14,606 research outputs found

    CASP-DM: Context Aware Standard Process for Data Mining

    Get PDF
    We propose an extension of the Cross Industry Standard Process for Data Mining (CRISPDM) which addresses specific challenges of machine learning and data mining for context and model reuse handling. This new general context-aware process model is mapped with CRISP-DM reference model proposing some new or enhanced outputs

    Reframing in context: A systematic approach for model reuse in machine learning

    Get PDF
    We describe a systematic approach called reframing, defined as the process of preparing a machine learning model (e.g., a classifier) to perform well over a range of operating contexts. One way to achieve this is by constructing a versatile model, which is not fitted to a particular context, and thus enables model reuse. We formally characterise reframing in terms of a taxonomy of context changes that may be encountered and distinguish it from model retraining and revision. We then identify three main kinds of reframing: input reframing, output reframing and structural reframing. We proceed by reviewing areas and problems where some notion of reframing has already been developed and shown useful, if under different names: re-optimising, adapting, tuning, thresholding, etc. This exploration of the landscape of reframing allows us to identify opportunities where reframing might be possible and useful. Finally, we describe related approaches in terms of the problems they address or the kind of solutions they obtain. The paper closes with a re-interpretation of the model development and deployment process with the use of reframing.We thank the anonymous reviewers for their comments, which have helped to improve this paper significantly. This work was supported by the REFRAME project, granted by the European Coordinated Research on Long-term Challenges in Information and Communication Sciences Technologies ERA-Net (CHIST-ERA), funded by their respective national funding agencies in the UK (EPSRC, EP/K018728), France and Spain (MINECO, PCIN-2013-037). It has also been partially supported by the EU (FEDER) and Spanish MINECO grant TIN2015-69175-C4-1-R and by Generalitat Valenciana PROMETEOII/2015/013.Hernández Orallo, J.; Martínez Usó, A.; Prudencio, RBC.; Kull, M.; Flach, P.; Ahmed, CF.; Lachiche, N. (2016). Reframing in context: A systematic approach for model reuse in machine learning. AI Communications. 29(5):551-566. https://doi.org/10.3233/AIC-160705S55156629

    Multi-Sensor Event Detection using Shape Histograms

    Full text link
    Vehicular sensor data consists of multiple time-series arising from a number of sensors. Using such multi-sensor data we would like to detect occurrences of specific events that vehicles encounter, e.g., corresponding to particular maneuvers that a vehicle makes or conditions that it encounters. Events are characterized by similar waveform patterns re-appearing within one or more sensors. Further such patterns can be of variable duration. In this work, we propose a method for detecting such events in time-series data using a novel feature descriptor motivated by similar ideas in image processing. We define the shape histogram: a constant dimension descriptor that nevertheless captures patterns of variable duration. We demonstrate the efficacy of using shape histograms as features to detect events in an SVM-based, multi-sensor, supervised learning scenario, i.e., multiple time-series are used to detect an event. We present results on real-life vehicular sensor data and show that our technique performs better than available pattern detection implementations on our data, and that it can also be used to combine features from multiple sensors resulting in better accuracy than using any single sensor. Since previous work on pattern detection in time-series has been in the single series context, we also present results using our technique on multiple standard time-series datasets and show that it is the most versatile in terms of how it ranks compared to other published results

    The nature and evaluation of commercial expert system building tools, revision 1

    Get PDF
    This memorandum reviews the factors that constitute an Expert System Building Tool (ESBT) and evaluates current tools in terms of these factors. Evaluation of these tools is based on their structure and their alternative forms of knowledge representation, inference mechanisms and developer end-user interfaces. Next, functional capabilities, such as diagnosis and design, are related to alternative forms of mechanization. The characteristics and capabilities of existing commercial tools are then reviewed in terms of these criteria
    • …
    corecore