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José Hernández-Orallo
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Centro de Informática, Universidade Federal de Pernambuco, Recife (PE), Brazil, rbcp@cin.ufpe.br

Meelis Kull
Department of Computer Science, University of Bristol, UK, meelis.kull@bristol.ac.uk

Peter Flach
Department of Computer Science, University of Bristol, UK, peter.flach@bristol.ac.uk

Chowdhury Farhan Ahmed
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Abstract:
We describe a systematic approach called reframing, defined as the process of preparing a machine learning model (e.g., a
classifier) to perform well over a range of operating contexts. One way to achieve this is by constructing a versatile model, which
is not fitted to a particular context, and thus enables model reuse. We formally characterise reframing in terms of a taxonomy of
context changes that may be encountered and distinguish it from model retraining and revision. We then identify three main kinds
of reframing: input reframing, output reframing and structural reframing. We proceed by reviewing areas and problems where
some notion of reframing has already been developed and shown useful, if under different names: re-optimising, adapting, tuning,
thresholding, etc. This exploration of the landscape of reframing allows us to identify opportunities where reframing might be
possible and useful. Finally, we describe related approaches in terms of the problems they address or the kind of solutions they
obtain. The paper closes with a re-interpretation of the model development and deployment process with the use of reframing.
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1. Introduction

Reuse of learnt knowledge is of critical importance
in the majority of knowledge-intensive application ar-
eas, particularly because the operating context can be
expected to vary from training to deployment. In ma-
chine learning this has been most commonly studied in
relation to variations in class and cost skew in classi-
fication. While one crisp classifier outputting class la-
bels may be sufficient and highly specialised for one
particular operating context (e.g., the positive class be-
ing ten times more likely than the negative class), it
may not perform well for significantly different oper-
ating contexts (e.g., balanced classes). Instead of train-
ing several specialised models for each particular oper-
ating context, it is more cost-effective to learn one gen-
eral, versatile model, such as a scoring classifier out-
putting scores or probabilities, which can be adapted
to several contexts through an appropriate procedure,
such as the choice of a decision threshold.

In this paper we develop the hypothesis that this
successful but narrow approach can be generalised to
many other problems and areas in machine learning,
where models are required to be more general and
adaptable to changes in the data distribution, data rep-
resentation, associated costs, noise, reliability, back-
ground knowledge, etc. This naturally leads to a per-
spective in which models are not continuously re-
trained and re-assessed every time a change happens,
but rather kept, enriched and validated in a long-
term ‘model life-cycle’. We define this generalised ap-
proach, which we call reframing, as the process of
preparing and devising the model deployment proce-
dure to perform well over a range of operating contexts
beyond the specific context in which the model was
trained. Figure 1 provides an illustration of this pro-
cess, in which the notion of a versatile model, able to
generalise over a range of contexts, is key.

Many other recent machine learning approaches
have addressed the need to cope with context changes.
Areas such as domain adaptation, transfer learning,
transportability, meta-learning, cost-sensitive learning,
incremental and online learning, among others, have
proposed new techniques and methods. However, only
some of these approaches really perform model reuse,
i.e., the same model being applied systematically for
changing contexts. Generally, in these areas the context
change is analysed when it happens, rather than being
anticipated. Reframing, in contrast, formalises the ex-
pected context changes before any learning takes place,
parametrises the space of contexts, analyses its distri-
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Fig. 1. A general, versatile model is learnt in context A so that it can
be reframed to operate in many other contexts (e.g., B and C) without
retraining it repeatedly.

bution and creates models that can systematically deal
with that distribution of context changes. This can only
be achieved by a versatile model, which is reframed
using the particular context information for each de-
ployment situation, and not retrained or revised when-
ever the operating contexts change. Rather than being
an umbrella term for the above-mentioned related ar-
eas, reframing is a distinctive way of addressing con-
text changes by anticipating them from the outset.

The rest of the paper is organised as follows. In Sec-
tion 2 we define and discuss the central notions of con-
text and context change as they manifest themselves in
machine learning. Section 3 discusses the three main
alternatives for adapting to context: retraining, revising
and reframing. The latter is further elaborated in Sec-
tion 4, where we distinguish the three main kinds of
reframing. Section 5 considers the important question
of context-aware performance evaluation and visuali-
sation. Section 6 reviews existing approaches that are
related to reframing and the general goal of adapting to
multiple contexts. Section 7 concludes.

2. Contexts and context changes

In this section we provide a definition of context, a
taxonomy of context changes and a discussion of is-
sues relating to context characterisation.

Definition 1. A parametrised context θ is a tuple of
one or more parameter values, discrete or numerical,
that represent or summarise the kind of variable infor-
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Context change Examples of parametrised context

Distribution shift (covariate, prior probability, concept) Input or output variable distribution

Costs and evaluation function Cost proportion, cost matrix, loss function

Data quality (uncertain, missing, or noisy information) Noise or uncertainty degree, missing attribute set

Representation change, constraints, background knowledge Granularity level, complex aggregates, attribute set

Task change Binarised regression cutoff, bins

Table 1
Taxonomy of context change types and examples of their parametrisation.

mation, extrinsic to the data, that affects the data dis-
tribution, data representation, data quality, the utility
function, or the task itself.

For instance, θ1 = 〈Bristol,15〉 and θ2 = 〈Paris,25〉
are contexts denoting location and temperature, which
can affect data distribution in different applications
(e.g., sales prediction). As another example, in binary
classification, a cost matrix is a context that can be
parametrised by a single value θ = 〈c〉, where c =
cFN/(cFN + cFP) is known as the cost proportion, ex-
pressed in terms of the False Negative (FN) cost and
the False Positive (FP) cost. For a given problem, the
set of all possible contexts is denoted by C.

2.1. Taxonomy of context changes

Next we present a taxonomy of context changes
(summarised and exemplified in Table 1) that are com-
monly observed in machine learning applications. Al-
though not intended to be exhaustive or mutually ex-
clusive, this taxonomy can help to bring together pre-
vious work developed in different but related areas.
Distribution shift: The most obvious type of context
change is given by a change in the data distribution.
One common way of looking at a change in the data is
known as data shift [53,49]. Data shift is usually classi-
fied into covariate shift, prior probability shift and con-
cept drift, but more thorough classifications have been
developed (see, e.g., [49]).
Costs: This context category includes, for instance,
changes in misclassification costs or changes in toler-
ance levels and asymmetric costs for regression mod-
els [36,8,32]. Often data shift and cost context changes
are closely related. For instance, in ROC analysis, class
distribution and cost proportions can be combined into
the notion of skew [24].
Data quality: The quality of the data can also change
from context to context, due to a variety of domain-
dependent reasons (e.g., faults, random fluctuations,
low reliability of attributes, ...). For instance, some ap-
plications may suffer changes in the noise level (both

in input and output) in such a way that models can be
adapted to produce more reliable outputs [28].
Representation change: This category is observed
when the attribute representation or their meaning
changes from context to context. For instance, some at-
tributes may be merged, or the granularity of the data
may change [46] (e.g., a model was built for forecast-
ing sales at city-level but will now need to be adapted
to country-level).
Task change: A more radical context change is when
the task itself changes. For instance, in a classification
task new classes can appear in the deployment data,
without having been observed in the training data [57].
As another example, a regression task may become a
classification task due to new objectives. In this case,
one can build a classifier for the new context by apply-
ing a cutoff to the original regressor’s outputs [34].

2.2. Issues in context characterisation and detection

Often the deployment context is not explicitly given
and needs to be (partly) inferred. In general, we need
an estimate of the context θ̂ using a function Γ : D×
M×C→ C, which takes as input: (1) some data (it
can be the deployment data itself or some additional
data); and optionally (2) the original model and (3) the
original context when this model was built.

For instance, in binary classification we may be
given a cost matrix, from where we get a single param-
eter c, representing the cost proportion. But we may
additionally need to know the class proportion dur-
ing application time. Since we can infer this propor-
tion from a few labelled examples observed in the de-
ployment context, Γ is a very simple procedure in this
case, which requires neither the trained model m nor
the original context c.

Alternatively, suppose we have learnt a model m
with a training dataset that has a ratio c of positives
against negatives. In deployment, we may have a small
labelled dataset where we infer that the ratio is c′. In
order to compensate for the distribution shift we need
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to reframe the model using the context change calcu-
lated as (1− c)c′/((1− c)c′+ c(1− c′)) [24]. Hence,
both the deployment data and the original context are
used to produce a representation for the new context
relative to the training context.

As an example where the model itself can be helpful
to infer the context, consider the input data shift, also
known as covariate shift. One way to confirm a hypo-
thetical shift is if it improves a model’s performance
on some deployment data [3].

It is important to highlight that reframing, as we
will see in the following section, does not require a
threshold above which a context change triggers some
kind of action (e.g., a revision of the model). On the
contrary, reframing works with the parametrised con-
text information, independently of whether there is a
slight or a dramatic change with respect to the most
recent model deployment. In other words, reframing
is not triggered when there is a significant context
change, but rather applied systematically for any con-
text (changed or not).

Finally, the description of a context can be accompa-
nied by a distribution across C. For instance, instead of
saying that the deployment context is θ = 〈3〉, we may
say that we know that it is distributed as θ ∼ N (3,1).
As a practical example [36], the assumption that cost
proportions in binary classification tasks are uniformly
distributed on the interval [0,1] leads to a useful re-
interpretation of common evaluation measures. We re-
turn to this issue in Section 5.

3. Context-aware approaches for machine learning

In this section we discuss different approaches to
deal with the variety of contexts described above. We
discuss the choice between retraining, revision and re-
framing, and the notion of a versatile model. The sec-
tion includes examples of these different approaches
and ends with hybrid cases crossing the boundaries of
one single approach.

We assume that in each context there is a task (pos-
sibly different for each context) that consists in provid-
ing certain estimates given some input data. We denote
the type of input as X and the type of estimates as Y.
While this definition applies to both supervised and un-
supervised learning, we will focus on supervised learn-
ing examples in the following.

A context-blind approach would be to learn a model
m : X→Y from all available training data and use this
model unaltered in any deployment context. In cases
where context matters, this approach will result in de-

creased performance whenever it fails to capture vari-
ations in context. It is nevertheless surprisingly com-
mon in machine learning: for example, classifiers are
often used without taking the deployment class distri-
bution into account. This approach can be considered
as a baseline.

Perhaps the simplest kind of context-aware setting
arises when the context is encoded as a feature value.
This allows a decision tree, for example, to split on the
context feature and to construct context-specific sub-
models below that split. For this to work we need suf-
ficient training data covering a wide range of train-
ing contexts, which may be prohibitive in some situa-
tions. Whether model reuse takes place at all depends
on where the context feature is used: the lower this is
in the tree, the more of the model is shared across con-
texts. Conversely, if the context is used at the root we
obtain a set of unrelated context-specific models.

The context-as-a-feature approach may be blind to
the global influence of the context on other features
or the data distribution. Also, machine learning tech-
niques may be unable to process that information ef-
fectively. For instance, it is unusual to treat cost as
an extra input feature. Instead, we will analyse below
three approaches where context is considered as key
information that affects the whole problem.

3.1. Retraining

There may be no need to create all context-specific
models at once, as in the case of decision trees above
using the context as a feature. Rather, we could cre-
ate them in an on-demand fashion. That is, each time
we need to adapt to a new context we collect sufficient
training data for that context and build a new context-
specific model. We refer to this approach as retraining,
and it provides a second baseline to compare against.
There are two different subtypes:

– Retraining on the training data assumes avail-
ability of original training data during deploy-
ment. It postpones learning until all information
about the deployment context has arrived. This
approach is standard in transfer learning [63,51]
and enables the use of training data in any way
beneficial for the particular deployment context.

– Retraining on the deployment data assumes
availability of sufficient deployment data to train a
new model for the particular deployment context.

In both cases, there can be knowledge reuse, such as
the use of the optimal parameters or some parts of
the original models from some previous training situa-
tions.
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3.2. Revision

Retraining a model again and again whenever some-
thing changes is often inefficient, especially if the con-
text change is small and the retrained model is similar
to the original one. A common alternative to retraining
is model revision, where parts of the model are patched
or extended according to a new context [55,54].

Model revision is particularly appropriate when
there is a concept drift [29], but it can deal with any
of the other types of context changes discussed in the
previous section. It is particularly natural as a result
of incremental learning [39] or lifelong learning [61],
but can also be used in other cases of domain adap-
tation when there is a mapping between two different
domains [48].

A key issue in model revision is the detection of nov-
elty or inconsistency of the new data with respect to the
existing model, as in the area of theory revision [55].
In this case, the revision of a theory is triggered when
the semantics of the model are affected, as it does not
fully accommodate the new evidence. This can be ex-
tended to context changes, provided we can determine
when the context has changed significantly to deserve
a revision process.

Whether revision is a viable option depends on the
model class: rules and linear models are easier to revise
than neural networks and support vector machines.

3.3. Reframing and versatile models

Reframing is a context-aware approach that reuses a
model m built in the training context by subjecting it to
a reframing procedure that takes into account the par-
ticular deployment context. As elaborated in the next
section, we distinguish three different kinds of refram-
ing (which can be combined):

– Output reframing: the model m is applied unal-
tered on the input data of the deployment context,
but the outputs of the model are transformed to fit
the deployment context better;

– Input reframing: the input data of the deploy-
ment context are pre-processed before applying
the model m, the outputs of which are used with-
out modifications;

– Structural reframing: the structure of the model
m is adapted in some way, e. g. only some part of
the model is applied or the model is transformed
or instantiated in some systematic way taking the
context into account.

Which type of reframing should be used depends on
what aspects of the model are reusable in other con-
texts. If these aspects are known in advance, then it is
possible to design a training procedure which results
in a versatile model: a model capturing the reusable
knowledge. Thus, where a conventional, non-versatile
model captures only such information as is necessary
to deal with test instances from the same context, a
versatile model captures additional information that, in
combination with reframing, allows it to deal with test
instances from a larger range of contexts.

Note that a versatile model might have a different
data signature for input and output than the original
task signatures X and Y. Input and/or output refram-
ing is then required to apply the versatile model in any
particular deployment context. Furthermore, a versa-
tile model can be constructed directly from the training
data or can be enriched from a non-versatile model in
a series of transformations. One straightforward illus-
tration of this idea is a calibrated probability estima-
tion tree which can be obtained from a crisp decision
tree by means of a calibration process. Being a ver-
satile model, the probability estimation tree has a dif-
ferent signature than the crisp tree, mapping instances
into probabilities rather than classes. Output reframing
is thus required by means of a decision rule which ap-
plies a threshold to the estimated probabilities.

In a way, most decision rules and feature construc-
tion procedures can be seen as reframing processes,
provided that the context is used in the transforma-
tions. In supervised tasks, generative models estimat-
ing p(X ,Y ) or p(X |Y ) are more versatile than discrim-
inative models p(Y |X). Here, output reframing takes
the form of conditioning on X . On occasions, p(X)
and/or p(Y ) can be considered the context of the prob-
lem.

Versatile models can be composed of submodels,
which may be combined in different ways depending
on the context.

3.4. Choosing the best approach: Examples

Given the alternatives described above, which one is
best? There is no general answer, as this may depend
on the problem and the kind of context. Also, we can
use more than one approach or a hybrid. Nevertheless,
we can give some guidelines.

Retraining on the training data is very general and
popular, because it is easy and applicable to any model
class, but there are many cases where it is not appli-
cable. For instance, the training data may have been
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lost or may not exist (e.g., models have been created
or modified by human experts) or may be prohibitively
large (if deployment must work in restricted hardware),
or the computational constraints do not allow retrain-
ing for each deployment context separately. Retraining
on the deployment data can work well if there is an
abundance of deployment data, but often the deploy-
ment data are limited, unsupervised or simply do not
exist. For instance, in open set recognition [57] not all
classes are present in the training data and the model
has to be versatile enough to cover for classes that will
appear in the deployment dataset.

Revision is usually a complex process that is highly
dependent on the technique that one is using. Of
course, there are cases between retraining and revision
where it is difficult to draw a line, as when all param-
eters of a Bayesian model are acquired (and not only
adjusted) on new data. Model revision changes the se-
mantics of the model, and this does not correspond
well with some types of contexts. For instance, if we
have a cost change or a task representation change, it is
not really the semantics that has to be modified, but the
way the model is applied, which is the approach taken
by reframing.

Reframing, if it is possible, appears to be the most
efficient approach, because versatile models are learnt
once and reused systematically, as we will see in the
following sections. However, there are cases where the
context changes cannot be anticipated, parametrised or
inferred. It may also be hard to design a versatile model
to deal with particular context changes.

Mixtures of retraining, revision and reframing are
also possible. For instance, in a rule-based model, a set
of conflicting rules might be resolved a priori [44] but
also when the context is available. In inductive logic
programming [50], a theory that adapts to changing
contexts by modifying the background knowledge is
not really a model revision, as the background knowl-
edge is what changes. If the modification is performed
systematically by the selection or weighting of some
of the predicates in the background knowledge that are
used for each context, this can also be considered a
case of reframing.

An ensemble of models can appropriately adapt
their parameters and structures according to the new
incoming context. A number of strategies to updating
an ensemble have been explored [56]. For instance,
weights could be trained using the context from de-
ployment data using stacking [67]. In this case, this
would be seen as a mixture of reframing (the ensemble
is reused) and retraining (the top layer that makes the
final decision is retrained).

4. Kinds of reframing

In this section we detail the three kinds of refram-
ing introduced in the previous section. We will use a
signature-based process-oriented notation to describe
reframing processes as functions, as different types of
reframing are characterised by what arguments they
take and how some processes are nested.

Definition 2. Reframing is a function with the follow-
ing signature:

R : X×D×C×M→ Y (1)

Given deployment data X ∈X under context θ∈C pos-
sibly using some additional data Da ∈D, R(X ,Da,θ,m)
uses model m ∈M to output estimated data Y ∈ Y as
the result of the reframing process.

The kinds of reframing we propose are summarised
in Figure 2, and fully described below.

4.1. Output reframing

One of the main motivations of the reframing ap-
proach is to enable model reuse as much as possible
in different contexts. In some cases, the model can be
reused completely, without modifying it at all. There
are two advantages of not modifying the model: first,
the validation of the model can be preserved and, sec-
ond, the model can be treated as a black box, without
reference to whether it is a decision tree, a neural net-
work or a support vector machine. In such cases we
can just work on its inputs or its outputs.

In supervised tasks, one way of using the operating
context is by modifying the output of the model as a
post-process or decision rule. In this case, R can be
expressed as follows:

R(X ,Da,θ,m) = RO(m(X),Da,θ) (2)

This is achieved through a reframing function RO :
Z×D×C → Y that takes the outputs of the model
and performs some post-processing on them. We use
Z instead of Y because the model can be a versatile
model that outputs richer information, such as scores,
ranks, distributions, etc. The process of output refram-
ing is represented in Figure 2(a). In binary and multi-
label classification, this approach is known as thresh-
olding when the model outputs scores or probabili-
ties. For instance, a context-driven decision rule known
as score-driven threshold choice method [36] simply
checks whether the probability estimation is lower or
higher than the cost proportion, as a threshold. In this
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case Da is not needed. A related way of doing this is
by calibrating the outputs taking the new context into
account. In this case, some Da may be necessary to do
this calibration or to estimate, e.g., the class distribu-
tion.

Similarly, in regression, if the operating context is
the parameter of the asymmetric loss [32], we can just
obtain the prediction as usual (i.e., m(X)) and then RO
will just add or subtract a constant such that the ex-
pected loss for a given operating context is minimised.
In this case, the process is referred to as shifting. A ver-
satile model can be developed for cost-sensitive regres-
sion too [33]. With more traditional regression models,
reframing is also possible. For instance, tuning [5] is
consistent with the most general view of the function
R(X ,Da,θ,m), where Da is exactly the training dataset
Dt . In other words, the training data are preserved and
used during the reframing process. In this case, when
the deployment context is available, an optimal shift is
derived (for the training set) and applied to the deploy-
ment dataset (added to or subtracted from all predic-
tions). A constant shift can be extended to any poly-
nomial transformation of the output variable [69], pro-
vided the loss functions is convex.

Other kinds of operating contexts have been investi-
gated in supervised problems. For instance, reject rules
[11] make it possible for classification or regression
models to abstain on some examples, as the prediction
error cost might be higher than not issuing a predic-
tion. One option is to take the reject option as a class
and (re)train accordingly whenever the costs of absten-
tion or wrong predictions change. Alternatively, one
can generate models that can be later reframed for dif-
ferent operating contexts in terms of reject rules. This
has been investigated as extensions of ROC analysis,
abstaining, cautious or reliable classifiers [64,52,66].
Again the idea is to exploit a soft model (or another
kind of more versatile model) to determine when to is-
sue predictions and when to abstain.

4.2. Input reframing

Another way of using the operating context is by
modifying the inputs of the model, leading to the fol-
lowing signature:

R(X ,Da,θ,m) = m(RI(X ,Da,θ)) (3)

where the signature of the input reframing is now
RI : X×D×C→X. Now this is done through a trans-
formation of the input space, but the model is not
changed. This is why this approach can also be called

a feature-transformation or transformation-based ap-
proach. The process of input reframing is shown in Fig-
ure 2(b). We assume that the reframed input X ′ has the
same signature as X so that the original model can be
applied to the reframed inputs.

To illustrate, input attribute values can be shifted
from source to deployment [3]. A model is trained in
source and deployed over several different contexts by
transforming the input attributes to the appropriate val-
ues using only few labelled deployment data. Consider
a simple scenario of building a classifier using training
data taken from City 1 where most of the people buy an
ice-cream when the temperature is higher than 18◦C.
On the other hand, the same event happens in City 2
when the temperature is higher than 25◦C. Now if these
data are rescaled by subtracting a numeric value of 7,
we can easily use the trained classifier for City 1 with-
out any modification and be able to predict whether a
person in City 2 will buy an ice-cream or not. In this
case, the context change can be simply defined as a
shift of one input feature, and reframing is solved by
adding or subtracting the shift before applying the clas-
sifier.

As another example, the input data can be trans-
formed into a normalised or a discretised version [17],
using the data distribution. Note that in this case we ap-
ply the transformation to the input features both during
training and during testing. The model is learnt from
quantiles, and patterns and rules are expressed in terms
of these distribution quantiles, such as buying an ice-
cream when ‘the temperature is higher than 90% of
the days’. We could have encapsulated the training fea-
ture distribution and do this in one step only during de-
ployment time, with a mapping between the values for
each attribute. In this case, the model would be learnt
from the original attributes but it would still require the
training data (or some distribution summary).

4.3. Structural reframing

The most elaborate form of reframing occurs when
the context is used to modify part of the model, such
as changing some labelling rules or other systematic
changes. The model is no longer treated as a black box.
This is represented as follows.

R(X ,Da,θ,m) = m′(X) (4)

with m′ = RS(X ,Da,θ,m), where the signature of
structural reframing is RS : X×D×C×M→M. The
outcome is another model that results from making
some structural changes to the original model, such as
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Fig. 2. Different kinds of reframing

relabelling. The process of structural reframing is rep-
resented in Figure 2(c) where the original model un-
dergoes structural changes to better fit the deployment
data. For instance, an ensemble method can change
its weights or a classification tree can be post-pruned
in many different ways depending on the deployment
context, such as a change in a cost matrix.

It is worth highlighting the difference between struc-
tural reframing and model revision. In structural re-
framing the same model is used again and again, al-
though adapted or instantiated for each context. The
notion of versatile model is key here, as the model does
not need to be patched or extended incrementally as a

consequence of its deployment to different contexts.
For instance, consider the cyber fraud detection

problem with online bank transaction defined in [58]:
“new clients (banks) operate in different contexts [...],
where the type of fraud committed might differ from
the generic frauds, due to variations in transaction
protocols, geo-demographics and other factors”. This
problem motivated two new techniques for classifica-
tion, structure expansion reduction (SER) and struc-
ture transfer (STRUT), which “refine” one or more
decision trees for each context. The generic model is
kept and refined systematically for each new context.
SER may expand (grow more splits, i.e., specialise)
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Fig. 3. Dimension hierarchies, Time (left) and Product (right).

the branches of the trees or reduce (prune, i.e., gen-
eralise). Hence the expansion part of SER is a revi-
sion approach. On the other hand, STRUT can be con-
sidered a structural reframing technique (although the
context is not fully characterised). With STRUT, the
thresholds (the actual value for the inequality for each
numeric split) of the generic tree are removed and re-
placed by new thresholds (the structure and attributes
used at each node are preserved). To avoid overfitting,
for those cases where the set of labelled examples for
deployment is very small, the generic tree preserves
the distributions at the inner splits and the new distri-
butions for the new context are ensured to be “similar”
to the generic ones, using several divergence metrics.

The three kinds of reframing identified here can be
combined in many different ways. For instance, in mul-
tidimensional aggregation by means of a data cube [46]
both the input variables and the output values are ag-
gregated depending on the operating context (the data
cube). Multidimensional approaches are based on hi-
erarchies, and examples and predictions can be aggre-
gated at different levels of the attribute hierarchies,
such as the ones shown in Figure 3. For instance, the
predictions for tomatoes and weeks will be different
from the predictions for vegetables and Fridays. How-
ever, machine learning models are not designed to take
hierarchical attributes. In principle, a model that has
been obtained for one context cannot be directly ap-
plied to a different context. This leads us to two major
alternatives. Either we learn one model for each con-
text (level of aggregation), which means retraining the
model, or we learn one, more versatile, model at the
highest resolution (most fine-grained) level and then
aggregate their predictions (that is, reframing), as de-
scribed in Figure 4.

M

c ẑ

<X,Y>

ŷ
aggtrain deploy

c' ^ z'
agg

Fig. 4. Reframing schema for two multidimensional contexts c and
c′. Training data is used just once at the highest resolution level to
create a single model M that is applied to different operating contexts
c or c′ by aggregating the outputs appropriately.

5. Context plots and performance metrics

When the context is fixed, conventional context-
insensitive performance metrics (see, e.g., [22]) can be
used to evaluate how a model performs for that con-
text. However, when we use the same model for sev-
eral contexts we need context-aware performance met-
rics. In this section we discuss how to obtain such met-
rics and how they can be represented and related to the
so-called context plots.

5.1. Evaluating a model on a range of contexts

Let us consider how a model (either reframed or not)
can be evaluated for a given context. This is repre-
sented by a loss function Q(R,m,D,θ) which returns
the loss or cost of applying a procedure R with model
m to dataset D with deployment context information
θ. Also, in some reframing procedures, an additional
dataset may also be needed (which is considered the
same for all methods, and hence does not appear as a
parameter here). Here we assume that the context in-
formation that is given (θ) is correct.

Definition 3. A model is said to dominate another in a
region ρ⊂ C if Q is equal or lower for all θ ∈ ρ.

We can examine the whole range of operating con-
texts and see in which regions one model is better than
others. However, as dominance may only occur for par-
tial regions, we may wish to have an overall metric ac-
counting for the whole distribution of contexts.

Definition 4. The expected loss of a model m using
reframing procedure R over data D and a distribution
of contexts w over the space of contexts C is given by:

L(R,m,D,C,w),
∫

θ∈C
Q(R,m,D,θ)w(θ)dθ (5)

If θ contains discrete parameters only, this can be sub-
stituted by a weighted sum instead of the integral.
Note that we can only talk about a versatile model
if it can be successfully reframed (even if not opti-
mally) for a range of contexts. This generalises the ap-
proach of [35,37], which reinterprets several known
performance metrics previously considered context-
insensitive, such as AUC and Brier score, as aggregates
over contexts.

Expected loss as defined above requires the estima-
tion of w, the distribution of contexts. Default choices
are possible but can be controversial. For instance,
in classification there is a long-standing debate about
whether the distribution of skews or the cost propor-
tion must be considered uniform or can be modelled
with other distributions (for instance, other beta distri-
butions) [31,26].
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5.2. Context plots

The visualisation of how the loss Q changes for a
range of operating contexts is a context plot:

Definition 5. A context plot shows Q as a function of
θ for a given dataset D.

The dimensionality of the plot depends on the num-
ber of parameters in θ, ranging from simple one-
dimensional curves to complex hypersurfaces. We can
plot different models m or different reframing tech-
niques R on the same loss-context space. If we assume
w(θ) uniform, then L is the area (or hypervolume) un-
der the context curve (or hypersurface), a performance
metric that aggregates over contexts.

When the context plot has more than two dimen-
sions it can be convenient to represent the plot with a
mapping or projection onto a different space C′, with
fewer parameters. The simpler representation comes at
the cost of some information loss.

Definition 6. A context reduction is a mapping from C
to a different parameter space C′ (usually with fewer
dimensions).

Context plots and context distributions can be ex-
tended with context reductions instead of contexts.
Context reductions can also be used as transformations
to yield a more representative spread on the x-axis,
such as applying a logarithmic scale or applying the
distribution w over the x-axis [34].

5.3. Context plots for binary classification

In binary classification, one choice for the context
can be the cost proportion θ = 〈c〉, where c is a single
parameter derived from a cost matrix. A closely related
type of context is the class proportion. In fact, if we
have varying cost matrices and class proportions, they
can be integrated (or reduced) into a single parameter,
known as skew, as in ROC analysis.

Let us focus for the moment on the simple case
where the context is just θ = 〈c〉 and is given. On the
one hand, if we have a learning technique that can use
c during training (e.g., a cost-sensitive classifier), we
could repeatedly retrain m for every θ. On the other
hand, we can learn a versatile model once and for all,
a scoring classifier or a probabilistic classifier, and use
the so-called threshold choice methods as the usual re-
framing approach. There are several possible threshold
choice methods. All of them, in our terminology, are
output reframing methods and hence can be expressed

as in Eq. (2). The most traditional options for R are the
“score-fixed” method, the “score-driven” method and
the “rate-driven” method. But other methods exist [36].

We can plot Q(R,m,D,θ) in terms of θ, for different
models m and threshold choice methods R. If we use
the optimal threshold choice method (Roptimal), these
are the well known cost curves [15]. Other curves re-
sult if we use other threshold choice (reframing) meth-
ods, such as the Brier curves, the rate-driven curves,
etc. [35,37]. Further curves arise from using a (cost-
sensitive) retraining approach or a technique that ig-
nores the context altogether.

Figure 5 illustrates 4 instances with scores (0.85,
0.65, 0.45, 0.25) and actual classes (+,−,+,−). On
the left we can observe the cost lines for each possible
split together with the lower envelope, which indicates
that the optimal split would be after the first positive for
c ∈ [0,0.5] and before the last negative for c ∈ [0.5,1].
On the right we show four different cost curves ob-
tained by four threshold selection methods. From these
curves we can see, for example, that score-driven and
rate-driven curves have different regions of dominance
but neither completely dominates the other. These con-
text plots can be extended to cost-sensitive multilabel
classification, for instance by averaging the costs for
each label to obtain the context parameter [45].

5.4. Context plots for regression

Costs are also common in regression. One simple
case is the asymmetric loss, where over-estimates and
under-estimates have different costs. This can be mod-
elled by a parameter α∈ [0,1] such that α> 1/2 means
that under-estimates are more costly and α < 1/2 that
over-estimates are more costly [32]:

Definition 7. The asymmetric absolute error `A
α is a

loss function defined as follows:

`A
α(ŷ,y),

{
2α(y− ŷ) if ŷ < y
2(1−α)(ŷ− y) otherwise

By adding or subtracting a constant value to all pre-
dictions we can get better results when α changes,
by minimising expected loss. This is another case of
output reframing, where the reframing process is ex-
pressed again as in Eq. (2).

The loss function here is given by

Q = ∑
〈x,y〉∈D

`A
α(RO(m(x),θ),y) (6)

which gives the total `A
α for dataset D for a given model

m and a context θ = 〈α〉. By plotting α from 0 to 1 on



11

●

●

●

1 0 1 0
0.85 0.65 0.45 0.25

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
cost

lo
ss

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
cost

lo
ss

Thresholding
optimal            0.1250

fixed                0.5000

rate−driven     0.2096

score−driven  0.2025

Fig. 5. Context plots for binary cost-sensitive classification, where output reframing occurs by means of different threshold choice methods.
Left: Cost lines of a simple example. Right: Cost curves obtained by four different threshold choice methods.

the x-axis we obtain a context plot, which can be used
to analyse the behaviour of different models. The area
under this context plot (i.e., the expected loss assuming
uniform α) is linearly related to the error variance of
the regression model [32].

Note that the above cost-sensitive context plots for
binary classification and regression can be derived an-
alytically. For instance, in the context plots shown in
Figure 5, given a classifier, we can calculate all curves
in the figure analytically, as they all correspond to an
output reframing, and the context-dependent predic-
tion (e.g., a class being predicted after setting a thresh-
old) can be used in Q to compare with the true labels
using the context. In this way, given a versatile model
(e.g., a probabilistic classifier), we can calculate the
area under each curve analytically, without the need of
going context by context [36]. Similarly, for regression
using cost asymmetry as shown in Figure 6, the curves
can be plotted analytically and their areas can be de-
rived from the model itself.

However, in many other cases the context plots can-
not be derived analytically. For instance, the context
can be defined as a trade-off between misclassification
cost (MC) and attribute test cost (TC) with a parameter
α ∈ [0,1], such that the joint cost (JC) is defined as the
weighted average Q = αMC+(1−α)TC [42]. Several
classifiers can be represented in terms of TC and MC,
as in the JC plots of Figure 7, which are derived em-
pirically, point by point. More examples of empirical
context plots are given in the next section.

An interesting future direction is to consider ‘pro-
cess costs’, that is, to use a performance metric that
takes into account the cost of retraining/reframing,
having too many models (in ensemble approaches),

●
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Fig. 6. Context plot for cost-sensitive regression with α a context
parameter trading off between over- and under-estimation penalties,
and output reframing through shifting.

parametrising the context, etc. Process cost analysis is
a problem of increasing importance and the integration
of these budgets into machine learning is an active re-
search area [68].

5.5. Further examples of context plots

Examples of applications where we should probably
consider different contexts during deployment are rel-
atively common. Below we show more cases of con-
text parametrisations, which have been (or could have
been) represented as a context plot.

Some of the contexts seen in previous sections may
be composed of several parameters (e.g., the coeffi-
cient values in some input reframing approaches [3],
so θ has twice as many parameters as attributes). In the
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Fig. 7. Context plot for cost-sensitive classification with attribute
costs and misclassification costs, with α a context parameter trading
off between the two.

multidimensional datamart example [46] the operating
context is an OLAP cube, and θ is not only composed
of many parameters but they are also discrete. These
cases lead to more complex context plots, but some
representations or simplifications may still be insight-
ful.

Regression Error Characteristic (REC) curves [8]
plot the error tolerance on the x-axis versus the percent-
age of points predicted within the tolerance on the y-
axis. Error tolerance may be context-dependent, and in
this sense REC curves are another example of context
plots.

Like the joint cost case described in the previous
section and shown in Figure 7, most of the context
plots in this section are empirical rather than analytic
and need to be constructed through experiments. In
the input shift example [3] the context affects the in-
put attributes, leading to an output change through the
model. As the relation between the inputs and outputs
is model-dependent, it is not possible, in general, to de-
rive the curves analytically. This means that we have
to sample over operating contexts in order to plot these
curves and estimate its area to obtain the expected loss
(Definition 4). A similar situation happens where the
context is some kind of noise that affects all input at-
tributes, such as the measurement error in several sen-
sors given by temperature [21]. Finally, in the multidi-
mensional contexts example, both a context change in
inputs/outputs and an output reframing is required. An
analytical derivation of these curves (and their areas) is
not possible in general.

6. Reframing and related approaches in the
literature

The notion of context or domain adaptation has been
studied before in machine learning and more generally
in computer science. There are several areas that over-
lap with the notion of reframing under context changes,
although for most of them the focus on anticipation and
versatile models are absent.

Data shift [53,49,41] is a kind of context change,
but most existing approaches do not exploit systematic
shifts. Consequently, they often invoke retraining, but,
as a kind of context change, it could be addressed with
many of the approaches seen in this section.

Domain adaptation [38] is a more general term
than data shift, also including “changes of representa-
tion” [7]. The terms ‘domain’ and ‘context’ are often
used interchangeably, but domains are usually more
open-ended and less prone to parametrisation than the
notion of context seen here.

Transfer learning [63,51] is “the improvement of
learning in a new task through the transfer of knowl-
edge from a related task that has already been learned”
[63]. Knowledge is transferred from source to tar-
get task in the form of “instance-transfer”, “feature-
representation-transfer”, “parameter-transfer” and “re-
lational-knowledge-transfer” but the model is retrained
[51]. There are different kinds of transfer learning: in-
ductive, transductive and unsupervised. Even in the
transductive case, which is the case most similar to re-
framing, transfer learning approaches focus on the tar-
get task and reuse knowledge rather than models, as in
reframing. Table 2 summarises the differences between
reframing and transfer learning. In model transfer, such
as in the so-called biased regularisation approach, a
model learned in a domain is reused, as in reframing.
However, a new model is yet again retrained using the
previous parameters of the generic model plus a small
set of examples of the new domain [40,43,62]. Alter-
natively, a new specific model and the generic one are
aggregated. Also, a combination of approaches can be
used [58]. Nevertheless, differently from reframing, no
a priori characterisation of context is performed.

Transportability [6] is related to transfer learning
and “aims to identify conditions under which causal
information learnt from experiments can be reused in a
different environment where only passive observations
can be collected”.

Meta-learning [30] is a broad area that indicates
which techniques can be better for a given situation ac-
cording to previous situations. Techniques, parameters
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Reframing Transfer Learning

The same general, versatile model is reused. A new model is generated, reusing old parts (e.g., features).

The model and the reframing procedure support different contexts. If context changes, the model is changed (but knowledge is reused).

An operating context must be known at deployment time. No explicit target operating context.

Changes are anticipated and evaluation takes this into account The transfer is usually triggered on purpose for the target context*.

Oriented towards context representation. Oriented towards the target task.

Automated, given the deployment operating context. Usually requires manual intervention*.

Success depends on model versatility and the reframing procedures. Success depends on a good mapping between source and target.

Table 2
Comparing reframing and (transductive) transfer learning. Asterisks refer to exceptions for multi-task learning.

and other kinds of (meta-)knowledge are reused, but
models are usually not kept but retrained.

Multi-task learning [10,60] learns several tasks
with the same representation. It is closely related to in-
ductive transfer, but we usually find that many tasks are
simultaneously learnt. In other words, there is a generic
model that is built from several tasks, usually by trans-
forming or augmenting the feature space into a more
general representation (e.g., using subspaces described
by eigenvectors [20]), or by coding general and target-
specific versions of the features [12]. However, despite
its apparent similarity with input reframing, and the
extraction of invariants across domains or the use of
common parameters across domains [14], these do not
really represent a context.

Cost-sensitive learning [18,65] is usually solved by
retraining using cost-sensitive methods, but sometimes
by output reframing. Reject rules [11,64,52,66] and
other kinds of decision rules based on utility or loss
functions are usually associated with cost-sensitive
learning as well.

Learning from noisy data [4,27]: usually the em-
phasis is put on how difficult the problem is when noise
is present during training or test, but noise is not con-
sidered a parametrisable context where we could say a
priori that some models are better or worse for some
noise contexts, or on procedures to make them better
when we expect more or less noise during deployment.

Context-aware computing [1], as encountered in
pattern recognition [13] or recommender systems [2],
uses contextual information to improve a task. The ap-
proach is more like the consideration of the context as
an extra input in the process and not in terms of reusing
or adapting an existing model to a new context.

Mimetic models [9]: the adaptation of existing
models to other contexts (e.g., cost contexts) has been
carried out with the use of the mimetic technique,
which retrains another model using some artificially
generated data that takes the new context into account.

However, this approach is different to reframing, as a
model is retrained for each operating context.

Theory revision [55] establishes a set of tools to
modify a model or theory because it has become in-
consistent or insufficient with new evidence. Model re-
vision can be used for domain adaptation and trans-
fer learning problems [48]. As the model is reused as
much as possible, theory revision is related to struc-
tural reframing. However, the notion of a parametrised
context to reframe the model instead of revising it is
not present.

Lifelong learning [61] and incremental learning
[39]: adaptation is usually achieved through theory
revision or the extension of the model. The empha-
sis is then put on “versatile learning systems” [16]
that evolve and adapt their model or knowledge base
instead of versatile models, which remain unaltered
across previously-anticipated context changes.

ROC analysis and cost plots [47,25,19,23,15,26,
35,36,37]: the notion of context in this paper gener-
alises the notion of operating condition in ROC analy-
sis. Similarly, context plots are a generalisation of cost
plots, and we also borrowed the ideas of dominance
and expected loss as the area under a context curve.

Only cost-sensitive learning and ROC analysis (when
there is no retraining) can be seen as areas where
reframing has been commonly used in the past, and
generally restricted to binary classification. However,
many other tasks and applications, especially with the
use of input and structural reframing, present them-
selves as new opportunities.

In the context of these related areas, we are now in
a position to highlight the distinctive characteristics of
reframing:

– Contexts are identified and parametrised. Models
are learnt in anticipation of context changes and
optimised to behave well in a range of contexts.

– We do not consider a 1-to-1 transfer from a source
problem to a target problem, but a systematic ap-
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plication to multiple contexts. Once the reframing
procedure is set, reframing is automated for any
deployment data given the context.

– Even if models are intended to be general and ver-
satile, they are usually learnt in one context and
task. It is through the parametrisation of context –
a kind of ‘inductive context bias’ – that they are
expected to be adapted to other contexts.

– Models are compared with the notion of dom-
inance for ranges of contexts. Expected perfor-
mance can be plotted for a range of contexts. Ag-
gregated metrics can be derived.

– Models are reused. The model is versatile enough
to be adapted to several contexts, which avoids the
cost of retraining or revision.

There are scenarios where contexts cannot be iden-
tified or parametrised, or where the model is not ver-
satile enough. Also, it may happen that we evaluate
a versatile model together with a particular reframing
mechanism for a distribution of contexts, but have no
clear dominance regions so that we have to keep sev-
eral models or select the one that is best for the ex-
pected distribution of contexts. It may turn out that this
distribution is different to the one that we finally ob-
serve in a deployment setting.

The notion of context parametrisation and its ap-
plication to reframing seems to be better suited for
non-interactive machine learning (supervised, semi-
supervised or unsupervised) when there is a true
model, but needs to be rethought for other areas of
machine learning, such as instance-based learning, and
particularly in domain adaptation and transfer learning
in reinforcement learning [59].

While it is important to highlight these limitations,
this paper has shown that there are many more cases
where reframing is possible and useful than just those
traditional cases concerning cost-sensitive learning and
prior distribution shift already analysed in the case of
binary classification using ROC analysis, cost curves
and parametrised decision rules.

7. Concluding remarks

This paper has provided a unified view of a family
of solutions for a set of context-change problems under
the term reframing. We have generalised the types of
context changes in Table 1, clarified the three types of
context-aware adaptations in Section 3 and defined a
taxonomy of the types of reframing.

In addition to providing common terminology and
notation, we hope this paper also enables a better un-
derstanding of the commonalities and differences in
problems and solutions, as well as identifying ‘niches’
where some of the techniques discussed could be ap-
plied or adapted.

Taking a higher-level view, we think that the notion
of reframing may have a deeper and more long-term
impact in how the process from data to knowledge, its
validation and its application to real problems can be
conceived. We finish by highlighting the key points un-
derlying this view.

Models should be as general and flexible as possi-
ble. The data and conditions used to learn the model
may change for each particular application. Versa-
tile models integrate more information than originally
needed, such as probabilities, distributions, covariance
information, unpruned or alternative rules, etc.

Validation should consider a range of operating
contexts, either by analytically integrating them into
the validation process, simulating them with data mod-
ification or by the use of data from different situations.
Furthermore, validation has to take into account that
repeatedly learning for each particular application has
the risk of overfitting to the operating context.

Related to the previous point, performance metrics
that account for a range of situations instead of more
short-sighted metrics that only account for one operat-
ing context should be the base for a more comprehen-
sive model evaluation.

Learning and assessing models has a cost, so we
should always consider the overall costs involved in re-
training, revising and reframing. The possibilities and
cost of properly identifying the operating context (and
when this information will be available) must be con-
sidered during the whole process.

Model deployment is a very important stage. Ma-
chine learning and data mining applications are not
finished when a good model is obtained. The process
from data to models is just one part of the game, as the
ultimate goal is high-quality decision making. Taking
full advantage of a learnt model may require complex
decision processes that consider all available informa-
tion at deployment time.

Acknowledgments

We thank the anonymous reviewers for their comments, which
have helped to improve this paper significantly. This work was sup-
ported by the REFRAME project, granted by the European Co-



15

ordinated Research on Long-term Challenges in Information and
Communication Sciences Technologies ERA-Net (CHIST-ERA),
funded by their respective national funding agencies in the UK,
France and Spain (MINECO, PCIN-2013-037). It has also been par-
tially supported by the EU (FEDER) and Spanish MINECO grant
TIN2015-69175-C4-1-R and by Generalitat Valenciana PROME-
TEOII/2015/013.

References

[1] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith,
and P. Steggles. Towards a better understanding of context and
context-awareness. In Handheld and ubiquitous computing,
pages 304–307. Springer, 1999.

[2] G. Adomavicius and A. Tuzhilin. Context-aware recommender
systems. In Recommender systems handbook, pages 217–253.
Springer, 2011.

[3] C. F. Ahmed, N. Lachiche, C. Charnay, and A. Braud. Refram-
ing continuous input attributes. In IEEE Intl. Conf. on Tools
with Artificial Intelligence (ICTAI-2014), pages 31–38, 2014.

[4] D. Angluin and P. Laird. Learning from noisy examples. Ma-
chine Learning, 2(4):343–370, 1988.

[5] G. Bansal, A. Sinha, and H. Zhao. Tuning data mining methods
for cost-sensitive regression: A study in loan charge-off fore-
casting. J. Management Inf. Systems, 25:315–336, 2008.

[6] E. Bareinboim and J. Pearl. Transportability of causal effects:
Completeness results. In AAAI, 2012.

[7] S. Ben-David, J. Blitzer, K. Crammer, F. Pereira, et al. Analysis
of representations for domain adaptation. Advances in neural
information processing systems, 19:137, 2007.

[8] J. Bi and K. P. Bennett. Regression error characteristic curves.
In ICML, 2003.

[9] R. Blanco-Vega, C. Ferri, J. Hernández-Orallo, and M. J.
Ramı́rez-Quintana. Estimating the class probability threshold
without training data. In ICML’06 workshop on ROC Analysis
in Machine Learning, page 9, 2006.

[10] R. Caruana. Multitask learning. Machine Learning, 28(1):41–
75, 1997.

[11] C Chow. On optimum recognition error and reject tradeoff.
IEEE T. Information Theory, 16(1):41–46, 1970.
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