
nents. Due to symmetries, it can be reduced to 6 independent entries for a
linear and anisotropic, two-dimensional material. Similar to stress and strain
notation, an elasticity matrix

C =

C1111 C1122 C1112
C1122 C2222 C1222
C1112 C1222 C1112

 (.)

can be constructed. For cloth simulation, the entries of this matrix depend on
Young’s moduli E for the individual material directions weft (u) and warp (v),
and on the shear modulus G. The relation can then be expressed asσuu

σvv
σuv

 =
1

1− νuνv

 Eu νuEv 0
νvEu Ev 0

0 0 G(1− νuνv)

εuu
εvv
εuv

 , (.)

where ν is Poisson’s ratio. For an isotropic material, the relation further simpli-
fies, because E = Eu = Ev and ν = νu = νv.

.. Spatial Discretization Using Finite Elements

In practice, the strong form of the equilibrium equation (.) is not easy to
evaluate since it has high continuity requirements. Before performing the
actual finite element discretization, a weak form is needed. In continuum
mechanics, this transformation is achieved by the principle of virtual work. To
begin with, the equilibrium equation (.) is multiplied with by an arbitrary,
but smooth, test function δv ∈R3, which leads to∫

V
(fb +∇ · σ) · δvTdV =

∫
V
(δvT · fb + δvT · ∇ · σ)dV = 0. (.)
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Figure .: A typical D cloth discretization with linear finite elements. e
denotes a planar element with nodes k, l,m.

The test function can also be replaced by a displacement variation δu. Applying
integration by parts, exploiting the symmetry of σ, and the divergence theorem,
Equation . can be expressed as []∫

V
δεTσdV −

∫
V

δuTfbdV −
∫

∂V
δuTtdA = 0, (.)

which is the weak form of the Equation ., also known as the virtual work
equation. At this point, the equilibrium equation is still valid for both nonlinear
and linear stress-strain relation.

Based on Equation ., the finite element discretization is performed. In
the following, the discretization will be given for a deformable surface to
model cloth. An in detail introduction to the FEM is given in the textbook
by Zienkiewicz and Taylor []. The deformable surface of cloth will be
discretized by triangular (linear) elements as illustrated in Figure .. The
continuous displacement field inside an element can be approximated by

u =
3

∑
i=1

Niũi, (.)

where i ∈ {1,2,3} denotes the node of the element, the nodal in-plane displace-
ment vector is given by ũi, and Ni are linear shape functions (see Figure .).
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Figure .: Linear finite element shape functions Ni.

For a linear elastic material, Equation . reads

δ

(
1
2

∫
V

εTCε−
∫

V
uTfbdV −

∫
∂V

uTtdA
)
= 0. (.)

Using the discrete approximation for the displacement and the linear strain
approximation

ε = Bũ, (.)

Equation . can be written as

δũ
(∫

V
BTCBdV −

∫
V

NTfbdV −
∫

∂V
NTtdA

)
= 0, (.)

where N = (N1, N2, N3)
T. Since any variation for δũT is possible, the equation

can be simplified as∫
V

BTCBdV −
∫

V
NTfbdV −

∫
∂V

NTtdA = 0. (.)

Defining the stiffness matrix K =
∫

V BTCBdV and expressing the elastic force
as f = −

∫
V NTfbdV−

∫
∂V NTtdA, the equation can be written as a linear system

of (3× 3) matrix block entries
∫

V BT
1 CB1dV · · ·

∫
V BT

1 CBndV
... . . . ...∫

V BT
n CB1dV . . .

∫
V BT

n CBndV




ũ1
...

ũn

+


∫

V NT
1 fbdV +

∫
∂V NT

1 tdA
...∫

V NT
n fbdV +

∫
∂V NT

n tdA

 = 0,

(.)
where n is the number of nodes, or in short notation,

Kũ + f = 0. (.)

In this linear approach, displacement and strain are constant, and therefore,
all Bi are constant as well. Additionally, a linear material law is used and the
evaluation of K can further be reduced to

K = ∑
e

∫
Ae

BT
e CBedA = ∑

e
BT

e CBetAe, (.)
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where t is the material thickness and Ae the area of a triangular element e.
The global stiffness matrix K can be assembled by evaluating its entries per
triangle element e as

Kij = ∑
e

Ke
ij. (.)

For the complete dynamics using linear deformations, damping forces fd = Dẋ
can be added and the second-order ODE

Mẍ(t) + Dẋ(t) + Kx(t) + f = 0 (.)

with respect to time, where M is a diagonal matrix with the point masses mi of
each node. For the damping matrix, Rayleigh damping given as D = αM + βK
can be employed, where the parameters α and β are user-defined and control
the damping. By setting β to zero, simple mass damping is achieved.

.. Discrete Bending Models

Modeling bending stiffness is an important aspect for textiles as it has an
major influence on the folds and wrinkles so typical for the appearance of
cloth. Deriving a finite element approach for thin shells, however, is a complex
task and requires high computational effort. Although being less accurate,
direct discrete bending models are therefore preferred in computer graphics
applications. Typical requirements for realistic modeling of bending are con-
sistent behavior for different mesh resolutions and discretizations, anisotropic
bending with respect to the material directions, and the possibility of non-flat
rest angles. It is important to note that bending is usually modeled completely
decoupled from stretch deformation. There have been several approaches
to bending in cloth simulations, e.g., simple linear models that are suitable
for small deformations such as presented by Bergou et al. [] and Volino
and Magnenat-Thalmann [], and nonlinear models such as proposed by
Grinspun et al. [] and Bridson et al. []. In the context of this thesis, the
bending models by Volino and Magnenat-Thalmann and Bridson et al. have
been used and are briefly presented in the following.

Given a triangle-based cloth mesh discretization, a bending element consists of
two adjacent triangles that share an edge e = x4 − x3 as shown in Figure .(a).
With discrete bending models, a bending force is evaluated based on the local
curvature given by the adjacent triangles and distributed to the individual
nodes of the bending element. The linear approach by Volino and Magnenat-
Thalmann [] is based on a bending vector RBl that is calculated by a linear
combination of the nodes xi of the bending element expressed as

fBl
i = −λaiRBl , (.)
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Figure .: Illustrations of a bending element. (a) A bending element consists
of two adjacent triangles that share an edge. (b) The bending vector RBl as
proposed by Volino and Magnenat-Thalmann []. (c) The dihedral angle θ
between the two triangle normals n1 and n2.

where λ is a stiffness coefficient. The bending vector RBl is in direction of the
edge normal of e and has the length of the height difference of the triangles (see
Figure .(b)). The coefficient ai is calculated for each node so that translational
and rotational momentum is conserved, as shown in the original paper [].
Non-flat rest angles can be modeled by adding the correspondent rest angle
RBl

0 to RBl .

While the previous approach may be sufficiently accurate for small bending
deformations, a nonlinear approach is advantageous for applications with
many details such as fine wrinkles, especially for soft materials. The bending
model of Bridson et al. [] is based on the dihedral angle θ between the face
normals n1 and n2 as shown in Figure .(c). The bending force is calculated
for each node by

fBn
i = kBbi

(
sin
(

θ

2

)
− sin

(
θ0

2

))
, (.)

where kB is the bending stiffness coefficient and the model-specific vector bi
is also calculated to account for triangulation anisotropy and conservation of
momentum.

.. Numerical Time Integration

Given the spatially discrete equation of motion for elastic surfaces (Equa-
tion .), the temporal evolution of the system has to be solved by numerical
time integration. To this end, the dynamic setting using Equation . and
external forces f can be expressed by

Ma(t) = fb − fe(x(t))− fv(v(t)), (.)

with the unknown acceleration a. Just as in the simulation of fluids, an IVP with
given start conditions (positions and velocities) has to be solved numerically
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in order to obtain trajectories of the nodes of the discretized surface. Again,
Equation . is a second-order ODE with respect to time that is transformed
into a coupled system of first-order ODEs to apply numerical time integration
schemes. The reduced system reads as

d
dt

x(t) = v(t), (.)

M
d
dt

v(t) = f(x(t),v(t), t), (.)

where the net force f combines the evaluation of body, elastic, and viscous
forces. As for particle-based fluids, the first-order explicit Euler integration
scheme

v(t + ∆t) = v(t) + ∆tM−1f(x(t),v(t), t), (.)

x(t + ∆t) = x(t) + ∆tv(t) (.)

with time step ∆t, seems to be an obvious choice due to its easy implementation.
However, for the simulation of elastic materials, the explicit Euler method
proves to be disadvantageous because of its limited stability and requirement
for very small time steps, and therefore, low computational efficiency in most
cases. The reason is that the ODEs of elastodynamic problems contain a stiff

part and require advanced numerical methods. With higher-order explicit
methods, such as the Verlet method or Runge-Kutta methods, stability can be
improved, but in general, implicit integration methods are favorable. Stability,
accuracy, and suitability of numerical time integration schemes in computer
graphics have been intensively studied [], [], [].

A popular candidate for an implicit time integration scheme for cloth simula-
tion is the implicit or backward Euler method, which in general can be written
as

v(t + ∆t) = v(t) + ∆tM−1f(x(t + ∆t),v(t + ∆t), t + ∆t), (.)

x(t + ∆t) = x(t) + hv(t + ∆t). (.)

Just as the explicit Euler scheme, it is a first-order approximation scheme,
however, it is unconditionally stable []. As it can be seen in Equation .,
the state of the system of the future time t + ∆t appears at both sides of the

Although there is a common understanding of the term stiff equations, there is no mathe-
matical definition. A basic property of practical relevance is described by Hairer and Wan-
ner []: “The most pragmatically opinion is also historically the first one (Curtiss & Hirschfelder
): stiff equations are equations where certain implicit methods, in particular BDF, perform
better, usually tremendously better, than explicit ones.”
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equation and a nonlinear system of equations has to be solved. To avoid
solving this equation, Baraff and Witkin [] propose linearizing the forces at
the current state by applying a Taylor series expansion and using the first-order
approximations

fe(x(t + ∆t)) ≈ fe(x(t)) +
∂fe(x(t))

∂x
∆x, (.)

fv(v(t + ∆t)) ≈ fv(v(t)) +
∂fv(v(t))

∂v
∆v, (.)

where

∆x = x(t + ∆t)− x(t), (.)

∆v = v(t + ∆t)− v(t). (.)

Before using the approximation, Equation . is first multiplied by the mass
matrix M and rewritten as

Mv(t + ∆t) = Mv(t) + ∆t(fb + fe(x(t + ∆t)) + fv(v(t + ∆t)), (.)

where body forces fb are assumed to be constant over time. Applying the
first-order Taylor series approximations (Equations . and .) and using
∆x = ∆t∆v, the linear system of equations[

M + ∆t
∂fv(v(t))

∂v
+ ∆t2 ∂fe(x(t))

∂x

]
∆v = ∆t(fb − fv(v(t))− fe(x(t))) (.)

has to be solved for ∆v, e.g., using the conjugate gradient (CG) method. Using
a linear deformation model, the system can be solved in one step and new
positions can be calculated using Equation .. However, the problem can
also be nonlinear, which requires an iterative solution such as the Newton-
Rhapson method.

With the proposed modification by Baraff and Witkin [], the integration
scheme is no longer unconditionally stable, but large time steps are still pos-
sible. Compared to most explicit methods, the large time steps compensate
the additional computational effort of solving a system of equations and the
implicit method leads to considerably faster run times. However, the inte-
gration scheme is still only of first-order accuracy and using large time steps,
numerical damping occurs that could lead to reduced detail in the final ani-
mation. These problems can be approached by using higher-order, preferably
multi-step, implicit methods, such as backward differential formula (BDF).
Also, exponential integrators, introduced to computer graphics by Michels et
al. [], are a promising approach for cloth, combining stability with accuracy
and energy conservation.
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.. Animation Loop

The structure of a basic cloth simulation solver is illustrated in Figure ..
With a given triangulated cloth mesh in rest state, the forces per node are
calculated based on the material law and the discretized equilibrium equation
(Equation .). For time integration using the implicit Euler method, the Jaco-
bian of the forces has to be calculated to build the system of linear equations.
This system can be solved, e.g., using the CG method, and the velocities and
positions of the mesh nodes can be updated.

Typically, cloth interacts with virtual characters, with its environment, and,
due to its low resistance to bending, with itself. To prevent intersections,
a robust collision handling is necessary. Especially because of the highly
flexible nature of cloth in combination with many contact areas for dressed
characters, collision handling is a complex task and, therefore, beyond the
scope of this thesis. In the subsequent chapter, collision detection based on
k-DOP hierarchies and collision response based on impulses are used. Details
of the techniques can be found in the survey article of Teschner et al. [] and
the original papers [], [], [].
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Figure .: Cloth animation loop.





chapter 3

Cloth Animation Retrieval

Using a Motion-Shape

Signature

 . introduction

State-of-the-art cloth simulation systems allow impressive animations of tex-
tiles with a wide range of material parameters that determine the overall
behavior of cloth. In particular, the shape of the deformable surface and its
change over time depend on many aspects: deformation models, numerical
methods and parameters, material properties, and scene setup are just some
of the components that influence the simulation result. When creating cloth
animations, several ways of achieving a result based on these components are
possible. A direct approach is to perform multiple simulations consecutively
and in the process, sample parameter spaces manually until a satisfying result
is obtained.

In practice, however, there is often a certain goal specified, for instance, by
sketches or photographs of key frames, by a D scan of the textiles motion, or by
a reference animation. The task at hand is then to reproduce the reference by a
new cloth simulation aiming to preserve the specified features and transferring
the simulation to other environments. This requires a procedure that is able
to capture features and determine if the input is matched. The challenge of
this task is not only matching the shape of cloth at a specific frame, e.g., an
equilibrium state, but also incorporating its temporal evolution. For example,


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this problem arises in the work by Aliaga et al. []: to analyze the perception
of cloth with experiments, a video reference has to be matched to generate
stimuli. In their case, parameters are mainly set manually to match features,
such as size, number, and shape of folds.

The aim of the approach in this chapter is to capture spatio-temporal features of
an input example and identify the closest match in a collection of simulations
and, thus, retrieve a simulation that exhibits similar characteristics as the
input. In doing so, it is possible to find a cloth animation that exhibits the same
characteristics as an example. Identifying a close match, however, demands a
suitable similarity measure for cloth simulations incorporating spatio-temporal
properties. Determining similarity of meshes by visual inspection could suffice
for certain applications, but in general, it will result in a time-consuming
and error-prone task. For static shapes, there exist many approaches for
determining similarity, e.g., using registration or shape descriptors. Extending
these techniques to temporal changing shapes, however, is not straightforward,
especially if the specific needs of cloth animations have to be met.

This chapter introduces a feature vector that is used as a motion-shape signa-
ture to capture the spatio-temporal shape characteristics of cloth and can be
used as a space-time similarity measure for physics-based cloth animations.
The feature vector not only contains the underlying geometry of the cloth as
a mesh, but also measured quantities from the simulation that describe the
deformation state and therefore, its shape. The motion-shape signature can
be used to retrieve a cloth simulation from a collection of simulations that
matches a given input animation. This approach enables a way of goal-oriented
creation of cloth animations and directability.

 . related work

The approach introduced in this chapter does not alter existing simulation
models but builds on available or newly generated cloth animations. To cre-
ate animations, a cloth simulation system based on the models described in
Section . is used.

The presented technique of animation retrieval can be considered as a form
of creating goal-oriented animations, which is an active area of research in
computer graphics. However, this work is not only positioned in this field, but
also overlaps with research in other fields.

Control of Features in Cloth Simulations

Creating goal-oriented cloth animations only by manually adjusting simulation
and material parameters is often not feasible in practical scenarios. For this



 . . related work 

purpose, several methods for directing cloth toward a desired result have been
proposed. One approach uses global control forces to direct the motion of
cloth by minimizing the distance to a sparse set of key frames, such as in
the work of Wojtan et al. []. Similarly, Jeon and Choi [] define control
points and use control forces to direct the cloth mesh. A second approach for
directing cloth is presented by Schumacher et al. []: they extend the work of
Martin et al. [] and use a set of example poses as input for the simulation
that represents different rest shapes and, thus, deformation is guided toward
these preferred shapes. Opposed to control forces in combination with key
frames or control points, the shape of the textile is directed independently
from time. An interesting approach that facilitates finding desired simulation
parameters is shown by Sigal et al. [], who present a learned mapping
from familiar descriptions for fabric to simulation parameters. All of these
approaches present methods that allow control by altering the simulation itself.
In this work, similarities are calculated on sets of existing simulations. The
aforementioned techniques can be used for the generation of simulations and,
therefore, are complementary to this work.

Another category to influence time-dependent features regarding the shape of
cloth is augmenting coarse simulations meshes with details, such as fine-scale
wrinkles. Cutler et al. [] synthesize predefined wrinkle patterns on cloth
based on stress maps. Rohmer et al. [] present a method to generate wrinkles
along curves determined by the stretch tensor. With the approach of Müller
and Chentanez [], coarse simulation meshes are enhanced with fine wrinkles
generated by a secondary parallel simulation. Popa et al. [] show how folds
can be reintroduced in garment capture by extracting them from the video
input. Further, example-based methods for synthesizing wrinkles have been
proposed [], []. These methods are mainly used to introduce details
on existing coarse simulations. Both coarse and enhanced simulations could
be used as input for the presented approach. Additionally, the motion-shape
signature could be used in the process of creating fine details by example.

Umetani et al. [] present a system for the simultaneous editing of D gar-
ment patterns and clothing in D that enables interactive preview of drape.
Their approach allows artists to interactively design clothing on static char-
acters or objects. In the same context, Bartle et al. [] present an approach
to generate D cloth patterns from D garment editing. This work, however,
targets capturing cloth behavior in dynamic scenarios.

Matching of Temporal Data

In fluid animation, Raveendran et al. [] present an approach to create D
space-time surfaces for grid-based fluids and perform registration by a non-
rigid iterated closest-point algorithm.
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Within motion-capture, similar problem settings exist. One deals with compli-
cated multidimensional temporal data and it is desirable to find or match a
certain given motion. This is important for retrieval and analysis of the motion.
Usually, the underlying data is skeleton-based, but similar to the proposed
approach, a feature vector can be used to for matching sequences as shown
in the work of Müller et al. []. In contrast to this work, their feature vector
contains geometric features connected to body parts of the skeleton.

Temporal data in general appears in many domains, animation is just one
of many examples. For data analysis, matching of this kind of data is an
important task. From a visualization point of view, techniques and examples
can be found in the textbook by Aigner et al. []. There are similarities in
respect of matching time series of higher dimensional data, but most of these
techniques address the comparison of time series in general, mostly measured
data, and target determining correlations and gaining insights for predictions.

Identification and Measurement of Surface Features

Describing the shape of an object and calculating similarities between D
shapes has been widely studied in the fields of object recognition, retrieval,
clustering, and classification. The most popular techniques are summarized
in surveys, e.g., for content-based shape retrieval [], non-rigid shape re-
trieval [], or shape registration []. These methods are often tailored to
specific applications, such as object retrieval, and are usually based on static
shapes. Temporal datasets, in particular animations, are rarely considered in
this context. Similarity measures for temporal data, in particular of deformable
objects, have not gained much attention.

One approach that attempts to define shape descriptors for temporal surface
sequences is presented by Huang et al. []. In their work, classic histogram-
based shape descriptors are aligned for time series to a D “shape-flow” de-
scriptor with temporal filtering. Their technique is based on existing shape
descriptors and targets shape matching of human motion data.

Closely related to the technique of this chapter is the work of Luo et al. [],
who propose doing spatio-temporal segmentation of deforming meshes based
on strain. In their approach, strain is used as a binary indicator to identify de-
formation on a spatial and temporal basis, but is not used as a shape descriptor
or similarity measure. Strain alone would not be sufficient as a shape descrip-
tion for cloth, because in-plane deformation is typically far less distinctive
than bending deformation.
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Input

Simulation Collection

Output Simulation

Similarity based on FV

Figure .: Overview of the example-based cloth retrieval method: an input
simulation or animation is compared against a collection of other simulations.
The comparison is based on a feature vector (FV) that allows one to retrieve a
simulation that matches closest to the input and, therefore, exhibits similar
spatio-temporal features.

 . animation retrieval by example

This section describes the concept of retrieving cloth simulations using an
example input simulation aiming to preserve characteristic features. In partic-
ular, incorporating the time dependency of those features is of major interest.
The basic outline of the approach is depicted in Figure .. The goal is to
retrieve an output simulation that exhibits the desired features of an input
example from a collection of simulations. This collection can be obtained from
different origins, e.g., a simulation database, a simulation ensemble, or by
creating (guided) simulations in place. The input for this retrieval process can
generally take different forms: For instance, it can be an example simulation
that consists of the underlying mesh together with deformation measures such
as strain or bending energy. Likewise, a single mesh, key frames, or an ani-
mation (sequence of meshes) are other options of example inputs. The focus
of this work is on input simulations and animations. In the retrieval process,
the similarity of the input to all the elements of the simulation collection
is calculated. To describe a simulation and calculate similarities, a feature
vector is introduced that incorporates important measures representing the
time-dependent shape of cloth.
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Below, the data model is described, followed by the proposed concept to
calculate similarity of simulations.

.. Data Model

A cloth simulation is given by a sequence of consecutive simulation states ςi
with T time steps as

S(X ) = {ς1, ...,ςT} (.)

and depends on a parameter set for the material and simulation methods, and
initial conditions, combined in X . As cloth is modeled as a thin deformable
surface, each state ςi is represented by a discretization of the surface, usually a
regular or irregular triangle mesh. Depending on the underlying deformation
model, attributes of the cloth simulation are connected to different elements
of the mesh, e.g., to vertices, faces, or edges. Such attributes are quantities
that represent the deformation state of the cloth such as strain and bending
deformation, and their energies respectively.

As the simulation sequence S can be of any length, it can be split into multiple
segments S ′ ⊆ S of varying length. To begin with, it is desirable to have
segments showing behavior that is continuous in time. Similar to techniques
in video processing where segments are divided by shot boundaries, sequences
are split at points where there are large differences in similarity at consecutive
frames. This not only helps compare sequences, but it can also be beneficial
to process subsequent calculations on smaller segments for computational
efficiency.

.. Similarity Calculation

As described above, the focus is on the comparison of segments S ′ and the
similarity calculation is processed pairwise. The segments are assumed to be of
equal size, i.e., they consist of the same number of simulation states ς. If this is
not the case, registration of time curves of attributes and cropping, or dynamic
time warping (DTW) of the sequences has to be performed in a preprocessing
step.

The similarity of two simulation segments S ′a and S ′b is calculated by

d(S ′a,S ′b) =
N

∑
i=0
||d(si

a, si
b)||, (.)

where si
a and si

b are single or aggregated subsegments of simulation states, d is
a distance metric, and N is the number of simulations states or subsegments.
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To represent simulation states, a feature vector is used that holds the simulation
states at each simulation step:

A = [at1
1 at2

1 . . . atm
1 , at1

2 at2
2 . . . atm

2 , . . . , at1
n at2

n . . . atm
n ]. (.)

The feature vector contains n attributes for every simulation step tj in the vector
[t1 . . . tm]. Hence, each segment is represented by an (m × n)-dimensional
feature vector. The feature vector is referred to as motion-shape signature for a
segment or a simulation. Using this signature, the similarity of two segments
can be calculated by the distance between their feature vectors d(AS ′a ,AS ′b).

 . attributes of the motion-shape

signature

With the feature vector A (Equation .), the temporal behavior of cloth should
be captured as accurately as possible. Therefore, it is crucial that the attributes
a that form the feature vector are tailored to represent characteristic features
of cloth shapes, such as planar deformation and wrinkling. Additionally, the
attributes or metrics have to fulfill several requirements. It is assumed that
the underlying cloth mesh of a simulation is a triangulated surface and does
not change in composition, topology, or resolution. The metrics should be
independent of translation and rotation of the simulation. Regarding scaling,
the value of the metric should scale with the simulation. Another important
property of the attributes is that they are not bound to a specific triangulation
strategy and are robust against changes in resolution. To meet these demands,
measures that account for the two main deformation modes used in modeling
cloth, namely planar and bending deformation, are included in the feature
vector.

In particular, strain, strain energy, bend deformation, and bending energy are
incorporated in the feature vector A. In the following, a brief overview of
the used attributes and their calculation is given. In typical mesh-based cloth
simulation systems, these features are computed on elements of the mesh: in-
plane deformations are computed on triangles, and bending deformations are
determined on pairs of triangles sharing an edge. As a combined description
of the respective attributes is desirable, the element-wise features are aggre-
gated. Using this spatial aggregation, the shape or deformation description is
independent from the mesh triangulation and resolution, and registration of
meshes can be avoided. The way of aggregation is also given for the subsequent
descriptions of the respective attributes.

At this point, it has to be mentioned that the attributes above can be exported
per element directly during simulation, as the respective values are computed
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anyway in the process. Hence, the attributes can be integrated immediately
into the feature vector and do not have to be calculated again in the retrieval
process.

.. Strain

For planar deformations of cloth, strain is used as a deformation measure.
Here, linear Cauchy strain εC (Equation .) is used and can be computed by
the cloth simulation system described in Section .. Of course, it could also
be exchanged by the rotationally invariant Green strain (Equation .).

In the discrete setting, it can be calculated on the triangles elements of the
given mesh by the linear approximation of Equation .. The strain measure
is composed of three scalar values, one value for deformation in weft and warp
direction respectively, and one value for shearing.

For each time step in a simulation, strain of the entire cloth mesh is aggregated
over all T triangular elements ei with i = 1, .., T. Therefore, at time tj the strain
attribute

a
tj
ε = ∑

ei

ε (.)

is added to the feature vector A. The strain attribute can be calculated sepa-
rately for the weft, warp, and shear components, or by the norm of the strain
vector in Equation .. Here and in the following, the short notation to cal-
culate the sum over triangle elements ei ∈ eT and edges bi ∈ bM of bending
elements is used. The terms of the sum depend on the area of the respective
element.

.. Strain Energy

In addition to strain, strain energy is also included as an attribute in the feature
vector. For an element e, it is calculated by

Ws =
1
2

Aσε, (.)

where A denotes the area of a triangle, and σ is stress. Stress is calculated
by the strain–stress relationship given in Equation ., using the elasticity
matrix C that describes the material properties.

Similar to the strain attribute, an aggregated value for the strain energy

a
tj
Ws

= ∑
ei

Ws (.)

is stored to the feature vector. The strain energy attribute can also be calculated
separately for the weft, warp, and shear components, or by their sum.
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.. Bending Deformation

Bending deformation is generally measured by curvature, respectively its devi-
ation from the rest state. With the discrete models described in Section ..,
the angle θ between the normals of two adjacent triangles sharing an edge of
the cloth mesh is measured.

Again, the bending attribute at time tj for all M bending elements bi for
i = 1, .., M with common edge ei is calculated by aggregation:

a
tj
θ = ∑

bi

θi||ei||. (.)

In this case, the edge length ||e|| is included for proper scaling.

.. Bending Energy

As for the planar deformation, bending energy for out-of-plane deformation
is also included in the feature vector. As shown for example by Wardetzky et
al. [], bending energy can be expressed based on mean curvatures H with

W ′b =
1
2

∫
S

H2dA (.)

over a surface S.

In the discrete case, bending energy for a bending element can be written as

Wb = θ2 ||e||
he

, (.)

where ||e|| is the length of the shared edge of two adjacent triangles, and he
denotes the sum of the heights of the two triangles.

For bending energy, the aggregated value that is added to the feature vector is
calculated by

a
tj
Wb

= ∑
bi

Wb. (.)

.. Composition of the Motion-Shape Signature and Similar-
ity

Having stored the aforementioned attributes for a simulation segment S ′, the
motion-shape signature can be set up. First, the aggregated attributes per



 chapter  . cloth animation retrieval

simulation step tj are grouped into sets

Aε = [at1
ε . . . atm

ε ],

AWs = [at1
Ws

. . . atm
Ws
],

Aθ = [at1
θ . . . atm

θ ],

AWb = [at1
Wb

. . . atm
Wb

],

for strain, strain energy, bend angle, and bend energy, respectively. At this
point, it is assumed that there are no discontinuities of the temporal evolu-
tion of the features in the considered simulation segment S ′—otherwise the
segment should be split. With this assumption and the observation that the
change of features between time steps is relatively small, temporal aggregation
of a small number of subsequent frames is also possible. In this case, con-
secutive entries of the attribute sets are grouped in equally sized subsets and
averaged, which then results in the new attribute sets A′ε, A′Ws

, A′θ, and A′Wb
.

As a result, the length of the feature vector can be reduced. Then, the attribute
sets are grouped together in the actual feature vector A.

In a final step, it is possible to assign user-defined weights to each attribute set
in the feature vector to be able to accentuate on specific attributes if needed.
For example, there are many cloth materials that are almost inextensible. In
this case, the shape is dominated by the bending deformation mode. If an
elastic fabric is attached to a collision object, stretch properties should be
considered at least equally in the feature vector. It follows that the specific
motion-shape signature for cloth animations results in the final feature vector
(introduced in Equation .) as

A = [wε A′ε,wWs A′Ws
,wθ A′θ,wWb A′Wb

], (.)

with weights wj. The proposed attributes in the feature vector F are used
paired: strain and strain energy are features to describe planar shapes, bending
and bending energy measure curvature of shapes. Hence, weights are usually
set pairwise with wε = wWs and wθ = wWb .

After the motion-shape signature has been put together for existing cloth
animations, it is possible to determine the similarity of simulation segments
(Equation .). Given two simulation sequences S1 and S2 of the same length
m, the similarity is calculated by their distance d(AS1 ,AS2). In doing so, the
distances are normalized for each attribute individually to be independent of
units and scale. For a time step tj from the vector [t1 . . . tm] of the two sequences,
the similarity calculation is illustrated in Figure ..



 . . attributes of the motion-shape signature 

A
t j S
1

A
t j S
2

a
t j S
1
,ε

a
t j S
1
,W

s
a
t j S
1
,θ

a
t j S
1
,W

b

a
t j S
2
,ε

a
t j S
2
,W

s
a
t j S
2
,θ

a
t j S
2
,W

b

+
+

+
=

d
(A

t j S
1
,A

t j S
2
)

S
im

u
la
ti
o
n
S
1
at

t j

S
im

u
la
ti
o
n
S
2
a
t
t j

w
W

s
·d

(a
t j S
1
,W

s
,a

t j S
2
,W

s
)

w
ε
·d

(a
t j S
1
,ε
,a

t j S
2
,ε
)

w
θ

·d
(a

t j S
1
,θ
,a

t j S
2
,θ
)

w
W

b
·d

(a
t j S
1
,W

b
,a

t j S
2
,W

b
)

Fi
gu

re
.
:

Il
lu

st
ra

ti
on

of
th

e
si

m
il

ar
it

y
ca

lc
ul

at
io

n
of

tw
o

gi
ve

n
si

m
ul

at
io

n
se

qu
en

ce
s

S 1
an

d
S 2

at
ti

m
e

t j
.T

he
di

st
an

ce
be

tw
ee

n
th

e
in

di
vi

du
al

at
tr

ib
ut

es
of

th
e

re
sp

ec
ti

ve
fe

at
ur

e
ve

ct
or

s
is

ca
lc

ul
at

ed
an

d
w

ei
gh

te
d

ac
co

rd
in

g
th

e
us

er
-d

efi
ne

d
w

ei
gh

ts
w

.



 chapter  . cloth animation retrieval

 . experimental results

In order to analyze and test the proposed methods of the preceding sections, a
series of experiments for different purposes is conducted. In the following, all
cloth simulations were generated using a co-rotated finite element as described
in Section . for planar deformations and the model of Bridson et al. []
(see Section ..) for bending deformation. For time integration, a first-order
implicit Euler method as described in Section .. is used with a fixed time
step of ∆t = 0.001 s. Whilst performing simulations, the attributes of the
feature vector described in Section .. are calculated during runtime.

First, some basic examples of the motion-shape signature for simple cloth
shapes are given to present the properties of the shape metrics. Then, results
using the signature for calculating similarity of static shapes of cloth are shown.
After that, an example of the retrieval of a simulation from a collection by an
input example is given where the shape of a collision object is changed. Also,
the presented method can be used to retrieve a simulation by the captured
geometry of a real-world cloth. In a last scenario, cloth animation retrieval of a
dressed character is performed using an input simulation with considerably
different material parameters than the simulation collection.

.. Properties of the Shape Metrics

In Figure ., examples of the motion-shape signature for three simple cloth
animations are given to illustrate its basic properties. For the three examples,
a square regular mesh with 2048 faces is used. In the figures, fixed edges
and vertices are depicted in black, animated edges vertices are depicted in
yellow. First, the flat piece of fabric is stretched with a relatively high Poisson
coefficient without the influence of gravity. As expected, in-plane deformation
is the dominating effect, which can be seen in the strain component of the
motion-shape signature in the first diagram column of row one in Figure ..
An almost linear behavior can be observed with increasing stretch. For the
second example shown in Figure ., the cloth is bent by a cylindrical collision
object to observe bending properties. In this case, out-of-plane deformation is
much stronger than in-plane deformation, which is captured by the bending
metrics, illustrated with the aggregated crease angle component. Bending
deformation increases as the fabric drapes over the object and after some
oscillation, an equilibrium state is established. In the third example, the piece
of fabric is pinned at three corners, one moving outward, stretching the cloth.
Strong in-plane and bending deformation can be observed that is represented
in the strain and crease angle components of the feature vector.

As explained in Section ., spatial aggregation is performed for each time
step for the respective attributes in the feature vector. In the second and
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0.001 0.002 0.003 0.004 0.005

0.006 0.007 0.008 0.009 0.010

Figure .: Final equilibrium states of a piece of cloth draped over a sphere
from side view and top view with the respective bending stiffness parameters
kb used for calculating similarities of static shapes. The three last shapes are
considered as most similar (kb = 0.008− 0.010).

third column of Figure ., it is demonstrated how partitioning of the mesh
affects the components of the feature vector. While there is no difference
if the deformation is homogeneous across the mesh as in the first example,
varying behavior of the individual partitions can be observed for the other two
examples. Hence, it would be difficult to calculate similarity between cloth
simulations without spatial aggregation as, e.g., spatial matching would be a
requirement.

Further, mesh resolution has only minor influence on the attributes. The com-
ponents for in-plane deformation behave almost identical for downsampled
simulations, as it can be observed in the two columns on the right of Figure ..
Especially for bending deformation, only slight differences are noticeable in
1× decreased resolution. Reduced to 128 faces, the differences increase, but
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strain strain energy bending angle bending energy combined

Figure .: Similarity matrices for the static shapes as shown in Figure .
using the motion-shape signature. The first four matrices show the individual
components of the feature vector. The rightmost matrix combines the four at-
tributes with weights (0.05,0.05,0.45,0.45). The highlighted blocks correspond
to the three last shapes in Figure . (kb = 0.008− 0.010).

this resolution is no longer usable in practical scenarios. Still, as long as the
same overall shape of the fabric is equal, the components of the feature vec-
tor exhibit comparable properties and animation retrieval can be performed
independent from resolution or triangulation.

.. Similarity of Static Shapes

In this experiment, similarity measurements for a set of static cloth shapes are
examined. A set of ten simulations of a cloth draped over a sphere is executed
with a fixed parameter set except for a varying bending stiffness parameter kb.
Young’s modulus is set to Eu = Ev = 500 N/m for both material directions u
and v, shear modulus is set to G = 50 N/m, and the cloths’ mass is 0.23kg/m2.
The simulation is carried out until the cloth reaches an equilibrium state and
the last simulation state as shown in Figure . is used for further analysis.

The similarity of the ten different shapes is calculated using the Euclidean
distance between the respective feature vectors presented in Section .. Simi-
larity matrices for the motion-shape signature with the attributes described in
Section . are shown in Figure .. The first four images represent similarity
matrices for the individual attributes strain, strain energy, bending angle, and
bending energy. In the last image, similarity is calculated with the combined
feature vector given in Equation .. As this scenario is an example of cloth,
where the out-of-plane deformation is much higher than in-plane deformation,
it can be seen that the attributes representing the planar features provide
only little insight opposed to the attributes representing bending deforma-
tion. Therefore, the weights (wε,wWs ,wθ,wWb) are set to (0.05,0.05,0.45,0.45)
to account for the deformation modes.
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A distribution D distribution D distribution

Figure .: Histograms for three different classic shape descriptors and two
parameter sets of the shapes shown in Figure .. A distribution is shown in
red, D distribution in green, and D distribution in brown. In the top row,
the shape for the smallest bending parameter (kb = 0.001) is analyzed, in the
bottom row the largest (kb = 0.010).

.. Comparison to Classic Shape Descriptors

In comparison to the proposed signature, classic shape descriptors are also
used for calculating similarities of static cloth shapes as shown in Figure ..
The purpose of this comparison is not about whether the proposed descriptor
is able to outperform classic methods, but if it leads to at least similar results
for a static shape, but with the advantage to be easily extensible to simulation
sequences and being particularly suited for cloth.

Three shape descriptors based on distributions are used as described in the
article by Osada et al. []:

n A distribution: the angles between three nodes of the cloth mesh.
n D distribution: distances between the centroid and the nodes of the

cloth mesh.
n D distribution: distances between  random nodes of the cloth mesh.

Examples of histograms of the respective shape distributions applied to the
draping scenario are given in Figure .. In the top row, histograms for the
lowest value for bending stiffness are shown and in the bottom row, histograms
for the highest value which correspond to the most left and most right shape
in Figure ..

To calculate similarity between the ten equilibrium states, the distance between
their histograms is calculated. Three common distance measures for compar-
ing histograms are used: Euclidean distance, Chi-Square, and Bhattacharyya
distance. Results are shown as similarity matrices in Figure . with the given
distance measures from left to right. In this illustration, the lighter the color
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Euclidean Chi-Square Bhattacharyya

Figure .: Similarity matrices for three different shape descriptors and three
distance metrics for the shapes shown in Figure .. The color is set for the
shape descriptors as described in Figure ., and distance metrics are shown
in columns.

of a cell, the higher the dissimilarity. Most noticeable is that a group of the
three last shapes can be identified in the similarity matrices, particularly in
case of the D distribution using Euclidean and Bhattacharyya distance. For
both cases, this conforms to Figure . by visual inspection and to the results
of the motion-shape signature (Section ..).

.. Simulation Retrieval with Changing Collision Object

In the second example, animation retrieval using an input simulation and
a collection of simulations is performed as illustrated in the introductory
overview in Figure .. The input example is a piece of cloth consisting of 6326
faces draped over a rectangular collision object with a given parameter set.
The simulation sequence lasts 2.5 s and the parameters for Young’s and shear
moduli are (400,400,50)N/m and kb = 0.003 for bending stiffness.

Now, the collision object is changed to a cylindrical shape, and the goal is to
find a simulation that exhibits a similar spatio-temporal behavior as with the
rectangular shaped collision object. To this end, a simulation collection of
about 40 simulations is generated by systematically sampling the parameter
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t = 0.42 s t = 0.65 s t = 0.80 s t = 2.50 s

Figure .: A typical retrieval scenario: the input simulation involving a rect-
angular collision object is shown in orange color. A collection of simulations
is created with a cylindrical collision object using varying parameters. The
result above the input has the same parameters as the input, but the original
features, such as the shape of the wrinkles, are not preserved. In the row below
the input, the closest matching simulation of the collection is shown.
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Table .: Similarities of the input simulation to a chosen subset of the simu-
lation collection and the respective parameters for simulation retrieval with
changing collision object described in Section .. using the set of weights
(0.0,0.0,0.5,0.5). The lower the value, the closer is the match. The highlighted
row is the best match and is shown in Figure ..

E (N/m) G (N/m) kb similarity
400 50 0.003 0.719
400 50 0.005 0.347
400 50 0.007 0.172
400 100 0.003 0.630
400 100 0.005 0.360
400 100 0.007 0.222
400 150 0.003 1.000
400 150 0.005 0.264
400 150 0.007 0.225
400 200 0.003 0.963
400 200 0.005 0.162
400 200 0.007 0.153
400 250 0.003 0.828
400 250 0.005 0.441
400 250 0.007 0.161

space of the cloth. At this point, parameters are varied only for isotropic stretch
resistance, shear resistance, and bending resistance. Young’s modulus varies
from 300 N/m to 500 N/m for both material directions, shear modulus is in a
range between 50 N/m and 250 N/m, and the bending stiffness parameter kb
is between 0.001 and 0.010. A subset of the used parameter combinations is
shown in Table .. The input is compared with all entries of the simulation
collection using the motion-shape signature using the weights wε = wWs = 0.0
and wθ = wWb = 0.5 and subsegments with the length of 100 frames to retrieve
the closest match.

In Figure ., selected frames of the input simulation (orange colored) are
shown from different perspectives. The top row shows the same frames of
the simulation with the different collision object, but the same parameter set
as the input example. In this case, a different impression of the material is
observable. Mainly, this is due the higher amount of wrinkles evolving with the
same parameters, especially noticeable in the second and third given frame.

The bottom rows of the different perspectives in Figure . show frames of the
simulations of the closest match, having the parameters (400,400,200)N/m for
The shapes at the given time frames are more similar to the input simulation
with this altered material parameter. In particular, the coarser features are
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preserved better. Another important aspect is that the temporal behavior over
the different time frames is maintained.

A subset of the parameter combinations of the simulation collection along
with the similarity calculations for this example is shown in Table .. The
highlighted row in the table corresponds to the bottom row for each perspective
in Figure ., respectively.

.. Retrieval of Simulations for Captured Input

In this example, the input for the animation retrieval technique is not a sim-
ulation as before, but a captured real-world cloth. The captured geometry is
provided by White et al. using their method for capturing garment []. The
garment mesh consists of approx. 2600 faces and 26 frames of the sequence
are used. In Figure ., the rendered input geometry is shown in the first row
(orange) from two different camera positions. The scene is manually reverse-
engineered and the starting position of a cloth estimated using a mesh with
similar resolution (approx. 2500 faces). 10 simulations are performed with
varying bending parameters, and the parameter set (800,800,200)N/m for
Young’s and shear moduli, respectively. The input is a sequence of meshes,
hence comparison can only be done on the bend angle attribute set A′θ in the
feature vector of Equation .. As the remaining attribute sets cannot be
calculated for captured input, they are omitted. In addition, the time curves of
the bending angle and the time frame of the animations are registered manu-
ally to ensure temporal coherence. Using a single segment, the closest match is
retrieved with a bending stiffness parameter kb = 0.007. This is shown in the
lower row in Figure ..

This example shows that it is also possible to achieve a satisfying matching
even with a sparse input and using only a subset of the attributes in the feature
vector. Using advanced garment capturing techniques and sampling a large
space of material parameters together with varying initial conditions could also
lead to very promising results for determining cloth parameters for captured
input.

.. Simulation Retrieval with Animated Character

In the last example, simulation retrieval for an animated character dressed
with a simulated skirt is performed (Figure .). The cloth mesh consists of
2926 faces and 2 s of a simulation are examined, which roughly corresponds to
two steps of the animated character. A collection of simulations consisting of
 simulation runs is created using parameters for Young’s and shear moduli
(200,200,50)N/m and varying bending stiffness from kb = 0.0002 to kb = 0.01.
As input for the retrieval procedure, a simulation with considerable different
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Figure .: Top row: a captured garment established by White et al. [] is
used as an input example for the matching procedure. The most similar result
of a set of 10 simulations is shown in the second row.

material parameters is used: stretch stiffness is set to (400,400,250)N/m,
bending stiffness is set to kb = 0.0007, and the mass of the cloth is almost
doubled. Further, the weights of the motion-shape signature are set equally to
(0.25,0.25,0.25,0.25).

In the original collection, the simulation with kb = 0.0004 is determined as the
closest match. In Figure ., several viewpoints at four different time steps
are shown for representative simulation runs: for each viewpoint, the input
simulation is shown in orange, on its left is the closest match, on the outer
left is the simulation with the smallest bending stiffness, and on the outer
right the simulation with the largest bending stiffness of the collection. In this
example as well, the retrieval match exhibits similar characteristics throughout
the whole animation. Important features such as wrinkles are similar to the
input. At the beginning of the animation (Figure ., first row), only small
differences in the shape of the skirt are noticeable with the softer materials. As
expected, a high bending coefficient leads to a considerable different shape.
During the first step of the character (Figure ., second row), folds and
wrinkles arise and it can be seen that the input and the corresponding match
exhibit similar patterns, e.g., located at the waist of the character and the lower
part of the skirt. In the subsequent frames, characteristic shapes on the back
and front of the skirt (Figure ., lower two row) match the input, too.
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Min kb Match Input Max kb

Figure .: Four frames of an example of cloth animation retrieval presented
in Section ... For each frame, the input simulation is represented in orange
in the image set. The simulation of the collection with the lowest bending
stiffness is shown at the outer left, followed by the closest match of the signa-
ture. At the outer right, the simulation with the largest bending stiffness of
the simulation collection is shown. Especially during walking, the matching
simulation exhibits similar patterns as the input simulation.



 . . discussion 

 . discussion

The presented motion-shape signature and its application to animation re-
trieval is one step in the development of spatio-temporal descriptors, which
has been given little attention. Although good results for the given animation
retrieval scenarios could be achieved, there are several issues regarding limita-
tions of the approach and relating to future research directions that have to be
addressed.

With the presented signature, multiple metrics are incorporated to make sure
that the different deformation modes of cloth are captured. Therefore, the
signature is a hybrid classifier. To achieve the best possible results, suitable
weights are assigned to the individual attributes. In scenarios where the cloth is
able to move freely as in the draping examples, the characteristics of most cloth
materials exhibiting comparatively low bending resistance is most prominent,
and, therefore, it is obvious that the weight for bending measures has to be
increased. This situation, however, changes if the cloth is partially pinned
or strongly interacting with (animated) objects as it is the case for dressed
characters. A possible drawback of this approach is that the weights w for
the respective attributes in the feature vector (Equation .) are determined
manually. This often requires fine tuning, which can be a time-consuming
task and, in some cases, might not be feasible. A possible solution for this
could be to analyze the complete animations in a preprocessing step to find
out the predominant deformation modes and set the weights automatically
and even temporally adaptively. Moreover, a machine learning approach to
determine the attribute weights, possibly in a visual analytics environment to
allow for user interaction, is considered a very promising research direction as
an improvement and extension to the presented approach.

Another point to be discussed are the possible attributes that are incorporated
in the feature vector. As measuring similarity of cloth animations is the main
focus, the signature is designed specifically for this application. The four at-
tributes presented in Section . are chosen for several reasons: the attributes
are considered as intuitive, as they directly represent geometric and physical
properties. However, a validation of the signature is not provided. For this,
either a benchmark with an animation database or a known ground truth
would be required. The topic of time-dependent signatures in the context of
deformable objects, however, has only gained little attention and there is no
community-driven data source yet. Also, a generally valid ground truth for
this kind of animations might not exist. In contrast to the presented approach,
it could also be possible to concatenate classic shape descriptors in the feature
vector. One major advantage of the presented approach is that the attributes
used in the motion-shape signature can be directly exported from the cloth
simulations and, therefore, do not have to be calculated separately, which,
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especially for the dynamic case, saves a significant amount of computational
cost. Computing shape distributions or similar techniques for animations of
several hundred frames containing thousands of data points each, and calcu-
lating their distances, involves much time and additional effort. In summary,
there could be attributes that lead to similar or even better results, but with
the proposed metrics, good results can be achieved in combination with an
intuitive usage and computational efficiency. Of course, replacing or extending
the metrics is an interesting and challenging topic for future work.

As described in Section ., spatial aggregation for the deformation measures
is performed to obtain a global measure throughout the cloth mesh. While this
is convenient for relatively small pieces of cloth with a fairly homogeneous
spatial distribution of the deformations, large pieces of fabric or deformations
that occur only at a small area of a garment could require a more sophisticated
solution.

An aspect that is closely connected to validation and weighting of the metrics
is the question how to verify the similarity. At this point, this is done by visual
inspection, but a quantitative analysis would be preferable. However, given
that cloth involves highly deformed surfaces, geometric matching of static
shapes alone is a challenging task, e.g., by registration. Finding a balance
between the similarity of the overall global shape and preserving fine local
details will require a sophisticated method. Including dynamics will make the
task even more difficult and is an important research direction.

A separate, but closely related topic to this work is the generation of cloth
simulations. If there is no collection of animations given, simulations have to
be performed to sample the parameter space or phase space of simulations.
Sampling the phase space of cloth [] or its parameter space requires a huge
amount of computational resources and still, could be an unfeasible task.
A more elaborate solution could be an optimization approach that uses the
proposed similarity measure to create the desired collection of animations.

 . summary

In this chapter, a novel approach for animation retrieval for cloth animations
was presented. A motion-shape signature represented by a feature vector has
been introduced that allows for the calculation spatio-temporal similarity of
cloth simulations. Using the motion-shape signature, it is possible to retrieve
simulations from collections that exhibit similar behavior as the input example.
The method can capture temporal cloth behavior and find suitable matches
for exchanged collision objects and modified material parameters. With the
proposed approach, a novel way of creating goal-oriented cloth animations
has been shown that has not been considered before. Additionally, it is also
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possible to retrieve a simulation using captured cloth as an input. Even with
purely geometric input data, matching is possible and useful results can be
achieved.





chapter 4

Boundary Handling at

Cloth-Fluid Contact

 . introduction

In high-quality digital productions, physically-based simulated cloth has be-
come common practice, e.g., to enhance the appearance of characters. It occurs
in many scenarios that there is interaction with fluids in the environment
or even wetting of the cloth. In this chapter, the interaction and contact of
infinitesimally thin deformable objects, like cloth or thin shells, with fluids
is addressed. The focus is on state-of-the-art cloth simulation systems that
use mesh representations of the cloth surfaces and on particle-based methods,
such as SPH, to simulate fluid dynamics.

This chapter presents an approach to overcome the difficulties of modeling the
interaction and contact of the respective simulation approaches. Regarding
the coupling of cloth and particle-based fluids, the special characteristic of
cloth being represented as two-manifold surfaces that have no inside and
outside, requires particular attention. During the interaction process, it is
necessary to prevent the fluid particles to move from one side of the cloth
surface to the other, often referred to as leaking. Once a particle has moved
to the wrong side of the cloth mesh, it is very difficult to correct the situation
even in postprocessing. Additionally, boundary conditions that characterize
the fluid’s movement at the contact area have to be modeled to represent the
specific properties of the fluid and cloth. In this context, the varying structure
of textiles characterized by the material of threads and the weaving pattern is


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an important aspect for the coupling of cloth with fluids. Depending on the
specific properties of the fabric and the fluid, different degrees of wetting can
be observed and the cloth can absorb the fluid that spreads inside the fabric. If
these processes occur, noticeable differences at contact will appear.

Having dealt with the interaction, another problem arises in the simulation
pipeline: In many particle-based fluid systems, an MC [] based surface
reconstruction pipeline is used to create a polygon mesh of the fluid surface.
In the reconstruction process, the calculated surface mesh might intersect the
surface mesh of close objects. While this is easily fixed with volumetric objects
in postprocessing, D manifolds are more challenging. Especially in case of
highly flexible materials like cloth that result in folds and wrinkles during
the simulation, extensive intersections with the generated fluid surface occur.
These material intersections do not only produce implausible visual artifacts
but can also cause difficulties in rendering liquid materials, like water, when
generating images with a raytracing-based renderer.

This chapter introduces an approach to treat two main difficulties at contact
between cloth and particle-based fluids. The first part demonstrates how
particle-based fluids can be coupled with thin deformable surfaces using
repulsion forces and a continuous intersection test that robustly prevents the
fluid leaking through the surface. With continuous intersection handling,
two-way coupling is achieved that prevents leaking and is not bound to small
time steps. In addition to the separation in normal direction, a boundary
condition is employed that affects the tangential component of the velocities,
thus modeling the no-slip boundary condition. Further, tangential boundary
conditions at the cloth-fluid interface for different material properties that
exceed the standard slip or no-slip conditions are discussed.

In this context, it is also considered that cloth can absorb fluid, which can lead
to changing boundary conditions depending on how much fluid is inside the
fabric, for example if it is dry, damp, or wet. To this end, the absorption and
diffusion model of a previously presented approach is incorporated []. The
presented methods are designed to be independent of the internal specifics
of the simulation systems so that they can be integrated in common simula-
tion environments. Furthermore, differences to previous approaches using
boundary particles are discussed.

In the second part, a method to reconstruct the surface of the particle-based
fluid at complex boundaries in an MC-based pipeline is presented. With the
proposed method, it is possible to extract an intersection-free surface mesh at
cloth-fluid contact. Also, details are given about the reconstruction of surfaces
at contact considering that the fluid can wet the cloth.
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 . related work

The methods in the following section are designed to be applicable to the
combination of any mesh-based cloth and particle-based fluid simulation
method. In this thesis, the interaction builds on the well-established models
for cloth and SPH-based fluids that are described in Section . and Section .,
respectively.

Rigid-fluid coupling for particle-based fluids is often achieved by transforming
the solid to a particle representation. Monaghan [] replaces boundaries with
particles and avoids penetrations by applying a repulsion force between the
particles. Becker et al. [] use direct forcing to achieve two-way rigid-fluid
coupling with particle-sampled rigid bodies. This approach is extended by
Ihmsen et al. [] by including boundary particles in the fluid’s SPH computa-
tion. Akinci et al. [] present a method for the two-way coupling of SPH-based
fluids with rigid bodies represented with particles. They include the rigid body
particles in the SPH computation to handle density discontinuities and their
approach also considers one-layered particle objects. To account for errors
in the density estimation at free surfaces and to obtain a realistic cohesion
behavior of SPH-based liquids at solid boundaries, Schechter and Bridson
[] introduce a ghost particle method for static solids. In addition to ghost
particles in the solid, boundary particles in the air located at the free surfaces
of the fluid are added that contribute to the SPH computations. Sampling
boundaries with particles can also lead to fluctuations of density in planar
regions addressed by Band et al. [], who propose a boundary representation
based on moving least squares (MLS).

To simplify the interaction of fluids and solids, Keiser et al. [] present a
unified particle model for the interaction and phase change of objects. Elastic
forces are calculated using MLS. Solenthaler et al. [] extend this approach
by developing a purely SPH-based particle model that also does not need an
interface for coupling. This model is modified by Lenaerts and Dutré [] to
cope with thin objects like cloth. However, this approach is limited because
it does not allow material stretching for cloth, just bending. Their work adds
explicit collision handling to avoid leaking.

For deformable objects, Müller et al. [] place virtual boundary particles
on the surface of the deformable object and use a Lennard-Jones-like force
to model repulsion and adhesion. However, their approach requires small
time steps to ensure that particles do not penetrate the solid. To overcome
leaking issues with boundary particles, Akinci et al. [] extend their rigid-
fluid coupling approach [] for elastic objects and introduce an adaptive
boundary sampling scheme to avoid over- and undersampling of meshes at
deformation. Yang et al. [] generate proxy-particles during runtime at
contact points and apply coupling forces with the direct forcing approach of
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Becker et al. []. Like all methods that rely on inter-particle interaction, the
contact distance depends on the particle radii.

A different approach for rigid body interaction is presented by Koschier and
Bender [], who use a discretized density map based on a distance field to
represent boundaries. In contrast to particle sampling, this results in smooth
boundaries and the density field is also be incorporated in the SPH computa-
tion.

Du et al. [] present an approach for the bidirectional interaction of cloth
and fluids without boundary particles, similar to the approach in this chapter.
They also use a continuous intersection test to ensure that fluid particles do not
penetrate the cloth, however, they use elastic impulses to separate the objects
and only consider pure slip boundary conditions.

Collision handling methods are related to the presented boundary handling
technique. The state-of-the-art report by Teschner et al. [] is recommended
for a comprehensive overview.

There are several approaches for the surface reconstruction for particle-based
fluids. The main challenge in the development of these techniques is to over-
come the bumps of classical blobbies and to generate a smooth surface that
represents the fluid in a visually plausible and appealing manner, despite
irregular particle distributions. Müller et al. [] represent the surface as the
isosurface of a density field of the particles. Although this approach results in
fewer bumps on the surface, they are still clearly visible. The approach of Yu
and Turk [] is also based on a density field. They overcome the problem
of irregular particle distribution and use an anisotropic kernel to capture the
smooth shape of the free surface more accurately. Zhu and Bridson []
achieve smooth surfaces based on a distance field over the particles. This
approach is improved by Adams et al. [] by tracking the particle to surface
distance over time. Both of these methods suffer from artifacts in concavities
and between particles with a certain distance. Solutions to this problem are
proposed by Solenthaler et al. [] and Onderik et al. []. None of these
methods considers areas of contact with other, not to mention thin, deformable
objects in a scene.

The interaction of cloth and fluids is not only limited to boundary handling, as
most fabrics absorb fluid upon contact. Lenaerts et al. [] apply their porous
flow model to a simple particle-based cloth model. Wet cloth simulation
that supports absorption and liquid transport in cloth based on a diffusion
model is introduced in a previous approach []. A similar approach by Parker
and Chaudhuri [] additionally supports dripping and liquid diffusion in
volumetric deformable objects. Based on the previous work on wet cloth [],
Um et al. [] model changing material properties of wet thin shells, such
as paper, including material weakening and tearing in this context. However,



 . . two-way coupling 

none of those methods that allow absorption consider different boundary
conditions of the tangential component for dry or wet materials. This gap is
filled with the presented method in Section ... Relating to contact of wet
cloth with virtual humans, Chen et al. [] present a model with measured
data for friction and wrinkling based on the imperfection sensitivity theory.
Their work does not consider coupling cloth with fluid simulations.

For the simulation of fluids with the Eulerian approach, coupling to thin
deformable objects is covered by Guendelman et al. []. Fully two-way
coupling is achieved by Robinson-Mosher et al. [] and later extended with
the accurate handling of tangential velocities [].

 . two-way coupling

To achieve a plausible motion upon contact, it is necessary that the fluid affects
the cloth object and vice versa. In the presented approach, the bidirectional
interaction between cloth (as a thin deformable object) and fluid is modeled
with repulsions. For the interaction, the normal component and the tangential
component at contact are treated separately from each other and boundary
conditions are modeled for both parts. In this context, cloth is considered
as impenetrable, which means that it is crucial to prevent particles from
intersecting the cloth mesh. Later in this section, the ability of fluid to wet
the textile is incorporated and the presented method is adapted to model
appropriate boundary conditions.

.. Interaction Detection

Before handling the coupling between the particles of the fluid and the trian-
gles of the cloth mesh, close particle-triangle pairs are identified to improve
performance. To this end, a spatial hashing technique based on Teschner et
al. [] is employed. The particles are inserted in the grid and an extended
bounding box of each triangle is tested for intersection with the grid cells.
All particles contained in the intersected cells are considered as close. Sub-
sequently, the proximity detection by Bridson et al. [] is performed for the
resulting particle-triangle pairs to test if a particle is located in the user-defined
interaction distance. Similar to their approach, cloth is modeled with thick-
ness τ. Following their notation, a mesh triangle represented by its corner
vertices x1, x2, and x3 and a particle’s center is defined as xp.

The proximity test consists of two parts. First, the distance between the
particles’ center and the plane containing the triangle is calculated and checked
against the thickness with |xp3 · n| < h, where n is the normal of the triangle
and xp3 the vector from the particle to x3. If the particle is close, the particle’s
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position is projected onto the plane in order to evaluate if the position lies
within the edges of the triangle. This is done by calculating the barycentric
coordinates of the projected position on the triangle. This process results in a
set of particles and triangles that are possibly in contact.

.. Normal Component of Boundary Conditions

To prevent a particle from intersecting the cloth surface and adjust the veloci-
ties, a repulsion to particle-triangle pairs is applied to keep the particle and
triangle apart. To this end, a stopping impulse is applied if the particle and
triangle approach each other. This is the case if the scalar product between
the relative velocity vr = vp − vt of a particle and a triangle with the normal
n is negative, where vp and vt are the particle’s and triangle’s velocities. The
impending intersection is stopped by applying an inelastic impulse to keep the
particles and the cloth mesh separated. Thus, adding stiffness to the system at
this point is avoided and the fluid can move smoothly along the cloth surface.
Following the approach of Bridson et al. [], the impulse is calculated with

Jc,N = msvr,N (.)

using the sum of the masses of the particle and the triangle nodes, and vr,N is
the normal component of the relative velocity. The impulse is split between
particle and triangle according to their respective masses. The impulse of
the triangle is distributed to the triangle nodes weighted with the barycentric
coordinates to ensure proper torsional moments.

As stated in Section .., a thin region around the cloth mesh is defined to
model the thickness of the cloth. To ensure that this particle-triangle distance is
kept, an elastic impulse is applied over multiple time steps once an intersection
is prevented. The impulse is proportional to the the particle touches the mesh
triangle. The impulse is then calculated by

Js = −κmsd∆t, (.)

where κ is a material constant. The penetration depth d is given by the dif-
ference between the cloth thickness τ and the distance between particle and
triangle at the current time step. The impulse is applied sequentially in a
Gauss-Seidel style iteration.

Using the above mentioned repulsions, most of the possible intersections can
be successfully handled in an efficient manner and the fluid moves smoothly
along the cloth surface. In contrast to coupling techniques that use particle-
sampled solids or introduce proxy-particles (e.g. []), the proposed approach
provides full control over the distance between particles and the cloth mesh.
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Figure .: Intersection in between a time step: (a) A particle is intersecting a
moving triangle without being detected. (b) With the continuous intersection
test, the particle’s position at contact xp(tc) is detected.

Although most of the intersections can be handled up to this point, it is not
possible to prevent all fluid particles from penetrating the cloth mesh because
intersections are not detected continuously with the approach in Section ..,
but at discrete instants of time. Especially in the case of large time steps,
particles can change sides of the surface unnoticed if particles or triangles
cover a distance larger than τ. With the relative velocity vr, the maximum
possible time step size to avoid intersections can be determined for a given τ.
In case a larger time step is used, intersections have to be detected continuously
over the trajectories.

.. Continuous Intersection Detection

The approach is extended by considering the path of the moving particle-
triangle pairs in between a time step. Since in the first phase the intersection
detection can fail to detect penetrations, this second phase with continuous
intersection handling is employed. The goal of this step is to detect the inter-
section between time steps and calculate positions of the features at impact to
prevent the intersection.

This step is based on the work of Provot []. As shown in Figure ., a particle
can move through a triangle of the cloth mesh in between a time step ∆t,
especially when using large time steps. To prevent the intersection, the time
tc at which the three nodes of the moving triangle and the moving particle
are coplanar has to be determined. Similar to the approach by Provot, the
unknown time tc is calculated assuming constant velocity for both triangle
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and particle over the time step. As proposed by Bridson et al. [], a rounding
error tolerance in the root finding process is used and the test for collisions is
performed at the end of the time step.

.. Cloth Wetting

Although the cloth object is considered as impenetrable in modeling the normal
component of the two-way coupling, the most common types of fabric can be
considered as a porous medium. Since the focus is on liquids, it is possible that
the fluid can wet the cloth at contact. The textile can be regarded as a network
of capillaries that is able to absorb fluid that will then spread inside the textile.

To this end, the wetting model presented in previous work [] is incorporated.
With this method, absorption and liquid diffusion are dependent on the specific
properties of the fluid, as well as the fabric. To represent the liquid distribution
in the cloth, a D grid is mapped on the cloth mesh where each cell can hold a
certain amount of fluid. The spreading of the fluid inside the cloth is calculated
using Fick’s second law that is discretized on the D grid. In the absorption
process, the change of volume due to the fluid transferred from the fluid
simulation into the cells on the cloth is modeled with the simplified Lucas-
Washburn equation. The corresponding amount of fluid is removed from the
SPH particle and transferred to the grid cells at the contact area. Thereby, an
additional boundary condition in the normal direction is modeled that allows
the fluid to flow into the textile.

Spreading of liquid inside the textile is modeled as diffusion on the grid cells
based on Fick’s law. The cells can exchange fluid according to the diffusion
equation and the process depends on the specified material properties.

Allowing for liquid transport, the behavior of moist fabric changes considerably
regarding stretch and bend resistance [], frictional contact with solids [],
and by its gained mass []. Beyond that, the contact characteristics between
cloth and fluid with regard to the tangential component of the velocity may
also differ for dry, damp, or wet cloth. To this end, the standard boundary
model for the tangential component presented in the following section needs
to be extended to support varying conditions of the textile.

.. Tangential Component of Boundary Conditions

With the method in Section .., the fluid is prevented from intersecting a
surface by correcting the components of the velocities in the normal direction
with repulsions. However, there are additional boundary conditions regarding
the tangential component of the velocity that have to be considered. As stated
in fluid simulation literature, e.g. [], letting the tangential component of
the fluid’s velocity untouched is only valid for an inviscid fluid. In case of a
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viscous fluid, the no-slip boundary condition where the fluid has zero velocity
relative to the boundary is incorporated. The change of velocity can be set
instantaneously.

Furthermore, tangential boundary conditions are modeled that exceed the
standard slip and no-slip conditions so that boundary conditions in between
are possible. Just as in the case of the normal component of the boundary
conditions in Section .., an impulse is applied on the particle and the
triangle in contact. To this end, the approach of Bridson et al. [] is adopted
that was designed for modeling the friction between clothes. A friction force
FF acts in the opposite of the tangential component of the relative velocity. The
magnitude of the friction force depends on the normal force FN:

||FF|| = µ||FN||, (.)

where µ is a unit-free control parameter. This translates to an impulse of magni-
tude µ||FN||∆t. Thereby, the resulting change of the velocity is µ(||FN||/m)∆t
that is calculated with the impulse of Section ... The impulse for the
tangential component can thus be written as

Jc,T = µ ms||∆vr,N||
vr,T

||vr,T||
. (.)

Considering that the change of the velocity should not exceed the tangential
velocity, the change of the tangential component of the velocity can be clamped
according to

vnew
r,T = max

(
1− µ

||∆vr,N||
||vpre

r,T ||
,0

)
vpre

r,T , (.)

where vpre
r,T is the tangential component of the relative velocity at the beginning

of the time step. The velocity correction is applied to both particle and triangle
in the same way as the treatment for the normal component of the velocities.

As explained in the previous section, varying tangential boundary conditions
dependent on the condition of the textile should also be considered. Thus, it is
convenient to control the resulting tangential component of the velocity with
the parameter µ similarly to the approach by Schechter and Bridson [], to
make it possible to blend between pure slip (µ = 0) and the no-slip boundary
condition. The parameter µ is dynamically set for a particle-triangle pair
dependent on the saturation of the grid cells (see Section ..) located at the
contact position on the textile with

µ = 1−F
(

saturation of cells
maximum saturation of cells

)
, (.)

where F is a monotonically increasing function. Typically F is chosen as a
linear function with F (1) = 1. If the cell is fully saturated, the tangential com-
ponent of the velocity is untouched and thereby, the slip boundary condition
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is modeled. The idea is that with a dry textile, the tangential velocity is slowed
down due to the rough structure of the fabric and fluid entering the textile in
the absorption process. With a fully saturated textile, a thin liquid layer on
the surface forms where the fluid particles move along with low viscosity. The
proposed model is inspired by similar observations in fluid mechanics []: the
change of the tangential component of the fluid’s velocity at the interface with
a porous medium depends on the permeability of the medium. The method
does not accurately model the physics of this process, but is used to control
the tangential component of the boundary condition for animation purposes.
Therefore, the function F can freely be changed by the user.

As an alternative approach, the impulse can also be calculated considering that
the friction force that acts opposite to the tangential velocity depends on the
tangential component of the relative velocity

FF = −δvpre
r,T . (.)

It has to be noted that the scaling factor δ used here is not unit-free. The
resulting change of velocity is then

vnew
r,T = vpre

r,T − δ
vpre

r,T

m
∆t. (.)

Again, the velocity correction is clamped to avoid a negative direction of
movement. Similar to Equation ., a dynamically varying δ is supported.

Using the model of Equation . is recommended because the tests presented in
Section . show that this model leads to better “linearity” between the control
parameter µ and its effect on the animation; therefore, the mapping of the
saturation of the cloth on the parameter µ (Equation .) is more predictable
and it is easier to control by the animator.

.. Differences to Boundary Sampling Approaches

With the approach of coupling fluids and solids using boundary particles, it is
also possible to model the coupling effects and different boundary conditions
by the interaction of pairwise particles. The generated boundary particles on
the interacting object can be incorporated into the SPH computation of the
fluid. The main challenge there is to sample the deformable mesh consistently,
adjusted to the size of the fluid particles. In this chapter, a different approach
is used: Coupling is achieved with the exchange of impulses between the fluid
particles and the simulation mesh directly. Thus, boundary conditions can be
calculated in the quality given by the simulation mesh. Coupled surfaces are
represented in an arbitrary resolution, independent of the resolution of the
fluid simulation. With the increasing particle count in simulation methods (e.g.
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[], []), decoupling the boundary representation from the fluid resolution
allows a flexible scalability in particle number.

By avoiding any sampling of the cloth and the consequential need for re-
sampling if deformations occur, temporal coherence of the treatment of the
boundary is guaranteed and all cloth details, such as folds and wrinkles, are
considered. In contrast, with boundary sampling, the resolution of the bound-
ary conditions calculation is bound to the particle size of the SPH simulation.
This also does not allow one to model an arbitrary thickness of the cloth that
can be used to control the distance between the fluid particles and the cloth
mesh.

With the proposed approach, interaction and calculation of boundary condi-
tions are implemented as a module that couples the simulation engines in a
separate process. No additional particles have to be integrated in the SPH
computation loop and different simulation engines can be coupled without
altering their internal systems.

 . surface reconstruction at con-

tact

As mentioned in Section ., there are several methods for the reconstruction
of surfaces for particle-based fluids. With most of the popular MC-based
surface reconstruction methods, the resulting surface mesh has a certain offset
to the fluid particles. Therefore, when using small contact distances between
particles and moving objects, the reconstructed surface mesh of the fluid
will intersect the mesh of objects in contact. To resolve these intersections,
snapping the vertices of the surface mesh to the boundary, as proposed for
example by Harada et al. [], is one possible approach. Snapping surface
vertices, however, can result in (self-) intersections of the meshes. While this
could work satisfactorily in case of large area boundaries, e.g. container walls,
it could lead to defective meshes with complex boundaries. Another possibility
is to solve these intersections manually in a postprocessing step. This however,
is a time-consuming task and in some cases, it is very hard or even impossible
to eliminate all the intersections.

Therefore, the surface reconstruction algorithm is modified to eliminate possi-
ble intersections. In common surface reconstruction algorithms, scalar values φ
on the MC grid are calculated based on contributions of nearby particles. This
holds for both density field approaches as well as distance field approaches
(Section .). When iterating over the neighboring particles, a visibility cri-
terion is used to determine if the particle contributes to the current scalar
value. A point in space is visible if the line segment that points to the reference
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Figure .: D view of the MC grid at a contact area: (a) For the calculation of
the scalar values on grid nodes, particles that are not visible from the current
grid node do not contribute. (b) Grid nodes are skipped if the distance to the
closest face of the cloth mesh is smaller than a certain threshold.

point does not intersect the cloth mesh (see Figure .(a)). Hence, particles
that are located on the opposite side of the cloth mesh, as well as particles
that are located behind folds or wrinkles, do not contribute to the scalar value
computation.

At this point, it is still possible that the resulting surface mesh intersects the
cloth mesh. Therefore, an additional iteration over the grid nodes is performed
after the scalar value computation to identify close faces of the cloth mesh.
If the distance of a triangle to a grid node is smaller than a threshold, the
scalar value is reset and does not contribute to the surface generation in the
MC algorithm (see Figure .(b)).

With the proposed techniques, costly and error-prone repositioning of surface
mesh vertices is prevented. In combination with the cloth thickness value
τ as introduced in Section .. that models the interaction distance in the
cloth-fluid coupling process, it is possible to control the location of the fluid
surface at contact.

Different material properties of the interaction objects also play a role for
the fluid surface at the interface, especially when it comes to rendering of
transparent liquids. The fact that the material appearance changes for wet
objects has already been discussed in the rendering literature []. With
the most common materials, the liquid and the solid object form a single
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interface at contact, which means that there is only a liquid-solid interface
and no additional air layer in between. Of course, this depends on the specific
material properties; for example, there are materials that have a very high
liquid repellence (hydrophobic) that leads to the lotus effect at which the
liquids surface is separated from the object at contact. This effect can be
achieved by specifying the desired distance between the fluid particles and the
surface mesh so that the render engine will produce a reflection and refraction
event.

However, especially with a porous medium such as cloth, that can absorb the
fluid, the fluid surface at contact is not visible. In this case, it is desirable
that the fluid’s surface at contact does intersect the cloth. With the proposed
method it is possible to move the reconstructed fluid mesh into the cloth object
that has a very small thickness without intersecting the backside, given that it
has the same shape. Examples will be shown in the results section.

 . implementation

The approach for the interaction detection and intersection handling from
Section . is independent of the particular choice of the simulation engine.
Any of the well-established particle-based fluid simulation systems can be
coupled with state-of-the-art cloth models as long as the cloth is based on a
triangle mesh. As input to the system, only the positions of the current and
the previous time step of the particles and the mesh nodes are needed. This is
an important property since existing simulation systems can be extended with
the proposed technique without altering the systems.

The experiments are conducted with cloth simulators based on continuum
mechanics (Section .) of Volino et al. [] and Etzmuß et al. [], combined
with the simple linear bending approach by Volino et al. [] (Section ..).
However, a mass-spring model for cloth is also possible. For the simulation of
fluids, a standard SESPH-based method similar to the approach proposed by
Müller et al [] is employed. Since the proposed method is able to prevent
leaking even at large time steps, methods such as PCISPH [], IISPH [], or
the fluid simulation method with position-based dynamics proposed by Mack-
lin and Müller [] should be particularly suitable. For a detailed review of up
to date SPH methods, the survey paper of Ihmsen et al. [] is recommended.

For the surface reconstruction, the scalar value computation is based on the
method presented by Zhu and Bridson []. Modifications by Onderik et
al. [] are added to avoid the artifacts resulting from uneven particle distri-
butions. The method to reconstruct the fluid surface at complex boundaries,
however, is not limited to a certain method to calculate the scalar values. It



 chapter  . boundary handling at cloth-fluid contact

Figure .: Particle view and opaque surface renderings of a jet of water hitting
a piece of cloth that is pinned at its corners without leaking.
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(a) (b)

Figure .: Side view of the first scene. (a) With repulsions only, fluid particles
can intersect the cloth surface. (b) With continuous intersection handling,
leaking is prevented.

can be employed in any MC-based surface reconstruction pipeline that uses
one of the surface reconstruction methods mentioned in Section ..

 . results

The proposed methods are implemented in C++ and all the following test
scenes were performed on an Intel Core i- processor at 3.4 GHz. For all
scenes, the given length unit is m, the time unit is s, and the unit of mass is kg.
The simulations and the intersection handling are calculated with a constant
time step of ∆t = 0.001 if not stated otherwise. The initial smoothing length
of the SPH particles is 0.005 and the resting distance is about 0.0015 with a
particle mass of approximately 3.5 · 10−5 if not stated otherwise.

In the first experiment, a jet of water hits a pinned piece of fabric. As shown in
Figure ., the water flows off the cloth that stretches under the weight of the
jet, producing wrinkles. The cloth mesh consists of about 6300 faces and there
are up to 15k fluid particles in the scene. The two-way coupling system reliably
prevents fluid particles from leaking through the cloth mesh. In Figure .(a), it
can be seen that penalty forces are not sufficient to prevent fluid particles from
intersecting the object in contact using a small τ (0.001). With the proposed
continuous intersection handling, robust two-way coupling without leaks even
with large time steps (Figure .(b)) is achieved. The simulation shown in
Figures . and . is based on the slip boundary condition.

In the second scenario, different boundary conditions for the tangential compo-
nent of the velocity at cloth-fluid contact are used, as explained in Section ...
Figure . demonstrates the effects of different values of the parameter µ in
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Figure .: Temporal evolution of the average velocities of the particles in
contact with cloth as shown in Figure .. (a) Velocities using the tangential
boundary condition of Equation . and different values of µ. (b) Velocities
using the tangential boundary condition of Equation . and different values
of δ. (c) Average velocities of the particles in contact with the cloth between
time 2.0 and time 4.0 for varying µ and δ.

Equation ., starting with the slip boundary condition (µ = 0.0) up to a value
of 1.0. Since the tangential velocities of the particles in contact are slowed
down differently depending on µ, the resulting animations show noticeable
differences. The differences are quantified in Figure .(a): the plot shows
aggregated information about the temporal evolution of the velocities for dif-
ferent values of the parameter µ; the aggregation is performed by averaging
the velocity magnitude of the particles that are in contact with the cloth. It can
be observed that at the beginning of the contact, particles hit the cloth with
high velocity and are slowed down considerably by the impulse acting on the
tangential component of the velocities. As the particles move along the cloth,
the simulation reaches an almost steady state in which the fluid moves with
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Figure .: Particle representation of cloth-fluid contact considering absorption.
The slip coefficient µ is set dynamically dependent on the amount of fluid in
the textile, which results in a behavior notably different from static values.
Saturated parts of the cloth are color-coded with a gray texture depending on
the saturation in the cells.

almost constant velocity. For the alternative tangential boundary condition
from Equation ., the average velocities for different values for the parameter
δ are plotted in Figure .(b).

Figure .(c) shows the effect of varying control parameters µ and δ for the
respective methods for the tangential boundary conditions. The plots show
the average velocities of the particles in contact, within the time span from
2.0 to 4.0, i.e., these plots provide a temporal aggregation of the plots from
Figures .(a) and .(b). For the given example, the method depending on
the normal force at contact (Equation .), shows an almost linear correlation
between the average velocity and the control parameter for values from 0.0 to
0.6. The constant velocity in the subsequent range from about 0.7 to 1.0 can
be explained by the truncation of the max-operator in Equation ., i.e., the
regime of no-slip is reached. Of course, this behavior may differ for different
scenarios depending on the velocity at impact, angle of the surface, and other
factors. With the alternative boundary condition that depends on the relative
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(a) (b)

(c)

Figure .: View on the backside of the scene in Figure .: (a) Standard
surface reconstruction methods can lead to visible intersections. (b) With
the modified surface reconstruction algorithm, no intersections occur and
there are no restrictions to the viewpoint. (c) The shape of the modified
surface reconstruction matches the shape of the cloth subject. An optional
repositioning within small distances is possible for rendering requirements. In
rendering, the cloth mesh is extruded to account for a realistic cloth thickness.

tangential velocity (Equation .), an exponential decay of the average velocity
for increasing δ can be observed. Therefore, from an artistic point of view,
the model of Equation . is preferable because it leads to more predictable
animation behavior and is easier to be controlled.

As explained in Section .., the slip coefficients µ and δ are allowed to be
set dynamically dependent on the wetness of the cloth at contact. Snapshots
of the resulting animation for varying µ are shown in Figure .. In this
example, the function F is chosen linear, starting from 0.0. At impact, the
particles are slowed down strongly due to the rough structure of dry cloth and
absorption. As the textile is getting wet, the impulses that affect the tangential
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Figure .: Transparent rendered surface of the scene in Figure ..

component of the velocity get smaller and with a fully saturated textile, the
no-slip boundary condition is reached. This effect leads to a distinct contact
behavior different to the static values of µ in the previous examples.

The quality of surface reconstruction and rendering can also be examined
with the first example. Figure . also shows opaque surface renderings of
the first scene using a cell size of the MC grid of 0.004. The frontal view
does not reveal any intersections. However, if the camera position changes as
shown in Figure .(a), intersections between cloth mesh and surface mesh are
observed at the bottom side of the cloth with standard surface reconstruction
methods, despite a certain thickness of the cloth. With the modified surface
reconstruction algorithm (Figure .(b)), there are no intersections visible and
the camera can be moved freely in the scene. As shown in the cross section of
the fourth frame of this scene (Figure .(c)), the shape of the fluid’s surface
at contact matches the shape of the cloth with the proposed method and it is
possible to position the fluid’s surface on or into the object in contact to adjust
for final renderings.

Figure . shows a transparent surface rendering of the same scene. The
modified surface reconstruction algorithm produces visually clean results of
cloth and fluid at contact, and as noted in Section ., there are no rendering
artifacts due to unwanted reflection or refraction events resulting from mesh
intersections.

Absorption and spreading of liquid inside the textile is also shown in Figure ..
Due to the mass gained, the cloth behaves differently than in the first example.
By moving the surface of the fluid at contact inside the cloth, there is only one
solid-fluid interface and as mentioned in Section ., plausible rendering with
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(a) (b) (c)

Figure .: (a) A jet of water hits a V-shaped static surface. (b) With standard
surface reconstruction algorithms, the surface mesh intersects the rigid plane
at contact. (c) With the contact-aware reconstruction algorithm, an intersection-
free state is maintained.

transparent surfaces is possible. The wet part of the cloth is visualized with a
diffusion texture as presented in []. The diffusion cells of Section .. are
written in a D texture that are mapped onto the cloth. For most fabrics, it can
be used to imitate the appearance of the darker color when wet.

In the next example, the surface reconstruction is demonstrated at a sharp
corner. Again, a cell size of 0.004 is used for the MC grid. A jet of water is
placed over a V-shaped rigid plane as shown in Figure .. This synthetic
example is chosen to analyze the behavior of the surface reconstruction al-
gorithm at a sharp bend that is common in many cloth scenarios with folds
and wrinkles. In Figures .(b) and .(b), cross sections of the respective
frame of the animation are shown. If the object in contact is not considered in
the surface reconstruction, the resulting mesh overlaps the interacting object.
With the proposed method, an intersection-free state is maintained during the
animation (Figure .(c)) and the scene can be rendered artifact-free from any
perspective.

Table .: Computation times (in seconds) of the simulations and two-way
coupling for a time span of 0.5 for the scene in Figure . with different cloth
thickness values τ. With a large value of τ, the continuous intersection test is
not needed to prevent leaking.

τ Cloth Fluid Coupling Repulsions Intersections
0.0005 26.83 2.97 29.32 2.85 19.53
0.001 26.34 2.95 25.30 2.70 16.31
0.005 27.73 3.66 7.21 1.83 −
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Table . provides computation times of the simulations and the two-way
coupling for the first scene as shown in Figure .. A small cloth thickness τ
results in higher costs for the continuous intersection test. Using a broad region
around the triangles of the cloth mesh, the continuous intersection handling
is not needed to prevent leaking in this scene, which explains the substantial
drop in computation time for coupling in the last row. Table . also shows the
fractions of the computation times of the coupling for the same scene, broken
down into the repulsion step and the continuous intersection handling. As
expected, the continuous intersection handling accounts for the major part of
the coupling.

 . summary

This chapter presented an approach to model fluids and cloth at contact.
With the proposed method for the two-way coupling, robust and efficient
bidirectional interaction between particle-based fluids and cloth is achieved.
The system combines repulsion with a continuous intersection test to ensure
that particles do not leak through the cloth surface. In experiments, it is
demonstrated that the system can handle cloth-fluid interaction even at large
time steps without using substeps. Additionally, different boundary conditions
for the tangential component of the velocities can be modeled that allow one
to create animations for a wide range of interacting materials. As an extension,
wetting of the textile is considered and the method is adapted to account for
the changing interaction behavior. The approach for the two-way coupling is
designed to be independent from the underlying simulation systems and can
easily be employed in existing simulation pipelines.

Furthermore, a novel method for the surface reconstruction of particle-based
fluids at complex shapes is presented. This method can be used for common
MC-based surface reconstruction algorithms to generate intersection-free sur-
face meshes at contact. Visible artifacts are eliminated and the flexibility of
rendering transparent surfaces in contact with thin deformable objects is con-
siderably increased. The shape of the resulting surface mesh at contact with
complex shaped cloth meshes depends on the resolutions of the cloth mesh
and the MC grid. The common MC grid resolutions that produce a smooth
surface mesh are usually small enough to adjust to a buckled mesh. If, however,
the surface mesh should align with a very high resolution cloth mesh with
fine wrinkles, a very small cell size of the MC grid is needed. In this case, an
adaptive MC grid could be used to avoid long computation times.



chapter 5

Evaluation of SPH Interfaces

 . introduction

Animated surfaces also play an important role in the field of visualization
of SPH-based simulation of physical or chemical processes. This chapter
presents an evaluation of surface representations for SPH-based simulation
of phase inversion in fluid mixtures. The goal of the visualization of the
surface is to offer the domain experts who provide the simulation data the
possibility to visually analyze the underlying process. For a qualitative and
quantitative analysis, the total area of the extracted surfaces is calculated and
its development over time is plotted in a line chart. This line chart can be used
to verify the simulation method by comparing the temporal development of the
area to an analytic power law that describes the decrease of the surface area for
the specific phase separation. In the evaluation, two surface extraction methods
for SPH simulations are compared: A density field-based approach that uses
the same kernel function as the underlying simulation and a distance field
approach often used in computer graphics applications. The comparison of
the respective surface areas allows to assess the applicability of the two surface
extraction methods for the given simulation. The evaluation and comparison
has been conducted together with collaborators working in the field of material
science considering their requirements.


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 . related work

Surface reconstruction techniques for particle-based (SPH) simulations in
computer graphics have already been discussed in Section .. These methods
focus on the generation of smooth, visually pleasing surfaces particularly for
the animation of liquids. As a representative, a distance field approach [],
[] is considered in this evaluation.

In the context of simulation visualization for analysis, Schindler et al. []
present marching correctors, a variant of the MC algorithm. Kolb and Cuntz []
generate a uniform density volume of the particles on the GPU and used point
sprites for rendering. Goswami et al. [] present a CUDA-based SPH simu-
lation and visualize the simulation results by creating a distance field from
the particles and render it using GPU-based raycasting. Fraedrich et al. []
present a method to visualize very large SPH simulations using an adaptive
view-dependent discretization of the simulation domain to sample the particle
densities. In the work of Molchanov et al. [], a feature-rich interactive frame-
work for the analysis of SPH simulations in the application area of astrophysics
is described. Besides rendering point-clouds of the simulated data, they use a
splatting technique to represent isosurfaces. In addition to providing a visual-
ization of the SPH simulation only, this chapter also addresses the verification
of a simulation based on the surface area.

 . background

Polymer membranes are widely used in chemical engineering applications
such as in battery systems. They are semi-permeable, thus allowing only one
specific substance to pass through. To develop and improve membranes, it is
recommended to predict the morphology in dependence of the manufacturing
conditions. In the preparation process, the so-called phase inversion plays
an important role. If a homogeneous fluid mixture separates into two stable
phases, it is called phase inversion. One way to describe phase inversion is to
use the Cahn-Hilliard equation [], which is a fourth-order PDE for diffusive
mass transport. For discretization, the collaboration partners provide an SPH-
based simulation using the method of their previous work []. For simplicity,
a binary, isothermal, incompressible, and equimolar fluid mixture is considered
to validate the dynamics of D simulations. Usually, SPH particles move on a
trajectory but in this special case, the momentum per particle is constant and
the particles are fixed at their initial positions. Therefore, only the transport
equation for the concentration of one component is solved. Nevertheless, the
position of the interface between two phases changes in time.
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(a) (b)

(c) (d)

Figure .: Particle positions and surface representations of the given simula-
tion: (a) Particle positions of the SPH simulation. Two phases are discernible
(red and blue). (b) and (c) The isosurface that separates the two phases. The
surface extraction is based on the kernel function that was used in the un-
derlying simulation. (d) The surface that was extracted using the method of
Onderik et al. []. The magnifications in the two images (c) and (d) show a
case where the two methods create different surfaces.
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 . algorithms and implementation

For the SPH simulation, a Wendland kernel function [] is used. For visu-
alization, particles are weighted with this kernel function and a density field
that represents the simulation data is calculated. The resulting density ρ at
position x is

ρ(x) =
N

∑
j=1

mj
21

2πh3

(
1− r

h

)4(
4

r
h
+ 1
)

, (.)

where r =
∥∥x− xj

∥∥, xj is the position of particle j, and the smoothing length
h = 1.55L0 with the particle distance L0. If r ≥ h, particle j does not contribute
to the density ρ at position x. That is, only neighboring particles within
the cutoff radius of 2h = 3.1L0 contribute to ρ(x), as in the simulation. The
computation of the density volume is implemented using CUDA. Each position
x in the density field (that is, each voxel) has a limited neighborhood that is
defined by h. For m voxels, the density ρ can be computed in O(m). Since ρ of
each voxel can be computed independently of all other voxels, the computation
can be executed in parallel. All particles are sorted into a uniform acceleration
grid with a grid spacing equal to h. For each voxel, only 3× 3× 3 grid cells
have to be evaluated to find all neighboring particles. The implementation
is based on the work of Krone et al. [], presenting an optimized CUDA
implementation that uses a Gaussian density kernel.

As an alternative definition of the SPH surface, a method based on the approach
by Zhu and Bridson [] is used. The idea is to calculate a scalar value
at a given position x by measuring the distance to a weighted sum of the
neighboring particle centers. As discussed by Solenthaler et al. [] and
Onderik et al. [], it is possible that the weighted centers are located outside
of the desired surface, which can lead to extensive visual artifacts. Therefore,
the modified implicit surface definition of Onderik et al. []

φ(x) = ‖x− C(x)‖ − R f (x) (.)

is used, where R controls the distance of the surface to the boundary particles.
R is multiplied with a decay function f (P) as defined in [] to eliminate
artifacts. The weighted sum of the neighboring particle centers is calculated
using normalized particle averages with

C(x) =
∑N

j=1
1

wj
xjW

(
‖x− xj‖, h

)
∑N

j=1
1

wj
W
(
‖x− xj‖, h

) , (.)

where wj is determined using the SPH interpolation of the positions of the
particles’ neighbors and the polynomial smoothing kernel W(r, h) = (1 −
(r2/h2))3 is used. The isosurface is also extracted using MC.
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Figure .: Screenshot showing the extracted surface using the density field
calculated by Equation . of an SPH-based simulation of 106 particles. The
line chart to the right shows the area of the extracted surface over time.

The total surface area of the extracted isosurfaces is computed by summing
up all individual triangle areas. For each simulation frame, the surface area is
plotted over time in a D line chart (see Figure .).

 . results and discussion

Particle and surface visualizations of the two methods given in Section . of
a multiphase simulation are shown in Figure .. On a test system with an
Intel Core i (3.6 GHz), 32 GB RAM, and an Nvidia GTX Titan (GB VRAM),
the surface visualization could be computed at interactive rates for most data
sets. With the largest data set of 106 particles (Figure .) and a 1993 grid,
performance dropped to 5 fps with the density field using the Wendland
kernel (Equation .). The distance field approach (Equation .) has a lower
performance because of the additional iteration over all particles.

The surface area of both of the surface generation methods is compared to the
analytical function that describes the power law. The growth rate of the area
corresponds satisfactorily to the power law. The relative discretization error
stemming from the lower grid resolution is negligible (∼ 10−3). Figure .
shows a line chart with the surface areas of the four simulations plotted over
time and the power law for reference. As observable in Figure ., the distance-
based method (dashed red curve) closely matches the corresponding area of
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Figure .: Surface area over time for different particle numbers using the vol-
ume computation based on the Wendland kernel (both axes have logarithmic
scale). The decrease of the area adheres to the power law for all simulations
(dashed black line). Note that the larger data sets are simulated over shorter
periods. For 125k particles, the chart also shows the curve for the alternative
surface based on the distance field (dashed red curve).

the Wendland kernel (black curve). Consequently, it also satisfies the power
law. That is, both methods can be used for a qualitative analysis of the SPH
simulation data of the collaborators. However, the results for the two surfaces
differ by about 1% of the total surface area in some cases. Thus, the deviation
of the distance-based method could be too high for a quantitative analysis in
some cases. Further, the distance-based method constructs surfaces that differ
from the density-based method, and therefore, do not exactly represent the
simulation in some cases. Figure . shows an example where this is the case,
even though the overall surface area differs by less than 1%.
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 . summary

This chapter presented the evaluation of visualizations for surfaces of SPH-
based simulations of phase separation in fluid mixtures. An important aspect
of the visualization is the faithful representation of the underlying simulation.
Based on the surface area, the correctness of the phase separation simulation is
verified since the area has to adhere to a given power law.

For visualization, a density-based surface extraction method is compared to
a method that was designed to extract a smooth, visually pleasing surface of
a SPH-based fluid simulations []. With both methods, the surface area has
a low error rate and adheres to the aforementioned power law, and therefore,
both are suitable for analysis. For quantitative analysis, though, the density-
based surface is more accurate.





chapter 6

Evaluation of Surface

Tension Models for

SPH-Based Fluid Animations

 . introduction

Surface tension is a distinctive characteristic of liquids and its effects have been
identified as one of the key components to recreate physically plausible and
visually appealing fluid phenomena. For SPH-based fluid simulation systems,
there exist several models to incorporate surface tension. They address the rep-
resentation of the diverse effects of surface tension and the specific challenges
that occur at free surfaces of particle-based fluids. The underlying approaches
of these methods to model surface tension vary and, therefore, show different
properties in their behavior and usage. Although some comparisons with other
models are conducted in the original papers of the surface tension models,
there are no explicit common standards for comparison that allow thorough
comparative analysis. This chapter presents a systematic evaluation of surface
tension models in combination with different SPH methods using a benchmark
test that is intended as a tool for the comparison of such models.

In case of liquids, the shape of the fluid, especially at the interface of the
liquid and the gas phase (e.g. water and air), is highly influenced by surface
tension. Depending on the magnitude of the surface tension, various effects
regarding the appearance and behavior of a liquid can be observed. In typical
computer graphics applications, fluids are usually modeled as single-phase


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free surface flow and there exist numerous challenges that arise with the mod-
eling of surface tension with SPH, such as the underestimation of density at
interfaces, large surface tension coefficients, and the handling of thin features.
Existing techniques present a number of different approaches to overcome
these difficulties: For instance, surface tension can be modeled through forces
acting on the surface particles in order to minimize the curvature and hence,
its energy [], []. A second approach is to use pairwise forces between
neighboring particles [], [] or a combination of both techniques []. In
this chapter, surface tension models are evaluated with particular attention to
the combination with different SPH solvers.

The variety of surface tension models in combination with the different SPH
approaches makes it difficult to compare the models in detail and to determine
a model’s suitability for a certain task. Therefore, a benchmark test for the
evaluation and comparability of surface tension models is established. Three
SPH methods and three surface tension models are chosen as representatives
for a class of techniques, respectively. For the evaluation, the benchmark tests
are applied to existing models for the evaluation of such models. The goal
of this chapter is to identify strengths and weaknesses of these models and
understand their suitability for possible applications. Also, key properties of
surface tension models should be highlighted to create desired animations and
to facilitate the development of novel methods.

The overarching contribution of this chapter is the systematic evaluation of
surface tension models using a benchmark test in order to determine the
properties of a model not only visually, but also in a quantitative manner.
The evaluation process is applied to three existing surface tension models
in combination with three up to date simulation systems. For comparability
and reproducibility, uniform settings are used for each of the scenarios and
complete information, such as kernels and parameters, is provided. Results
from the application of the benchmark to the surface tension models are
presented and the observed properties of the simulation models are discussed.

The source code of the implementation used for the evaluations is made avail-
able to the public along with example initialization files for the benchmark
scenes at http://go.visus.uni-stuttgart.de/sphevaluation.

 . related work

When new techniques are presented, it is common practice to apply them to
a certain set of scenarios, e.g., a breaking dam or a fluid pillar for general
fluid simulation techniques, different fixed or moving obstacles for boundary
handling methods, and interaction with other dynamic objects for two-way
coupling models. In case of surface tension, the formation of a drop in absence

http://go.visus.uni-stuttgart.de/sphevaluation
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of gravity and the dynamics of a liquid crown have been commonly used.
Although these tests can be considered as standard procedures, they are rarely
performed with uniform setups, e.g., regarding simulation methods, particle
counts, and parameter values. Different configurations and sometimes missing
specifications make it difficult to do a comparative evaluation and regard these
scenarios universal benchmark tests.

A typical benchmark in the field of level-set methods is the rotating Zalesak
disk or sphere, used to determine the quality of methods for animated surfaces
(e.g. [], []). Using this benchmark, evaluation and especially quantification
is possible, e.g. by measuring volume loss. However, there are no common
benchmarks in fluid animation for computer graphics.

Surface reconstruction techniques for particle-based fluid simulation are listed
in Section . and are usually independent from surface tension. However, it is
also possible to calculate surface tension based on the curvature of the surface
mesh as shown by Yu et al. []. In this chapter, however, only surface tension
approaches based on the simulation particles are considered.

 . simulation models

The evaluation is performed on combinations of different classes of SPH solvers
with surface tension models. In the following, a brief overview of the used
models is given.

.. SPH-based Fluid Simulation

The basic concept of SPH-based fluid simulation is derived in Section .
and a standard fluid simulator using SESPH is described in Section ... As
discussed in the report by Ihmsen et al. [], a variety of SPH-based fluid
methods exist and the common models in computer graphics mainly differ
in the calculation of pressure forces. The methods can be categorized by
the pressure model, if it is based on an EOS or based on a pressure Poisson
equation (PPE). This chapter incorporates three models, each representing
one class: For a non-iterative EOS solver, weakly compressible SPH using a
state equation (SESPH) [] is implemented, for iterative EOS solvers with
splitting, PCISPH [] is used, and IISPH [] is implemented for the pressure
computation based on a PPE.

In addition to incompressibility, Bender and Koschier [] present a method
for iterative solvers that also enforces a divergence-free velocity field. Their
divergence-free SPH (DFSPH) further increases stability and performance of
incompressible fluid simulations, however, is not considered in this study.
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The basic principles of SESPH are shown in Section .. and an illustration of
its use in an SPH-based fluid simulation loop is given in Section ... SESPH
is considered here due to its straightforward implementation, its reasonable
results, and because it is used in many existing simulation systems.

PCISPH is based on the concept of splitting of force calculations in the particle
loops. With splitting, particle velocities and positions are first evaluated with-
out pressure forces, using an explicit Euler step based on the sum of viscosity
forces Fv

i and external forces Fb
i . Then, pressure forces are calculated itera-

tively. First, density is calculated for each particle based on these intermediate
velocities v∗ using

ρ∗i =
N

∑
j=1

mjW(||xi − xj||, h) + ∆t
N

∑
j=1

mj(v∗i − v∗j )∇W(||xi − xj||, h). (.)

Pressure is then evaluated using ρ∗i in the EOS (Equation .) with a relatively
small stiffness constant and pressure forces can be computed (Equation .).
With the pressure forces, new intermediate velocities and positions of the
particles are calculated. These steps are repeated iteratively until the density
error ρerr, defined as the maximum deviation of the calculated density to
the rest density, is below a global threshold. Therefore, incompressibility is
enforced using multiple iterations and pressure forces are, compared to SESPH
with a large pressure stiffness constant, small. The additional computational
cost of the iterations is compensated by the possibility of using larger time
steps, and increased computational efficiency compared to SESPH. Details of
the algorithm can be found in the work by Solenthaler and Pajarola []. With
PCISPH, an easy-to-implement incompressible fluid simulation is available
that has been widely used in SPH-related literature.

In contrast to evaluating pressure using an EOS, IISPH uses the solution of a
PPE. Similar to PCISPH, it is also based on the splitting concept. The source
term for a discretized PPE is expressed by the compression ρ0 − ρ∗ as

∇2pi =
ρ0 − ρ∗i

∆t2 . (.)

After having calculated the intermediate velocities v∗i and densities ρ∗i , Equa-
tion . can be written in terms of SPH and unknown pressure forces Fp

i (t):

∆t2
N

∑
j=1

mj

(
Fp

i (t)
mi
−

Fp
j (t)

mj

)
∇W(||xi(t)− xj(t)||, h) = ρ0 − ρ∗i , (.)

which leads to a linear system of equations. A detailed derivation can be
found in the original work by Ihmsen et al. []. In their work, the system is
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solved using a relaxed Jacobi scheme. With the calculated pressure forces, the
particle velocities and positions can be updated using a semi-implicit Euler
step (Equations . and .). Ihmsen et al. [] show that this incompressible
SPH approach is especially suitable and efficient with large time steps and,
therefore, useful for high particle counts.

.. Including Surface Tension

Surface tension in single-phase particle-based fluids can be seen from different
viewpoints, either as (molecular) interaction between particles or in terms of
energy that causes particles located at the interface to a (virtual) second phase
to form a curvature-minimizing surface. Current surface tension approaches
differ by their viewpoint and are modeled according to one viewpoint, or as a
combination of these. However, they have in common that they result in forces
that are integrated in Equation . either as additional inter-particle forces or
body forces.

In the following, four surface tension models that are considered in this study
are briefly summarized.

Inter-Particle Interaction Forces

Becker and Teschner [] propose a microscopic model for surface tension
based on the work of Tartakovsky and Meakin []. In this model, the fluid
particles act as actual particles with the surface tension being modeled as
(molecular) forces between neighboring particles. These types of models are
often referred to as inter-particle interaction forces (IIFs). According to Becker
and Teschner [], surface tension emerges from cohesion forces between
particles and results in velocities

dvi

dt
= − ϕ

mi

N

∑
j=1

mj(xi − xj)Wst(||xi − xj||, h), (.)

that are added to the present velocities of the particles, where ϕ controls the
magnitude of the surface tension force and Wst is the kernel used for the
evaluation of surface tension. For a consistent formulation in this section and
improved comparability, the surface tension model in Equation . can be
rewritten in terms of forces as

Fst
i = −ϕ

N

∑
j=1

mj(xi − xj)Wst(||xi − xj||, h). (.)
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Combined Inter-Particle and Surface Forces

Since IIFs can only reproduce a portion of surface tension effects, Akinci et
al. [] use a combination of inter-particle forces and forces based on sur-
face curvature. First, the inter-particle interaction forces are modeled with a
cohesion force

Fcoh
i = −γmi

N

∑
j=1

mjC(||xi − xj||, h)
xi − xj

||xi − xj||
. (.)

In this force calculation, the usually used SPH kernel is replaced with a func-
tion C that includes a repulsion term for close particles similar to Tartakovski
and Meakin [] to avoid particle clustering. The function C is given by

C(r, h) =
32

πh9


(h− r)3r3 if 2r > h ∧ r ≤ h,
2(h− r)3r3 − h6

64 if r > 0∧ 2r ≤ h,
0 otherwise.

(.)

In addition to the inter-particle forces, a continuum surface force (CSF) is also
employed in this model [], []. With the CSF approach, surface tension is
modeled as a pressure on the interface between the liquid and the gas phase
resulting in a normal force. In contrast to Müller et al. [], the surface cur-
vature is not calculated explicitly and the normal approximation is evaluated
based on the gradient of the density field

ni = h
N

∑
j=1

mj

ρj
∇W(||xi − xj||, h), (.)

scaling with h. Using h, normals can be calculated independent from the simu-
lation scale. The curvature of the surface is given implicitly by the magnitude
of n and the curvature-based force is given by

Fcurv
i = −γmi

N

∑
j=1

(ni − nj). (.)

The combined surface tension force is obtained by adding the cohesion and
the curvature based force as

Fst
i = Kij(Fcoh

i + Fcurv
i ), (.)

where
Kij =

2ρ0

ρi + ρj
(.)

is a symmetrized correction factor to account for particle deficiencies, e.g., in
case of isolated particles or thin features.
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Surface Forces

He et al’s. [] surface tension model is solely based on surface energy mini-
mization and is specifically suitable to handle thin features. Similar to CSF
models [], [], it is based on a color field c that is used to distinguish regions
covered by the fluid from others. Usually, c is set to one at the fluid particles
and zero everywhere else. With most approaches, the color field is smoothed:

cs
i =

N

∑
j=1

mj

ρj
ciW(||xi − xj||, h). (.)

In contrast to the approaches by Müller et al. [] and Akinci et al. [], He et
al. use the normalized term

∇cs
i =

∑N
j=1

mj
ρj

cj∇W(||xi − xj||, h)

∑N
j=1

mj
ρj

W(||xi − xj||, h)
(.)

for the color field gradient to account for particle density underestimation.
Using the surface tension energy density κ

2 |∇cs
i |2, the momentum-conserving

surface tension force can be calculated by averaging the energy densities:

Fst
i =

κ

2

N

∑
j=1

mi

ρi

mj

ρj

(
|∇ci|2 + |∇cj|2

2

)
∇Wst(||xi − xj||, h). (.)

In their work, He et al. [] also introduce additional air pressure forces
without using ghost particles which is not considered in this study.

Modifications to Inter-Particle Interaction Forces

The IIF model of Becker and Teschner [] is an attractive choice because of its
efficiency, simplicity, and easy implementation. With this model however, it is
possible that particles group in clusters because attractive forces persist with
decreasing distance between particles (see Figure .). The cohesion forces
of the model by Akinci et al. [] eliminate this effect because the forces are
modeled as repelling as the distance decreases. If the general model of Becker
and Teschner is still preferred, one approach is to cut the cohesive forces at a
certain distance to alleviate the problem of particle clustering (see Figure .).

Recently, Yang et al. [] presented an efficient approach to model molecu-
lar surface tension forces while preventing particle clustering with pairwise
interactions, which is not considered in this study.
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Figure .: Different models of cohesive forces with smoothing length h =
0.125m. The model by Akinci et al. [] (red) includes repulsive forces. The
model by Becker and Teschner [] (green) can be modified (blue dashed) by
cutting off forces to avoid particle clustering.

 . implementation

As mentioned above, SESPH, PCISPH, and IISPH are used for the simulation of
fluids. If not stated otherwise, the SPH kernel as proposed in the work of Müller
et al. [] is used (Equation .), also for surface tension calculations. In all
simulation systems, negative pressure values are clipped to avoid attracting
pressure forces. Viscosity forces are evaluated with the SPH approximation
given in Equation .. As proposed by Akinci et al. [], viscosity forces are
multiplied with the correction term in Equation . to account for particle
deficiencies.

For SESPH, pressure is calculated using the EOS (Equation .). The pressure
constant k is evaluated according to Monaghan [] using k = |v|/η, allowing
a maximum velocity of |v| = 100m/s and a density fluctuation of η = 0.01.
For both iterative incompressible solvers (PCISPH and IISPH), a maximal
compression of 1% is allowed.

Boundaries, such as container walls or interacting objects, are sampled with
particles and the boundary handling method by Akinci et al. [] is employed.

For the renderings, the level-set technique by Bhattacharya et al. [] is used
to extract the surface for the liquid animations.
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(a) (b) (c) (d)

Figure .: Snapshots of an example sequence of benchmark test  (Sec-
tion ..). Starting from an initial cubic arrangement of particles (a), a
spherical drop (d) is formed. In this sequence, the surface tension model
by Akinci et al. [] with γ = 1.0 is used in combination with IISPH.

 . benchmark test for surface ten-

sion models

The proposed benchmark tests consist of three typical scenarios that cover
settings with high curvature on relatively small surface areas, as well as larger
free surfaces.

.. Test : Drop Formation

27k particles are initially arranged in a cube (30× 30× 30 particles) as shown
in Figure .(a) and there are no other forces than surface tension forces
acting, including gravity. Upon simulation start, the particles should retain
a spherically drop form due to surface tension (Figure .(d)). Generally,
surface tension forces act to minimize the surface area toward the inside of the
sphere. Inside the liquid, pressure forces counteract against these forces until
an equilibrium state is reached. This scenario is especially suited to closely
observe the interplay between the different types of forces, as there are no
external forces present and no interactions with other objects occur that would
require explicit boundary handling.

For this scenario, the particle size is set to 0.025m and the particles are initially
arranged with a distance of 0.05m. The smoothing length h is set to 0.125m,
a low viscosity coefficient of ν = 0.01 is used, and the simulation step size is
∆t = 0.001 s.

For the evaluation of the properties of surface tension models, the process
of drop formation is analyzed. Besides visual inspection of the animation
sequences, average particle velocities, surface tension forces, and pressure
forces are measured each time step. Absolute values and their change over
time of these important quantities are further analyzed.
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Figure .: Initial setup of benchmark test  (Section ..): a spherical drop is
placed over a container of liquid.

.. Test : Liquid Crown

The spherical drop as obtained from the first test with 27k particles is initially
placed over a container of liquid consisting of 634,980 particles. In a prepro-
cessing step, the drop as well as the liquid in the container are simulated until
an equilibrium state was achieved. Under the influence of gravity, the drop
falls into the liquid, and a liquid crown will develop on impact. Surface tension
influences the shape of the crown and the thin features and smaller droplets
that dissolve. The parameters for this scenario are h = 0.1m, ν = 0.01, and
∆t = 0.001 s.

In this case, average particle velocities are measured for the analysis of proper-
ties of the different surface tension models in a highly dynamic scenario.

.. Test : Water Glass

A liquid consisting of 400k particles is poured into a glass sampled with 200k
particles as an example of a highly dynamic scene with a complex interaction
object in a practical application. The particles are initially placed on top of
a dipping channel located above the glass. The choice of the surface tension
model influences characteristics and form of the jet. Also, the fluid’s behavior
upon impact of the liquid on the inside of the glass depends on surface tension
effects. Snapshots of the animations are shown in Figure . and are discussed
in Section ... Here, the parameters are h = 0.1m, ν = 0.01, and ∆t = 0.001 s.
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(a) (b)

Figure .: Comparison of the surface tension model by Becker and
Teschner [] with the modification of this model. With a surface tension coef-
ficient of ϕ = 0.08 in combination with IISPH, the sphere is slightly deformed
using their model (a). With the proposed modifications (b), an improved
spherical shape is achieved.

 . evaluation surface tension mod-

els

The benchmark tests of the previous section are performed with the three
surface tension models specified in Section .. in combination with SESPH,
PCISPH, and IISPH respectively, resulting in up to twelve possible configura-
tions. Configurations and corresponding parameters are given in the following
sections.

In the following images and plots, the surface tension model by Akinci et
al. [] are color-coded with shades of red, the model of Becker and Teschner []
with shades of green, the model of He et al. [] using shades of brown, and the
modifications of the model of Becker and Teschner are represented in shades
of blue.

.. Benchmark Test 

Benchmark test  (Section ..) is applied to all nine configurations of SPH
and surface tension models. Additionally, the simulations are conducted
with five different parameters for the surface tension models (Section ..),
respectively, resulting in 60 simulation runs. Unfortunately, the surface tension
parameters for the different models have each a different physical meaning
and hence, direct comparison is not possible. Therefore, the parameter values
are chosen equally spaced for each model, covering a range from low surface
tension that slightly affects the shape of the fluid surface, to a very high value
that has a major effect while achieving stable simulations. For both the model
of Becker and Teschner [] and the proposed modification, the set of surface
tension coefficients is ϕ = {0.02,0.035,0.05,0.065,0.08}, for the model of Akinci



 chapter  . evaluation of surface tension models

et al. [], the coefficients are γ = {0.2,0.4,0.6,0.8,1.0}, and for He et al. [],
κ = {0.2,0.6,1.0,1.4,1.8}. The respective units for the different coefficients are
omitted under the assumption that length is given in m and time in s.

For a first visual inspection, snapshots of the equilibrium states of all sequences
are shown in Figures ., ., and .. Generally, as surface tension is applied,
the particles move toward a spherical shape for all different models until an
equilibrium state is reached. It has to be noted that the particles do not come to
a rest state in this equilibrium, as surface tension forces work against pressure
forces. Depending on the surface tension model and parameter value, particles
slightly move around, but the overall shape of the fluid is maintained.

Using IISPH (Figure .) and PCISPH (Figure .), a spherical shape is achieved
with all models in most cases. Depending on the surface tension coefficient, the
process is faster with higher values. However, using the model of He et al. []
with a low surface tension parameter, the surface tension forces are not large
enough to form a sphere. As also discussed by Akinci et al. [], with the model
of Becker and Teschner [], particles tend to cluster as attracting forces are
acting as particle move close to each other (see Figure .). In Figure ., the
modification to the model of Becker and Teschner alleviates particle clustering
and improves the quality of the sphere. Moreover, it is possible to use higher
surface tension coefficients compared to the original model while maintaining
an undeformed spherical shape.

Another observation is that the different surface tension models have a different
behavior regarding the convergence to the sphere shape. With the models
of Becker and Teschner [] and Akinci et al. [], the final shape of the
equilibrium state is reached within a short period of time. It is noticeable that
the drop oscillates in the first few frames with the model of Akinci et al., as
opposed to the other models. In contrast, with the model of He et al. [],
the process of drop formation takes considerably longer regarding simulation
time.

The observed visual characteristics in the drop formation process can also
be identified in measurements of particle velocities. In all cases, the average
velocity of the particles is converging to a certain value. Depending on the
surface tension parameter, the equilibrium velocity is higher with a bigger
parameter. For each model, velocities, as well as surface tension forces, scale
almost linearly with the surface tension parameter in this test. However, it has
to be noted that this equilibrium velocity also depends on parameters of the
underlying SPH simulation, e.g., the smoothing length of the SPH kernel. For
each combination of SPH and surface tension model, the aggregated values of
the average velocities are calculated using

vaggr =
P

∑
i=1

(
M

∑
j=0
||vj||/M

)
/P, (.)
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[], γ = 1.0 [], γ = 0.8 [], γ = 0.6 [], γ = 0.4 [], γ = 0.2

[], ϕ = 0.08 [], ϕ = 0.065 [], ϕ = 0.05 [], ϕ = 0.035 [], ϕ = 0.02

[] mod.,ϕ = 0.08 [] mod.,ϕ = 0.065 [] mod.,ϕ = 0.05 [] mod.,ϕ = 0.035 [] mod.,ϕ = 0.02

[], κ = 1.8 [], κ = 1.4 [], κ = 1.0 [], κ = 0.6 [], κ = 0.2

Figure .: Snapshots of the equilibrium state of benchmark  applied to all
surface tension models in combination with IISPH. Except for low surface
tension coefficients with the model of He et al. [], a spherical shape is
achieved with all combinations of models. With the surface tension model of
Becker and Teschner [], deformations of the sphere occur that are resolved
with the modifications.
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[], γ = 1.0 [], γ = 0.8 [], γ = 0.6 [], γ = 0.4 [], γ = 0.2

[], ϕ = 0.08 [], ϕ = 0.065 [], ϕ = 0.05 [], ϕ = 0.035 [], ϕ = 0.02

[] mod., ϕ = 0.08 [] mod.,ϕ = 0.065 [] mod.,ϕ = 0.05 [] mod.,ϕ = 0.035 [] mod., ϕ = 0.02

[], κ = 1.8 [], κ = 1.4 [], κ = 1.0 [], κ = 0.6 [], κ = 0.2

Figure .: Snapshots of the equilibrium state of benchmark  applied to all
surface tension models in combination with PCISPH. Results similar to the
combination with IISPH (Figure .) are achieved.
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[], γ = 1.0 [], γ = 0.8 [], γ = 0.6 [], γ = 0.4 [], γ = 0.2

[], ϕ = 0.08 [], ϕ = 0.065 [], ϕ = 0.05 [], ϕ = 0.035 [], ϕ = 0.02

[] mod.,ϕ = 0.08 [] mod.,ϕ = 0.065 [] mod.,ϕ = 0.05 [] mod.,ϕ = 0.035 [] mod.,ϕ = 0.02

[], κ = 1.8 [], κ = 1.4 [], κ = 1.0 [], κ = 0.6 [], κ = 0.2

Figure .: Snapshots of the equilibrium state of benchmark  applied to all sur-
face tension models in combination with SESPH. With very low values for the
surface tension coefficient, no spherical shape is formed. The results achieved
with the model of He et al. [] show almost no difference in combination with
other SPH methods.
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where M is the number of frames and the P = 5 different surface tension coef-
ficients. In Figure .(a), these aggregated values of the average velocities are
shown. Regarding the different surface tension models, the method of Akinci
et al. [] results in much higher velocities, whereas with the model of He et
al. [], velocities are up to a factor of 100 lower and the process to a sphere
takes much longer. With the modified model of Becker and Teschner [],
lower end velocities are achieved.

Regarding varying SPH models, it can be observed that at least for the combi-
nation with the surface tension models using inter-particle forces, the resulting
velocities are noticeably higher than with other solvers. Contrary to the IIF
models, the method by He et al. [] is hardly influenced by the SPH method.

In this case, four local maximum values can be identified. In comparison, the
models of Becker and Teschner [] and He et al. [] have only one local
maximum that reflects that no oscillations occur.

In Figure .(b), aggregated surface tension forces and pressure forces, cal-
culated similar to Equation ., are shown. As expected, increasing surface
tension parameter values results in higher surface tension forces, and the
pressure forces that act opposite to the surface tension force, also increase.
Comparing the different models, it is noticeable that the surface tension forces
with the model of Akinci et al. are generally larger than with the other models
(see Figure .(b)). Especially with the model of He et al. [], surface tension
forces are considerably smaller, which explains the slower convergence of the
particles velocities.

Another observation using SESPH and PCISPH is that pressure forces are lower
compared to IISPH. Especially with SESPH, this prevents the sphere forming
process with low surface tension coefficient.

.. Benchmark Test 

The benchmark test  (Section ..) is applied to all surface tension models
in combination with IISPH and SESPH. As the main characteristics of the
configurations should be identified, the lowest and the highest values in the
sets of surface tension coefficients of the first test are used. Therefore, 16
different simulation runs are analyzed.

In Figures .(a)-.(d), snapshots of the liquid crown for the simulation
models in combination with IISPH are shown. The shapes of the crown differ
considerably at the same frame using different simulation models. Especially
with a high surface tension coefficient, the approach by Akinci et al. []
produces a smooth, flat crown shape where thin features are preserved. With
the approach based on inter-particle interaction forces, the crown dissolves in
many droplets and there are only minor differences visible between large and
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Figure .: (a) Aggregated average velocities with standard deviations for
the simulations of benchmark test  with all configurations calculated using
Equation .. For each surface tension model, aggregated velocities are shown
in combination with each SPH model, which approximately correspond to the
equilibrium velocities. (b) Aggregated forces in N with standard deviations
for the simulations of benchmark test  with all configurations. For each
combination of SPH method, aggregated surface tension forces Fst and pressure
forces Fp are depicted in the same color, side by side.
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small surface tension coefficients. Shown in Figure .(d), the model by He et
al. [] also leads to a smooth crown shape preserving thin features. As with
all surface tension models, the height and slope of the crown increase with a
lower surface tension coefficient. Using SESPH (Figures .(e)-.(h)), similar
effects can be observed. However, the shape of the crown is less extensive in all
cases and fewer isolated particles exist at this frame. For the method of Becker
and Teschner [], differences between the surface tension coefficient are more
obvious in the resulting animation.

Although there are considerable differences visually in the animations, the
differences in average particle velocities between the small and the large surface
tension coefficient are only marginal with all combinations and only differ
slightly between the individual configurations. Generally, surface tension
models smooth the velocities and high frequency oscillations disappear with
an increased surface tension coefficient.

.. Benchmark Test 

As surface tension effects become less prominent with larger free surface areas,
only the largest coefficients of the surface tension models in combination
with IISPH is evaluated to illustrate the impact in case of benchmark test 
(Section ..).

Again, snapshots of simulations using different surface tension models are
shown for comparison in Figure .. As the liquid is poured into the glass, the
shape of the liquid using the model by Akinci et al. [] differs substantially
from the shapes resulting from the other models: a smooth continuous jet is
formed, whereas with the other methods, many small droplets detach from the
liquid jet. The animations created with the surface tension models of Becker
and Teschner [] and He et al. [] show only minor differences. As in test ,
there are almost no noticeable differences in average particle velocities in this
scenario.

.. Runtime Analysis

For runtime analysis, one second simulation time of the sequence of benchmark
test  (Section ..) was simulated with the different classes of surface tension
models combined with the IISPH model. All simulations were performed on
a standard workstation with an Intel Core i- processor at 3.4 GHz and
32 GB RAM.

In Table ., timings are given for the computation of surface tension forces,
pressure forces, and overall forces computation. The calculation of surface
tension forces is primarily coupled to the number of iterations over all particles
that have to be performed. As only one iteration is needed for the surface
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(a) (b) (c)

Figure .: Liquid pouring into a glass using IISPH in combination with
different surface tension models. (a) With the model of Akinci et al. []
(γ = 1.0), a smooth continuous jet of liquid is preserved, whereas (b) with the
models of Becker and Teschner [] (ϕ = 0.08) and (c) He et al. [] (κ = 1.0)
many droplets emerge.

tension model of Becker and Teschner [], the fastest computation times for
the evaluation of surface tension forces are achieved for these models. The
proposed modification uses the same approach and no fundamental changes
are necessary in the implementation, and therefore, similar runtimes are
achieved. For the approach of Akinci et al. [], two iterations over all particles
are necessary, which leads to higher computation times compared to Becker
and Teschner. In this implementation, three iterations over all particles are
necessary using the model of He et al. [], as a separate iteration for the
calculation of the color field (Equation .) is used, resulting in the highest
computation times.

Besides differences between the individual surface tension models, there is
no noticeable impact of the value of the surface tension coefficent on the
performance of a model. Also, for all simulation models, only low deviations
in the calculation of the pressure force calculation are observed.
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Table .: Timings in s for a one second simulation time of the benchmark test 
(drop formation) using the different surface tension (ST) models combined
with IISPH. Runtimes are given for the calculation of surface tension forces
Fst, pressure forces Fp, and overall force computation Ft.

ST model ST coefficient Fst Fp Ft

Akinci et al. [] γ = 0.2 26.89 97.48 310.00
Akinci et al. [] γ = 1.0 26.49 106.30 313.00
Becker and Teschner [] ϕ = 0.02 16.80 98.32 307.10
Becker and Teschner [] ϕ = 0.08 16.23 93.76 298.23
He et al. [] κ = 0.2 54.79 88.19 329.73
He et al. [] κ = 1.8 52.82 95.48 339.83

 . discussion

Performing the proposed tests on different surface tension models across
different SPH implementations reveals that the surface tension models have
considerably varying characteristics. These differences not only affect the
visual results, but also the physical quantities of the simulations. In addition,
the underlying SPH implementation in combination with the surface tension
model affects the overall behavior of the simulation and leads to a wide range
of factors steering the outcome of the animation. The manifold influences
have to be considered for producing artistically controlled simulations bearing
a desired look and have a major effect on the process of developing surface
tension models.

The results of Section .. reveal that the convergence behavior in the process
of the drop formation varies greatly for the tested surface tension models.
Despite the fact that all of the models generate a spherical shape of the drop
with an appropriate surface tension coefficient, the speed and temporal behav-
ior are different. On the one hand, the absolute value of the surface tension
force affects the threshold when the final shape is reached. With large surface
tension forces exhibited by the models of Becker and Teschner [] and Akinci
et al. [], it occurs much earlier than with the noticeably smaller surface
tension forces of the model by He et al. []. On the other hand, smaller forces
lead to a much steadier equilibrium state. These smaller forces, however, do
not offer the possibility of an oscillating drop as produced by the model of
Akinci et al. with a large surface tension coefficient, which rather coincides
with the observed physical behavior of a real water drop in absence of gravity.

Especially with the surface tension models by Akinci et al. [] and Becker and
Teschner [], a dissipative effect when using SESPH is perceivable. The lower
pressure forces that counteract surface tension forces lead to lower velocities in
comparison with IISPH and PCISPH, as it can be observed in benchmark test .
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This effect is expected to be more distinct when using a lower EOS constant.

There is a large space of possible animations that not only depends on a
parameter, but on the interplay of simulation and surface tension models. The
individual approaches to surface tension (Section ..) reveal considerable
differences. Hence, from a production point of view, the choice of a surface
tension model and the corresponding coefficient strongly depends on the
objective:

n Should animations exhibit a behavior that recreates effects observable in
reality, such as the oscillation of a drop, the model of Akinci et al. []
is especially suitable.

n Should thin features be preserved in combination with smooth surfaces,
the model of He et al. [] produces pleasing results as well.

n For a compromise between computational efficiency and plausible
surface tension effects at a small scale, the method of Becker and
Teschner [], especially with the proposed modification, is a good
candidate.

The proposed testing environment not only helps regarding the comparability
of surface tension models, but represents a useful set of tests that can be used
in the development of new surface tension models. Using the benchmark, new
models can be directly compared to existing approaches and several properties
appear immediately.

 . summary

This chapter presented a systematic evaluation of surface tension models for
SPH-based fluid animations. To this end, a benchmark test consisting of three
scenarios and selected measurements has been proposed. The uniform setup
of the tests not only allow a consistent and reproducible comparison of surface
tension models, but it is also suitable to identify the specific characteristics of
these models, in particular in combination with varying SPH approaches. Be-
sides a visual comparison on a standardized basis, the proposed measurements
allow for quantitative analysis for the examination of configurations from an
animation point of view.

Using uniform specifications, some of the specific properties of surface tension
models could be identified in a comparative manner. It is also possible to
apply the benchmarks to newly developed algorithms to be able to see the
performance compared to existing methods.

By providing source code to the benchmarks, researchers will be able to com-
pare their algorithms to the findings in this chapter.



chapter 7

Conclusion

This thesis presented methods for shape description of cloth animations, inter-
action of fluids with deformable surfaces, and evaluations of surface represen-
tations and surface effects in the field of physically-based simulation.

In Chapter , a motion-shape signature for cloth animations was presented.
The proposed signature is represented by a feature vector that includes the
geometry of the underlying mesh as well as measured physical quantities from
the simulation. The attributes in the feature vector are stored for sequences
of simulation states, and therefore, encode the temporal behavior of cloth
animations. By incorporating strain-based and bending-based attributes, the
two main deformation modes of cloth are represented in the signature. For
each time step in a simulation, spatial aggregation scaled with respect to the
deformation element of the individual attributes is performed, so that the
metrics are independent from mesh triangulation and resolution. It was shown
how to calculate similarities of cloth simulations and the setup was applied to
the retrieval of animations from simulation collections by example.

One of the main benefits of the motion-shape signature is that measuring simi-
larity of cloth simulations can easily be performed by calculating the distance
between feature vectors. The approach is tailored to the spatiotemporal char-
acteristics of cloth animations and captures the complex shapes of deforming
textiles. If a specific goal for an animation is given, the presented approach
enables matching of the example with a collection of simulations that, e.g.,
have been generated by a batch process sampling the parameter space. The
task of matching can therefore be performed fully automatically and can assist
or even replace difficult and time-consuming visual assessment. Especially
with large amounts of simulations, matching can be facilitated and accelerated.


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For static surfaces, the proposed signature has been compared to classic shape
descriptors based on distributions of geometric properties from previous work
in the field of object analysis and retrieval []. While similarity scores showed
similar results, the presented metrics can be considered as more intuitive as
they directly represent geometric and physical properties of cloth. The two
modes of planar and bending deformation are encoded separately and the
user is allowed to set the weights depending on the application. An additional
advantage of the presented approach is that, especially for the use in time-
dependent simulation data, the attributes can directly be stored in the feature
vector as they have already been computed in the simulation. Other shape
descriptors have to be calculated for every simulation run, which requires large
computational effort.

Chapter  presented boundary handling for interaction between SPH-based
fluids and mesh-based cloth. The bidirectional interaction between a thin
deformable object with fluid particles is modeled with repulsions. To ensure
that particles do not penetrate the cloth surface, the approach was extended
with a geometric intersection test of trajectories. For tangential boundary
conditions, two methods were presented that allow for either modeling of slip
or no-slip boundary condition. Both models also support blending between
the two opposite boundary conditions and hence allows the user to control the
flow behavior at contact. Additionally, it was shown how typical MC-based
fluid surface reconstruction can be modified to extract an intersection-free
surface at the contact area that adapts to the highly deformable cloth mesh.

The proposed approach for the two-way coupling using impulses and the con-
tinuous intersection test allows robust interaction of fluids and cloth without
altering the respective simulation systems. In contrast to other approaches
that either simulate deformable objects with particle models [], [], [] or
use boundary particles on the deformable object [], [], [], the presented
method models interaction directly between fluid particles and the simulation
mesh of the textile. Hence, particle sampling of the cloth can be omitted,
which is particularly beneficial at large planar deformations of cloth when
resampling would be necessary. Using the cloth mesh directly also ensures
that all details of the thin surface are included in the interaction and temporal
coherence of the boundary handling is given.

Further, the techniques of this chapter allow user control at several points of
the boundary handling. At cloth–fluid interaction, the surface of the cloth mesh
can be modeled by the user with arbitrary thickness from a very thin surface
to thick fabrics without changing the simulation of the material and is not
bound to the size of fluid particles. For the tangential boundary conditions, it
is possible to model the flow behavior beyond slip and no-slip. A user-defined
control parameter allows one to influence the particle velocities at contact to
achieve the desired result. Further, the modified surface reconstruction adapts
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the fluid surface to a deformable surface in contact. This enables the user to
control the distance between the two objects, which facilitates the process of
rendering of close and intersecting surfaces.

In Chapter , an evaluation of surface extraction methods was presented in
the context of scientific visualization of SPH simulations. For a multiphase
simulation of a phase separation process, the interface is reconstructed and
the surface area is compared to a power law. It was shown that a distance field
approach, a standard technique in computer graphics, performs similar to a
dedicated method from the area of scientific visualization in this quantitative
test. An important observation was that despite the similar result in surface
area, the shapes of the surfaces generated with the respective methods differ.
From a computer graphics perspective, the accuracy relating to the surface
area is an important basis, and analysis regarding visual quality of differing
surface shapes is an interesting topic for further investigation.

Chapter  presented a quantitative and qualitative evaluation of surface ten-
sion models for SPH-based fluid simulation methods. For this purpose, three
benchmark tests to investigate surface tension effects on different scales re-
garding surface area were presented. Based on these benchmarks, systematic
tests using combinations of three different SPH simulation models with three
surface tension models were performed to identify the individual properties
of the surface tension models. It was shown that including a benchmark in the
development process can provide valuable insights into the properties of the
models and their interplay with existing methods.

With the proposed benchmark tests and evaluation procedure, it is possible to
do a thorough evaluation of a surface tension models and analyze, how they
perform in combination with different SPH models. This is especially useful in
the development of new techniques by identifying properties and comparing
to existing methods. By making the benchmarks and source code publicly
available, other researchers are invited to reproduce the results of this chapter
and compare their models and implementations.

In summary, the contributions of this thesis regarding spatiotemporal shape
description of animated surfaces, versatile and user-controllable coupling of
cloth and fluid, and evaluating surface tension and surfaces of SPH-based
fluids address some of the challenges in physics-based animation. The motion-
shape signature for cloth presented in Chapter  facilitates and automates the
task of matching animations and is a promising technique in the context of cre-
ating goal-oriented animations. Versatile and robust coupling of particle-based
fluids with cloth simulations is possible with the novel approach presented in
Chapter , which combines physically-based methods at boundaries with the
possibility for the user to influence the contact behavior. Extended with the
creation of contact-aware surfaces, controllable boundary handling is facili-
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tated. Analysis and evaluation of surface representations and surface effects
can lead to an improved understanding of the properties of the underlying
models and provide valuable insights that support the development of new
techniques. Especially for surfaces, this is an important aspect as they are
often represented directly, and therefore, play a major role in the visual quality
perceived by the viewer.

The presented ideas in this thesis open several directions for future research.
For the motion-shape descriptor, various improvements and extensions are
possible as discussed in Section .. In particular, other attributes in the fea-
ture vector that address accuracy of the matching quality and generalization
pose an interesting challenge. To this end, methods that allow validation
of the similarity calculations are of particular significance. User-guided cre-
ation of simulations by using the motion-shape signature as a measure in an
optimization-driven system or using art-directable simulation methods would
also be an interesting research direction.

With the presented approach for two-way coupling between cloth and fluids,
it is possible to model very small distances between the cloth surface and the
particles, and therefore, particles separated by the thin surface can possibly
interact with each other in the SPH computation. This is an undesired effect
and should be addressed in future work. Further, exploring methods to control
the reconstructed fluid surface at contact could be interesting.

For fluid surfaces, extending the evaluation of the representation and un-
derlying models to perceived quality by the consumer is an important topic
for future research. For example, the recent perceptual evaluation of liquid
simulations by Um et al. [] already showed some interesting results for
perceived accuracy. Further investigations regarding the crucial features for
perceived quality is an interesting research direction itself and could provide a
basis for novel simulation models.

In summary, there are further challenging research directions for the creation
of animated surfaces with physically-based simulation methods. Goal-oriented
control of surface features by the underlying simulation models still is an
interesting topic. Also the opposite direction, analyzing and measuring surface
properties could influence simulation methods to facilitate the creation of
animations.
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