6 research outputs found

    Applied Formal Methods for Elections

    Get PDF

    Formal Verification of Voting Schemes

    Get PDF
    Fundamental trust and credibility in democratic systems is commonly established through the existence and execution of democratic elections. The vote-counting of an election, usually formalised by a voting scheme, essentially boils down to a mechanism that aggregates individual preferences of the voters to reach a decision. For this matter, there are various differing voting schemes in use throughout the world, commonly based on high expectations and means to ensure a sensible democratic process. However, incidents such as the ruling by the German federal constitutional court which led to a change of the German legislation in 2013 manifest that it is difficult for a voting scheme to meet these legitimate expectations. In fact, there is no general notion of correctness for a voting scheme and thus no universal mechanism as shown in Kenneth J. Arrow’s Impossibility Theorem in 1951. As a consequence, designing a real-world voting scheme without flaws, which still gives significant democratic guarantees, is a difficult task as a trade-off between desirable properties is non-trivial and error-prone. The approach in this thesis is based on the idea to tackle this issue by proposing an incremental and iterative development process for voting schemes based on automated formal reasoning methods using program verification. We analyse two different forms of verification considering their role in this development process in order to achieve formal correctness of voting schemes. We perform a comprehensive set of case studies by applying ``medium-weight\u27\u27 and ``light-weight\u27\u27 verification techniques. The ``medium- weight\u27\u27 approach uses the annotation-based deductive verification tool VCC based on an auto-active methodology and the ``light-weight\u27\u27 technique is performed with the bounded model checking tool LLBMC. Our analysis covers a set of well-known voting schemes combined with a set of prominent voting scheme criteria. In addition to giving precise formalisations for these criteria adapted to the specific voting schemes and tools used, we advance the efficiency of the ``light-weight\u27\u27 approach by exploiting fundamental symmetric properties. Furthermore, we investigate on encountered challenges posed by the auto-active verification methodology, which lies in-between automatic and interactive verification methodologies, with respect to specific characteristics in voting schemes and also explore the potential of bounded verification techniques to produce precise counterexamples in order to enhance the capability of our envisioned development process to give early feedback. This thesis gives fundamental insights in general challenges and the potential of automated formal reasoning with the goal of correct voting schemes

    Formal Methods for Trustworthy Voting Systems : From Trusted Components to Reliable Software

    Get PDF
    Voting is prominently an important part of democratic societies, and its outcome may have a dramatic and broad impact on societal progress. Therefore, it is paramount that such a society has extensive trust in the electoral process, such that the system’s functioning is reliable and stable with respect to the expectations within society. Yet, with or without the use of modern technology, voting is full of algorithmic and security challenges, and the failure to address these challenges in a controlled manner may produce fundamental flaws in the voting system and potentially undermine critical societal aspects. In this thesis, we argue for a development process of voting systems that is rooted in and assisted by formal methods that produce transparently checkable evidence for the guarantees that the final system should provide so that it can be deemed trustworthy. The goal of this thesis is to advance the state of the art in formal methods that allow to systematically develop trustworthy voting systems that can be provenly verified. In the literature, voting systems are modeled in the following four comparatively separable and distinguishable layers: (1) the physical layer, (2) the computational layer, (3) the election layer, and (4) the human layer. Current research usually either mostly stays within one of those layers or lacks machine-checkable evidence, and consequently, trusted and understandable criteria often lack formally proven and checkable guarantees on software-level and vice versa. The contributions in this work are formal methods that fill in the trust gap between the principal election layer and the computational layer by a reliable translation of trusted and understandable criteria into trustworthy software. Thereby, we enable that executable procedures can be formally traced back and understood by election experts without the need for inspection on code level, and trust can be preserved to the trustworthy system. The works in this thesis all contribute to this end and consist in five distinct contributions, which are the following: (I) a method for the generation of secure card-based communication schemes, (II) a method for the synthesis of reliable tallying procedures, (III) a method for the efficient verification of reliable tallying procedures, (IV) a method for the computation of dependable election margins for reliable audits, (V) a case study about the security verification of the GI voter-anonymization software. These contributions span formal methods on illustrative examples for each of the three principal components, (1) voter-ballot box communication, (2) election method, and (3) election management, between the election layer and the computational layer. Within the first component, the voter-ballot box communication channel, we build a bridge from the communication channel to the cryptography scheme by automatically generating secure card-based schemes from a small formal model with a parameterization of the desired security requirements. For the second component, the election method, we build a bridge from the election method to the tallying procedure by (1) automatically synthesizing a runnable tallying procedure from the desired requirements given as properties that capture the desired intuitions or regulations of fairness considerations, (2) automatically generating either comprehensible arguments or bounded proofs to compare tallying procedures based on user-definable fairness properties, and (3) automatically computing concrete election margins for a given tallying procedure, the collected ballots, and the computed election result, that enable efficient election audits. Finally, for the third and final component, the election management system, we perform a case study and apply state-of-the-art verification technology to a real-world e-voting system that has been used for the annual elections of the German Informatics Society (GI – “Gesellschaft für Informatik”) in 2019. The case study consists in the formal implementation-level security verification that the voter identities are securely anonymized and the voters’ passwords cannot be leaked. The presented methods assist the systematic development and verification of provenly trustworthy voting systems across traditional layers, i.e., from the election layer to the computational layer. They all pursue the goal of making voting systems trustworthy by reliable and explainable formal requirements. We evaluate the devised methods on minimal card-based protocols that compute a secure AND function for two different decks of cards, a classical knock-out tournament and several Condorcet rules, various plurality, scoring, and Condorcet rules from the literature, the Danish national parliamentary elections in 2015, and a state-of-the-art electronic voting system that is used for the German Informatics Society’s annual elections in 2019 and following

    Formally Verified Verifiable Electronic Voting Scheme

    Get PDF
    Since the introduction of secret ballots in Victoria, Australia in 1855, paper (ballots) are widely used around the world to record the preferences of eligible voters. Paper ballots provide three important ingredients: correctness, privacy, and verifiability. However, the paper ballot election brings various other challenges, e.g. it is slow for large democracies like India, error prone for complex voting method like single transferable vote, and poses operational challenges for large countries like Australia. In order to solve these problems and various others, many countries are adopting electronic voting. However, electronic voting has a whole new set of problems. In most cases, the software programs used to conduct the election have numerous problems, including, but not limited to, counting bugs, ballot identification, etc. Moreover, these software programs are treated as commercial in confidence and are not allowed to be inspected by members of the public. As a consequence, the result produced by these software programs can not be substantiated. In this thesis, we address the three main concerns posed by electronic voting, i.e. correctness, privacy, and verifiability. We address the correctness concern by using theorem prover to implement the vote counting algorithm, privacy concern by using cryptography, and verifiability concern by generating a independently checkable scrutiny sheet (certificate). Our work has been carried out in the Coq theorem prover

    Advancing Deductive Program-Level Verification for Real-World Application: Lessons Learned from an Industrial Case Study

    Get PDF
    This thesis is concerned with practicability of deductive program verification on source code level. As part of a case study for the verification of real-world software, the specification and verification approach to show correctness of the virtualizing kernel PikeOS is presented. Issues within the verification process using current tools and methodologies are discussed and several aspects of these problems are then addressed in detail to improve the verification process and tool usability

    Verifying Voting Schemes

    No full text
    The possibility to use computers for counting ballots allows us to design new voting schemes that are arguably fairer than existing schemes designed for hand-counting. We argue that formal methods can and should be used to ensure that such schemes behav
    corecore