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Abstract

Since the introduction of secret ballots in Victoria, Australia in 1855, paper
(ballots) are widely used around the world to record the preferences of eli-
gible voters. Paper ballots provide three important ingredients: correctness,
privacy, and verifiability. However, the paper ballot election brings various
other challenges, e.g. it is slow for large democracies like India, error prone
for complex voting method like single transferable vote, and poses opera-
tional challenges for large countries like Australia. In order to solve these
problems and various others, many countries are adopting electronic voting.
However, electronic voting has a whole new set of problems. In most cases,
the software programs used to conduct the election have numerous problems,
including, but not limited to, counting bugs, ballot identification, etc. More-
over, these software programs are treated as commercial in confidence and
are not allowed to be inspected by members of the public. As a consequence,
the result produced by these software programs can not be substantiated.

In this thesis, we address the three main concerns posed by electronic
voting, i.e. correctness, privacy, and verifiability. We address the correctness
concern by using theorem prover to implement the vote counting algorithm,
privacy concern by using cryptography, and verifiability concern by generat-
ing a independently checkable scrutiny sheet (certificate). Our work has been
carried out in the Coq theorem prover.

xiii



xiv



Contents

Acknowledgments vii

Abstract xiii

1 Introduction 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Motivation and Contribution . . . . . . . . . . . . . . . 4

1.3 Cryptographic Blackbox . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Outline of the Chapters . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Trivia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Background 13

2.1 Electronic Voting . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Correctness: Formal Method Approach . . . . . . . . . . . . . . 19

2.3 Verifiability: Trust in Electronic Voting . . . . . . . . . . . . . . . 21

2.3.1 Scrutiny Sheet . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

xv



xvi Contents

3 Theorem Prover and Cryptography 27

3.1 Coq: Interactive Proof Assistant . . . . . . . . . . . . . . . . . . . 28

3.1.1 Calculus of Construction/Inductive Construction . . . . 32

3.1.2 Inductive Type . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.3 Type vs. Prop: Code Extraction . . . . . . . . . . . . . . . 34

3.1.3.1 Reification . . . . . . . . . . . . . . . . . . . . . 34

3.1.4 Correct by Construction: Type Safe Printf . . . . . . . . . 35

3.1.5 Gallina: The Specification Language . . . . . . . . . . . . 40

3.1.6 Trusting Coq proofs . . . . . . . . . . . . . . . . . . . . . 41

3.2 Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2 Diffie-Hellman Construction . . . . . . . . . . . . . . . . 44

3.2.3 ElGamal Encryption Scheme . . . . . . . . . . . . . . . . 45

3.2.4 Homomorphic Encryption . . . . . . . . . . . . . . . . . 46

3.2.5 Zero-Knowledge Proof . . . . . . . . . . . . . . . . . . . . 48

3.2.5.1 Zero-Knowledge Proof of Knowledge . . . . . 50

3.2.6 Sigma Protocol . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.7 Commitment Schemes . . . . . . . . . . . . . . . . . . . . 52

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Schulze Method : Evidence Carrying Computation 55

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Schulze Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . 58



Contents xvii

4.3 Formal Specification . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 Vote Counting as Inductive Type . . . . . . . . . . . . . . 70

4.3.2 All Schulze Elections Have Winners . . . . . . . . . . . . 74

4.4 Scrutiny Sheet and Experimental Results . . . . . . . . . . . . . 75

4.5 Counting Millions of Ballots . . . . . . . . . . . . . . . . . . . . . 78

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Homomorphic Schulze Algorithm : Axiomatic Approach 85

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Verifiable Homomorphic Tallying . . . . . . . . . . . . . . . . . . 87

5.2.1 Format of Ballots . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.2 Validity of Ballots . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.3 Cryptographic primitives . . . . . . . . . . . . . . . . . . 91

5.2.4 Witnessing of Winners . . . . . . . . . . . . . . . . . . . . 94

5.3 Formalization in Coq . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Correctness by Construction and Verification . . . . . . . . . . . 101

5.5 Extraction and Experiments . . . . . . . . . . . . . . . . . . . . . 103

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6 Scrutiny Sheet : Software Independence 113

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 Algebraic Structures: Building Blocks . . . . . . . . . . . . . . . 115

6.3 Pedersen Commitment Scheme . . . . . . . . . . . . . . . . . . . 118



xviii Contents

6.4 Sigma Protocol: Efficient Zero-Knowledge Proof . . . . . . . . . 119

6.4.1 Concrete Sigma Protocol: Discrete Logarithm . . . . . . 122

6.4.2 Honest Decryption Zero Knowledge Proof . . . . . . . . 123

6.5 Homomorphic Tally . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.6 IACR 2018 Election . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7 Machine Checked Schulze Properties 129

7.1 Condorcet Winner . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.2 Reversal Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8 Conclusion and Future Work 137

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.1.1 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.1.2 Verifiability . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.1.3 Privacy and Coercion Resistance . . . . . . . . . . . . . . 138

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.2.1 Formalizing Cryptographic Entities . . . . . . . . . . . . 139

8.2.2 Formalizing Properties of Schulze Method . . . . . . . . 139

8.2.3 Formally Verified Checker . . . . . . . . . . . . . . . . . . 139

8.2.4 Risk Limiting Audit for Preferential Voting Scheme . . . 140

8.2.5 Formalizing Code Extraction . . . . . . . . . . . . . . . . 140



List of Figures

1.1 Election held in 1855 in Victoria, Australia was conducted in pub! 11

2.1 World map of Electronic Voting (source: https://www.e-voting.
cc/en/it-elections/world-map/) . . . . . . . . . . . . . . . . . . . . 14

2.2 Function f computing y on input x . . . . . . . . . . . . . . . . . 22

2.3 Function f computing y and producing witness w on input x . 22

3.1 Coq Code for Reification . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Extracted OCaml Code from the Coq Code . . . . . . . . . . . . 37

4.1 Scrutineers, in green jacket, observing the ballot counting . . . 56

4.2 Margin Function/Matrix (Graph Interpretation) . . . . . . . . . 59

4.3 Generalised Margin (Graph Interpretation) . . . . . . . . . . . . 63

4.4 Ballot Representation . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Experimental Result (Coq Unary Natural Number, Slow) . . . . 78

4.6 Experimental Result (Haskell Native Integer, Slow) . . . . . . . 79

4.7 Computation of Winner (Without Certificate, Fast) . . . . . . . . 80

4.8 Computation of Winner (With Certificate, Fast) . . . . . . . . . . 81

5.1 Experimental Result . . . . . . . . . . . . . . . . . . . . . . . . . 108

xix

https://www.e-voting.cc/en/it-elections/world-map/
https://www.e-voting.cc/en/it-elections/world-map/


xx LIST OF FIGURES



Chapter 1

Introduction

The best weapon of a dictatorship
is secrecy, but the best weapon of
a democracy should be the
weapon of openness.

Niels Bohr

1.1 Problem Statement

A democracy can be best described as a system where all eligible voters have
equal rights to express their opinion(s) on different matters. One of the most
important example of expressing opinion is by holding election to elect the
leader of country. During the election, all eligible voters express their opinion
on a paper, known as ballot, in a manner, depending on the voting method,
which reflects their true intention. For example, if the voting method is ranked
voting (preferential voting), the voters rank the candidates according to their
preference, and if the method is first past the post, each voter selects one can-
didate by marking against the candidate name on the ballot. Later, once the
ballot cast finishes, a candidate is elected as a winner from the participating
candidates by combing the choices of all the voters. The paper ballot method
works great, except it is very time consuming, expensive, error prone, and not
very inclusive for disabled voters such as the visually impaired. In order to
solve the various problems posed by paper ballot, many countries are adopt-
ing electronic voting as an alternative. Electronic voting is getting popular
in many countries, and the reason for its popularity is cost-effective, faster
result, high voter turn out, and accessible for disabled voters. Undeniably,
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2 Introduction

electronic voting has helped, for example, Australia to ease the logistic chal-
lenges of elections because of its massive land size and sparse population and
save millions of dollars. In addition, it has helped India, the second most pop-
ulous country with 900 million eligible voter, to declare 2019 election with 67
percent voter turn out (roughly 600 million) in 2 days, and Estonia, a labour
shortage country, has saved thousands of man hours, 11,000 working days,
by using electronic voting [Est].

Despite all these benefits, electronic voting is an arduous effort because
a minuscule possibility of going anything wrong in software or hardware
could lead to an undesirable situation [Lewis et al.], [Halderman and Teague,
2015], [Aranha et al., 2019], [Feldman et al., 2007]. The nature of (electronic)
data and the ease of its manipulability/misinterpretation causes electronic
voting many problems, which are not present in paper ballot elections. These
problems make it perfectly susceptible to delivering wrong and unverifiable
results [Wolchok et al., 2010]. For instance, if a software program used in elec-
tronic voting for reading the ballots has byte order bug, or even if it depends
on some other software which has byte order bug (the data is supposed to
read from left to right, but software is reading right to left), then the inter-
pretation of a ballot would be completely different from what the voter had
in mind. More often than not, these software programs are configured incor-
rectly [Kohno et al., 2004] and run at the top of (untrusted) operating systems
and hardware. Usually, operating systems have millions of lines of code (for
example, Linux has 15 millions lines) which exposes a large attack surface
and could be exploited, possibly by the current government or foreign coun-
tries, for illegal gain. The worst, these software and hardware are commercial
in confidence and treated as a black-box, and, most often, their source code
or design is not open for public scrutiny [Australian Electoral Commission,
2013]. In addition, these software programs take a list of ballots and produce
the result without producing any evidence about the correctness of result.
As a consequence, from casting the ballot electronically to declaring winner
based on the cast (electronic) ballot, the whole process lacks basic assump-
tions of democracy such as transparency, genuineness, and verifiability.

In order to make the electronic voting process genuine and trustworthy,
the electronic voting research community has recognised some must-have
properties of electronic voting protocol [Küsters et al., 2011], [Benaloh and
Tuinstra, 1994], [Delaune et al., 2010a], [Bernhard et al., 2017]:

• Correctness: The produced results are correct and convincing to all leav-
ing no ground for suspicion.
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• Coercion-resistance: A voter can not cooperate with a coercer to prove
anything about her choices.

• Eligibility: Only eligible voters can cast a ballot.

• Privacy: All the votes must be secret, and a voter should not be able to
convince anyone the value of her vote.

• End-to-end Verifiability: Any independent third party should be able
to verify the final outcome of election based on cast ballots. It can be
further divided into three sub-categories:

– Cast-as-intended: Every voter can verify that their ballot was cast
as intended.

– Collected-as-cast: Every voter can verify that their ballot was col-
lected as cast.

– Tallied-as-cast: Everyone can verify the final result on the basis of
the collected ballots.

In this thesis, we focus on privacy, correctness, coercion-resistance, and
tallied-as-cast, the third part of end-to-end verifiability, property of an elec-
tion. Furthermore, we assume that the first two properties of end-to-end
verifiability, cast-as-intended and collected-as-cast, hold for an election. Cast-
as-intended is a verification method that is used to audit the front end voting
software, also known as voting client software, to make sure that it is not
modifying the options of voters. In a nutshell, the cast-as-intended is assur-
ance to a voter that front-end software is transparent and her vote is recorded
according to her intent. Cast-as-intended is an active area of research in its
own right [Galindo et al., 2015], [Marky et al., 2018], [Cortier et al., 2019];
however, it is not the focus of this thesis. Similarly, collect-as-cast is a notion
related to the voters to make sure that the ballots appearing on the bulletin
board are indeed the ballots that cast during the election. A consequence
of collected-as-cast notion is that any attempt to change or delete the ballots
from the bulletin board would be detected. This notion is indeed a crucial
one and works as a bridge between the cast-as-intended and tallied-as-cast
notions. However, it is related to voters’ behaviour; hence, the reason for
assumption. Moreover, assuming these two notions, cast-as-intended and
collected-as-cast, help us in isolating the irrelevant details and pave a way to
focus more on the complex problem of counting, i.e. tallied-as-cast.



4 Introduction

1.2 Research Motivation and Contribution

Given the potential advantages of electronic voting, we need to address the
correctness, privacy, and verifiability concerns for its widespread adoption.
This thesis sets out to address these concerns of electronic voting. The ques-
tions we asked ourselves were:

1. Can we implement a vote counting protocol with a "guarantee" (maxi-
mum possible assurance that we can get about software programs with
respect to some specification) that the resulting implementation is cor-
rect and practical enough to count millions of ballots in a real-life elec-
tion (Correctness)?

2. Can we produce the result by counting encrypted ballots without re-
vealing its content, and at the same time, assuring everyone that the
result produced is only based on "valid" ballots, and "invalid" ones have
been discarded (Privacy and Coercion-resistance)?

3. Can we decouple the verifiability from the implementation details of
a vote counting software program, i.e. generating enough evidence so
that any independent auditor can ascertain the outcome of an election
without trusting the implementation of the vote counting software pro-
gram used to conduct the election (Verifiability)?

In order to answer these questions, at first we need two things: (i) a vot-
ing protocol and (ii) a tool to implement the voting protocol and prove the
correctness properties of the implementation. Our choice of voting protocol
is the Schulze method [Schulze, 2011] and the tool is Coq [Bertot et al., 2004]
theorem prover for implementing and proving the correctness of the Schulze
method. Even though the Schulze method is not used in any democratic elec-
tion to public office, it is one of the most popular method to elect candidates
for various organisations, e.g. Debian, GnuPG, KDE, etc., over the Internet
and political groups, e.g. pirate party of Australia, Belgium, Brazil, Germany,
etc1. One of the major reason for its popularity is that it has many desirable
properties. While no preferential voting scheme can guarantee all desirable
properties that one would like to impose due to Arrow’s theorem [Arrow,
1950a], the Schulze method offers a good compromise, with a number of im-
portant properties already established in Schulze’s original paper. Amongst
the various properties, the Schulze method satisfies the resolvability criterion,

1https://en.wikipedia.org/wiki/Schulze_method#Users

https://en.wikipedia.org/wiki/Schulze_method##Users


§1.2 Research Motivation and Contribution 5

i.e. it elects a single winner under the assumption that number of voters are
much larger than number of candidates (and in case of a tie, when there is
more than one winner, a random vote can be selected to declare the winner.
However, our formalisation has not taken the randomness into account, so it
can produce more than one winner).

Coq is a theorem prover (proof assistant) based on the Calculus of In-
ductive Construction (CIC) [Coquand and Huet, 1988] [Coquand and Paulin,
1988]. The calculus of inductive construction is a highly expressive formal
system (type system) which allows "proof" terms and "computation" terms to
live in the same universe (level). Moreover, during the proof development,
it provides step by step feedback to the user and the possibility to automate
proofs by writing custom tactics using the Ltac [Delahaye, 2000]. In addition,
Coq proofs can be extracted into the Haskell, OCaml, and Scheme.

Now that we have the voting protocol (Schulze method) and the tool (Coq
theorem prover), we demonstrate that it is possible to achieve correctness, pri-
vacy, coercion-resistance, and (tallied-as-cast) verifiability in electronic voting.
We achieve the following:

• Correctness by formally specifying the Schulze method and prove its
correctness properties inside the Coq theorem prover. Coq has a well-
developed extraction facility that we use to extract proofs into OCaml
programs, and using these extracted OCaml programs, we have counted
the ballots from an election to produce the result.

• Privacy and Coercion-resistance by encryption. We use homomorphic en-
cryption to compute the final tally without decrypting any individual
ballot. The encryption hides the preference of voters, facilitating ballot
privacy and preventing any possible coercion.

• Verifiability by tabulating the relevant data of an election (which we
call the scrutiny-sheet/certificate). Achieving verifiability in a plain-
text ballot counting is fairly straightforward. To achieve verifiability in
encrypted ballot counting, we augment the scrutiny sheet with zero-
knowledge proofs for each claim we make during the counting, which
can later be checked by any auditor.

In addition to demonstrating correctness, privacy, and verifiability, we
also develop a formally verified certificate checker. Moreover, we show that
our implementation adheres to the various properties established by Schulze
in his original paper.
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Formally Verified Checker: Third party independent election audit based on
scrutiny sheet data is a crucial step towards establishing the trust in the sys-
tem. However, auditing the scrutiny sheet of an election involving encrypted
ballots is not straightforward in comparison to an election with plaintext bal-
lots. In general, auditing the scrutiny sheet of an election involving plaintext
ballots simply requires the knowledge of basic arithmetic, e.g. addition, sub-
traction and multiplication, and virtually anyone can audit the election based
on the data produced in the scrutiny sheet by using a calculator or by writing
a simple program in her preferred language. However, an encrypted ballot
election scrutiny sheet involves various cryptographic concepts (homomor-
phic encryption, zero-knowledge proof, commitment scheme, etc.) which are
accessible to very few voters, mainly cryptographers, so auditing it requires
a deep understanding of cryptographic principals. To ease this situation, we
develop a formally verified certificate checker as a proof of concept to auto-
mate the audit of an election, conducted on encrypted ballots. Having said
that, our certificate generated by encrypted ballots is very complex, and for-
malizing all the cryptographic primitives involved would be fairly time con-
suming, so we develop a proof of concept formally verified certificate checker
for the International Association of Cryptologic Research (IACR) 2018 elec-
tion scrutiny sheet (the IACR scrutiny sheet is relatively simple compared to
our certificate).

Properties of Schulze Method: We prove two properties, Condercet winner and
Reversal symmetry amongst many, of the Schulze method inside the Coq the-
orem prover (ongoing work). These properties could be seen as an ultimate
stress testing for an implementation, and we demonstrate that our implemen-
tation of the Schulze method follows two important properties, i.e. Condercet
winner and Reversal symmetry. Ideally, we would like to prove that our
implementation follows all the properties established in the Schulze’s paper
[Schulze, 2011].

1.3 Cryptographic Blackbox

Our primary goal is to achieve privacy (using encryption) and verifiability
(using zero-knowledge proof) in electronic voting using cryptographic prim-
itives (but not the verification of primitives itself). To achieve this goal, we
take an axiomatic approach and assume the existence of cryptographic prim-
itives inside Coq. Moreover, we assume the axioms about their correctness
behaviour, e.g. decryption is left inverse of encryption. These primitives, in
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general, provide functionality of generating a random permutation, encrypt-
ing a plaintext data, decrypting a ciphertext data, producing commitment of a
value, constructing a zero-knowledge proof, and verifying a zero-knowledge
proof. Later, in extracted OCaml code from Coq code, these functions are
instantiated with Unicrypt [Locher and Haenni, 2014] functions2.

1.4 Publication

The chapters, or some part of it, of this thesis are based on the following
papers:

1. Pattinson D., Tiwari M. (2017) Schulze Voting as Evidence Carrying
Computation. In: Ayala-Rincón M., Muñoz C. (eds) Interactive Theo-
rem Proving. ITP 2017. Lecture Notes in Computer Science, vol 10499.
Springer, Cham. https://doi.org/10.1007/978-3-319-66107-0_26

2. Bennett Moses L., Goré R., Levy R., Pattinson D., Tiwari M. (2017) No
More Excuses: Automated Synthesis of Practical and Verifiable Vote-
Counting Programs for Complex Voting Schemes. In: Krimmer R.,
Volkamer M., Braun Binder N., Kersting N., Pereira O., Schürmann C.
(eds) Electronic Voting. E-Vote-ID 2017. Lecture Notes in Computer Sci-
ence, vol 10615. Springer, Cham. https://doi.org/10.1007/978-3-319-68687-5_
5

3. Ghale M.K., Goré R., Pattinson D., Tiwari M. (2018) Modular Formali-
sation and Verification of STV Algorithms. In: Krimmer R. et al. (eds)
Electronic Voting. E-Vote-ID 2018. Lecture Notes in Computer Science,
vol 11143. Springer, Cham. https://doi.org/10.1007/978-3-030-00419-4_4

4. Haines T., Pattinson D., Tiwari M. (2020) Verifiable Homomorphic Tal-
lying for the Schulze Vote Counting Scheme. In: Chakraborty S., Navas
J. (eds) Verified Software. Theories, Tools, and Experiments. VSTTE
2019. Lecture Notes in Computer Science, vol 12031. Springer, Cham.
https://doi.org/10.1007/978-3-030-41600-3_4

2Formalising the whole cryptographic stack used in our project would be very time con-
suming (probably a PhD itself), but it would be worth trying. Although, we have formalised
the (ElGamal) encryption, and decryption inside Coq, but we still are very far from achieving
the goal of fully verified cryptographic stack. We leave the formalisation of cryptographic
primitives for future work (work in progress).

https://doi.org/10.1007/978-3-319-66107-0_26
https://doi.org/10.1007/978-3-319-68687-5_5
https://doi.org/10.1007/978-3-319-68687-5_5
https://doi.org/10.1007/978-3-030-00419-4_4
https://doi.org/10.1007/978-3-030-41600-3_4
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5. Thomas Haines, Rajeev Goré, and Mukesh Tiwari. 2019. Verified Veri-
fiers for Verifying Elections. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’19). As-
sociation for Computing Machinery, New York, NY, USA, 685–702. DOI:https:
//doi.org/10.1145/3319535.3354247

Part of chapter 2 is based on No More Excuses: Automated Synthesis of Practical
and Verifiable Vote-Counting Programs for Complex Voting Schemes, chapter 4 is
based on Schulze Voting as Evidence Carrying Computation, chapter 5 is based
on Verifiable Homomorphic Tallying for the Schulze Vote Counting Scheme, and
part of chapter 6 is based on Verified Verifiers for Verifying Elections.

The author of this thesis is the main contributor of the papers: i) Schulze
Voting as Evidence Carrying Computation, ii) No More Excuses: Automated
Synthesis of Practical and Verifiable Vote-Counting Programs for Complex
Voting Schemes, and iii) Verifiable Homomorphic Tallying for the Schulze
Vote Counting Scheme. In the paper Verified Verifiers for Verifying Elections,
he wrote many functions, including binary exponentiation used in ElGamal
encryption and decryption, and proved many key theorems to ensure the
correctness of formalization. Finally, in the paper Modular Formalisation
and Verification of STV Algorithms, he proved a crucial theorem, which was
needed for the code extraction.

1.5 Related Work

There is extensive work that addresses the different issues related of electronic
voting protocols in a symbolic model (pi-calculus [Milner, 1999] [Abadi and
Fournet, 2001], a formal language to describe and analyse the process), but
there are very few, to the best of my knowledge, that have used theorem
provers to implement the voting protocol (counting algorithm) and verify its
correctness properties. Pi-calculus has been used by [Kremer and Ryan, 2005]
and [Delaune et al., 2010b] to model and analyse the various properties, such
as fairness, eligibility, vote-privacy, receipt-freeness and coercion-resistant, of
the protocol FOO developed by [Fujioka et al., 1993]. A general technique
to model the remote electronic protocol and automatically verify its security
properties using pi-calculus has been put forward by [Backes et al., 2008].
Moreover, pi-calculus is used by [Cortier and Smyth, 2011] to analyse the bal-
lot secrecy of [Helios, 2016]. Similarly, [Cortier and Wiedling, 2012] have used
pi-calculus to ascertain properties of the Norwegian electronic voting proto-

https://doi.org/10.1145/3319535.3354247
https://doi.org/10.1145/3319535.3354247
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col. Receipt-freeness and vote-privacy of the Selene voting protocol [Ryan
et al., 2016] have been proved by [Bruni et al., 2017] using Tamarin [Meier
et al., 2013]. Most of these works differ from ours in the sense that their
primary focus is verification of security protocols in Dolev-Yao model [Dolev
and Yao, 1983], whereas our work is more focused on verified implementation
and the verifiability aspect of vote counting.

The closest to our work are [Cochran and Kiniry, 2010] [DeYoung and
Schürmann, 2012], [Pattinson and Schürmann, 2015], [Verity et al.], [Verity
and Pattinson, 2017], and [Ghale et al., 2017]. Business Object Notation (BON)
and Java Modelling Language (JML) have been used by [Cochran and Kiniry,
2010] to formally specify the Java implementation of Irish Proportional Rep-
resentation by Single Transferable Vote (PR-STV) method. They relied on
Extended Static Checking to validate the correctness of their implementation.
Upon further investigation [Cochran and Kiniry, 2013], they improved it by
writing formal specification of candidate, ballot, and ballot box datatypes
using the Alloy model checker [Jackson, 2002]. However, they themselves
pointed out that:

Note that this automated consistency checking is not the same
as providing a full interactive proof of a soundness theorem in
a higher-order logical framework. Such formalisation is an inter-
esting and useful exercise, but we did not do it for this case study.
Instead, checking the dozens of theorem stipulated in law text is
more akin to the kind of validation that we are advocating in this
work. It gives us high confidence, but not a proof, that the me-
chanical formalization is sound and complete.

Linear logic [Girard, 1987] has been used by [DeYoung and Schürmann, 2012]
to model the different entities in electronic voting as a resource. The use of
linear logic makes it very natural to capture the different entities in electronic
voting, depending on their usage, by means of modality, e.g. a voter can cast
only one vote, but she might need to show her photo ID multiple times at
the counting booth. Mathematical proof theory has been used by [Pattinson
and Schürmann, 2015] to treat the vote counting as a mathematical proof,
and in the same vein, [Ghale et al., 2017] have formalised single transferable
vote in Coq and extracted Haskell code from the formalisation. The extracted
Haskell code produces the result and a certificate for a given set of input
ballots. This certificate can be used by any third party to verify or audit the
outcome of the election result. In further research, [Ghale et al., 2018] devel-
oped a formally verified certificate checker using the theorem prover HOL4
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[Slind and Norrish, 2008]. Moreover, they connected the HOL4 proofs to the
formally verified compiler CakeML [Kumar et al., 2014] to get an executable
which was correct with respect to the formal specification of the protocol
down to machine level. However, none of these works consider privacy and
coercion resistance as a key issue in electronic voting, and their method sim-
ply works for plaintext ballots which are susceptible to "Italian" attack [Otten,
2003] [Benaloh et al., 2009]. In a nutshell the "Italian" attack can be described
as follows:

a full disclosure of ballots in preferential voting system carries the
potential danger of ballot identification of a particular voter if the
number of candidates participating in election is large. Suppose
that 40 candidates are participating in an election, then there are
40! (815915283247897734345611269596115894272000000000) com-
plete preference options and many more incomplete preference
options (if it is allowed) for a voter to fill her ballot. Since the
number of options is very large, if a candidate and a voter want
to collude, then the candidate would ask the voter to mark her
first and every other candidate in a certain order (an unique per-
mutation). Later, once the ballots are published on the bulletin
board, then the unique permutation can be used by the candidate
to identify the vote of each voter.

1.6 Outline of the Chapters

• Chapter 2 provides an overview of electronic voting around the world,
problems in general, and rationale for formal verification of election
voting software.

• Chapter 3 provides the overview of concept of Coq theorem prover and
cryptographic primitives.

• Chapter 4 describes the Schulze method, its formal specification, proof
of correctness, experimental results, and scrutiny sheet.

• Chapter 5 describes verifiable homomorphic tally for the Schulze method,
its realisation in the Coq theorem prover, experimental results, instruc-
tions to audit the scrutiny sheet.
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• Chapter 6 focuses on the notion of software independence, and sketches
details for the formalisation of cryptographic concepts involved in the
certificate generated by encrypted ballots.

• Chapter 7 puts forward the idea of machine checked properties of elec-
tronic voting schemes and describes a couple of the properties, Con-
dercet winner and reversal symmetry, of the Schulze method.

• Chapter 8 concludes the thesis, and some possible direction of future
work.

1.7 Trivia

Before 1856, Victoria and NSW held their elections to elect its democratic
representative in pubs where it was legal for candidates to offer beer to voters
to influence their decision!

Figure 1.1: Election held in 1855 in Victoria, Australia was conducted in pub!
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Chapter 2

Background

People shouldn’t be afraid of
their government. Governments
should be afraid of their people.

Alan Moore, V for Vendetta

Counting ballots by hand is a tedious, error prone, slow, and costly pro-
cess. For example, the Senate election conducted in Western Australia in
September 2013 was declared void by the high court because of the loss of
1370 votes. It was re-conducted in April 2014 at the cost of 20 Million AUD
with additional delay in results [Aus]. Before introduction to electronic voting
machines in India, it used to take months to declare the result. As a conse-
quence, many countries are now adopting electronic voting to alleviate the
problems introduced by hand counting. The world can be divided into five
broad categories according to the usage of electronic voting [Evo] (Figure 2.1):
i) No electronic voting (Grey Area), ii) Discussion and/or voting technology
pilots (Yellow Area), iii) Discussion and concrete plans for Internet voting
(Orange Area), iv) Ballot scanners, Electronic Voting Machines, and Internet
Voting (Green and Dark Green), v) Withdrawn voting technology because of
public concern (Red Area).

Chapter Outline: In section 2.1, we discuss the major concern in elec-
tronic voting, bugs in the software/hardware, by high lighting the state of
electronic voting in Australia, Germany, India, and Netherlands. In the fol-
lowing section 2.2, we give two anecdotes that how formal verification helped
in achieving the correctness and eliminating bug in CompCert [Leroy, 2006],
a formally verified C compiler, and Athelon, a microprocessor designed by
Advanced Micro Devices (AMD), with the emphasis that we should formally

13
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No plans 

Discussion  
and/or voting technology pilots 

Discussion 
concrete plans for Internet voting 

Internet voting (legally binding) 
(also used with other voting technologies) 

Stopped use of voting technologies 

Ballot scanners and/or  
Electronic Voting Machines (legally binding) 

 
This map of electronic voting is based on research conducted by E-Voting.CC and reflects the status quo of electronic voting at 
the beginning of 2015. The information is subject to change and E-Voting.CC can not be held liable for the correctness of the 
provided information. The map is the intellectual property of E-Voting.CC. To use this map, ask for permission (email to 
office@e-voting.cc) and ensure a correct citation. 
 

World Map of Electronic Voting 
Source:  
http://www.e-voting.cc/ 
en/it-elections/world-map/ 

Figure 2.1: World map of Electronic Voting (source: https://www.e-voting.cc/
en/it-elections/world-map/)

verify the software programs used in electronic voting to alleviate the con-
cerns of software/hardware bug. Section 2.3 emphasizes that formal verifica-
tion alone is not enough to establish the trust and puts forward the concept
of scrutiny sheet (2.3.1), which can be used independently to attest the result
of an election, to achieve verifiability. Finally, we summarize in the section 2.5
by emphasizing that formal verification and verifiability, both are needed to
ensure the trust in electronic voting.

2.1 Electronic Voting

Electronic voting is projected as a step towards the future with many benefits,
such as increased voter turnout, faster result, accessible to everyone including
challenged voters, and reduced carbon footprint (for each national election,

https://www.e-voting.cc/en/it-elections/world-map/
https://www.e-voting.cc/en/it-elections/world-map/
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India saves about 10,000 tonnes of the ballot paper by using electronic voting
machines). There is no doubt that electronic voting has many advantages over
paper ballots, but it is certainly not flawless. Electronic voting makes the pro-
cess faster, but it has its own layer of added complexities which creates trust
issues amongst voters. For this reason, some countries who were the early
adopters were also the early abandoner, e.g. Germany, and The Netherlands
(countries in red color in the world map 2.1).

Germany: In 2005 German election, two voters filed a case in the Ger-
man Constitutional Court (Bundesverfassungsgericht) because their appeal to
scrutinize the election was not heeded by the Committee. They argued that
using electronic voting machines to conduct the election was unconstitutional.
Furthermore, they added that these machines could be hacked, hence results
of the 2005 election could not be trusted on the grounds of public examinabil-
ity of elections according to German Constitution (Basic Law for the Federal
Republic of Germany) [Ger]. The Court noted that, under the constitution,
elections are required to be public in nature [Ger]:

The principle of the public nature of elections requires that all
essential steps in the elections are subject to public examinability
unless other constitutional interests justify an exception. Particular
significance attaches here to the monitoring of the election act and
to the ascertainment of the election result.

In its verdict, the court did not rule out or prevent the usage of electronic
voting machines, but suggested to make the process more transparent and
trustworthy [Ger]:

The legislature is not prevented from using electronic voting ma-
chines in the elections if the constitutionally required possibility
of a reliable correctness check is ensured. In particular, voting ma-
chines are conceivable in which the votes are recorded elsewhere
in addition to electronic storage. This is for instance possible with
electronic voting machines which print out a visible paper report
of the vote cast for the respective voter, in addition to electronic
recording of the vote, which can be checked prior to the final bal-
lot and is then collected to facilitate subsequent checking. Monitor-
ing that is independent of the electronic vote record also remains
possible when systems are deployed in which the voter marks a
voting slip and the election decision is recorded simultaneously,
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or subsequently by electronic means in order to evaluate these by
electronic means at the end of the election day.

The Netherlands: The Netherlands was among a few countries who
adopted electronic voting in the early nineties (1990), but it did not go very
well in the long run and was abolished in 2008 [Jacobs and Pieters, 2009].
The reason for abolishing the electronic voting was that the voting machines
used in elections were susceptible to many attacks, and the results of elec-
tions conducted using these machines were not publicly verifiable. Besides,
a Dutch public foundation, Wij vertrouwen stemcomputers niet (We do not
trust voting computers), demonstrated that the e-voting machines used in the
election leaks enough information to guess the choice of a voter at a distance
of 20 to 30 meters from the polling booths [Net].

Germany and The Netherlands are some of the rare cases where elec-
tronic voting was withdrawn because it was not able to replicate the same
trust environment as created by paper ballot systems whereas Australia, and
India continued with electronic voting despite having the concerns expressed
by researchers about the security of system.

India: India, one of the largest democracies in world, uses electronic vot-
ing machines (also known as EVMs) for national and state level elections de-
spite the fact that many political parties have raised security concern against
them. Moreover, it has already been shown in [Wolchok et al., 2010] that it
is possible to manipulate the election results. In their attack, they replaced
the parts of electronic voting machine with malicious look alike components.
These components were capable of receiving instruction over wireless com-
munication. As a result, any malicious attacker can control these components
from nearby vicinity by sending instructions over wireless channel by using
a simple hand-held device and can manipulate the results in their favour 1.
India is mainly criticised for keeping the design of electronic voting machines
a closely guard secret (security by obscurity). However, it is not impossible
to get access of these machines as shown by [Wolchok et al., 2010]. The worst
part, the design of these machines were never audited by any independent
third party.

Australia: In March, 2015 state election of New South Wales, Australia,
the Internet voting system, iVote, was used and 280,000 votes were cast through
it. NSW Election commissioner claimed that it was:

1https://indiaevm.org/
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It’s fully encrypted and safeguarded, it can’t be tampered with,
and for the first time people can actually after they’ve voted go
into the system and check to see how they voted just to make sure
everything was as they intended [NSW].

The voting on iVote opened on Monday March 16 and continued until March
28. On 22 March, two security researchers, Vanessa Teague and J. Alex Hal-
derman, announced that iVote has critical security bug, and they demon-
strated that it was good enough to steal any ballot. From their paper [Hal-
derman and Teague, 2015]:

While the election was going on, we performed an independent,
uninvited security analysis of public portions of the iVote sys-
tem. We discovered critical security flaws that would allow a
network-based attacker to perform downgrade-to-export attacks,
defeat TLS, and inject malicious code into browsers during voting.
We showed that an attacker could exploit these flaws to violate bal-
lot privacy and steal votes. We also identified several methods by
which an attacker could defeat the verification mechanisms built
into the iVote design.

Basically, New South Wales ran an online election for 6 days on bug-ridden
software program which was susceptible to many attacks with a possible
outcome of tampered ballot without anyone noticing it.

We do not have to think very hard to figure out the reasons for these
debacles. There are various factors for these debacles, but one of the most
common denominator among all these debacles, which contributed signifi-
cantly, is the software/hardware used in the election process had numerous
bugs. But this begs the question: why various governments were (Germany,
Netherlands)/are (Australia, India) using such poor quality software pro-
grams in the first place for conducting elections? In general, no entity related
to government or electoral commission develops the software programs for
electronic voting, and predominantly it is outsourced to companies having
experience in electronic voting software development. Most of these compa-
nies produce poor quality software because of unrealistic schedule, lack of
proper software testing practices, lack of technical knowledge, etc. In the re-
port, [Lewis et al.] stated in the source of the problem of SwissPost debacle
as:
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Nothing in our analysis suggests that this problem was introduced
deliberately. It is entirely consistent with a naive implementation
of a complex cryptographic protocol by well-intentioned people
who lacked a full understanding of its security assumptions and
other important details. Of course, if someone did want to intro-
duce an opportunity for manipulation, the best method would be
one that could be explained away as an accident if it was found.
We simply do not see any evidence either way.

Moreover, more often than not, these software programs are closely guarded
secrets and their source code in not open for public scrutiny because of com-
mercial interests of companies [Australian Electoral Commission, 2013] in-
volved in the process. Overall, the whole process lacks transparency, which
violates the fundamental principals of democracy, i.e. openness.

The process of turning an idea into a concrete software, also known as
software development process, involves requirement gathering, software de-
sign, implementation, testing, and maintenance. During this whole process
of software development, there are various factors which affect the quality of
software. However, throughout this entire software development (and main-
tenance life) cycle, software testing is the only mechanism for quality assur-
ance, but it is not enough for instilling the confidence in software that it is
bug free as stated by Edsger W. Dijkstra [Dijkstra, 1972]:

Program testing can be used to show the presence of bugs, but
never to show their absence!

In the next section, given the mission critical importance of electronic
voting software, we will discuss that software testing is not sufficient to
achieve the software trustworthiness [Nami and Suryn, 2013], and we should
prove the correctness of these software by using formal verification techniques
[Beckert et al., 2014]. Furthermore, we will argue that having a formal ver-
ification software development methodology [Muñoz et al., 2018] would al-
leviate the bug problem with two case studies, CompCert [Leroy, 2006] and
Athelon, as a supporting evidence. The success of these case studies should
be a good motivation for us to adopt formal method for electronic voting
software development.
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2.2 Correctness: Formal Method Approach

Formal verification has been successfully applied in many areas, and some
of the notable software programs are verified C compiler CompCert [Leroy,
2006], verified ML compiler CakeML [Kumar et al., 2014], verified LLVM
Vellvm [Zhao and Zdancewic, 2012], verified cryptography Fiat-crypto [Erb-
sen et al., 2019], verified operating system CertiKOS [Gu et al., 2011] and
SeL4 [Klein et al., 2009], verified theorem prover Milwa [Myreen and Davis,
2014], verified crash resistant file system FSCQ [Chen et al., 2015], verified dis-
tributed system Verdi [Wilcox et al., 2015], mechanisation of Four Color Theo-
rem [Gonthier, 2008], Fundamental Theorem of Algebra [Geuvers et al., 2002],
and Kepler Conjecture [Hales et al., 2015]. None of these are toy projects, and
it has taken years to develop and verify them. Also, some of these products
are used commercially, e.g CompCert is used by the AIRBUS and the MTU
(Motoren und Turbinen Union) Friedrichshafen2, Fiat-crypto is used in the
Google’s BoringSSL library for elliptic-curve arithmetic3.

Based on the cost and efforts of these projects, the very basic question
to ponder about using formal method to develop software: does formal ver-
ification produce bug free software? We give two anecdotes to answer this
question. One of the most basic way to break the software is generating ran-
dom tests and throwing it to the software under consideration [Miller et al.,
1990]. [Yang et al., 2011] developed random C program generator and used
these programs to test various compilers. In three years of its usage, they have
found 325 unknown bugs in various compiler including GCC4 and LLVM5;
however, they could not find any bug in the verified component of CompCert.
In their own words [Yang et al., 2011]:

The striking thing about our CompCert results is that the middle-
end bugs we found in all other compilers are absent. As of early
2011, the under-development version of CompCert is the only
compiler we have tested for which Csmith cannot find wrong-code
errors. This is not for lack of trying: we have devoted about six
CPU-years to the task. The apparent unbreakability of CompCert
supports a strong argument that developing compiler optimiza-
tions within a proof framework, where safety checks are explicit
and machine-checked, has tangible benefits for compiler users.

2https://www.absint.com/compcert/
3https://deepspec.org/entry/Project/Cryptography
4https://embed.cs.utah.edu/csmith/gcc-bugs.html
5https://embed.cs.utah.edu/csmith/llvm-bugs.html
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Formal verification is not only helpful in proving the correctness, but
sometimes, it helps in uncovering the bugs in design of software. ACL2, a
Lisp based theorem prover, helped AMD to uncover a floating point bug in
Athelon processor which has survived 80 million floating point test cases! In
the paper, Milestones from the Pure Lisp theorem prover to ACL2 [Moore,
2019], Moore, one of the developer of ACL2, writes:

When AMD developed their translator from their register-transfer
language (in which designs are expressed) to ACL2 functions they
ran 80 million floating point test cases through the ACL2 model
of Athlon’s FMUL and their own RTL simulator. However, the
subsequent proof attempt exposed bugs not covered by the test
suite. These bugs were fixed before the Athlon was fabricated.

There are numerous instances where formal verification was very useful,
and it caught the lurking bugs in design in early stage which could never have
been found by testing. For electronic voting software used in democratic elec-
tion, where we can not afford to lose a single ballot or miscalculation or any
undefined behaviour, should be developed using formal method techniques.
In order to ascertain that the formal verification of voting software has been
carried out diligently, one therefore needs to

1. read, understand, and validate the formal specification: is it error free,
and does it indeed reflect the intended functionality?

2. scrutinize the formal correctness proof: has the verification been carried
out with due diligence, is the proof complete or does it rely on other
assumptions?

The above mentioned requirements can be met by publishing or open sourc-
ing both the specification and the correctness proof so that the specification
can be analysed, and the proof can be replayed (inside the tool used for ver-
ification) by any independent third party. Both need a considerable amount
of expertise, but it can be carried out by (ideally more than one group of)
domain experts.
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2.3 Verifiability: Trust in Electronic Voting

Given that elections are the cornerstone of our democracy, electronic vot-
ing software programs should be considered as mission-critical systems, and
therefore they should be developed with highest possible rigour. Formal ver-
ification is useful in producing the bug free code, but we solely can not es-
tablish the trust in the system based on argument of formal verification. The
reason is that how would a voter:

• ascertain that it was indeed the verified program that was executed in
order to obtain the claimed results?

• ensure that the computing equipment on which the (verified) program
is executed has not been tampered with or is otherwise compromised?

Recall that the notion of (end-to-end) verifiability in electronic voting
is ascertaining the outcome of an election without trusting any machine in-
volved in the process. In general, formal verification is certainly a necessary
thing in developing the software programs for electronic voting, but it is not
sufficient because it does not provide verifiability. Combing both verifica-
tion of the software program that counts votes, and verifiability of individual
counts are critical for building trust in an election process. These two facts,
verification and verifiability, can also be viewed as the two sides of a coin from
the perspective of two major stake holders of a democracy: i) electoral com-
mission/government, and, ii) voters/participants. Using a formally verified
software program to count the ballots would increase the confidence of an
electoral commission that it has announced and published the correct result.
Moreover, the published result always verifies, which boost the confidence of
voters in the system.

Given the mission-critical importance of correctness of vote-counting,
both for the legal integrity of the process and for building public trust, it
is crucial to replace the currently used black-box software for vote-counting
with a counterpart that is both verified and produces evidence which can
later be used to certify the outcome of election [Bernhard et al., 2017] [Rivest,
2008].
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2.3.1 Scrutiny Sheet

A scrutiny sheet is the tabulation of relevant data to verify the result of elec-
tion. The idea of requiring that computations provide not only results but
also a witness attesting to the correctness of the computation is not new
and has been put forward in [Sullivan and Masson, 1990] [McConnell et al.,
2011] [Arkoudas and Rinard, 2005], and, in the context of electronic voting
by [Schürmann, 2009] [Pattinson and Schürmann, 2015]. In general, the idea
of computation is that a computable function f takes an input x and pro-
duces output y (figure 2.2); however, in case of certified computation, the
computable function f on the given input x, not only produces the output y,
but it also produces a witness w for the fact that f (x) = y (Figure 2.3).

Figure 2.2: Function f computing y on input x

Figure 2.3: Function f computing y and producing witness w on input x

As a simple example, below is a certificate which has been generated by a
program which computes the greatest common divisor of two numbers. The
program has produced the certificate (piece of data) on the concrete input 34
and 21:

gcd 34 21
-------------
gcd 21 13
-------------
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.
-------------
gcd 1 0
-------------

1

In order to verify the correctness of the computation of greatest common
divisor, we need to make sure that one of the rules of Euclidean algorithm,
given below, is applicable at each line of the certificate:

1. Rule-zero: ∀ x, gcd x 0 = x

2. Rule-inductive: ∀ x y, gcd x y = gcd y (mod x y)

The same certificate (augmented with rules and variables instantiated) from
certificate-checker perspective.

gcd 34 21 = gcd 21 13 Rule-inductive: x := 34, y := 21, mod 34 21 = 13
---------------------------------------------------------------------
gcd 21 13 = gcd 13 8 Rule-inductive: x := 21, y := 13, mod 21 13 = 8
---------------------------------------------------------------------

.
---------------------------------------------------------------------
gcd 1 0 = 1 Rule-zero: x := 0

Unfortunately, the example we gave, greatest common divisor, is very
simple and not very helpful to put forward the usefulness of certificate in
perspective. However, this approach, generating a certificate to certify the
computation later, is very useful in context of complicated and unverified
programs. One such example is algorithmic library LEDA [Mehlhorn and
Näher, 1995] (Library of Efficient Data Types and Algorithms) written in C++.
Checkers are an integral part of the LEDA which can later be invoked by user
to certify that the result produced by unverified code is correct. Initially, the
checkers came with library were unverified, and Kurt Mehlhorn defended
this decision by admitting that [Alkassar et al., 2014]:

Checkers are simple programs with little algorithmic complexity.
Hence, one may assume that their implementations are correct.
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Later, the checkers [Alkassar et al., 2014] were verified by using VCC [Cohen
et al., 2009], and Isabelle/HOL [Nipkow et al., 2002b]. One advantage of this
approach is that it is easier to formally verify the checker than the algorithm
itself because checkers are very simple in nature, and this approach scales
very well.

One may ask the question that can we follow the same approach for
vote counting, i.e. unverified counting code, and verified checker? The an-
swer is: it depends. If the verified checker validates the result, i.e. it returns
true on the certificate generated by an unverified vote counting program, ev-
erything is fine from every stakeholders’ perspective. However, what about
the situation when the verified checker invalidates the result, i.e. it returns
false on the certificate generated by the unverified vote counting program?
This kind of situation must be dealt carefully by an electoral commission,
and the commission should inspect everything carefully including the vote
counting software and various other thing involved in the process. This in-
spection would definitely be time consuming leading to delay in the result
declaration, cost money leading to increase in the election budget, but more
importantly, it would hamper the confidence of voters, adding more scepti-
cism to public opinion towards the electronic voting [Avgerou et al., 2019]. To
eliminate this kind of problematic situation, we propose: i) a formally verified
vote counting software which produces the result with evidence (certificate),
and ii) formally verified certificate checker. The advantage of this approach is
that the result produced is always correct (modulo specification), a confidence
building measure for electoral commission. Furthermore, the verified checker
would always return true on the evidence (certificate) produced by the veri-
fied vote counting program, confidence booster for voters into the deployed
system.

2.4 Privacy

So far we have argued that given the importance of vote counting software
in an election, we should develop it with highest possible rigour, i.e. formal
verification and open source it for public scrutiny. Furthermore, to increase
the public trust in vote counting process, we should strive for verifiability by
tabulating all the relevant data (scrutiny sheet) on a public bulletin board.
Many jurisdictions follow some derived version of these practises, e.g. ACT
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Electoral Commission6 has published all the ballots and vote counting soft-
ware since 2001, the year electronic voting was introduced (surprisingly, this
year, 2020, ACT Electoral Commission did not publish the vote counting soft-
ware, a step back than forward). However, for preferential voting schemes
publishing all the ballots in plaintext could lead to ballot identification via
Italian attack [Otten, 2003], which we have already discussed in the previ-
ous chapter (see 1.5). This may appear surprising in the first sight, but if we
analyse it more carefully, we can see that verifiability requirement is causing
this privacy issue. Indeed, privacy and verifiability are conflicting require-
ments [Jonker et al., 2013]. On the one hand, (end-to-end) verifiability, in a
broad sense, is about making sure that every voter can see that her ballot is
included in the final tally and the final tally is produced based on all the pub-
lished ballots, while on the other, privacy is about not letting any one link a
ballot to a particular voter, even if that particular voter wants. The only way
to resolve the tension between privacy and verifiability is to use various cryp-
tographic primitives, which hide the data by using encryption (privacy) and
ensure that every claim is accompanied by a mathematical proofs (verifiabil-
ity) (these proofs, commonly known as zero-knowledge-proof, are in form of
data which can be checked by anyone).

The Italian attack may seem far-fetched to the reader; however, a political
scientist, Dr. Kevin Bonham, was able to link 15 ballots, when he was study-
ing the Tasmania Senate election, to its voters by looking at the preferences
[Bonham]. The preferences on these 15 ballots were so rare, amongst all the
cast ballots, that he conjectured that these votes could be a recommendation
from some lobby group or some technological issue. Later, he found the vot-
ers of these 15 ballots on a private Facebook group where one person came up
with a rough order, which eventually led to this particular order after some
refinement. He pointed [Bonham] towards a potential privacy and coercions
issue:

So in theory a coercive person could direct a voter to vote in a
certain way, and then check the files to verify whether anyone in
a booth, or at all, had voted in that way. The coercer could even
choose to "sign" the directed vote with an unlikely combination of
candidates or an unlikely set of repetitions, not affecting the fate
of the vote, to make it more likely that the coerced vote would be
unique in the whole state and not just at booth level. That way if

6https://www.elections.act.gov.au/elections_and_voting/electronic_voting_and_
counting

https://www.elections.act.gov.au/elections_and_voting/electronic_voting_and_counting
https://www.elections.act.gov.au/elections_and_voting/electronic_voting_and_counting
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the vote did not appear, they would know the voter had not voted
as they directed.

We champion, considering the importance of privacy in elections, that
cryptographic methods should be used to hide (encrypt) the preferences in
the ballot of a given voter. Moreover, every claim about the (encrypted) ballot
should be accompanied by mathematical proofs (in form of data) so that the
claims can be verified by any independent third party, including the voter
itself. At this point, we would like to point that cryptography makes the
auditing difficult for general public because of the complex mathematics in-
volved in the process. We believe nonetheless that there would enough voters
and independent auditors, having the knowledge of required cryptographic
schemes, who would be able to audit the election and ascertain the outcome.

2.5 Summary

In this chapter, we argued that to make the electronic voting more trustworthy
and privacy preserving, we need three ingredient:

1. correctness: formal verification of vote counting software

2. verifiability: tabulation of all the relevant data on a public bulletin board

3. privacy: hiding the options of a voter by means of cryptography

The system, by combing these three concepts, would be a formally verified
(encrypted) vote counting software that not only computes the final result but
additionally produces an independently verifiable certificate, which attests
to the correctness of the computation. The major advantage of a certificate-
producing formally verified vote-counting program, all the external parties or
stakeholders can satisfy themselves to the correctness of the count by checking
the certificate. Moreover, we also argued that including a formally verified
certificate checker would boost the confidence of both, electoral commission
and voters.

In the next chapter, we will briefly discuss about the Coq theorem prover
and basic cryptographic primitives which would enable us later in count-
ing encrypted ballots (without revealing any information about the voters’
choice).



Chapter 3

Theorem Prover and Cryptography

All our knowledge begins with
the senses, proceeds then to the
understanding, and ends with
reason. There is nothing higher
than reason.

Immanuel Kant

A proof assistant or theorem prover is a computer program which assists
users in development of mathematical proofs. Basically, the idea of develop-
ing mathematical proofs using computer goes back to Automath (automating
mathematics) [de Bruijn, 1983] and LCF [Milner, 1972]. The Automath project,
1967 until the early 80’s, was initiative of De Bruijn, and the aim of the project
was to develop a language for expressing mathematical theories which can
be verified by aid of computer. Moreover, the Automath was first practical
project to exploit the Curry-Howard isomorphism (proofs-as-programs and
formulas-as-types). DeBruijn was likely unaware of this correspondence, and
he almost re-invented it. The Automath project can be seen as the precur-
sor of proof assistants NuPrl [Constable et al., 1986] and Coq [Bertot et al.,
2004]. Some other notable proof assistants are Nqthm/ACl2 [Kaufmann and
Strother Moore, 1996], PVS [Owre et al., 1992], HOL (a family of tools de-
rived from LCF theorem prover) [Slind and Norrish, 2008] [Harrison, 1996]
[Nipkow et al., 2002a], Agda [Norell, 2009], and Lean [de Moura et al., 2015].

Chapter overview: This chapter is an overview of the Coq theorem
prover and cryptographic primitives. In section 3.1, we give a brief overview
of the theoretical foundation, calculus of construction and calculus of induc-
tive construction, of Coq. In section 3.1.3, we discuss the difference between
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Type and Prop, which is very crucial from program extraction point of view
(the goal of our formalization is not only proving the correctness of Schulze
method but extracting OCaml/Haskell code to count ballots). In section 3.1.4,
we focus on dependent type and how it leads to correct by construction
paradigm by demonstrating a type safe printf function. Section 3.1.5 focuses
on Coq specification language Gallina with an example demonstrating that
why writing proofs using Gallina is difficult and cumbersome, and how it
can be eased by using tactics. Finally, in section 3.1.6, we take philosophical
route to justify that why we should trust in Coq proofs, even though they do
not appear anywhere near to a proof written by a human.

In section 3.2, we give some historical context and modern day usage of
cryptography. In the following section 3.2.1, we describe Group which is the
underlying algebraic structure for the Diffie-Hellman construction (3.2.2). In
the next two sections, we describe the ElGamal encryption (3.2.3) and Homo-
morphic Encryption (3.2.4). In addition, we show the both, multiplicative and
additive, homomorphic property of the ElGamal encryption. We explain the
concept of zero-knowledge proof and zero-knowledge proof of knowledge
in Section 3.2.5. In the next two sections, we discuss sigma protocols (3.2.6),
an efficient way to achieve zero-knowledge proof, and commitment schemes
(3.2.7), a cryptographic protocol to force two mutually distrusting parties to
behave honestly with the explanation of Pedersen commitment scheme based
on discrete logarithm. Finally, we give a brief summary pointing to the re-
sources for theorem proving and cryptography.

3.1 Coq: Interactive Proof Assistant

Coq is an interactive proof assistant (theorem prover) based on the theory of
calculus of inductive construction (CIC) [Paulin-Mohring, 1993] which itself
is an augmentation of the calculus of construction (CoC) [Coquand and Huet,
1988]. The underlying theory of calculus of construction and calculus of in-
ductive construction is (typed) lambda calculus, so before we describe the
calculus of construction and calculus of inductive construction syntax and its
typing judgement, we will take a brief detour to explain the different vari-
ants of lambda calculus starting from untyped lambda calculus and moving
up progressively by adding various abstractions. Later, we will show that
these all variants, including calculus of construction, can be abstracted into
one framework, pure type system (PTS) [Berardi, 1988] [Barendregt, 1992]. In
addition, pure type system can be extended with three rules, inductive data
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type, pattern matching, and recursion to accommodate calculus of inductive
construction.

Lambda calculus was invented by Alonzo Church in the 1930s, and his
motive was to use lambda calculus as a foundation for formal mathematics,
specifically the notion of computable function by means of an algorithm. It is
a simplest programming language having just three constructs, i.e. variable,
application, and abstraction, and the abstract syntax tree of lambda calculus
is:

T = V (* Variables *)
| λ V. T (* Abstraction *)
| T T (* Application *)

Using these three rules, we can construct the lambda terms correspond-
ing to various mathematical notions. For example, we can represent True as
λx.λy.x, False as λx.λy.y, Zero as λ f .λx.x, One as λ f .λx. f x, etc. However,
there is nothing which is stopping us from constructing a lambda term which
has no apparent meaning, e.g. applying a variable x to itself leading to a
lambda term xx. To avoid situation like this, we extend the lambda calcu-
lus with another abstraction called type. Moreover, we add typing judgement
(rule) that dictates which term is well-typed and which one is not. This new
lambda calculus, augmented with type, is known as Simple Typed Lambda Cal-
culus, represented as λ→. The abstract syntax tree for simple typed lambda
calculus is:

T = V (* Type Variable *)
| T → T (* Arrow Type *)

T = V (* Variables *)
| λ V : T . T (* Abstraction *)
| T T (* Application *)

The typing judgement is a relation between type and term in some abstract
typing context Γ. The Γ is a set or list of typing assumption of the form x : A,
meaning term x is of type A. Moreover, Γ ` x : A means that term x has type
A in the context Γ. The typing judgement of Simple Typed Lambda Calculus
has three rules, Var, Abstraction, and Application, to ensure that the terms are
well-typed:
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• Var:
x : A ∈ Γ
Γ ` x : A

• Abstraction:
Γ, x : A ` e : B

Γ ` (λx : A.e) : A→ B

• Application:
Γ ` f : A→ B Γ ` x : A

Γ ` f x : B

Now these three typing judgements reject the term xx because it is not well-
typed term, and this can be inferred from the Application rule. The Applica-
tion rule states that for f x to be a well typed term of some type B, the f must
have a type A → B for some type A and x must have the type A. Following
the Application rule, for xx to be well typed, the x must have an arrow type
A → B and type A simultaneously in some typing context Γ. However, it is
not possible that A = A→ B leading to rejection of the term xx.

Simple typed lambda calculus is great for many practical purposes, ex-
cept it is verbose. Consider a function which takes an input and simply
returns it, also known as identity function. If we extend the type variable set
V with two base type, nat for the type of natural numbers and bool for type
of boolean values, we can represent an identity function on boolean value as
λx : bool.x and on natural number as λx : nat.x. In general, we would have
one identity function per type. We can abstract these types into a type vari-
able, but we need to type these type variables as well to keep everything well
typed. Consequently, abstracting the types over type variable, which itself is
of sort kinds and represented as ∗, leads to Second Order Lambda Calculus (λ2),
and now the identity function over different types can be abstracted into a
single function: λα : ?.λx : α.x. There are various other variants or abstrac-
tions of typed lambda calculus, which we would not discuss here, that can be
categorized into:

• Terms depending on terms (λ→)

• Terms depending on types (λ2)

• Types depending on types (λω)

• Types depending on terms (λP)
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All these variations of the lambda calculus can be captured into an uni-
fied framework known as Pure Type System [Berardi, 1988] [Barendregt, 1992].
Unlike the simple typed lambda calculus (λ→) where terms and types live
in two disjoint worlds, pure type system blurs this distinction between types
and terms and allows the dependencies between them. The abstract syntax
of pure type system:

T = V (* variable *)
| C (* constant *)
| T T (* application *)
| λ V : T. T (* abstraction*)
| ∏ V : T. T (* dependent function type *)

The pure type system is parametrized by three specifications: i) set of sorts S,
ii) set of axioms A, and iii) set of rules R such that:

• S is a subset of C, i.e. S ⊆ C.

• A is the set of axioms of form c : s where c ∈ C and s ∈ S, i.e. A ⊆ C× S.

• R is the set of rules of form (s1, s2, s3) such that s1, s2, and s3 ∈ S, i.e.
R ⊆ S× S× S.

The typing judgement for the pure type system, in a typing context Γ, is
defined by following rules (s ranges of S, and x ranges over V with usual
notion of variable capture avoidance):

• Axiom:
c : s ∈ A
Γ ` c : s

• Start:
Γ ` A : s

Γ, x : A ` x : A

• Weakening:
Γ ` A : B Γ ` C : s

Γ, x : C ` A : B

• Product:
Γ ` A : s1 Γ, x : A ` B : s2

Γ ` (∏ x : A. B) : s3
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• Application:
Γ ` F : (∏ x : A. B) Γ ` a : A

Γ ` F a : B [x := a]

• Abstraction:

Γ, x : A ` b : B Γ ` (∏ x : A. B) : s
Γ ` (λx : A. b) : (∏ x : A. B)

• Conversion:
Γ ` A : B Γ ` B′ : s B =β B′

Γ ` A : B′

3.1.1 Calculus of Construction/Inductive Construction

The calculus of construction is a higher order natural deduction style proof
system for constructive proofs where every proof a typed λ-abstractions. Us-
ing the pure type system syntax, it can be expressed as:

S =
{Prop} ∪ {Typei | i ∈N}

A =
{Prop : Type0} ∪ {Typei : Typei+1 | i ∈N}

R = 
(Prop, Typei, Typei) i ∈N

(s, Prop, Prop) s ∈ S
(Typei, Typej, Typemax(i,j))


The sort Prop captures the type of expressions which represent logical propo-
sition, while the sort Type captures the computational content. The calculus
of construction is powerful enough to encode inductive definitions [Pfenning
and Paulin-Mohring, 1989], but one of the main drawback is efficiency of
computation over these encoded inductive definitions. Moreover, some other
properties could not be proven [Geuvers, 2001]. Therefore, [Paulin-Mohring,
1993] introduced Inductive definitions, pattern matching, and fixpoint in the
calculus of construction to make the data structure representation more effi-
cient. Below is the (incomplete) syntax of calculus of inductive construction:

T = ... (* Pure Type System *)
| Ind { V : T := V : T}.V (* inductive definition)



§3.1 Coq: Interactive Proof Assistant 33

| case T of V => T (* pattern matching *)
| fixn{ V : T := T } (* recursion *)

3.1.2 Inductive Type

As we mentioned above that inductive types are basic building block for en-
coding various data structures in the Coq (calculus of inductive construction).
The keyword to declare an inductive data type in Coq is Inductive. For exam-
ple, a length index list whose elements belong to a type A can defined as (also
known as vector):

Inductive Vector (A : Type) : nat -> Type :=
| Nil : Vector A 0
| Cons n : A -> Vector A n -> Vector A (S n).

Now we can define various functions for the vector data structure. For ex-
ample, we can define a function to append two vectors for length n and p
as:

Fixpoint append {A n p} (v : Vector A n) (w : Vector A p)
: Vector A (n + p) :=
match v with
| Nil _ => w
| Cons _ _ a v' => Cons _ _ a (append v' w)
end.

The expressiveness of Coq allows to encode various correctness properties at
type level. In our example of append, the correctness criteria states that ap-
pending a vector of length n with a vector of length p yields a vector of length
(n + p). In other words, the function append is "correct-by-construction".
During our formalisation, we have encoded our vote counting as an induc-
tive data type with various assertions (correctness specification) appearing
at type level. These assertions at the type level enforce that only a "correct"
term of the vote counting inductive data type can be constructed (correct-by-
construction).
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We would like to point that the current underlying theory of Coq has
been extended with co-inductive types [Giménez, 1995]; however, the discus-
sion of co-inductive types is not very relevant for this thesis.

3.1.3 Type vs. Prop: Code Extraction

Every term in Coq has a type, and the term could be either a logical propo-
sition or a computational term. The type of logical proposition is Prop, while
the type of computational term is Type. This distinction between the type of
logical proposition (Prop) and the type of computational term (Type) provides
a mechanism to extract functional program directly from Coq proof script.
During the extraction process [Letouzey, 2008], every term of type Prop is
erased and no longer exists in the extracted code, and only the terms of type
Type are translated into the target language (OCaml/Haskell/Scheme). Be-
cause of this, Coq in general does not allow the case analysis on the terms
(logical objects) of type Prop when the goal is not in Prop, but in certain cases
it can be achieved (we call this special case reification and explain next).

3.1.3.1 Reification

Sometimes it is very natural to express certain properties or definitions in the
Prop than in the Type. Moreover, the definitions/terms in the Prop are self
contained and very intuitive for human understanding. The only problem is
that the terms of the type Prop do not carry any computational content but
only the proof part. However, we can escape this situation if the term of type
Prop is decidable predicate (boolean predicate) and its domain is finite. In
the case of decidable predicate in Prop over a finite domain, we can extract
a witness constructively by enumerating the elements of the finite domain in
a list and using a linear search program that tries the decidable predicate on
every element of the enumerated list.

Figure 3.1 is a reification Coq code which produces a Type level wit-
ness, existsT, from a Prop level witness, exists, by iterating through all the
elements of finite type A (the finiteness of A is captured by the list l) [Firsov
and Uustalu, 2015a]. The program is written in the proof mode, hence the
clutter of tactics, but the basic idea is that we inspect every single element
of A, represented as list l, and look for the element which satisfies the Prop
level assertion, (exists x, In x l ∧ P x = true), and this element is precisely our
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witness which is wrapped in a type level existential, existsT x, P x = true. An-
other way to look at the reification is that the Prop level assertion, (exists x, In
x l ∧ P x = true), merely postulate the existence of an element without telling
which one, and we find this element by looking over all the elements of finite
type A, as we can see it is pretty evident from the extract OCaml code 3.2
from the Coq proof 3.1 (the proofs terms are erased and only computational
terms contribute to the extracted function).

We have used many standard tricks like this to make our formalization
more accessible for human inspection. For example, we have two definitions,
one in Prop and other in Type, of winner, loser, and path. The rationale be-
hind two definitions for the same thing is that Prop definition is very natural
and easy to understand compared to their Type counter part. Furthermore,
we have shown that they are equivalent to each other and used the definitions
in Type for computation. The biggest advantage of this is that anyone can un-
derstand our formalisation by just looking at the Prop definitions, without
looking at the complicated Type definitions, because they are self contained.
Also, there is a nice Coq library ConstructiveEpsilon1 which uses the similar
trick as ours; however, we have not used this library in our formalization.

3.1.4 Correct by Construction: Type Safe Printf

One of the highly sought feature of Coq is dependent type, a type which
is parametrised by value. The expressiveness of dependent type makes it
possible to express specification at type level, and these specifications enable
larger set of logical errors to eliminate at compile time.

The printf in the C programming language is vararg (variable length ar-
gument) function, and it simply trusts the format string to accurately describe
the arguments. However, sometimes this trust can be exploited during the ex-
ecution of a program by deliberately making sure that the format string does
not describe the arguments accurately. The type system of C programming
language is not strong enough to forbid it during the compile time, but if a
language, Coq in our case, has dependent type, this exploit can be averted
during compile time. Therefore, using the expressiveness of dependent type,
we can construct a type-safe version of printf [Pierce, 2004], which is not
amenable to format string exploit.

Our goal is to define a type safe printf function which generates com-

1https://coq.github.io/doc/master/stdlib/Coq.Logic.ConstructiveEpsilon.html
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Require Import Coq.Lists.List.
Import ListNotations.

(* type level existential quantifier *)
Notation "'existsT' x .. y , p" :=

(sigT (fun x => .. (sigT (fun y => p)) ..))
(at level 200, x binder, right associativity,
format "'[' 'existsT' '/ ' x .. y , '/ ' p ']'")

: type_scope.

(* the following shows that a decidable (or boolean valued)
predicate on a finite list
can always be reified in terms of strong existence *)

Theorem reify {A: Type} (P: A -> bool) : forall (l: list A),
(exists x, In x l /\ P x = true) -> existsT x, P x = true.

Proof.
refine (

fix Fn l :=
match l with
| [] => fun H => _

| h :: tl => fun H => _

end).
contradict H. intro.
destruct H as [x [H1 H2]].
firstorder.

assert (Hbiv: {P h = true} + {P h <> true}).
decide equality.
destruct Hbiv as [Htrue | Hfalse].
exists h. assumption.
specialize (Fn tl). apply Fn.
destruct H as [x [H1 H2]].
destruct H1. subst.
firstorder. exists x.
firstorder.

Defined.

Figure 3.1: Coq Code for Reification
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(** val reify : ('a1 -> bool) -> 'a1 list -> ('a1, __) sigT **)

let rec reify p = function
| Nil -> assert false (* absurd case *)
| Cons (h, tl) ->
let hbiv = match p h with

| True -> Left
| False -> Right in

(match hbiv with
| Left -> ExistT (h, __)
| Right -> reify p tl)

Figure 3.2: Extracted OCaml Code from the Coq Code

piler error when the given format string does not describe the arguments
accurately. For example, type-safe-printf "%d %s" "hello Coq" 42 should be a
compiler error because %d is a directive for integer value, but the type of
argument, "hello Coq", is string. In addition, type-safe-printf should print the
arguments when the format string describes the arguments accurately. For
example, type-safe-printf printf "%s %d" "hello Coq" 42 should print the string
"hello Coq 42" because the first directive of format string, %s, and type of
argument, "hello Coq", are aligned. Similarly, the second directive of format
string, %d, is also aligned with the type of argument, 42.

The high level idea is that type-safe-printf should return a type which
is solely constructed based on the format-string, and this return type should
unify with the arguments given to the type-safe-printf. For example, the
return type of type-safe-printf "%s %d" should be String -> Integer -> String
because %s is directive for string and %d is directive for integer. Assuming
that our type-safe-printf behaves in this way, then type-safe-printf "%s %d" 42
"hello Coq" would be a complier error because the type of the first argument,
42, is integer and integer does not unifies with string (the first argument that
type-safe-printf "%s %d" expects is a string).

Now getting into the details, the idea is to split the type-safe-printf ar-
guments into two parts: i) format string, and ii) arguments (values to be
printed). For example, printf "%s %d" "hello Coq" 42 would be split into "%s
%d", and "hello Coq" 42. Based on the format string, we design two functions:
i) a type level function, and ii) a value level function. The type level function
would take a format string and returns a variadic function type, e.g. on a for-
mat string "%s %d", it would return a function with type signature string ->
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Integer -> string. The value level function, whose type signature is constructed
by the type level function, would take the arguments, values to be printed,
as input. If the type of arguments is aligned with the type constructed by
the type level function on the format string, we proceed to print the string,
otherwise we generate compiler error.

To accomplish the functionality of type-safe-function, we defined an ab-
stract syntax tree, f ormat, to make explicit the characters we are interested in
format string. In our case, it is integer (Fint), string (Fstring), or any other
character (Fother) (Fend represents an empty string and is there to hint the
end of a format string).

(* abstract syntax tree *)
Inductive format :=
| Fend : format
| Fint : format -> format
| Fstring : format -> format
| Fother : ascii -> format -> format.

Now we define a function, f ormat_string, that takes a string, which represents
a format string, and returns a f ormat data type. For example, f ormat_string
on the input "%s %d" would return Fstring (Fother ’ ’ (* space character *)
(Fint Fend)).

(* turn the format string into abstract syntax tree *)
Fixpoint format_string (inp : string) : format :=

match inp with
| EmptyString => Fend
| String ("%"%char) (String ("d"%char) rest) =>

Fint (format_string rest)
| String ("%"%char) (String ("s"%char) rest) =>

Fstring (format_string rest)
| String c rest => Fother c (format_string rest)
end.

Eval compute in format_string "%s %d".
= Fstring (Fother " " (Fint Fend))

: format

We will use the f ormat data type as a hinge to construct a function, interp_ f ormat,
that returns variadic function in type scope (type level) and a function, interp_value,
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that returns variadic function in value scope (value level). Moreover, the
type of value level function exactly matches or unifies with the type returned
by interp_ f ormat (in fact, the return type of interp_value is constructed by
interp_ f ormat). This is key step where we hook a value level function with
a type level function to make sure that format string and arguments align
with each other. One of the striking feature of this example is to use a value
(format string) to construct two things, a type level function and a value level
function, and glue them together to get a better security.

(* construct the type level function from abstract syntax tree *)
Fixpoint interp_format (f : format) : Type :=
match f with
| Fint f => Z -> interp_format f
| Fstring f => string -> interp_format f
| Fother c f => interp_format f
| Fend => string
end.

Eval compute in interp_format (Fstring (Fother " " (Fint Fend))).
= string -> Z -> string

: Type

(* value level function whose type is constructed
on fly by interp_format function *)

Fixpoint interp_value (f : format) (acc : string) :
interp_format f :=
match f with
| Fint f' => fun i => interp_value f' (acc ++ of_Z i)
| Fstring f' => fun i => interp_value f' (acc ++ i)
| Fother c f' => interp_value f' (acc ++ String c EmptyString)
| Fend => acc
end.

Finally, we glue all these functions together to define the type-safe-printf func-
tion. In addition, we evaluate it on two inputs: i) type-safe-printf "%d %s"
"hello Coq" 42, and ii) type-safe-printf "%d %s" 42 "hello Coq".

Definition type-safe-printf s := interp_value (format_string s) "".
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Eval compute in type-safe-printf "\%d \%s" "hello Coq"%string 42.
(* Error: The term ""hello Coq"%string" has type "string"
while it is expected to have type "Z". *)

Eval compute in type-safe-printf "\%d \%s" 42 "hello Coq"%string.
(* "\0b101010 \hello Coq"%string. The number
42 is printed in binary *)

3.1.5 Gallina: The Specification Language

The example, type safe printf function, I gave in the previous section was en-
coded in Coq’s specification language Gallina. Gallina is a highly expressive
specification language for development of mathematical theories and proving
the theorems about these theories; however, writing proofs in Gallina is very
tedious and cumbersome. Furthermore, it is not suitable for large proof de-
velopment. In order to ease the proof development, Coq also provides tactics.
The user interacting with Coq theorem prover applies these tactics to build
the Gallina term, which otherwise would be very laborious.

To demonstrate our point, we have written two proofs that addition on
natural number is commutative. First proof, addition_commutative_gallina, is
written using Gallina, while the second proof, addition_commutative_tactics, is
written using the tactics. In general, we write programs directly in Gallina
and use tactics to prove properties about the programs. However, there is no
fixed set of rules, and tactics can be used to write programs with dependent
types (which we have done during this formalization).

(* proof written using the combination of Gallina terms
and tactics. The reason for using tactics is that
in the inductive case, terms are complicated
and difficult to handle *)

Lemma add : forall n m : nat, n + m = m + n.
Proof.

refine (fix Fn n :=
match n as n' return (n = n' -> forall m, n' + m = m + n') with
| 0 =>

fun H => fix Fm m : 0 + m = m + 0 :=
match m as mt return 0 + mt = mt + 0 with
| 0 => eq_refl
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| S m' => eq_ind (0 + m')
(fun t : nat => S m' = S t)
eq_refl
(m' + 0)
(Fm m')

end
| S n' =>

fun H => fix Fm m : S n' + m = m + S n' :=
match m as mt return S n' + mt = mt + S n' with
| 0 => eq_ind_r (fun t : nat => S t = S n')

eq_refl (Fn n' 0)
| S m' => _

end
end eq_refl).

simpl. rewrite <- (Fm m').
rewrite (Fn n' (S m')).
simpl.
repeat apply f_equal.
rewrite (Fn n' m').
exact eq_refl.

Qed.

(* proof written using tactics *)
Lemma addition_commutative_tactics :
forall (n m : nat), n + m = m + n.
intros n m; try omega.

Qed.

3.1.6 Trusting Coq proofs

In general, Coq proofs are nowhere similar to a mathematical proof written
by trained mathematician. Also, these proofs are verbose and fairly long, so
a very fundamental question is: why should we accept or believe in a proof
written in Coq [Pollack, 1998]? Generally, the answer of accepting or trust-
ing Coq proofs is two-fold: i) is the logic, calculus of inductive construction,
sound?, and ii) is the implementation correct? The logic has already been
reviewed by many peers and proved correct using some meta-logic, therefore
the answer of our question about trusting Coq proof hinges on the imple-
mentation. The Coq implementation, written in OCaml, has two parts, the
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type checker (small kernel), and tactic language to build the proofs. We lay
our trust in type checker because it is a small kernel and can be manually
inspected. Furthermore, if there is a bug in tactic language, which often is
the case, build proof would not pass the type checker. Also, we can use the
publicly available proof checkers written by experts and inspected by many
others. In addition, to increase the confidence, there have been efforts to
certify type checker [Appel et al., 2003] [Barras, 1996], verify meta theory of
one proof system in other [Anand and Rahli, 2014], self certificate of theorem
prover [Harrison, 2006]. However, no system can prove its own consistency
(Gödel’s second incompleteness theorem), therefore trusting human judge-
ment is inevitable.

3.2 Cryptography

The word cryptography comes from the two Greek words: kryptós, meaning
hidden, and gráfein meaning to write. As a matter of fact, in the past, hid-
den writing (cryptography), using the symbol replacement, has been used
to conceal messages. For example, the earliest known usage of cryptogra-
phy (symbol replacement) goes back to ancient Egyptian (Khnumhotep II,
1500 BCE); however, the purpose of replacing one symbol by other was not
to protect any sensitive information but to enhance the linguistic appeal. The
first known usage of cryptography to conceal sensitive information goes back
Mesopotamians (1500 BCE), where they used it to hide the formula for pot-
tery glaze. Fast forward, around 100 BCE, Julius Caesar wrote a letter to
Marcus Cicero using a method, now known as Caesar cipher, which would
shift each character in letter by 3 position right with wrapping around, i.e. X
would wrap A, Y would wrap to B, and Z would wrap to C. Decryption was
3 character left shift. Using the tools of modern mathematics, encryption and
decryption in Caesar cipher are modular addition and modular subtraction
(modulo 26), respectively. Overall, cryptography is art and science of making
thing unintelligible from everyone, except the intended recipient.

The modern day cryptography originated in 1970 with two ingenious
ideas, Data Encryption Standard (DES) [Standard et al., 1999], and Diffie-Hellman
Algorithm [Diffie and Hellman, 2006]. Data Encryption Standard, developed
at IBM in 1970, is a symmetric key encryption algorithm which uses the same
key for encryption and decryption. Since its inception, Data Encryption Stan-
dard amassed a bad reputation because of National Security Agency (NSA)
involvement; however, it had a practicality issue: key management. If the
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two parties wanted to communicate securely over an insecure channel us-
ing the Data Encryption Standard, they needed to agree on a common key.
In order to agree on the common key, they needed a secure channel where
they could securely communicate the key. The solution to this problem came
from Diffie-Hellman key exchange where two parties can exchange the key
securely over insecure channel. Moreover, the advent of Diffie-Hellman key
exchange started the whole new area of public key cryptography where en-
cryption and decryption key are different. Although Diffie-Hellman key ex-
change suffers from man-in-the-middle (MITM) attack if used for keys ex-
change in its naivety, e.g. Logjam [Adrian et al., 2015], so precautions must
be taken when using it for key exchange. In 1985, Tahir ElGamal proposed a
new public key encryption (and decryption) scheme [ElGamal, 1985], based
on the Diffie-Hellman algorithm, which is still used predominately to secure
the electronic transactions of the Internet (in fact, Tahir ElGamal is known as
"father of SSL (secure socket layer)").

In this thesis, we are mostly concerned about public key cryptography.
The basic working principles of modern day cryptography is based on the
mathematical principles, e.g. the underlying mathematical principal of Diffie-
Hellman algorithm is hardness of computing discrete logarithms in a finite
abelian group (group of prime order). Moreover, it is no longer just used to
achieving confidentiality or secrecy, but various other things, e.g. integrity,
authentication, non-repudiation, digital signature, digital cash, etc. These
cryptographic concepts involve various algebraic structures and algorithms
to manipulate the object from the algebraic structures.

Now we describe the workings of Diffie-Hellman [Diffie and Hellman,
2006] algorithm, because all the constructions we have used are based on
Diffie-Hellman construction. Before we describe the algorithm, we briefly
sketch the algebraic structure Group because it is underlying algebraic struc-
ture of Diffie-Hellman construction (typically, the underlying structure is
multiplicative group of a finite field). Also, note that our definition is in-
fluenced by theorem-provers/type-theory because we have written the type
signature of group operator ∗ and inverse operator inv.

3.2.1 Group

A group is a set G, with a binary operator ∗ : G → G → G, identity element
e, and inverse operator inv : G → G, denoted as −1, such that the following
laws hold:



44 Theorem Prover and Cryptography

• Associativity: ∀ a b c ∈ G, a ∗ (b ∗ c) = (a ∗ b) ∗ c

• Closure: ∀ a b ∈ G, a ∗ b ∈ G

• Inverse Element: ∀ a ∈ G ∃ a−1 ∈ G, such that a ∗ a−1 = a−1 ∗ a = e.
a−1 is called inverse of a ( inv a).

• Identity: ∀ a ∈ G, a ∗ e = e ∗ a = a

Furthermore, if a group is commutative, i.e. ∀ a b ∈ G, a ∗ b = b ∗ a, we
call it abelian group (in honour of Niels Henrik Abel). In addition, a group is
cyclic group if it can be generated by a single element, also known as generator
of group and denoted as g, by repeatedly applying the group operator ∗ to
itself. Moreover, a group is finite cyclic group if it is cyclic and the cardinality
of the underlying set (carrier set) G is finite. The cardinality is also known as
order of group.

3.2.2 Diffie-Hellman Construction

Now we explain Diffie-Hellman construction. The construction can be di-
vided into two steps:

1. The two communicating parties, say Alice and Bob, agree with shared
public parameters which are finite cyclic group G of order p (p is a large
prime) and generator element g.

2. After agreeing with public parameters, Alice and Bob initiates the key
exchange protocol (assuming that Alice goes first):

(a) Alice selects a random number a, where 1 < a < p, computes ga (
g ∗ g ∗ g... ∗ g a times), and shares ga with Bob.

(b) Similarly, Bob selects are random number b, where 1 < b < p, com-
putes gb, and shares gb with Alice.

(c) Finally, Alice computes the key (gb)a, and Bob computes the key
(ga)b. A basic algebraic simplification on Alice’s key and Bob’s key
would show that they both have the common key gab.

During the whole process, Eve, the adversary, would have ga and gb, but she
can not compute the gab from these two values assuming that discrete loga-
rithm is hard to compute. There are, off course, other attacks, e.g. man in the
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middle attack [Menezes et al., 2018], Logjam [Adrian et al., 2015], etc. The
security property of Diffie-Hellman construction is formalized using com-
plexity theoretic notions, given below (we would not go into the details of
complexity theoretic notions):

DL - Discrete Logarithm problem: An instance of DL problem states
that given a finite cyclic group G, a generator g of G, and an element y, we
need to find an element x ∈ G such that gx = y (computing this x is believed
to be a hard problem).

CDH - Computational Diffie-Hellman problem: An instance of CDH
problem states that given a finite cyclic group G, a generator g of G, elements
ga and gb, we need to find the element gab.

DDH - Decisional Diffie-Hellman Problem: An instance of DDH prob-
lem states that given a finite cyclic group G, a generator g of G, elements ga,
gb, and gc, we need to determining if c is equal to a ∗ b, i.e. c = a ∗ b, or not,
i.e. c 6= a ∗ b.

3.2.3 ElGamal Encryption Scheme

In 1985, Tahir ElGamal [ElGamal, 1985] proposed a new encryption system
which was based on Diffie-Hellman algorithm. Tahir ElGamal turned the
interactive Diffie-Hellman algorithm into a non-interactive, no need for any
active second party, by introducing a randomness. The ElGamal scheme has
three phases:

1. Key Generation: The user, say Alice, first chooses a finite-cyclic group
G of order p (p is a large prime) and a group generator g. She randomly
selects an element x from {1, . . . , p− 1} as a private key, computes her
public key h = gx. Subsequently, she publishes the (G, g, p, h) and
keeps x private.

2. Encryption: If any party, say Bob, wants to send an encrypted message
m to Alice, then he would randomly select an element r, where 1 < r <
p, computes c1 := gr and c2 := m ∗ hr, and send the pair (c1, c2) to Alice.

3. Decryption: Upon receiving any pair (c1, c2), Alice would compute c2 ∗
c−x

1 . A basic simplification of c2 ∗ c−x
1 shows that it recovers the plaintext

message. The simplification proceeds by replacing the c2 with m ∗ hr and
c1 with gr in c2 ∗ c−x

1 . This substitution leads to m ∗ hr ∗ g−rx which upon
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further simplification by replacing the h with gx leads to m ∗ gxr ∗ g−rx.
Using the same base rule, the term m ∗ gxr ∗ g−rx can be written as m ∗
gxr−rx. Since xr = rx, so we can replace m ∗ gxr−rx with m ∗ g0. The term
g0 = e (the identity of group G) and using the right identity group law,
we can replace m ∗ e by m.

3.2.4 Homomorphic Encryption

Homomorphic encryption is an encryption scheme which allows us to per-
form useful operation on encrypted data without decrypting the data. It was
first posed by Rivest, Adleman and Dertouzos in [Rivest et al., 1978]:

Consider a small loan company which uses a commercial time-
sharing service to store its records. The loan company’s "data
bank" obviously contains sensitive information which should be
kept private. On the other hand, suppose that the information
protection techniques employed by the time sharing service are
not considered adequate by the loan company. In particular, the
systems programmers would presumably have access to the sensi-
tive information. The loan company therefore decides to encrypt
all of its data kept in the data bank and to maintain a policy of only
decrypting data at the home office – data will never be decrypted
by the time-shared computer.

An encryption scheme is homomorphic if for any two plaintext x and y:

Encpk(x)
⊗

Encpk(y) = Encpk(x
⊕

y) where Enc is encryption func-
tion, pk is the public key,

⊗
is operation on ciphertext, and

⊕
is

operation on plaintext.

These two operators
⊗

and
⊕

are very specific. If a cryptosystem that
supports an arbitrary function f on ciphertext, then it is called fully homo-
morphic cryptosystem:

f (Encpk(m1), Encpk(m2), ..., Encpk(mk) = Encpk( f (m1, m2, ..., mk))

The first fully homomorphic encryption system was proposed by Craig Gen-
try [Gentry, 2009]; however, in this thesis we are mostly concern with partially
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homomorphic encryption (either additive or multiplicative, but not both),
specifically additive ElGamal, so we are not going to present the details
overview of Craig Gentry fully homomorphic construction. From now on,
we would be using the term homomorphic encryption for partially homo-
morphic encryption.

Now, keeping in mind that homomorphic encryption enables us to per-
form useful operation on encrypted data, we will see what kind of homomor-
phic property is exhibited by the ElGamal method discussed in the previous
section. Given a public infrastructure (G, p, g, h) for ElGamal scheme, we en-
crypt two message m1 and m2 by taking two random numbers r1, r2 from the
group:

Enc(m1, r1) := (gr1 , m1 ∗ hr1)

Enc(m2, r2) := (gr2 , m2 ∗ hr2)

If we multiply these two ciphers together pairwise, we get (gr1+r2 , m1 ∗
m2 ∗ hr1+r2). After decrypting this combined ciphertext, we will get m1 ∗ m2.
In this scheme,

⊗
is multiplication ∗ and

⊕
is also multiplication ∗. Fur-

thermore, if our end goal is to achieve multiplication on a bunch of plain-
text, rather than decrypting the corresponding ciphertext individually and
multiplying them, we could simply multiply all the ciphertext together and
decrypt the final result. The advantage of this scheme is that it does not leak
the individual values which, sometimes, is a very crucial property in many
application, specifically in electronic voting. In electronic voting protocols, we
do not want to reveal the choices of an individual voter, but it is acceptable
to reveal the final tally. However, this scheme is not suitable for electronic
voting schemes because it is multiplicative. Almost, to the best of my knowl-
edge, all the electronic voting scheme calculate the finally tally by adding the
individual choices of all voters, so the requirement is achieve the addition on
plaintext. There are many additive homomorphic encryption schemes, e.g.
Benaloh cryptosystem [Benaloh, 1994], Paillier cryptosystem [Paillier, 1999],
etc. In addition, we can modify the ElGamal encryption scheme to make
additive. In additive case, it works as:

Enc(m1, r1) := (gr1 , gm1 ∗ hr1)

Enc(m2, r2) := (gr2 , gm2 ∗ hr2)
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Multiplying these two ciphers pairwise would give us, (gr1+r2 , gm1+m2 ∗ hr1+r2)
which would decrypt as gm1+m2 . We can calculate the value of m1 + m2 by us-
ing linear search algorithm, or more efficient one Pohlig–Hellman algorithm
[Pohlig and Hellman, 2006]. However, the downside of this scheme is that if
the value of m1 + m2 + · · ·+ mn (assuming n values) is very large, calculating
it from gm1+m2+···+mn is not very practical [Cramer et al., 1997].

3.2.5 Zero-Knowledge Proof

In conventional mathematics, a proof of mathematical statement is collection
of basic axioms combined according to rules of the system. For example,
we want to prove that for any group G with group operation *, for any two
elements x y ∈ G, we have:

(x ∗ y)−1 = y−1 ∗ x−1

Proof: we assume arbitrary x, y. We show that (x ∗ y) and y−1 ∗ x−1 are
inverse of each other by combining them together using the group operator ∗
and using the group laws lead to the identity of the group G.

(x ∗ y) ∗ (y−1 ∗ x−1) = x ∗ y ∗ y−1 ∗ x−1(associativity)

= x ∗ (y ∗ y−1) ∗ x−1(associativity)

= x ∗ e ∗ x−1(inverses)

= x ∗ x−1(identity)
= e(inverse)

(3.1)

Similarly, we can prove that (y−1 ∗ x−1) ∗ (x ∗ y) = e. We can also formalize
it inside theorem prover and prove it more formally (below is a proof in Coq
theorem prover where ∗, the group operation, is represented as f and −1, the
inverse operation, is represented as inv).

Lemma inv_distr : forall a b, inv (f a b) = f (inv b) (inv a).
Proof.
intros a b. symmetry.
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apply inv_uniq_l.
rewrite <- assoc.
rewrite (assoc (inv b) (inv a) a).
rewrite (inv_l a).
rewrite (assoc (inv b) e b).
rewrite (id_l b).
rewrite (inv_l b). auto.

Qed.

If a verifier wants to verify the correctness of our proof, she would simply
check that if the group rules are applied correctly. Moreover, these proofs are
static in nature, i.e. once the prover has produced the proof, the content of
proof is not going to change over time, and there would not be any interaction
between prover and verifier if verifier wants to verify the proof. In addition,
the verifier not only learned that the statement is true, but she also learned
the content of proof (gained some knowledge).

In contrast, zero-knowledge-proof, first introduced by Goldwasser, Mi-
cali, and Rackoff [Goldwasser et al., 1985], is a probabilistic proof system
that involves an explicit notion of interaction between a prover and a veri-
fier. In addition, the goal of the prover is to convince the verifier about the
validity of some statement without revealing any information, i.e. the only
thing the verifier would learn is that if statement is true or false without
any other information. More formally, zero-knowledge proof for a language
L ∈ {0, 1}∗ (generally NP) is an interactive proof between a (computationally
unbounded) prover P and a (polynomial time) verifier V. Furthermore, the
goal of P is to convince V that x ∈ L such that:

Completeness: If x ∈ L then the honest prover P would convince the
honest verifier V to accept the claim with overwhelming probability. If P can
always convince (probability 1) the V that x ∈ L, the proof system has perfect
completeness.

Soundness: If x /∈ L then dishonest prover P∗ can not convince the
honest verifier V to accept the claim (with some small probability error known
as soundness error)

Zero-Knowledge: A malicious verifier V∗ would gain no additional in-
formation by interacting with an honest prover P other than x ∈ L. More
formally, for every (polynomial time) program V∗ there exists a (polynomial
time) program S, also known as simulator, which can produce the transcript
of protocol by itself without interacting with anyone. Moreover, the transcript
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produced by simulator S is indistinguishable from real transcript, produced
by interaction between the prover and the verifier.

3.2.5.1 Zero-Knowledge Proof of Knowledge

Sometimes, the fact that x ∈ L is completely trivial [Bellare and Goldreich,
1993]. For example, for any given finite group G of order p (p is prime), a
random element h from the group G, and generator g of the group G, a prover
claims that there is a x such that gx = h. This is trivial because we know that
there always exists such x (because h ∈ G) ; however, the challenge is to
show that the prover knows the witness x. Formally, zero-knowledge proof
of knowledge is defines as: let R = (x, w) ⊂ L×W is a binary relation such
that x ∈ L is common string between prover P and verifier V and w ∈W, also
known as witness, is private to the prover P. Moreover, the goal of prover P
is to convince verifier V that (x, w) ∈ R in zero-knowledge, i.e. without
revealing anything else other than showing that the statement (x, w) ∈ R is
true.

3.2.6 Sigma Protocol

Sigma protocols [Cramer et al., 1994] are efficient way to achieve zero-knowledge
proof of knowledge. Sigma protocol is a three step communication between a
prover P and a verifier V where goal of the prover is to convince the verifier
that she knows witness w for common input x such that (x, w) ∈ R:

1. P sends a message a

2. V sends a random string e

3. P replies with z

Based on public inputs (x, a, e, z), the verifier V decides to accept or reject
the proof. A protocol is said to be sigma protocol for a relation R if:

Completeness: when prover and verifier follow the protocol for public
input x and (private) witness w, verifier accepts the proof
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Special Soundness: For a given public input x, if prover can produce two
accepting transcript (a, e, z) and (a, e′, z′) (e and e′ are disjoint), there exists an
efficient program, extractor, which can extract the witness w.

Honest Verifier Zero-Knowledge: For a given public input x and ran-
dom input e, there is a simulator which outputs an accepting transcript (a, e, z)
which is indistinguishable from a proof generated by a prover interacting
with honest verifier.

A concrete example of sigma protocol [Cramer et al., 1994] is Schnorr
protocol [Schnorr, 1990]. In this example, the goal of a prover P is to prove
the knowledge of discrete logarithm in a group of order q (q is prime) to a
verifier V. Furthermore, g is the generator of group G, x is the public input
and w is private input with relation x = gw. The protocol follows:

• Prover P randomly selects an element r from Zq, computes a = gr and
sends a to verifier V

• Verifier V randomly selects an element c from Zq and sends it to P

• Prover P sends z = r + c ∗ w to V. V checks gz = a ∗ xc

For the protocol described above, all three properties, completeness, spe-
cial soundness, and honest verifier zero-knowledge, hold.

• Completeness holds with probability 1. Simplifying the expression gz

shows that it is equal to a ∗ xc. Replacing the z by r + c ∗w in expression
gz, we get gr+c∗w. Using addition rule of power, gr+c∗w can be simplified
as gr ∗ gc∗w. First step of protocol, a = gr, so we can replace the gr ∗ gc∗w

by a ∗ gc∗w. From the group infrastructure, we have x = gw, so we can
write x at place of gw, therefore, a ∗ gc∗w transforms into a ∗ xc.

• Special soundness holds. For any two given response, z1 = r + w ∗ c1
and z2 = r + w ∗ c2, we can find the witness w by (z2 − z1)/(c2 − c1).

• Honest verifier zero-knowledge also holds. Simulator can always pro-
duce a transcript (gzx−c, c, z) by randomly choosing c (the random choice
c is the reason for special honest verifier zero-knowledge), and z.

Fiat-Shamir Transform: In practice, the Fiat-Shamir [Fiat and Shamir,
1987] transform is used to turn a Sigma protocol into a non-interactive proof.
As a consequence, there is no longer any interaction with verifier.
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• Prover P randomly selects an element r from Zq, computes a = gr

• Prover P computes c = H(a||x) where H is a hash function and || is
concatenation function.

• Prover P computer z = r + c ∗ w

Finally, P publishes the transcript (a, c, z) for anyone to verify her claim. Sub-
sequently, any one who is verifying the claim has to check two things: (i)
c := H(a||x), and (ii) gz = a ∗ xc.

3.2.7 Commitment Schemes

Commitment schemes are cryptographic primitives equivalent to real life
sealed lock-box. Once the lock-box is locked and sealed, the content inside
can not be changed without breaking the lock and seal. In general, com-
mitment primitives are backbone of any cryptographic protocol between two
parties, communicating over the Internet, to force them to follow the protocol
honestly, even they would have a huge gain from deviating from the proto-
col. For example, in order to save some time before a match, Indian cricket
team captain (the coin tossing captain), living in Delhi, and Australian cricket
team captain (the calling captain), living in Canberra, decide to toss a coin in
advance over the Internet, using a mobile application called toss-app, for an
upcoming series of one-day matches 2. Assuming the workings of toss-app is
naive and all the messages posted in the chat box of toss-app are in plaintext.
Using the toss-app, both captains, the coin tossing captain and the calling
captain, post their outcome in the chat box, and the toss winner is decided
based on the (plaintext) messages posted by the two captains. How likely
would be the case where both captains are honest, if the toss plays a major
role in winning the series? We can not expect them to be honest because they
both have incentive (winning the series) to cheat during the protocol (coin
toss).

The question is can we devise some scheme which would force the both
parties to behave honestly? The answer is yes, we can devise such scheme.
We would use sealed lock-box concept, albeit digital one. Moreover, the first
captain would put his call in a digitally sealed lock-box and post it in the
chat box. Because it is sealed and locked, the other captain would have no

2In a cricket match, which is very popular sport in India and Australia, both captains meet
in the ground and toss a coin to decide who would have the first call.
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idea what is the content inside it. Furthermore, it is impossible to break the
lock-box, so it is fruitless and waste of time for the other captain to even
try. The other captain will toss the coin and post the outcome in a separate
digital sealed lock-box in the chat box. Now that there are two digital sealed
lock-box, which can only be opened by the respective owners, posted in the
chat box, the captains would move for the next phase of coin tossing called
reveal phase. In the reveal phase, they both would open their sealed locked
box to show that what they have locked, and the decision would be taken
accordingly 3.

Formally, a commitment scheme is three step protocol between a sender
S and a receiver R:

1. Commit phase: sender S commits a message m by generating a random
number r and using some algorithm C, which takes the message and
random r. Moreover, the committed value produced by the commitment
algorithm C, c = C(m, r), is shared with receiver R.

2. Reveal phase: In the reveal phase, the sender reveals the message m
and randomness r which are subsequently used by receiver to verify
the result, i.e. the receiver computes c′ = C(m, r) and matches it again
the given c in the commit phase of protocol.

Security Properties: Commitment schemes have two properties: hiding
and binding. Hiding property ensures that the receiver can not recover or
recompute the original message m from the given commitment c, i.e. it forces
the receiver to behave honestly in the protocol. Furthermore, binding prop-
erty ensures that it is impossible for sender to come up with another message
m′ which is different from m but produces the same commitment c, i.e. it
forces the sender to behave honestly in the protocol.

Pedersen commitment: Finally, we give a brief overview of a Pedersen
commitment scheme which is based on discrete logarithm. The protocol as
follows assuming the public parameter available to sender and receiver, i.e.
the set up has been conducted to generate the the public parameter, and both
parties have these values. These values include a prime p, y a randomly
chosen element from Z∗p, and g a randomly chosen generator from Z∗p.

• Commit phase: The sender generates a random r from Z∗p, computes
commitment c = gr ∗ ym and sends the commitment to receiver

3Story influenced by Manuel Blum’s coin flipping by telephone
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• Verification phase: In verification phase, the sender reveals the original
message m and the randomness r. Finally, the receiver computes gr ∗
ym. If the computed value matches with the commitment received in
commitment phase, then she accepts it otherwise reject it.

3.3 Summary

In this chapter, we gave a brief summary of Coq theorem prover and crypto-
graphic primitives needed to understand the further chapters. By no means,
these descriptions were exhaustive. For a detailed treatment of Coq theorem
prover, [Bertot et al., 2004] [Chlipala, 2013] can be referred, and for cryptog-
raphy, [Menezes et al., 1996] [Schneier, 1995] [Paar and Pelzl, 2009] can be
referred. In the next chapter, we will discuss the Schulze method, and the
machinery for its formalization.



Chapter 4

Schulze Method : Evidence
Carrying Computation

The negligence of a few could
easily send a ship to the bottom,
but if it has the wholehearted
co-operation of all on board it
can be safely brought to part.

Sardar Vallabhbhai Patel

4.1 Introduction

Correctness and verifiability/evidence are two main pillars of any democratic
election. In case of paper ballot election, correctness and verifiability of count-
ing is achieved by public scrutiny because each step is carefully observed by
general member of public, and agents from different political parties. For
example, casting ballot at booth is carefully observed by polling agents and
counting ballots is observed by the scrutineers (Figure 4.1) appointed by dif-
ferent political parties. Given that electronic voting is relatively young, in this
chapter we investigate how to achieve the correctness and verifiability similar
to paper ballot election.

Contribution: In this chapter, we formally specify the Schulze method in
the Coq theorem prover and prove the correctness properties. One of key in-
gredient of our formalisation is that we have augmented the Schulze method
to produce data (scrutiny sheet) for various steps, including for winning con-
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Figure 4.1: Scrutineers, in green jacket, observing the ballot counting

dition and losing condition. This scrutiny sheet can be used to audit the
election by any third party, a key step in achieving the verifiability.

Chapter overview: In this chapter, we explain the Schulze method in
section 4.2, and its formal specification in section 4.3. The corner stone of
our formalisation is a correct-by-construction dependent inductive data type
that represents all correct executions (4.3.1) with the formal proof of that ev-
ery Schulze election has winners (4.3.2). Every inhabitant of this dependent
inductive data type not only produces a final result but also all the intermedi-
ate steps which lead to the notion of evidence or scrutiny sheet (section 4.4).
In section 4.5, we discuss the optimization techniques to overcome the defi-
ciencies in extracted Haskell code from Coq formalization. Based on these
optimizations, the extracted Haskell code was able to count millions of bal-
lots in few minutes. Finally, we conclude the chapter in section 4.6 with the
achievements and drawbacks of our work on the scale of Correctness, Privacy,
and Verifiability.
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4.2 Schulze Method

The Schulze Method [Schulze, 2011] is a vote counting scheme that elects a
single winner, based on preferential votes. The method itself rests on the
relative margins between two candidates, i.e. the number of voters that pre-
fer one candidate over another. The margin induces an ordering between
candidates, where a candidate c is more preferred than d, if more voters pre-
fer c over d than vice versa. One can construct simple examples (see e.g.
[Rivest and Shen, 2010]) where this order does not have a maximal element
(a so-called Condorcet Winner). Schulze’s observation is that this ordering
can be made transitive by considering sequences of candidates (called paths).
Given candidates c and d, a path between c and d is a sequence of candidates
p = (c, c1, . . . , cn, d) that joins c and d, and the strength of a path is the minimal
margin between adjacent nodes. This induces the generalised margin between
candidates c and d as the strength of the strongest path that joins c and d.
A candidate c then wins a Schulze count if the generalised margin between
c and any other candidate d is at least as large as the generalised margin
between d and c. More concretely:

• Consider an election with a set of t candidates C = {c1, . . . , ct}, and a
set of n votes P = {b1, . . . , bn}. A vote is represented as function b :
C → N that assigns natural number (the preference) to each candidate.
We recover a strict linear preorder <b on candidates by setting c <b d if
b(c) > b(d), i.e. c is less preferred over d if the natural number b(c) is
greater than the natural number b(d).

• Given a set of ballots P and candidate set C, we construct graph G based
on the margin function m : C× C → Z. Given two candidates c, d ∈ C,
the margin of c over d is the number of voters that prefer c over d, minus
the number of voters that prefer d over c. In symbols:

m(c, d) = ]{b ∈ P | c >b d} − ]{b ∈ P | d >b c}

where ] denotes cardinality and >b is the strict (preference) ordering
given by the ballot b ∈ P.

• A directed path in the graph, G, from candidate c to candidate d is a
sequence p ≡ c0, . . . , cw+1 of candidates with c0 = c and cw+1 = d
(w ≥ 0), and the strength, st, of path, p, is the minimum margin of
adjacent nodes, i.e.

st(c0, . . . , cw+1) = min{m(ci, ci+1) | 0 ≤ i ≤ w}.
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• For candidates c and d, let M(c, d) denote the maximum strength, or
generalised margin of a path from c to d i.e.

M(c, d) = max{st(p) : p is path from c to d in G}

• The winning set, formally defined in 4.3.2, is defined as

W = {c ∈ C : ∀d ∈ C \ {c}, M(c, d) ≥ M(d, c)}

In other words, the Schulze method stipulates that a candidate c ∈ C is
a winner of the election with margin function m if, for all other candidates
d ∈ C, there exists a number k ∈ Z such that

• there is a path p from c to d with strength st(p) ≥ k

• all paths q from d to c have strength st(q) ≤ k.

Informally speaking, we can say that candidate c beats candidate d if there is
a path p from c to d which is stronger than any path from d to c. Using this
terminology, a candidate c is a winner if c cannot be beaten by any (other)
candidate.

4.2.1 An Example

Suppose that for some given set of ballots (the actual set of ballots are not very
important because we want to demonstrate the Condercet Paradox that we
will explain below) for a given set of candidates {A, B, C}, we have computed
the margin function m such that m (A, B) = 3, m (B, A) = -3, m (A, C) = -1, m
(C, A) = 1, m (B, C) = 5, and m (C, B) = -5. We have drawn the graph below
(Figure 4.2), and it shows that collective preferences can be cyclic, even if the
preferences of individual voters are not cyclic. This phenomena is known
as Condercet paradox and first observed by french philosopher Marquis de
Condorcet in late 18th century 1.

The main idea of the method is to resolve cycles by considering transitive
preferences or a generalised notion of margin. Figure 4.3 shows the graph in-
terpretation of the generalised margin, M, after running the Schulze method
on the margin function m (the word margin function is used interchangeably

1https://gallica.bnf.fr/ark:/12148/bpt6k417181
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Figure 4.2: Margin Function/Matrix (Graph Interpretation)

with margin matrix). In order to compute M(A, B), we first compute all the
paths from candidate A to B. Here we have just two paths from A to B, a
direct path between them and an intermediate path via candidate C. Now
that we have all the paths, we compute the path strength st for each path,
st(A, B) = min{m(A, B)} and st(A, C, B) = min{m(A, C), m(C, B)}. Simply
these expressions:

st(A, B) = min{m(A, B)}
= min{3}
= 3

st(A, C, B) = min{m(A, C), m(C, B)}
= min{−1,−5}
= −5

Once we have the path strength for every path between A and B, we
compute generalised margin M(A, B) = max{st(A, B), st(A, C, B)}.

M(A, B) = max{st(A, B), st(A, C, B)}
= max{3,−5}
= 3

Since M(A, B) = 3, hence the arrow going A to B has strength 3. Simi-
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larly, we can compute other values as well.

Strength of paths between B to A:

st(B, A) = min{m(B, A)}
= min{−3}
= −3

st(B, C, A) = min{m(B, C), m(C, A)}
= min{5, 1}
= 1

Generalised margin between B and A:

M(B, A) = max{st(B, A), st(B, C, A)}
= max{−3, 1}
= 1

Strength of paths between A to C:

st(A, C) = min{m(A, C)}
= min{−1}
= −1

st(A, B, C) = min{m(A, B), m(B, C)}
= min{3, 5}
= 3
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Generalised margin between A and C:

M(A, C) = max{st(A, C), st(A, B, C)}
= max{−1, 3}
= 3

Strength of paths between C to A:

st(C, A) = min{m(C, A)}
= min{1}
= 1

st(C, B, A) = min{m(C, B), m(B, A)}
= min{−5,−3}
= −5

Generalised margin between C and A:

M(C, A) = max{st(C, A), st(C, B, A)}
= max{1,−5}
= 1

Strength of paths between C to B:

st(C, B) = min{m(C, B)}
= min{−5}
= −5

st(C, A, B) = min{m(C, A), m(A, B)}
= min{1, 3}
= 1
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Generalised margin between C and B:

M(C, B) = max{st(C, B), st(C, A, B)}
= max{−5, 1}
= 1

Strength of paths between B to C:

st(B, C) = min{m(B, C)}
= min{5}
= 5

st(B, A, C) = min{m(B, A), m(A, C)}
= min{−3,−1}
= −3

Generalised margin between B and C:

M(B, C) = max{st(B, C), st(B, A, C)}
= max{5,−3}
= 5

Now we have computed all the values of generalised margin M, we can in-
terpret it as a graph show below. It is clear from the graph that candidate A
is winner, as she beats B with strength 3 (reverse path from B to A is weaker,
i.e. strength 1) and C with strength 3 (reverse path from C to A is weaker, i.e.
strength 1).

4.3 Formal Specification

We start our Coq formalization assuming finite and non-empty set of candi-
dates. Also, we assume decidable equality on candidates. For our purposes,
the easiest way of stipulating that a type be finite is to require existence of a
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Figure 4.3: Generalised Margin (Graph Interpretation)

list containing all inhabitants of this type [Firsov and Uustalu, 2015b].

Variable cand : Type.
Variable cand_all : list cand.
Hypothesis cand_fin : forall c: cand, In c cand_all.
Hypothesis dec_cand : forall n m : cand, {n = m} + {n <> m}.
Hypothesis cand_in : cand_all <> [].

For the specification of winners of Schulze elections, we take the margin func-
tion as given for the moment (and later construct it from the incoming ballots).
In Coq, this is conveniently expressed as a variable:

Variable marg : cand -> cand -> Z.

We formalise the notion of path and strength of a path by means of a sin-
gle (but ternary) inductive proposition that asserts the existence of a path of
strength ≥ k between two candidates, for k ∈ Z. The notion of winning can-
didate is that it beats every other candidate, i.e. all the paths from the winner
to other candidates are at least as strong as the reverse path. Dually, the no-
tion of loser is that there is a candidate who beats the loser, i.e. the path from
the candidate to the loser is stronger than the reverse path.

(* prop-level path *)
Inductive Path (k: Z) : cand -> cand -> Prop :=

| unit c d : marg c d >= k -> Path k c d
| cons c d e : marg c d >= k ->

Path k d e -> Path k c e.



64 Schulze Method : Evidence Carrying Computation

(* winning condition of Schulze Voting *)
Definition wins_prop (c: cand) :=
forall d: cand, exists k: Z,
Path k c d /\ (forall l, Path l d c -> l <= k).

(* dually, the notion of not winning: *)
Definition loses_prop (c : cand) :=
exists k: Z, exists d: cand,

Path k d c /\ (forall l, Path l c d -> l < k).

We reflect the fact that the above are propositions in the name of the definitions,
in anticipation of type-level definitions of these notions later. The reason for
having a Prop level definition is that it is very easy and intuitive for human to
inspect the definitions, and ascertain the correctness of formalization. As we
discussed in the Type vs. Prop (section 3.1.3), the main reason for having an
equivalent type-level versions of the above is that purely propositional infor-
mation is discarded during program extraction, unlike the type-level notions
of winning and losing that represent evidence of the correctness of the de-
termination of winners. Our goal is to not only compute winners and losers
according to the definition above, but also to provide independently verifiable
evidence, a scrutiny sheet or certificate, of the correctness of our computation.
The propositional definitions of winning and losing above serve as a reference
to calibrate their type level counterparts, and we demonstrate the equivalence
between propositional and type-level conditions in the next section.

One of the fundamental question about declaring someone as a winner
or loser is that how can we know that, say, a candidate c in fact wins a Schulze
election, and that, say, d is not a winner? One possible answer is simply re-run
an independent implementation of the method (usually hoping that results
would be confirmed). But what happens if results diverge?

One major aspect of our work is that we can answer this question by
not only computing the set of winners, but in fact presenting evidence for the
fact that a particular candidate does or does not win. This is a re-emphasis
on Correctness, and convincing to all, specifically to losers, leaving no ground
for speculation. As we stated earlier that in the context of electronic vote
counting, this is known as a scrutiny sheet, or certificate: a tabulation of all
relevant data that allows us to verify the election outcome. Again drawing
on an already computed margin function, to demonstrate that a candidate c
wins, we need to exhibit an integer k for all competitors d, together with
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• evidence for the existence of a path from c to d with strength ≥ k

• evidence for the non-existence of a path from d to c that is stronger than
k

The first item is straight forward, as a path itself is evidence for the existence
of a path, and the notion of path is inductively defined. For the second
item, we need to produce evidence of membership in the complement of an
inductively defined set.

Mathematically, given k ∈ Z and a margin function m : C× C → Z, the
pairs (c, d) ∈ C × C for which there exists a path of strength ≥ k that joins
both are precisely the elements of the least fixpoint LFP(Vk) of the monotone
operator Vk : Pow(C× C) → Pow(C× C) (Pow stands for powerset), defined
by

Vk(R) = {(c, e) ∈ C×C | m(c, e) ≥ k or (m(c, d) ≥ k and (d, e) ∈ R for some d ∈ C)}

where R is a subset of C × C, i.e. R ⊆ C × C. It is easy to see that this
operator is indeed monotone, and that the least fixpoint exists, e.g. using
Kleene’s theorem [Stoltenberg-Hansen et al., 1994]. To show that there is no
path between d and c of strength > k, we therefore need to establish that
(d, c) /∈ LFP(Vk+1).

By duality between least and greatest fixpoints, we have that

(c, d) ∈ C× C \ LFP(Vk+1) ⇐⇒ (c, d) ∈ GFP(Wk+1)

where for arbitrary k, Wk : Pow(C×C)→ Pow(C×C) is the operator dual to
Vk, i.e.

Wk(R) = C× C \ (Vk(C× C \ R))

and GFP(Wk) is the greatest fixpoint of Wk. As a consequence, to demonstrate
that there is no path of strength > k between candidates d and c, we need to
demonstrate that (d, c) ∈ GFP(Wk+1). By the Knaster-Tarski fixpoint theorem
[Tarski, 1955], this greatest fixpoint is the supremum of all Wk+1-coclosed sets,
that is, sets R ⊆ C× C for which R ⊆ Wk+1(R). That is, to demonstrate that
(d, c) ∈ GFP(Wk+1), we need to exhibit a Wk+1-coclosed set R with (d, c) ∈ R.
If we unfold the definitions, we have:

Wk(R) = {(c, e) ∈ C×C | m(c, e) < k and (m(c, d) < k or (d, e) ∈ R for all d ∈ C)}

so that given any fixpoint R of Wk and (c, e) ∈W, we know that (i) the margin



66 Schulze Method : Evidence Carrying Computation

between c and e is < k so that there’s no path of length 1 between c and e, and
(ii) for any choice of midpoint d, either the margin between c and d is < k (so
that c, d, . . . cannot be the start of a path of strength ≥ k) or we don’t have a
path between d and e of strength ≥ k. We use the following terminology:

Definition 1 Let R ⊆ C × C be a subset and k ∈ Z. Then R is Wk-coclosed, or
simply k-coclosed, if R ⊆Wk(R).

Mathematically, the operator Wk acts on subsets of C× C that we think of as
predicates. In Coq, we formalise these predicates as boolean valued functions
and obtain the following definitions where we isolate the function marg_lt
(that determines whether the margin between two candidates is less than a
given integer) for clarity:

Definition marg_lt (k : Z) (p : (cand * cand)) :=
Zlt_bool (marg (fst p) (snd p)) k.

Definition W (k : Z) (p: cand * cand -> bool)
(x: cand * cand) := andb (marg_lt k x)
(forallb (fun m => orb (marg_lt k (fst x, m))

(p (m, snd x))) cand_all).

In order to formulate type-level definitions, we need to promote the notion
of path from a Coq proposition to a proper type, and formulate the notion of
k-coclosed predicate.

Definition coclosed (k : Z) (f : (cand * cand) -> bool) :=
forall x, f x = true -> W k f x = true.

Inductive PathT (k: Z) : cand -> cand -> Type :=
| unitT c d : marg c d >= k -> PathT k c d
| consT c d e : marg c d >= k ->

PathT k d e -> PathT k c e.

Now, we have following type-level definition of winning (and dually, no-
winning) for Schulze counting. As we see that these definitions not only pro-
duces the result, but they also produce witness, e.g. the wins_type definition
states that if a candidate, say c, is the winner, for each individual candidate
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participating in election, it produces two witnesses: (i) a path from itself to
the beating candidate of certain strength, say k, and (ii) a k+1 coclosed set.
These witnesses are basic building blocks of the scrutiny sheet we produce
after election.

Definition wins_type c :=
forall d : cand, existsT (k : Z),
((PathT k c d) * (existsT (f : (cand * cand) -> bool),
f (d, c) = true /\ coclosed (k + 1) f))%type.

Definition loses_type (c : cand) :=
existsT (k : Z) (d : cand),
((PathT k d c) * (existsT (f : (cand * cand) -> bool),

f (c, d) = true /\ coclosed k f))%type.

We have two definitions of winning, wins_prop which is easier for a human
to inspect; on the other hand, wins_type which is useful for the machine. We
close the gap by formally establishing that type level winning and prop level
winning (dually, not winning) are in fact equivalent.

Lemma wins_type_prop :
forall c, wins_type c -> wins_prop c.

Lemma wins_prop_type :
forall c, wins_prop c -> wins_type c.

Lemma loses_type_prop :
forall c, loses_type c -> loses_prop c.

Lemma loses_prop_type :
forall c, loses_prop c -> loses_type c.

The different nature of the two propositions does not allow us to claim an
equivalence between both notions, as Coq defines bi-implication only on
propositions.

The proof of the first statement, wins_type_prop, is completely straight
forward, as the type, win_type, carries all the information needed to establish
the propositional winning, wins_prop. However, for the second statement
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wins_prop_type, Coq does not allow the case analysis or induct on a term of
sort Prop when the sort of goal is not in Prop. We follow the techniques that
we have described in Type vs Prop section (3.1.3.1). To prove the second
statement, we first introduced an intermediate lemma based on the iterated
margin function Mk : C × C → Z. Intuitively, Mk(c, d) is the strength of the
strongest path between c and d of length ≤ k+ 1. Formally, M0(c, d) = m(c, d)
and

Mi+1(c, d) = max{Mi(c, d), max{min{m(c, e), Mi(e, d) | e ∈ C}}}

for i ≥ 0. It is intuitively clear (and we establish this fact formally) that the
iterated margin function stabilises at the n-th iteration (where n is the number
of candidates), as paths with repeated nodes don’t contribute to maximising
the strength of a path. This proof loosely follows the evident pen-and-paper
proof given for example in [Carré, 1971] that is based on cutting out segments
of paths between repeated nodes and so reaches a fixed point.

Lemma iterated_marg_fp: forall (c d : cand) (n : nat),
M n c d <= M (length cand_all) c d.

That is, the generalised margin, i.e. the strength of the strongest (possibly
infinite) path between two candidates is effectively computable.

This allows us to relate the propositional winning conditions to the iter-
ated margin function and showing that a candidate c is winning implies that
the generalised margin between this candidate and any other candidate d is
at least as large as the generalised margin between d and c.

Lemma wins_prop_iterated_marg (c : cand) : wins_prop c ->
forall d, M (length cand_all) d c <=
M (length cand_all) c d.

This condition on iterated margins can in turn be used to establish the type-
level winning condition, thus closing the loop to the type level winning con-
dition.

Lemma iterated_marg_wins_type (c : cand) : (forall d,
M (length cand_all) d c <= M (length cand_all) c d)
-> wins_type c.
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Similarly, we connect the propositional losing to type level losing via gen-
eralised margin. We show that candidate c is losing then there is a candidate
d and generalised margin between candidate d and c is more that generalised
margin between c and d. Using this fact, we can prove the type level losing
condition.

Lemma loses_prop_iterated_marg (c : cand):
loses_prop c ->
(exists d, M (length cand_all) c d <
M (length cand_all) d c).

Lemma iterated_marg_loses_type (c : cand) :
(exists d, M (length cand_all) c d <
M (length cand_all) d c)
-> loses_type c.

The proof of lemma iterated_marg_loses_type is not straight forward be-
cause we are in a similar situation as we were in wins_prop_type. We can not
eliminate exists n, P n in order to show existsT n, P n, because Coq
would not allow to do case analysis on exists n, P n (a term of type Prop)
since the goal, existsT n, P n (a term of type Type), is not in Prop. We
again follow the technique described in Type vs Prop section (3.1.3.1). We
do a linear search on list of candidates to find the witness constructively, and
since, the list of candidates is finite we would eventually terminate and find
one. This completes our loop of prop level loser to type level loser.

Corollary reify_opponent (c: cand):
exists d,
M (length cand_all) c d < M (length cand_all) d c ->
existsT d,
M (length cand_all) c d < M (length cand_all) d c.

The crucial part of establishing the type-level winning conditions in the proof
of the lemma above is the construction of a coclosed set. First note that M
(length cand_all) is precisely the generalised margin function. Writing g
for this function, we assume that g(c, d) ≥ g(d, c) for all candidates d, and
given d, we need to construct a k + 1-coclosed set S where k = g(c, d). One
option is to put S = {(x, y) | g(x, y) < k + 1}. As every i-coclosed set is
also j-coclosed for i ≤ j, the set S′ = {(x, y) | g(x, y) < g(d, c) + 1} is also
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k + 1-coclosed and (in general) of smaller cardinality. We therefore witness
the existence of a k + 1-coclosed set with S′ as this leads to certificates that
are smaller in size and therefore easier to check.

We note that the difference between the type-level and the propositional
definition of winning is in fact more than a mere reformulation. As remarked
before (3.1.3), one difference is that purely propositional evidence is erased
during program extraction so that using just the propositional definitions, we
would obtain a determination of election winners, but no additional infor-
mation that substantiates this (and that can be verified independently). The
second difference is conceptual: it is easy to verify that a set is indeed co-
closed as this just involves a finite (and small) amount of data, whereas the
fact that all paths between two candidates don’t exceed a certain strength is
impossible to ascertain, given that there are infinitely many paths.

In summary, determining that a particular candidate wins an election
based on the wins_type notion of winning, the extracted program will addi-
tionally deliver, for all other candidates,

• an integer k and a path of strength ≥ k from the winning candidate to
the other candidate

• a coclosed set that witnesses that no path of strength > k exists in the
opposite direction.

It is precisely this additional data, which we call scrutiny sheet, (on top of
merely declaring a set of election winners) that allows for scrutiny of the
process, as it provides an orthogonal approach to verifying the correctness
of the computation: both checking that the given path has a certain strength,
and that a set is indeed coclosed, is easy to verify. We reflect more on this in
Section 4.6, and present an example of a full scrutiny sheet in the next section,
when we join the type-level winning condition with the construction of the
margin function from the given ballots.

4.3.1 Vote Counting as Inductive Type

Up to now, we have described the specification of Schulze voting relative to
a given margin function. We now describe the specification (and computa-
tion) of the margin function given a profile (set) of ballots. Our formalisation
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Rank all candidates
in order of preference

Lando Calrissian

Boba Fett

Mace Windu

Poe Dameron

Maz Kanata

1

3

2

2

4

Figure 4.4: Ballot Representation

describes an individual count as a type with the interpretation that all inhab-
itants of this type are correct executions of the vote counting algorithm. In
the original paper describing the Schulze method [Schulze, 2011], a ballot is
a linear preorder over the set of candidates.

In practice, ballots are implemented by asking voters to put numerical
preferences against the names of candidates as represented by the Figure 4.4 .
The most natural representation of a ballot is therefore a function b : C → N

that assigns a natural number (the preference) for each candidate, and we
recover a strict linear preorder <b on candidates by setting c <b d if b(c) >
b(d).

As preferences are usually numbered beginning with 1, we interpret a
preference of 0 as the voter failing to designate a preference for a candidate as
this allows us to also accommodate incomplete ballots. This is clearly a design
decision, and we could have formalised ballots as functions b : C → 1 + N

(with 1 being the unit type) but it would add little to our analysis.

Definition ballot := cand -> nat.

The count of an individual election is then parameterised by the list of ballots
cast, and is represented as a dependent inductive type. More precisely, we
have a type State that represents either an intermediate stage of constructing
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the margin function or the determination of the final election result:

Inductive State: Type :=
| partial: (list ballot * list ballot) ->
(cand -> cand -> Z) -> State

| winners: (cand -> bool) -> State.

The interpretation of this type is that a state either consists of two lists of
ballots and a margin function, representing

• the set of ballots counted so far, and the set of invalid ballots seen so far

• the margin function constructed so far

or, to signify that winners have been determined, a boolean function that
determines the set of winners.

The type that formalises correct counting of votes according to the Schulze
method is parameterised by the profile of ballots cast (that we formalise as a
list), and depends on the type State. That is to say, an inhabitant of the type
Count st, for st of type State, represents a correct execution of the voting
protocol up to reaching state st. This state generally represents intermediate
stages of the construction of the margin function, with the exception of the
final step where the election winners are being determined. The inductive
type takes the following shape:

Inductive Count (bs : list ballot) : State -> Type :=
| ax us m : us = bs -> (forall c d, m c d = 0) ->

(* zero margin *)
Count bs (partial (us, []) m)

| cvalid u us m nm inbs :
Count bs (partial (u :: us, inbs) m) ->
(* u is valid *)
(forall c, (u c > 0)%nat) ->
(forall c d : cand,
(* c preferred to d *)
((u c < u d) -> nm c d = m c d + 1) /\
(* c, d rank equal *)
((u c = u d) -> nm c d = m c d) /\
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(* d preferred to c *)
((u c > u d) -> nm c d = m c d - 1)) ->
Count bs (partial (us, inbs) nm)

| cinvalid u us m inbs :
Count bs (partial (u :: us, inbs) m) ->
(* u is invalid *)

(exists c, (u c = 0)%nat) ->
Count bs (partial (us, u :: inbs) m)

| fin m inbs w
(d : (forall c, (wins_type m c) + (loses_type m c))) :
(*no ballots left*)
Count bs (partial ([], inbs) m) ->
(forall c, w c = true <-> (exists x, d c = inl x)) ->
(forall c, w c = false <-> (exists x, d c = inr x)) ->
Count bs (winners w).

The intuition here is simple: the first constructor, ax, initiates the construction
of the margin function, and we ensure that all ballots are uncounted, no bal-
lots are invalid (yet), and the margin function is constantly zero. The second
constructor, cvalid, updates the margin function according to a valid ballot
(all candidates have preferences marked against their name), and removes the
ballot from the list of uncounted ballots. The constructor cinvalid moves an
invalid ballot to the list of invalid ballots, and the last constructor fin applies
only if the margin function is completely constructed (no more uncounted
ballots). In its arguments, w : cand -> bool is the function that deter-
mines election winners, and d is a function that delivers, for every candidate,
type-level evidence of winning or losing, consistent with w. Given this, we can
conclude the count, and declare w to be the set of winners (or more precisely,
those candidates for which w evaluates to true).

Together with the equivalence of the propositional notions of winning
or losing a Schulze count with their type-level counterparts, every inhabitant
of the type Count b (winners w) then represents a correct count of ballots
b leading to the boolean predicate w : cand -> bool that determines the
winners of the election with initial set b of ballots.

The crucial aspect of our formalisation of executions of Schulze count-
ing is that the transcript of the count is represented by a type that is not a
proposition. As a consequence, extraction delivers a program that produces
the (set of) election winner(s), together with the evidence recorded in the type
to enable independent verification.
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4.3.2 All Schulze Elections Have Winners

The main theorem, the proof of which we describe in this section, is that
all elections according to the Schulze method engender a boolean-valued
function w : cand -> bool that determines precisely which candidates are
winners of the election, together with type-level evidence of this. Note that
a Schulze election can have more than one winner, the simplest (but not the
only) example being when no ballots at all have been cast. The theorem that
we establish (and later extract as a program) simply states that for every in-
coming set of ballots, there is a boolean function that determines the election
winners, together with an inhabitant of the type Count that witnesses the
correctness of the execution of the count.

Theorem schulze_winners: forall (bs : list ballot),
existsT (w: cand -> bool) (p : Count bs (winners w)), True.
refine (
let (i, t) := all_ballots_counted bs in
let (m, p) := t in
let l := listify m in
let g := fun c d => linear_search c d m l in _).
pose proof (ext m (equivalent_m_w m)) as H.
rewrite <- H in p.
refine (existT _ (c_wins g) (existT _ (fin _ _ _ _

(wins_loses_type_dec g) p
(c_wins_true_type g) (c_wins_false_type g)) I)).

Defined.

The first step in the proof is elementary: we show that for any given list of
ballots we can reach a state of the count where there are no more uncounted
ballots, i.e. the margin function has been fully constructed.

Lemma all_ballots_counted: forall (bs : list ballot),
existsT i m, (Count bs (partial ([], i) m)).

The second step relies on the iterated margin function already discussed
in Section 4.3. As Mn(c, d) (for n being the number of candidates) is the
strength of the strongest path between c and d, we construct a boolean func-
tion w such that w(c) = true if and only if Mn(c, d) ≥ Mn(d, c) for all d ∈ C.
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We then construct the type-level evidence required in the constructor fin us-
ing the function (or proposition) iterated_marg_wins_type described ear-
lier.

4.4 Scrutiny Sheet and Experimental Results

The crucial aspect of our formalisation is that the vote counting protocol itself
is represented as a dependent inductive type that represents all (correct) par-
tial executions of the protocol. A complete execution can then be understood
as a state of vote counting where election winners have been determined. Our
main theorem, schulze_winners, then asserts that an inhabitant of this type
exists, for all possible sets of incoming ballots. Crucially, every such inhabi-
tant contains enough information to (independently) verify the correctness of
the election result, and can be thought of as a certificate for the count. From
a computational perspective, we view tallying not merely as a function that
delivers a result, but instead as a function that delivers a result, together with
evidence that allows us to verify correctness. In other words, we augment
verified correctness of an algorithm with the means to verify each particular
execution.

From the perspective of electronic voting, this means that we no longer
need to trust the hardware and software (assuming the cast-as-intended and
collected-as-cast verifiability) that were employed to obtain the election result,
as the generated certificate can be verified independently. In the literature on
electronic voting, this is known as (tallied-as-cast) verifiability and has been
recognised as one of the cornerstones for building trust in election outcomes
by electronic voting research community [Chaum, 2004] [Küsters et al., 2011],
[Benaloh and Tuinstra, 1994], [Delaune et al., 2010a], [Bernhard et al., 2017].

Coq’s extraction mechanism then allows us to turn our main theorem,
schulze_winners 4.3.2, into a provably correct program. When extracting,
all purely propositional information is erased and given a set of incoming
ballots, the ensuing program produces an inhabitant of the (extracted) type
Count that records the construction of the margin function, together with
(type level) evidence of correctness of the determination of winners. That is,
we see the individual steps of the construction of the margin function (one
step per ballot) and once all ballots are exhausted, the determination of win-
ners, together with paths and coclosed sets. The following is the transcript of
a Schulze election where we have added wrappers to pretty-print the infor-
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mation content. This is the (full) scrutiny sheet promised in Section 4.3 and
concretely it looks follows:

V: [A3 B1 C2 D4,..], I: [],
M: [AB:0 AC:0 AD:0 BC:0 BD:0 CD:0]
-------------------------------------------------------
V: [A1 B0 C4 D3,..], I: [],
M: [AB:-1 AC:-1 AD:1 BC:1 BD:1 CD:1]
-------------------------------------------------------
V: [A3 B1 C2 D4,..], I: [A1 B0 C4 D3],
M: [AB:-1 AC:-1 AD:1 BC:1 BD:1 CD:1]
-------------------------------------------------------

. . .
-------------------------------------------------------
V: [A1 B3 C2 D4], I: [A1 B0 C4 D3],
M: [AB:2 AC:2 AD:8 BC:5 BD:8 CD:8]
-------------------------------------------------------
V: [], I: [A1 B0 C4 D3],
M: [AB:3 AC:3 AD:9 BC:4 BD:9 CD:9]
-------------------------------------------------------
winning: A

for B: path A --> B of strength 3, 4-coclosed set:
[(B,A),(C,A),(C,B),(D,A),(D,B),(D,C)]

for C: path A --> C of strength 3, 4-coclosed set:
[(B,A),(C,A),(C,B),(D,A),(D,B),(D,C)]

for D: path A --> D of strength 9, 10-coclosed set:
[(D,A),(D,B),(D,C)]

losing: B
exists A: path A --> B of strength 3, 3-coclosed set:
[(A,A),(B,A),(B,B),(C,A),(C,B),(C,C),
(D,A),(D,B),(D,C),(D,D)]

losing: C
exists A: path A --> C of strength 3, 3-coclosed set:
[(A,A),(B,A),(B,B),(C,A),(C,B),(C,C),
(D,A),(D,B),(D,C),(D,D)]

losing: D
exists A: path A --> D of strength 9, 9-coclosed set:
[(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),
(C,A),(C,B),(C,C),(D,A),(D,B),(D,C),(D,D)]

Here, we assume four candidates, A, B, C and D and a ballot of the form A3 B2
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C4 D1 signifies that D is the most preferred candidate (the first preference),
followed by B (second preference), A and C. In every line, we only display the
first uncounted ballot (condensing the remainder of the ballots to an ellipsis),
followed by votes that we have deemed to be invalid. We display the partially
constructed margin function on the right. Note that the margin function
satisfies m(x, y) = −m(y, x) and m(x, x) = 0 so that the margins displayed
allow us to reconstruct the entire margin function. In the construction of the
margin function, we begin with the constant zero function, and going from
one line to the next, the new margin function arises by updating according
to the first ballot. This corresponds to the constructor cvalid and cinvalid
being applied recursively: we see an invalid ballot being set aside in the
step from the second to the third line, all other ballots are valid. Once the
margin function is fully constructed (there are no more uncounted ballots),
we display the evidence provided in the constructor fin: we present evidence
of winning (losing) for all winning (losing) candidates. In order to actually
verify the computed result, a third party observer would have to

1. Check the correctness of the individual steps of computing the margin
function

2. For winners, verify that the claimed paths exist with the claimed strength,
and check that the claimed sets are indeed coclosed.

Contrary to re-running a different implementation on the same ballots, our
scrutiny sheet provides an orthogonal perspective on the data and how it was
used to determine the election result.

We have evaluated our approach by extracting the entire Coq develop-
ment into Haskell, with all types defined by Coq extracted as is, i.e. in partic-
ular using Coq’s unary representation of natural numbers, and Haskell native
integer representation. The results are displayed in Figure 4.5, and Figure 4.6
using a logarithmic scale. As the reader can see that the execution time, in
both Figures, increases linearly by increasing the votes by factor of 10 on a
logarithm scale, and what it means is that the execution time increases expo-
nentially with increasing the votes by factor of 10. Indeed, it is the case, and
both (extracted) codes, the unary natural number and Haskell native integer,
are very slow, but the native integer code is marginally better than the unary
natural number code.
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Figure 4.5: Experimental Result (Coq Unary Natural Number, Slow)

4.5 Counting Millions of Ballots

The previous extracted Haskell code was very slow and was not practical for
real life election involving millions of ballots. To scale it to real life election,
we analysed the extracted Haskell code from Coq code. The most perfor-
mance critical aspect of our code was the computation of margin function.
Recall that the margin function is of type cand -> cand -> Z and that it de-
pends on the entire set of ballots. Internally, it is represented by a closure
[Landin, 1964] so that margins are re-computed with every call. The single
largest efficiency improvement in our code was achieved by memoization, i.e.
representing the margin function (in Coq) via list lookup. With this (and sev-
eral smaller) optimisation, we can count millions of votes using verified code.
However, this efficiency did not come for free, and we had to pay the cost
in terms of (almost all) broken proofs. We had to redo all the proofs all over
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Figure 4.6: Experimental Result (Haskell Native Integer, Slow)

again2. Below (Figure 4.7, Figure 4.8), we include our timing graphs, based on
randomly generated ballots while keeping number of candidates constant i.e.
4 (The reason we kept it to 4 candidate to show the speed up compared to 4.5
and 4.6). During the experiment, we ran an election with 21 candidates, and
we were able to count 2 million randomly generated ballots before running
out of memory.)

In the Figure 4.7, we report timings (in seconds) for the computation of win-
ners, whereas in the Figure 4.8, we include the time to additionally compute
a universally verifiable certificate that attests to the correctness of the count.
This is consistent with complexity of Schulze counting i.e. linear in number
of ballots and cubic in number of candidates. The experiments were carried
out on system equipped with intel core i7 processor and 16 GB of RAM. We
notice that the computation of the certiciate adds comparatively little in com-
putational cost.

2Redoing these proofs were trivial, but time consuming. I wished if there was a tool to
automate this process
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Figure 4.7: Computation of Winner (Without Certificate, Fast)

Our implementation requires that we store all ballots in main memory
as we need to parse the entire list of ballots before making it available to our
verified implementation so that the total number of ballots we can count is
limited by main memory in practise. We can count real-world size elections
(8 million ballot papers) on a standard, commodity desktop computer with
16 GB of main memory.

4.6 Discussion

In this chapter, we emphasize on correctness, and we take the approach that
computation of winners in electronic voting (and in situations where cor-
rectness is key in general) should not only produce an end result, but an end
result together with a verifiable justification of the correctness of the computed
result. We have exemplified this approach by providing a provably correct,
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Figure 4.8: Computation of Winner (With Certificate, Fast)

and evidence-producing implementation of vote counting according to the
Schulze method.

While the Schulze method is not difficult to implement, and indeed there
are many freely available implementations on the Internet, comparing the re-
sults between different implementations can give some level of assurance for
correctness only in case the results agree. If there is a discrepancy, a certifi-
cate for the correctness of the count allows to adjudicate between different
implementations, as the certificate can be checked with relatively little com-
putational effort.

From the perspective of computational complexity, checking a transcript
for correctness is of the same complexity as computing the set of winners,
as our certificates are cubic in size, so that certificate checking is not less
complex than the actual computation. However, publishing an independently
verifiable certificate that attests the individual steps of the computation helps
to increase trust in the computed election outcome. Typically, the use of
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technology in elections increases the amount of trust that we need to place
both in technological artefacts, and in people. It raises questions that range
from fundamental aspects, such as proper testing and/or verification of the
software, to very practical questions, e.g. whether the correct version of the
software has been run. On the contrast, publishing a certificate of the count
dramatically reduces the amount of trust that we need to place into both
people and technology: the ability to publish a verifiable justification of the
correctness of the count allows a large number of individuals to scrutinise
the count. While only moderate programming skills are required to check the
validity of a certificate (the transcript of the count), even individuals without
any programming background can at least spot-check the transcript: for the
construction of the margin function, everything that is needed is to show
that the respective margins change according to the counted ballot. For the
correctness of determination of winners, it is easy to verify existence of paths
of a given strength, and also whether certain sets are coclosed – even by
hand! This dramatically increases the class of people that can scrutinise the
correctness of the count, and so helps to establish a trust basis that is much
wider as no trust in software artefacts is required.

Technically, we do not implement an algorithm that counts votes accord-
ing to the Schulze method. Instead, we give a specification of the Schulze
winning conditions (wins_prop in Section 4.3) in terms of an already com-
puted margin function that (we hope) can immediately be seen to be correct,
and then show that those winning conditions are equivalent to the existence
of inhabitants of types that carry verifiable evidence (wins_type). We then
join the (type level) winning conditions with an inductive type that details the
construction of the margin function in an inductive type. Via propositions-
as-types, a provably correct vote counting function is then equivalent to the
proposition that there exists an inhabitant of Count for every set of ballots.
Coq’s extraction mechanism then allows us to extract a Haskell program that
produces election winners, together with verifiable certificates.

4.7 Summary

Our formalization achieves Correctness, Practicality, and (tallied-as-cast) Veri-
fiability. The major problem in this formalization is Privacy. Our ballots are
in plaintext and could easily be identified if the number of candidates partic-
ipating in election in are large (Italian attack) [Otten, 2003]. In nutshell, the
achieved and failed points of this formalization:
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• Achieved

– Correctness: The implementation is formalized in Coq with em-
phasis on generating evidence to convince everyone about the out-
come of election.

– Practicality: The extracted code can count millions of ballots. There-
fore, we can use it in any real life election.

– Verifiability: The outcome of any election can be verified by any
third party using the generated certificates. Certificates generated
for plaintext ballot during the election are very simple. It requires
basic math literacy to audit the certificate which would lead to in-
crease in number of scrutineers.

• Failed

– Privacy: There is no privacy because the ballots involved are sim-
ply plaintext which could potentially lead coercion and vote-selling
(coercion).

We remark that extracting Coq developments into a programming lan-
guage itself is a non-verified process which could still introduce errors in our
code. The most promising way to alleviate this is to independently implement
(and verify) a certificate verifier, possibly in a language such as CakeML [Ku-
mar et al., 2014] that is guaranteed to be correct to the machine level.

In the next chapter, we will try to solve privacy and coercion problem,
using encryption, and to keep it verifiable, we will use zero-knowledge-proof.
However, the solution for privacy comes at a cost, e.g. a loss in the pool of
scrutineers because auditing a certificate generated by counting encrypted
ballot requires intricate knowledge of cryptography.
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Chapter 5

Homomorphic Schulze Algorithm :
Axiomatic Approach

Be melting snow. Wash yourself
of yourself.

Rumi

5.1 Introduction

As we stated in the summary of last chapter that plaintext could lead to pri-
vacy problems, e.g. ballot identification (Italian attack) Otten [2003]. In this
chapter, we achieve privacy by using encryption, (tallied-as-cast) verifiability
by using zero-knowledge proof, and correctness of implementation by prov-
ing the correctness properties inside the Coq theorem prover. One important
point to note that we do not formalize any cryptographic primitive inside the
Coq, but take an axiomatic approach, i.e. we assume the existence of crypto-
graphic primitives and postulate their correctness property (axiomatisation of
cryptographic primitives). The reason for axiomatic approach is because our
goal is to not formalise the cryptographic primitives, but use these primitives
to conduct an election which has all three ingredients, privacy, verifiability,
and correctness. We then obtain, via program extraction, a provably correct
implementation of vote counting, that we turn into executable code by pro-
viding implementations of the cryptographic primitives based on a standard
cryptographic library (Unicrypt). We conclude by presenting experimental
results, and discuss the trust base, security, and privacy as well as the appli-
cability of our work to real-world scenarios.

85
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Contribution: In this chapter, we develop a formally verified Schulze
method in Coq theorem prover for encrypted ballots, assuming the existence
(axiomatic) of many cryptographic primitives. To make the election verifiable,
we generate a scrutiny sheet which is augmented with every step of election.
It includes all the ballots, proof for their validity, proof for their invalidity,
step by step computation of tally homomorphically, and proof for correct
decryption of final tally. Finally, we prove that if the cryptographic primitives
are correct, the winner produced by encrypted ballots are same as the winner
produced by plaintext ballot, decryption of the encrypted ballots, formalised
in the previous chapter.

Chapter Outline: In section 5.2, we discuss the technique to achieve ver-
ifiable homomorphic tally. In order to do so, we discuss why do we need our
ballot to have a matrix representation and not a ranking function. Moreover,
we discuss the concept of validity of a ballot, which comes naturally with
matrix representation, steps of homomorphic counting, and cryptographic
primitives needed to achieve all the required functionality. Section 5.3 takes
a step forward and makes every concept from the previous section concrete
using the Coq theorem prover. One important point in this section is our
inductive data type ECount augmented with verification data in form of zero-
knowledge proof for various claims made during the counting (ECount is con-
ceptually similar to the Count (section 4.3.1), but in terms of data, ECount has
state data related to counting and verification data in form of zero-knowledge
proof, while Count has just state data). In section 5.4, we present our main
theorem which states that for any set of given encrypted ballots, a winner can
always be found. Apart from the main theorem, this section also incorpo-
rates the proof of correctness by stating the winners produced by encrypted
ballots are same as plaintext ballots (section 4.3.2) if the encrypted ballots de-
crypt to the plaintext ballot. Section 5.5 focuses on extraction, instantiating
the cryptographic primitives with UniCrypt library, and experimental results.
Finally, section 5.6 highlights our assumptions, scalability issues, the goals we
achieved and the goals we missed.

Secure elections are a balancing act between integrity and privacy: achiev-
ing either is trivial but their combination is notoriously hard. One of the key
challenges faced by both paper based and electronic elections is that results
must be substantiated with verifiable evidence of their correctness while re-
taining the secrecy of the individual ballot [Bernhard et al., 2017]. The com-
bination of privacy and integrity can be realised using cryptographic tech-
niques, where encrypted ballots (that the voters themselves cannot decrypt)
are published on a bulletin board, and the votes are then processed, and the
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correctness of the final tally is substantiated, using homomorphic encryption
[Hirt and Sako, 2000] and verifiable shuffling [Bayer and Groth, 2012]. In-
tegrity can then be guaranteed by means of zero-knowledge proofs (ZKP),
first studied by Goldwasser, Micali, and Rackoff [Goldwasser et al., 1985].
Informally, a zero-knowledge proof is a probabilistic and interactive proof
where one entity interacts with another such that the interaction provides
no information other than that the statement being proved is true with over-
whelming probability. Later results [Ben-Or et al., 1988; Goldreich et al., 1991]
showed that all problems for which solutions can be efficiently verified have
zero-knowledge proof (in practice, Sigma protocol [Cramer et al., 1994] is
used to prove the knowledge of a (private) witness w for a public input x,
and it is required to be zero-knowledge against the honest verifier).

5.2 Verifiable Homomorphic Tallying

The realisation of verifiable homomorphic tallying that we are about to de-
scribe follows the same two phases as the Schulze algorithm (described in
section 4.2): we first homomorphically compute the margin matrix from en-
crypted ballots, and then compute winners on the basis of the (decrypted)
margin. Moreover, the computation also produces a verifiable certificate that
leaks no information about choices in individual ballots other than the fi-
nal tally, which in turn leaks no information about individual ballots if the
number of voters is large enough.

5.2.1 Format of Ballots

Recall that in preferential voting schemes, ballots are rank-ordered lists of
candidates. For the Schulze Method, we require that all candidates are ranked,
and two candidates may be given the same rank. That is, a ballot is most nat-
urally represented as a function, C → N, that assigns a numerical rank to
each candidate, and the computation of the margin amounts to computing
the sum

m(x, y) = ∑
b∈B


+1 b(x) < b(y)
0 b(x) = b(y)
−1 b(x) > b(y)

where B is the multi-set of ballots, and each b ∈ B is a ranking function
b : C →N over a (finite) set C of candidates.
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Ideally, we could have copied the same ballot structure in a homomor-
phic Schulze method, but encrypting the choices, i.e. the ballot would have
been represented as a function C → CT where CT (ciphertext) is the en-
crypted representation of a choice (natural number). However, we note that
this representation of ballots is not well suited for homomorphic computation
of the margin matrix as practically feasible homomorphic encryption schemes
do not support comparison operators and case distinctions as used in the for-
mula above (to the best of our knowledge).

We instead represent ballots as candidate indexed matrices (represented
as function from a pair of candidates to a natural number), C× C → N, bm
where bm(x, y) = +1 if x is preferred over y, bm(x, y) = −1 if y is preferred
over x and bm(x, y) = 0 if x and y are equally preferred. The downside of
this representation is that it takes O(n2) space to represent a ballot where n
is the number of candidate participating in election.

While the advantage of the first representation, b : C → N, is that each
ranking function is necessarily a valid ranking and is linear space (O(n)))
in the number of candidates, n, the advantage of the matrix representation,
C× C →N, is that the computation of the margin matrix is simple, that is

m(x, y) = ∑
bm∈B

bm(x, y)

where bm is plaintext ballot in matrix form, and B is the multi-set of ballots (in
matrix form). The major benefit of this matrix representation is that it can be
transferred to the encrypted setting in a straight forward way by encrypting
all the entries in bm. We take the advantage of matrix representation and
represent our encrypted ballot as a matrix of ciphertext, C × C → CT (CT
stands for ciphertext). Following this representation of encrypted ballot, the
encrypted margin can be computed as:

encm(x, y) =
⊕

encb∈EncB

encb(x, y) (5.1)

where ⊕ denotes homomorphic addition, encb is an encrypted ballot in ma-
trix form and EncB is the multi-set of encrypted ballots.

In an ideal world where every voter is honest, every entry in encb is either
the encryption of -1, 0, or 1. Moreover, if we interpret encb as a adjacency
matrix of a graph representation, encb should be acyclic (lets call it valid or
desirable ballot). In addition, we definitely do not want to be in a situation
where a voter prefers A over B, B over C, and finally C over A, for some
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candidates A, B, and C. How would we interpret a ballot having cycles? One
possible interpretation is ranking all the candidates equal appearing a cycle,
but clearly it is not a reasonable interpretation, therefore we decided to not
include it in final tally (lets call it invalid or undesirable ballot). Now during
the course of counting encrypted ballots, we need to distinguish between
a desirable ballot, i.e. valid ballot, and an undesirable ballot, i.e. invalid
ballot. To make this distinction, we verify that an encrypted (matrix) ballot
eballot : C× C → CT is valid only if:

• the decryption of eballot(x, y) is indeed one of 1, 0 or −1, where x and
y ranges over the list of all candidates

• eballot is acyclic (the idea here is that if eballot is acyclic, then for its
decryption, pballot : C × C → Z, we can find a ranking function from
candidates to natural number, C → N, i.e. we can rank all the candi-
dates in a linear order (explained in section 5.2.2)).

More importantly, to achieve verifiability, we not only need verify that a ballot
is valid, we also need to evidence its validity (or otherwise) in the scrutiny
sheet. However, the issue with the above definition, verification of the valid-
ity of an encrypted ballot, is that if we decrypt the eballot to the pballot and
publish pballot in the scrutiny sheet to evidence the validity of eballot, we
would reveal the (secret) preference of the voter, who cast this ballot. There-
fore, we cannot decrypt the eballot, and we need a better way to evidence the
validity of an encrypted ballot.

5.2.2 Validity of Ballots

A plaintext ballot ptballot : C × C → Z is valid if it is induced by a ranking
function, i.e. there exists a function f : C → N such that ptballot(x, y) = 1
if f (x) < f (y), ptballot(x, y) = 0 if f (x) = f (y) and ptballot(x, y) = −1 if
f (x) > f (y). In symbols:

ptballot(x, y) = ∃ f : C →N


+1 f (x) < f (y)
0 f (x) = f (y)
−1 f (x) > f (y)

For a plaintext ballot, it is easy to decide if is valid or not valid. One crucial
observation is that if pballot is valid, it also valid after permuting its each row
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and column with the same permutation, i.e. ptballot is valid if and only if
ptballot′ is valid, where

ptballot′(x, y) = ptballot(π(x), π(y))

and π : C → C is a permutation of candidates. In fact, if f : C → N is a
ranking function for ptballot, f ◦ π is a ranking function for ptballot′. Also,
notice that if ptballot is the decryption of ctballot : C× C → CT and ptballot′

is the decryption of ctballot′ : C× C → CT, the following holds:

ctballot′(x, y) = ctballot(π(x), π(y))

Using these ideas, we can evidence the validity of the encrypted ballot,
ctballot : C × C → CT. The ballot ctballot is valid if and only if its de-
cryption i.e. the plaintext ballot ptballot(x, y) = decb(ctballot(x, y) is valid,
where decb : C × C → Z denotes decryption function, and x and y ranges
over the list of candidates. However, as we stated previously, we cannot
publish the ptballot as an evidence of validity of the ctballot in the scrutiny
sheet because then it will leak the voter’s preference. Thus we generate a se-
cret permutation, π, and subsequently, we publish ctballot′, row and column
permuted ballot of ctballot by the secret permutation π, and its decryption
ptballot′, row and column permutation of ptballot by the same secrete permu-
tation π. Moreover, we augment the scrutiny sheet with the zero-knowledge
proofs about various claim, e.g. we have decrypted the ctballot′ honestly and
ptballot′ is indeed an honest decryption, the commitment of the secret per-
mutation π, etc. In a nutshell, we can evidence the validity of a ciphertext
ballot ctballot by

• generating a secret permutation, π, and evidence that it is a valid per-
mutation.

• publishing the shuffled version ctballot′ of ctballot, that is shuffled by
the secret permutation π, together with evidence that ctballot′ is indeed
a shuffle of ctballot.

• publishing the decryption ptballot′ of ctballot′ together with evidence
that ptballot′ is indeed the decryption of ctballot′.

• evidencing if ptballot′ is valid (or otherwise) by showing the existence
of ranking function f : C →N (or otherwise).

We use zero-knowledge proofs (ZKP) in the style of [Terelius and Wikström,
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2010] to evidence the correctness of the shuffle, and zero-knowledge proofs
of honest decryption [Chaum and Pedersen, 1992] to evidence correctness of
decryption. This achieves ballot secrecy as the (secret) permutation is never
revealed.

In summary, the evidence of correct (homomorphic) counting starts with
an encryption of the zero margin encm : C×C → CT (every entry in the encm
is an encrypted value of 0), and for each ciphertext ballot ctballot : C× C →
CT contains

1. generation of secret permutation π together with a commitment proof
and zero-knowledge proof that it is a valid permutation

2. ctballot′, a shuffle of ctballot by π together with a zero-knowledge proof
that ctballot′ is a shuffle of ctballot

3. ptballot′, decryption of ctballot′, together with a zero-knowledge proof
that ptballot′ is honest decryption of ctballot′

4. if ptballot′ is valid, we homorphically update the margin matrix encm,
i.e.

encm(x, y) = encm(x, y)
⊕

ctballot(x, y)

5. if the decrypted ballot ptballot′ is invalid, the margin matrix encm re-
mains unchanged

Once all ballots have been processed in this way, the certificate determines
winners and contains winners by exhibiting

5. the final tally encm, together with its decryption and a zero-knowledge
proof of honest decryption

6. publishes the winner(s), together with evidence to substantiate the claim
(existence of strongest path from the winner to the loser and absence of
such path from the loser to the winner, section 4.3).

5.2.3 Cryptographic primitives

We require an additively homomorphic cryptosystem to compute the (en-
crypted) margin matrix according to Equation 5.1 (this implements Item 4
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above). All other primitives fall into one of three categories. Verification
primitives are used to syntactically define the type of valid certificates. For
example, when publishing the decrypted margin matrix in Item 5 above, we
require that the zero-knowledge proof in fact evidences correct decryption. To
guarantee this, we need a verification primitive that – given ciphertext, plain-
text and zero-knowledge proof – verifies whether the supplied proof indeed
evidences that the given ciphertext corresponds to the given plaintext. In
particular, verification primitives are always boolean valued functions. While
verification primitives define valid certificates, generation primitives are used to
produce valid certificates. In the example above, we need a decryption prim-
itive (to decrypt the homomorphically computed margin) and a primitive to
generate a zero-knowledge proof (that witnesses correct decryption). Clearly
verification and generation primitives have a close correlation, and we need
to require, for example, that zero-knowledge proofs obtained via a generation
primitive has to pass muster using the corresponding verification primitive.

The three primitives described above (decryption, generation of a zero-
knowledge proof, and verification of this proof) already allow us to imple-
ment the entire protocol with exception of ballot shuffling (Item 2 above).
Here, the situation is more complex. While existing mixing schemes (e.g.
[Bayer and Groth, 2012]) permute an array of ciphertexts and produce a zero
knolwedge proof that evidences the correctness of the shuffle, our require-
ment dictates that every row and colum of the (matrix) ballot is shuffled with
the same (secret) permutation. In other words, we need to retain the identity
of the permutation to guarantee that each row and column of a ballot have
been shuffled by the same permutation. We achieve this by committing to
a permutation using Pedersen’s commitment scheme [Pedersen, 1992]. In a
nutshell, the Pedersen commitment scheme has the following properties.

• Hiding: the commitment reveals no information about the permutation

• Binding: no party can open the commitment in more than one way, i.e.
the commitment is to one permutation only.

A combination of Pedersen’s commitment scheme with a zero-knowledge
proof leads to a similar two step protocol, also known as commitment-consistent
proof of shuffle [Wikström, 2009].

• Commit to a secret permutation and publish the commitment (hiding).

• Use a zero-knowledge proof to show that shuffling has used the same
permutation which we committed to in previous step (binding).
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This allows us to witness the validity (or otherwise) of a ballot by generating
a permutation π which is used to shuffle every row and column of the ballot.
We hide π by committing it using Pedersen’s commitment scheme and record
the commitment cπ in the certificate. However, for the binding step, rather
than opening π we generate a zero-knowledge proof, zkpπ, using π and cπ,
which can be used to prove that cπ is indeed the commitment to some permu-
tation used in the (commitment consistent) shuffling without being opened
[Wikström, 2009]. We can now use the permutation that we have committed
to for shuffling each row and column of a ballot, and evidence the correctness
of the shuffle via a zero-knowledge proof. To evidence validity (or otherwise)
of a (single) ballot, we therefore:

1. generate a (secret) permutation and publish a commitment to this per-
mutation, together with a zero-knowledge proof that evidences commit-
ment to a permutation

2. for each row of the ballot, publish a shuffle of the row with the permuta-
tion committed to, together with a zero-knowledge proof that witnesses
shuffle correctness

3. for each column of the row shuffled ballot, publish a shuffle of the col-
umn, also together with a zero-knowledge proof of correctness

4. publish the decryption the ballot shuffled in this way, together with a
zero-knowledge proof that witnesses honest decryption

5. decide the validity of the ballot based on the decrypted shuffle.

The cryptographic primitives needed to implement this again fall into the
same classes. To define validity of certificates, we need verification primitives

• to decide whether a zero-knowledge proof evidences that a given com-
mitment indeed commits to a permutation

• to decide whether a zero-knowledge proof evidences the correctness of
a shuffle relative to a given permutation commitment.

Dual to the above, to generate (valid) certificates, we need the ability to

• generate permutation commitments and accompanying zero-knowledge
proofs that evidence commitment to this permutation
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• generate shuffles relative to a commitment, and zero-knowledge proofs
that evidence the correctness of shuffles.

Again, both need to be coherent in the sense that the zero-knowledge proofs
produced by the generation primitives need to pass validation. In summary,
we require an additively homomorphic cryptosystem that implements the
following:

Decryption Primitives. decryption of a ciphertext, creation and verification
of honest decryption zero-knowledge proofs.

Commitment Primitives. generating permutations, creation and verification
of commitment zero-knowledge proofs

Shuffling Primitives. commitment consistent shuffling, creation and verifi-
cation of commitment consistent zero-knowledge shuffle proofs

5.2.4 Witnessing of Winners

Once all ballots are counted, the computed margin is decrypted, and winners
(together with evidence of winning) are computed using plaintext counting.
We discuss this part only briefly, for sake of completeness, as it is identical to
section 4.3. For each of the winners w and each candidate x we publish

• a natural number k and a path x0, . . . , xn of strength k, where x0 = w
and xn = x

• a set C(w, x) of pairs of candidates that is k-coclosed and contains (x, w)

where a set S is k-coclosed if for all (x, z) ∈ C we have that m(x, z) < k
and either m(x, y) < k or (y, z) ∈ S for all candidates y. Informally, the first
requirement ensures that there is no direct path (of length one) between a pair
(x, z) ∈ S, and the second requirement ensures that for an element (x, z) ∈ S,
there cannot be a path that connects x to an intermediate node y and then
(transitively) to z that is of strength ≥ k.
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5.3 Formalization in Coq

As we stated in the beginning of this chapter that the purpose of this work
is not to verify cryptographic primitives, but use them as a tool to construct
evidence which can be used to audit and verify the outcome during different
phase of election. Here, we treat them as abstract entities and assume axioms
about them inside Coq. In particular, we assume the existence of functions
that implement each of the primitives described in the previous section, and
postulate natural axioms that describe how the different primitives interact.
As a by-product, we obtain an axiomatisation of a cryptographic library that
we could, in a later step, verify the implementation of a cryptosystem against.
In particular, this allows us to not commit to any particular cryptosystem
in particular (although our development, and later instantiation, is geared
towards ElGamal [ElGamal, 1985]).

The first part of our formalisation concerns the cryptographic primitives
that we collect in a separate module. Below is an example of the generation
/ verification primitives for decryption, together with coherence axioms.

Variable decrypt_message:
Group -> Prikey -> ciphertext -> plaintext.

Variable construct_zero_knowledge_decryption_proof:
Group -> Prikey -> ciphertext -> DecZkp.

Axiom verify_zero_knowledge_decryption_proof:
Group -> plaintext -> ciphertext -> DecZkp -> bool.

Axiom honest_decryption_from_zkp_proof: forall group c d zkp,
verify_zero_knowledge_decryption_proof group d c zkp = true
-> d = decrypt_message grp privatekey c.

Axiom verify_honest_decryption_zkp (group: Group):
forall (pt : plaintext) (ct : ciphertext) (pk : Prikey),
(pt = decrypt_message group pk ct) ->
verify_zero_knowledge_decryption_proof group pt ct
(construct_zero_knowledge_decryption_proof group pk ct)
= true.

The different keywords Variable and Axiom are used as a convenience for
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extraction. The keyword Variable is used if we want it to be lambda ab-
stracted otherwise keyword Axiom. In the above, the first two functions,
decrypt_message and construct_zero _knowledge _decryption _proof
are generation primitives, whereas the function verify_zero _knowledge
_decryption _proof is a verification primitive. We have two coherence ax-
ioms. The first says that if the verification of a zero-knowledge proof of
honest decryption succeeds, then the ciphertext indeed decrypts to the given
plaintext. The second stipulates that generated zero-knowledge proofs indeed
verify.

For ballots, we assume a type cand of candidates, and represent plain-
text and encrypted ballots as two-argument functions that take plaintext, and
ciphertexts, as values.

Definition pballot := cand -> cand -> plaintext.
Definition eballot := cand -> cand -> ciphertext.

We now turn to the representation of certificates, and indeed to the def-
inition of what it means to (a) count encrypted votes correctly according to
the Schulze Method, and (b) produce a verifiable certificate of this fact. At a
high level, we split the counting (and accordingly the certificate) into states.
This gives rise to a (inductive dependent) type ECount, parameterised by the
ballots being counted.

Inductive ECount (group : Group) (bs : list eballot) :
EState -> Type

Given a list bs of ballots, ECount bs is a inductive dependent type. In this
case, given a state of counting (i.e. an inhabitant estate of EState), the
type level application ECount bs estate is the type of evidence that proves that
estate is a state of counting that has been reached according to the method. The
states itself are represented by the type EState where

• epartial represents a partial state of counting, consisting of the homo-
morphically computed margin so far, the list of uncounted ballots and
the list of invalid ballots encountered so far

• edecrypt represents the final decrypted margin matrix, and

• ewinners is the final determination of winners.
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This is readily translated to the following Coq code:

Inductive EState : Type :=
| epartial : (list eballot * list eballot) ->

(cand -> cand -> ciphertext) -> EState
| edecrypt : (cand -> cand -> plaintext) -> EState
| ewinners : (cand -> bool) -> EState.

The constructors of EState then allow us to move from one state to the next,
under appropriate conditions that guarantee correctness of the count. The
different states during the counting represented by ECount is tagged by five
constructors:

• ecax: marks the beginning of counting

• ecvalid: process a ballot from cast-ballots pile, and the ballot is a valid
ballot

• ecinvalid: process a ballot from cast-ballot pile, and the ballot is a
invalid ballot

• ecdecrypt: decryption of fully constructed homomorphic margin from
the cast-ballot

• ecfin: declaration of winner and loser based on the decrypted margin

Inductive type ECount with all the constructors filled with state data, ver-
ification data, and correctness constraint. The first constructor, ecax, bootstraps
the count and ensures that

• all ballots are initially uncounted

• margin matrix is an encryption of the zero matrix

state data: here, the list of uncounted and invalid ballots, and the encrypted
homomorphic margin

verification data: a zero-knowledge proof that the encrypted homomorphic
margin is indeed an encryption of the zero margin
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correctness constraints: here, the constructor may only be applied if the list
of uncounted ballots is equal to the list of ballots cast, and the fact that
the zero-knowledge proofs indeed verify that the initial margin matrix
is identically zero.

The main difference between the correctness condition, and the verification
data is that the former can be simply be inspected (here by comparing lists)
whereas the latter requires additional data (here in the form of a zero-knowledge
proof). In Coq, this constructor can be encoded as:

Inductive ECount (grp : Group) (bs : list eballot) :
EState -> Type :=
| ecax (us : list eballot)

(encm : cand -> cand -> ciphertext)
(decm : cand -> cand -> plaintext)
(zkpdec : cand -> cand -> DecZkp) :
us = bs ->
(forall c d : cand, decm c d = 0) ->
(forall c d, verify_zero_knowledge_decryption_proof

grp (decm c d) (encm c d) (zkpdec c d) = true) ->
ECount grp bs (epartial (us, []) encm)

The constructor ecvalid represents the effect of counting a valid ballot.
Here the crucial aspect is that validity needs to be evidenced. As before, we
have:

state data: as before, the list of uncounted and invalid ballots, the homomor-
phic margin, but additionally evidence that the previous state has been
obtained correctly

verification data: a commitment to a (secret) permutation, a row permuta-
tion of the ballot being counted, and a column permutation of this, and
a decryption of the row- and column permuted ballot (all with accom-
panying zero-knowledge proofs)

correctness constraints: all the zero-knowledge proofs verify, the new margin
is the homomorphic addition of the previous margin and the counted
ballot, and the decrypted (shuffled) ballot is indeed valid.
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| ecvalid (u : eballot) (v : eballot) (w : eballot)
(b : pballot) (zkppermuv : cand -> ShuffleZkp)
(zkppermvw : cand -> ShuffleZkp)
(zkpdecw : cand -> cand -> DecZkp)
(cpi : Commitment) (zkpcpi : PermZkp)
(us : list eballot)
(m nm : cand -> cand -> ciphertext)
(inbs : list eballot) :
ECount grp bs (epartial (u :: us, inbs) m) ->
(* valid ballot *)
matrix_ballot_valid b ->
(* commitment proof *)
verify_permutation_commitment grp

(List.length cand_all) cpi zkpcpi = true ->
(forall c, verify_row_permutation_ballot grp

u v cpi zkppermuv c = true) ->
(forall c, verify_col_permutation_ballot grp

v w cpi zkppermvw c = true) ->
(forall c d, verify_zero_knowledge_decryption_proof

grp (b c d) (w c d) (zkpdecw c d) = true) ->
(forall c d, nm c d = homomorphic_addition

grp (u c d) (m c d)) ->
ECount grp bs (epartial (us, inbs) nm)

The constructor ecinvalid is very similar to ecvalid. We elide the de-
scription of the constructor that is applied when an invalid ballot is being
encountered (the only difference is that the margin matrix is not being up-
dated and ballot is moved to list of invalid ballots).

| ecinvalid (u : eballot) (v : eballot) (w : eballot)
(b : pballot) (zkppermuv : cand -> ShuffleZkp)
(zkppermvw : cand -> ShuffleZkp)
(zkpdecw : cand -> cand -> DecZkp)
(cpi : Commitment) (zkpcpi : PermZkp)
(us : list eballot) (m : cand -> cand -> ciphertext)
(inbs : list eballot) :
ECount grp bs (epartial (u :: us, inbs) m) ->
(* invalid ballot *)
~matrix_ballot_valid b ->
(* commitment proof *)



100 Homomorphic Schulze Algorithm : Axiomatic Approach

verify_permutation_commitment grp
(List.length cand_all) cpi zkpcpi = true ->

(forall c, verify_row_permutation_ballot grp
u v cpi zkppermuv c = true) ->

(forall c, verify_col_permutation_ballot grp
v w cpi zkppermvw c = true) ->

(forall c d, verify_zero_knowledge_decryption_proof
grp (b c d) (w c d) (zkpdecw c d) = true) ->

ECount grp bs (epartial (us, (u :: inbs)) m)

Counting finishes when there are no more uncounted ballots and this
state is marked by constructor ecdecrypt, in which case the next step is to
publish the decrypted margin matrix. Also here, we have

state data: the decrypted margin matrix, plus evidence that a state with no
more uncounted ballots has been obtained correctly

verification data: a zero-knowledge proof that demonstrates honest decryp-
tion of the final margin matrix

correctness constraints: the given zero-knowledge proof verifies, i.e. the given
decrypted margin is indeed the decryption of the (last) homomorphi-
cally computed margin matrix.

| ecdecrypt inbs
(encm : cand -> cand -> ciphertext)
(decm : cand -> cand -> plaintext)
(zkp : cand -> cand -> DecZkp) :
ECount grp bs (epartial ([], inbs) encm) ->
(forall c d, verify_zero_knowledge_decryption_proof

grp (decm c d) (encm c d) (zkp c d) = true) ->
ECount grp bs (edecrypt decm)

The last constructor, ec f in, finally declares the winners of the election, and
we have:

state data: a function cand -> bool that determines winners, plus evidence
of the fact that the decrypted final margin matrix has been obtained
correctly



§5.4 Correctness by Construction and Verification 101

verification data: paths and co-closed sets that evidence the correctness of
the function above

correctness constraints: that ensure that the verification data verifies the win-
ners given by the state data.

This last part is same as the previous chapter’s scrutiny sheet (section 4.4).

| ecfin dm w
(d : (forall c, (wins_type dm c) +

(loses_type dm c))) :
ECount grp bs (edecrypt dm) ->
(forall c, w c = true <-> (exists x, d c = inl x)) ->
(forall c, w c = false <-> (exists x, d c = inr x)) ->
ECount grp bs (ewinners w).

5.4 Correctness by Construction and Verification

In the previous section, we have presented a data type that defines the notion
of a verifiably correct count of the Schulze Method, on the basis of encrypted
ballots. To obtain an executable that in fact produces a verifiable (and provably
correct) count, we can proceed in either of two ways:

1. implement a function that – given a list bs of ballots – produces a
boolean function w (for winners) and an element of the type ECount
bs (winners w). This gives both the election winners (w) as well as
evidence (the element of the ECount data type).

2. to prove that for every set bs of encrypted ballots, we have a boolean
function w and an inhabitant of the type ECount bs (winners w).

Under the proofs-as-programs interpretation of constructive type theory, both
amount to the same. We chose the latter approach, and our main theorem
formally states that all elections can be counted according to the Schulze
Method (with encrypted ballots), i.e. a winner can always be found. Formally,
our main theorem takes the following form:
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Lemma encryption_schulze_winners (group : Group)
(bs : list eballot) : existsT (f : cand -> bool),
ECount group bs (ewinners f).

The proof proceeds by successively building an inhabitant of EState by ho-
momorphically computing the margin matrix, then decrypting and determin-
ing the winners. Within the proof, we use both generation primitives (e.g. to
construct zero-knowledge proofs) and coherence axioms (to ensure that the
zero-knowledge proofs indeed verify).

The correctness of our entire approach stands or falls with the correct
formalisation of the inductive data type ECount that is used to determine
the winners of an election counted according to the Schulze Method. While
one can argue that the data type itself is transparent enough to be its own
specification, the cryptographic aspect makes things slightly more complex.
For example, it appears to be credible that our mechanism for determining
validity of a ballot is correct – however we have not given proof of this. Rather
than scrutinising the details of the construction of this data type, we follow
a different approach: we demonstrate that homomorphic counting always
yields the same results as plaintext counting, where plaintext counting is
already verified against its specification (Chapter 4). This correspondence has
two directions, and both assume that we are given two lists of ballots that are
the encryption (resp. decryption) of one another.

The first theorem, plaintext_ schulze_to _homomorphic, reproduced
below shows that every winner that can be determined using plaintext count-
ing can also be evidenced on the basis of corresponding encrypted ballots.
The converse of this is established by Theorem homomorphic _schulze _to_plaintext.

Lemma plaintext_schulze_to_homomorphic
(group : Group) (bs : list ballot):
forall (pbs : list pballot) (ebs : list eballot)
(w : cand -> bool), (pbs = map (fun x => (fun c d =>
decrypt_message group privatekey (x c d))) ebs) ->
(mapping_ballot_pballot bs pbs) ->
Count bs (winners w) -> ECount group ebs (ewinners w).

Lemma homomorphic_schulze_to_plaintext
(group : Group) (bs : list ballot):
forall (pbs : list pballot) (ebs : list eballot)
(w : cand -> bool) (pbs = map (fun x => (fun c d =>
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decrypt_message group privatekey (x c d))) ebs) ->
(mapping_ballot_pballot bs pbs) ->
ECount grp ebs (ewinners w) -> Count bs (winners w).

The theorems above feature a third type of ballot that is the basis of plaintext
counting, and is a simple ranking function of type cand -> Nat, and the two
hypotheses on the three types of ballots ensure that the encrypted ballots
(ebs) are in fact in alignment with the rank-ordered ballots (bs) that are used
in plaintext counting. The proof, and indeed the formulation, relies on an
inductive data type Count (Section 4.3.1) that can best be thought of as a
plaintext version of the inductive type ECount given here. Crucially, Count is
verified against a formal specification of the Schulze Method. Both theorems
are proven by induction on the definition of the respective data types, where
the key step is to show that the (decrypted) final margins agree. The key
ingredient here are the coherence axioms that stipulate that zero-knowledge
proofs that verify indeed evidence shuffle and/or honest decryption.

5.5 Extraction and Experiments

As discussed in section 3.1.3, we are using the Coq extraction mechanism
[Letouzey, 2003] to extract programs from existence proofs1. In particular, we
extract the proof of the Theorem pschulze_winners, given in section 5.4 to
a program that delivers not only provably correct counts, but also verifiable
evidence. Give a set of encrypted ballots and a Group that forms the basis of
cryptographic operations, we obtain a program that delivers not only a set of
winners, but additionally independently verifiable evidence of the correctness
of the count.

Indeed, the entire formulation of our data type, and the split into state
data, verification data, and correctness constraints, has been geared towards
extraction as a goal. Technically, the verification conditions are propositions, i.e.
inhabitants of Type Prop in the terminology of Coq, and hence erased at ex-
traction time. This corresponds to the fact that the assertions embodied in the
correctness constraints can be verified with minimal computational overhead,
given the state and the verification data. For example, it can simply be veri-
fied whether or not a zero-knowledge proof indeed verifies honest decryption
by running it through a verifier. On the other hand, the zero-knowledge proof

1https://github.com/mukeshtiwari/EncryptionSchulze/tree/master/code/Workingcode
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itself (which is part of the verification data) is crucially needed to be able to
verify that a plaintext is the honest decryption of a ciphertext, and hence can-
not be erased during extraction. Technically, this is realised by formulating
both state and verification data at type level (rather than as propositions).

As we have explained in section 5.3, the formal development does not
pre-suppose any specific implementation of the cryptographic primitives, and
we assume the existence of cryptographic infrastructure. From the perspec-
tive of extraction, this produces an executable with “holes”, i.e. the crypto-
graphic primitives need to be supplied to fill the holes and indeed be able to
compile and execute the extracted program.

To fill this hole, we implement the cryptoraphic primitives with help of
the UniCrypt library [Locher and Haenni, 2014]. UniCrypt is a freely available
library, written in Java, that provides nearly all of the required functionalities,
with the exception of honest decryption zero-knowledge proofs. We extract
our proof development into OCaml and use Java/OCaml bindings [Aguillon]
to make the UniCrypt functionality available to our OCaml program. After
instantiating the cryptographic primitives in the extracted OCaml code with
wrapper code that calls UniCrypt, we tested the executable on a three can-
didate elections between candidates A, B and C. The computation produces a
tally sheet that is schematically given below: it is trace of computation which
can be used as a checkable record to verify the outcome of election. We elide
the cryptographic detail, e.g. the concrete representation of zero-knowledge
proofs. A certificate is be obtained from the type ECount where the head of
the certificate corresponds to the base case of the inductive type, here ecax.
Below, M is encrypted margin matrix, D is its decrypted equivalent, required
to be identically zero, and Z represents a matrix of zero knwoledge proofs,
each establishing that the XY-component of M is in fact an encryption of zero.
All these matrices are indexed by candidates and we display these matrices
by listing their entries prefixed by a pair of candidates, e.g. the ellipsis in
AB(...) denotes the matrix entry at row A and column B.

M: AB(rel-marg-of-A-over-B-enc), AC(rel-marg-of-A-over-C-enc), ...
D: AB(0) , AC(0) , ...
Z: AB(zkp-for-rel-marg-A-B) , AC(zkp-for-rel-marg-A-C) , ...

Note that one can verify the fact that the initial encrypted margin is in fact the
zero margin by just verifying the zero-knowledge proofs. Successive entries
in the certificate will generally be obtained by counting valid, and discarding
invalid ballots. If a valid ballot is counted after the counting commences,
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the certificate would continue by exhibiting the state and verification data
contained in the ecvalid constructor which can be displayed schematically
as follows:

V: AB(ballot-entry-A-B) , AC(ballot-entry-A-C), ...
C: permutation-commitment
P: zkp-of-valid-permutation-commitment
R: AB(row-perm-A-B) , AC(row-perm-A-C) , ...
RP: A(zkp-of-perm-row-A), B(zkp-of-perm-row-B), ...
C: AB(col-perm-A-B), AC(col-perm-A-C) , ...
CP: A(zkp-of-perm-col-A), B(zkp-of-perm-col-B), ...
D: AB(dec-perm-bal-A-B) , AC(dec-perm-bal-A-C), ...
Z: AB(zkp-for-dec-A-B) , AC(zkp-for-dec-A-C) , ...
M: AB(new-marg-A-B) , AC(new-marg-A-C) , ...

Here V is the list of ballots to be counted, where we only diplay the first
element. We commit to a permutation and validate this commitment with
a zero-knowledge proof, here given in the second and third line, prefixed
with C and P. The following two lines are a row permutation of the ballot
V, together with a zero-knowledge proof of correctness of shuffling (of each
row) with respect to the permutation committed to by C above. The follow-
ing two lines achieve the same for subsequently permuting the columns of
the (row permuted) ballot. Finally, D is the decrypted permuted ballot, and
Z a zero-knowledge proof of honest decryption. We end with an updated
homomorphic margin matrix M. Again, we note that the validity of the de-
crypted ballot can be checked easily, and validating zero-knowledge proofs
substantiate that the decrypted ballot is indeed a shuffle of the original one.
Homomorphic addition can simply be re-computed.

The steps where invalid ballots are being detected are similar, with the
exception of not updating the margin matrix. Once all ballots are counted, the
only applicable constructor is ecdecrypt, the data content of which would
continue a certificate schematically as follows:

V: []
M: AB(fin-marg-A-B), AC(fin-marg-A-C), ...
D: AB(dec-marg-A-B), AC(dec-marg-A-C), ...
Z: AB(zkp-dec-A-B) , AC(zkp-dec-A-C) , ...

Here the first line indicates that there are no more ballots to be counted, M
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is the final encrypted margin matrix, D is its decryption and Z is a matrix of
zero-knowledge proofs verifying the correctness of decryption.

The certificate would end with the determination of winners based on the
encrypted margin, and would end with the content of the ecfin constructor

winning: A, <evidence that A wins against B and C>
losing: B, <evidence that B loses against A and C>
losing: C, <evidence that C loses against A and B>

where the notion of evidence for winning and losing is as in the plaintext
version of the protocol (Chapter 4).

Concrete Certificate: Below is a glimpse of a concrete certificate for an election.
We have stripped off the trailing digits in the tally sheet which is marked by
.., and rather than representing an entry of a matrix as (i, j), it is represented
as ij

M: AA(13.., 10..) AB(90.., 14..) AC(11.., 23..) BA(16.., 13..)
BB(79.., 46..) BC(12.., 14..) CA(50.., 53..) CB(70.., 68..) CC(23.., 82..),
D: [AA: 0 AB: 0 AC: 0 BA: 0 BB: 0 BC: 0 CA: 0 CB: 0 CC: 0],
Zero-Knowledge-Proof-of-Honest-Decryption: [..]
------------------------------------------------------------------------------
V: [AA(42.., 15..) AB(63.., 32..) AC(70, 44..) BA(47.., 34..) BB(16.., 28..)
BC(39.., 16..) CA(19.., 13..) CB(57.., 12..) CC(19.., 89..),..], I: [],
M: AA(12.., 11..) AB(13.., 66..) AC(16.., 14.) BA(48.., 31..) BB(15.., 52..)
BC(15.., 68..) CA(39.., 69..) CB(12.., 78..) CC(10.., 40..),
Row-Permuted-Ballot: AA(53.., 16..) AB(23.., 44..) AC(72.., 47..)
BA(10.., 19..) BB(74.., 16..) BC(20.., 60..) CA(44.., 10..) CB(12.., 16..)
CC(59.., 98..),
Column-Permuted-Ballot: AA(81.., 41..) AB(17.., 14..) AC(10.., 14..)
BA(37.., 12..) BB(14.., 66..) BC(10.., 13..) CA(12.., 13..) CB(14.., 16..)
CC(12.., 10..),
Decryption-of-Permuted Ballot: AA0 AB-1 AC1 BA1 BB0 BC1 CA-1 CB-1 CC0,
Zero-Knowledge-Proof-of-Row-Permutation: [Tuple[...]],
Zero-Knowledge-Proof-of-Column-Permutation: [Tuple[..]],
Zero-Knowledge-Proof-of-Decryption: [Triple[..]],
Permutation-Commitment: Triple[..]
Zero-Knowledge-Proof-of-Commitment: Tuple[..]
------------------------------------------------------------------------------
.
.
.
------------------------------------------------------------------------------
V: [AA(36.., 10..) AB(20.., 13..) AC(75.., 43..) BA(13.., 31..) BB(27.., 82..)
BC(31.., 50..) CA(16.., 11..) CB(74.., 15..) CC(26.., 36..)], I: [],
M: AA(86.., 38..) AB(21.., 14..) AC(16.., 25..) BA(16.., 22..) BB(18.., 15..)
BC(11.., 63..) CA(15.., 34..) CB(76.., 18..) CC(11.., 10..),
Row-Permuted-Ballot: .., Column-Permuted-Ballot: ..,
Decryption-of-Permuted-Ballot: AA0 AB-10 AC1 BA10 BB0 BC1 CA-1 CB-1 CC0,
Zero-Knowledge-Proof-of-Row-Permutation: [..],
Zero-Knowledge-Proof-of-Column-Permutation: [..],
Zero-Knowledge-Proof-of-Decryption: [..],
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Permutation-Commitment: Triple[..],
Zero-Knowledge-Proof-of-Commitment: Tuple[..]
------------------------------------------------------------------------------
V: [], I: [AA(36.., 10..) AB(20.., 13..) AC(75.., 43..) BA(13.., 31..)
BB(27.., 82..) BC(31.., 50..) CA(16.., 11..) CB(74.., 15..) CC(26.., 36..)],
M: .., D: [AA: 0 AB: 4 AC: 4 BA: -4 BB: 0 BC: 4 CA: -4 CB: -4 CC: 0],
Zero-Knowledge-Proof-of-Decryption: [..]
------------------------------------------------------------------------------
D: [AA: 0 AB: 4 AC: 4 BA: -4 BB: 0 BC: 4 CA: -4 CB: -4 CC: 0]
winning: A

for B: path A --> B of strength 4, 5-coclosed set:
[(B,A),(C,A),(C,B)]

for C: path A --> C of strength 4, 5-coclosed set:
[(B,A),(C,A),(C,B)]

losing: B
exists A: path A --> B of strength 4, 4-coclosed set:
[(A,A),(B,A),(B,B),(C,A),(C,B),(C,C)]

losing: C
exists A: path A --> C of strength 4, 4-coclosed set:
[(A,A),(B,A),(B,B),(C,A),(C,B),(C,C)]

We note that the schematic presentation of the certificate above is noth-
ing but a representation of the data contained in the extracted type ECount
that we have chosen to present schematically. Concrete certificates can be
inspected with the accompanying proof development, and are obtained by
simply implementing datatype to string conversion on the type ECount.

To demonstrate proof of concept, we have run our experiment on an Intel
i7 2.6 GHz Linux desktop computer with 16GB of RAM for three candidates
and randomly generated ballots (Figure 5.1). The largest amount of ballot we
counted was 10,000 (not included in graph), with a runtime of 25 hours. A
more detailed analysis reveals that the bottleneck are the bindings between
OCaml and Java. More specifically, producing the cryptographic evidence
using the UniCrypt Library for 10,000 ballots takes about 10 minutes, and the
subsequent computation (which is the same as for the plaintext count) takes
negligible time. This is consistent with the mechanism employed by the bind-
ings: each function call from OCaml to Java is inherently memory bounded
and creates an instance of the Java runtime, the conversion of OCaml data
structures into Java data structures, computation by respective Java function
producing result, converting the result back into OCaml data structure, and
finally destroying the Java runtime instance when the function returns. While
the proof of concept using OCaml/Java bindings falls short of being practi-
cally feasible, our timing analysis substantiates that feasibility can be achieved
by eliminating the overhead of the bindings.
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Figure 5.1: Experimental Result
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5.6 Summary

The main contribution of our formalisation is that of independently verifi-
able evidence for a set of candidates to be the winners of an election counted
according to the Schulze method. Our main claim is that our notion of evi-
dence is both safeguarding the privacy of the individual ballot (as the count
is based on encrypted ballots) and is verifiable at the same time (by means
of zero knowledge proofs). To do this, we have axiomatised a set of crypto-
graphic primitives to deal with encryption, decryption, correctness of shuffles
and correctness of decryption. From formal and constructive proof of the fact
that such evidence can always be obtained, we have then extracted executable
code that is provably correct by construction and produces election winners
together with evidence once implementations for the cryptographic primi-
tives are supplied.

In a second step, we have supplied an implementation of these primi-
tives, largely based on the UniCrypt Library. Our experiments have demon-
strated that this approach is feasible, but quite clearly much work is still
needed to improve efficiency.

Assumptions for Provable Correctness. While we claim that the end product em-
bodies a high level of reliability, our approach necessarily leaves some gaps
between the executable and the formal proofs. First and foremost, this is of
course the implementation of the cryptographic primitives in an external (and
unverified) library. We have minimised this gap by basing our implementa-
tion on a purpose-specific existing library (UniCrypt) to which we relegate
most of the functionality.

Modelling Assumptions. In our modelling of the cryptographic primitives, in
particular the zero-knowledge proofs, we assumed properties which in real-
ity only hold with very high probability. As a consequence our correctness
assertions only hold to the level of probability that is guaranteed by zero-
knowledge proofs (Sigma protocols).

Scalability. We have analysed the feasibility of the extracted code by counting
an increasing number of ballots. While this demonstrates a proof of concept,
our results show that the bindings used to couple the cryptographic layer with
our code adds significant overhead compared to plaintext tallying in Schulze
method (4). Given that both parts are practically efficient by themselves,
scalability is merely the question of engineering a more efficient coupling.
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In a nutshell, the achieved and failed parts of this formalization:

• Achieved

– Correctness: The implementation is formalized in Coq assuming
the existence of cryptographic functions and axioms about their
correctness behaviour. These primitives were used for constructing
evidence, or certificate.

– Privacy : We don’t reveal the content of ballot at any phase of elec-
tion counting. Therefore, there is no possibility of anyone knowing
the choices of a voter other than the voter herself.

– Verifiability: The outcome of any election can be verified by any
third party because of the generated certificates. However, the na-
ture of certificates in this case is very complex and can only be
scrutinize by someone having specialized knowledge of cryptogra-
phy which decreases the pool of potential scrutinizers dramatically.

• Failed

– Correctness: We use an external unverified library for cryptographic
code. In general, this library could have bugs and may produce a
wrong result. This is not a problem per say because it will be
caught during the certificate checking by any independent party,
but it may create a atmosphere of distrust among voters.

Our formalization leaves some gaps which needs to be filled:

• A formally verified cryptographic library to fill the correctness gap.

• A formally verified checker to ease the auditing of election to fill the
scrutineers gap

Developing a formally verified library to fill the correctness gap would
have taken more time, specifically the commitment consistent shuffle, so we
chose to formally verify the certificate checker to ease the auditing of election
to increase the number of scrutineers gap.

In the next chapter, we will focus on all the details needed to develop for-
mally verified certificate checker for the certificate we produced in this chap-
ter. However, we did not formalize every cryptographic primitive needed to
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verify our certificate. Rather, we have developed a proof of concept formally
verified certificate checker for International Association for Cryptologic Re-
search 2018 election, a simpler scrutiny sheet than ours which does not in-
volve any shuffle.
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Chapter 6

Scrutiny Sheet : Software
Independence

Somewhere inside of all of us is
the power to change the world.

Roald Dahl

6.1 Introduction

A major disadvantage of using cryptography to achieve privacy, using en-
cryption to make the content of ballot private, and verifiability, using zero-
knowledge proof for verification of claims, is that the verification process is
quite cumbersome. As a consequence, the verification process (checking the
scrutiny sheet) is only viable for cryptographers, a tiny fraction of general
population, and results into a sharp decrease in number of scrutineers. While
it is not very difficult to find cryptographers to verify the election, they are,
off course, not the representative population in any democracy. In order to
increase the number of scrutineers and subsequently confidence in electronic
voting, we follow the route of providing a formally verified open-source ref-
erence certificate checker which anyone can inspect and run on the election
data. The rationale behind formally verifying the certificate checker is cor-
rectness and open sourcing is to gain the public trust via careful examina-
tion. For example, consider a scenario where we do not provide the reference
checker, then how likely would it be for community/voters to develop the
verified checker? Moreover, assuming that we publish one unverified cer-
tificate checker, what would happen if it returns false on a valid certificate

113
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because of its own bug? Both situations, of course, would be a devastating
situation, so not only should we provide a reference certificate checker, but it
should be a formally verified one. Additionally, a formally verified reference
certificate checker would open the gate for debate in case of someone’s imple-
mentation for checking certificate diverges from the reference checker. In the
case of a diverging situation, there are two possibilities, either the reference
checker is verified using wrong assumptions, or the implementation itself is
wrong. The first situation is certainly not very pleasant because it would de-
teriorate the public trust in the system, but nonetheless, it is always good to
have openness in democracy to make it more strong.

Contribution: We examine the concepts needed to develop a formally
verified scrutiny sheet checker, produced from the encrypted ballots in the
previous chapter. Most of these concepts, except the shuffle proof, are straight
forward and easy to implement, so we formally verify these easy concepts in
Coq to develop a certificate checker for another election, which uses simple
method to elect candidates.

In this chapter, we discuss the concepts required to develop a verified cer-
tificate checker for the certificate we generated in the last chapter. Moreover,
we sketch pseudo code and pen-and-paper proof, in style of algebraic ma-
nipulation. The reason for doing this to make it accessible for everyone who
intends to develop a formally verified certificate checker. In some cases, we
have translated the pseudo code in Coq code to make the idea more precise.

We have already explained our certificate in section 5.5, but intuitively,
checking our certificate amounts to proving that the homomorphic margin
has been computed correctly and zero-knowledge proof for every claim is
correct. In a nutshell, our claims were:

1. honest decryption zero-knowledge proof: every encrypted value is de-
crypted honestly

2. shuffle zero-knowledge proof: a ballot has been permuted by the same
permutation whose commitment is published (commitment consistent
shuffle [Wikström, 2009]).

3. final homomorphic tally is computed correctly

We sketch the encoding of Pedersen’s commitment [Pedersen, 1992], one of
the primitives of shuffle zero-knowledge proof, in Coq, but we leave the
other details of shuffle zero-knowledge proof algorithm [Wikström, 2009].
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Moreover, we encode the sigma protocol in Coq as a record and give various
examples of concrete sigma protocol, including the honest decryption zero-
knowledge proof. We also describe the computation of homomorphic tally
from the encrypted ballots, without decryption any individual ballot. Finally,
all these concepts are sufficient to develop the formally verified certificate
checker for International Association for Cryptologic Research (IACR) elec-
tion1 because IACR uses a very simple method, compared to ours, to elect
candidates, and our proof development can be accessed2.

Chapter Outline: In section 6.2, we discuss the underlying algebraic
structures needed for various cryptographic operations. Section 6.3 focuses
on generalizing the Pedersen commitment scheme for a matrix. In the follow-
ing section 6.4, we discuss the details of sigma protocol, and its formalization
in Coq. In order to eschew the (monadic) probabilistic reasoning of sigma
protocol, we use the standard trick of making the randomness explicit to
make the reasoning easier without losing the meaning of sigma protocol. In
section 6.4.1, we show how to make a concrete instance of sigma protocol by
giving an example of discrete logarithm. In addition, we show the protocol
needed for honest decryption (section 6.4.2). Section 6.5 sketches the homo-
morphically tally based on additive ElGamal scheme. Finally, we discuss the
IACR scrutiny sheet in section 6.6, and we summarize the chapter in section
6.7

6.2 Algebraic Structures: Building Blocks

The basic building blocks of any cryptographic system are algebraic struc-
tures, specifically cyclic group (of prime order), field, and vector space. In
general, we do not need vector space, and group and field are sufficient for
most of the cryptographic purposes. However, vector space of a cyclic group
of prime order over the field of integers (vector element) modulo the same
field of integers of same prime order (scalar element) is nicer to work because
the operation involving an element from group and an element from field
can be abstracted over the scalar multiplication operator of vector space. For
example, in elliptic curve cryptography, for a given curve E over a finite field,
there are two main operations: i) point-addition (adding two points P and
Q, given of the curve E), and ii) point-multiplication (multiplying a field el-

1https://vote.heliosvoting.org/helios/elections/60a714ea-ce6d-11e8-8248-76b4ab96574c/
view

2https://github.com/mukeshtiwari/secure-e-voting-with-coq

https://vote.heliosvoting.org/helios/elections/60a714ea-ce6d-11e8-8248-76b4ab96574c/view
https://vote.heliosvoting.org/helios/elections/60a714ea-ce6d-11e8-8248-76b4ab96574c/view
https://github.com/mukeshtiwari/secure-e-voting-with-coq
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ement, a, with a point, P, on the curve E). Moreover, there is also a point at
infinity (denoted by O) which acts as an identity element. We can easily im-
plement these functions using the suitable data-structure from the Coq theo-
rem prover and prove theorems about them. Nonetheless, during the process
of proving these theorems a lot of details about the internal implementation
of these functions would make it unnecessarily complicated3, while if we
abstract the point-addition and point-multiplication as vector-addition and
scalar-multiplication, respectively, of a vector space, we can prove theorems
about these functions, point-addition and point-multiplication, using just ax-
ioms of vector space. The proof process would be much smoother, but more
importantly, the proof would just require the axioms of vector space and field.
This was the major motivation behind abstracting the group and field over a
vector space. Now we briefly explain the group, field, and vector space.

Definition 2 (Group) A group is a set G, with a binary operator · : G → G → G,
identity element e, and inverse operator inv : G → G (denoted as −1) such that the
following laws hold:

• Associativity: ∀ a b c ∈ G, a · (b · c) = (a · b) · c

• Closure: ∀ a b ∈ G, a · b ∈ G

• Inverse Element: ∀ a ∈ G, a · a−1 = a−1 · a = e

• Identity: ∀ a ∈ G, a · e = e · a = a

If the group is commutative, i.e. ∀ a b ∈ G, a · b = b · a, then we call it Abelian
group. We can represent the Abelian group in Coq by using the record data
type.

Record AbelGroup (G : Type)
(dot : G -> G -> G) (inv : G -> G) (e : G) :=

{
dot_associativity : forall x y z,
dot x (dot y z) = dot (dot x y) z;

dot_left : forall x, dot x e = x;
dot_right : forall x, dot e x = x;
left_inverse : forall x, dot (inv x) x = e;

3it is more likely to be the case that some key lemma required would be missing from the
library, and it will some effort to prove it
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right_inverse : forall x, dot x (inv x) = e;
commutative : forall x y, dot x y = dot y x

}.

Our Coq encoding is slight different from the definition of the group we gave
above, mainly that G : Type (read as G has the type Type). Because of the
underlying foundation of Coq is type theory, every term in Coq has a type;
hence we need to explicitly state the type of term G. In a nutshell, Type is
used to represent set.

Definition 3 (Field) A field is a set F, with two binary operators + : F→ F→ F,
and · : F → F → F, two identity elements 0 and 1, and two unary operator
− : F→ F, 1/ : F→ F such that:

• (F, +, 0, -) forms an abelian group.

• (F - {0}, ·, 1, 1/) forms an abelian group.

• · distributes over +.

Definition 4 (Vector Space) A set V with two binary operations, vector addition
+ : V → V → V and scalar multiplication · : F→ V → V, is a vector space over a
field F if the following properties hold:

• Closure under vector addition: (V, +) forms an abelian group.

• Scalar multiplication distributes with respect to vector addition: ∀ r ∈ F,
u v ∈ V, r · (u + v) = r · u + r · v.

• Scalar multiplication distributes with respect to field addition: ∀ a b
∈ F, u ∈ V, (a +F b) · u = a · u + b · v, where +F : F → F → F is field
addition.

• Scalar multiplication is associative with respect to field multiplication:
∀ a b ∈ F, u ∈ V , (a ·F b) · u = a · (b · u), where ·F : F→ F→ F is field
multiplication.

• Identity: ∀a ∈ V, 1F · a = a
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6.3 Pedersen Commitment Scheme

Recall that in the last chapter to prove that if a ballot was valid or invalid,
we generated a secret permutation π and published its commitment using
Pedersen commitment scheme [Pedersen, 1992]. Later, we use this to shuffle
each row and column of the ballot by this (secret) permutation. In the shuffle
algorithm [Wikström, 2009]), the data structure of permutation π is matrix
(a permutation matrix to be precise). In this section, we discuss that how to
generalized Pedersen commitment scheme for matrix data structure.

A Pedersen commitment for any two given group elements g h ∈ G, a
message m ∈ F (the field of integers), and a random element r ∈ F (the field
of integers) is gr · hm (· is the group operation). As we explained above that
we can just work with group and field, but abstracting the group operation
(· : G → G → G) as a vector-addition and exponentiation operation (ˆ :
G → F → G) as scalar-multiplication would make the proofs more tractable.
Finally we can encode the Pedersen commitment in the Coq theorem prover
(simplified for the presentation):

Definition ped_commitment {F G : Type} (H1 : Group G)
(H2 : Field F) (H3 : Vector_Space F G)
(^ : G -> F -> G) (dot : G -> G -> G)
(g h : G) (r m : F) : G := dot (g ^ r) (h ^ m).

The Coq definition of Pedersen commitment assumes the existence of two
types F and G, together with hypothesis that G is group, F is field, and both,
F and G, forms a vector space (we are not giving any concrete implementa-
tion of group or field, but an abstract representation, assuming two abstract
type G and F. During the code extraction, we instantiate all these types and
operations with a concrete representation and discharge the proof obligation
to make sure that the assumptions hold, very similar to the Schulze algorithm
extraction where we instantiate the Cand type with concrete candidates and
discharge all the proof obligation).

We can extend the Pedersen commitment to commit a vector instead of
just a scalar. To commit a vector of n group elements h1, h2 . . . hn, vector of n
field elements m1, m2 . . . mn, a group element g, and a random field element
r, we compute gr ·∏n

i=1 hmi
i . This commitment is known as vector Pedersen

commitment. The ∏n
i=1 hmi

i can be computed in Coq as (this program is writ-
ten using Equation library [Sozeau and Mangin, 2019]):
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Equations prod_vh_commitment {F G : Type} {n : nat}
(H1 : Group G) (H2 : Field F)
(H3 : Vector_Space F G) (^ : G -> F -> G)
(dot : G -> G -> G) (hi : Vector.t G (S n))
(mi : Vector.t F (S n)) : G :=

prod_vh_commitment (^) dot (vcons h vnil) (vcons m vnil) :=
h ^ m;

prod_vh_commitment (^) dot (vcons h hs) (vcons m ms) :=
dot (h ^ m) (prod_vh_commitment ^ dot hs ms).

Now we can compute the vector Pedersen commitment (gr ·∏n
i=1 hmi

i ) as:

Definition ped_vec_commitment {F G : Type} {n : nat}
(H1 : Group G) (H2 : Field F)
(H3 : Vector_Space F G) (^ : G -> F -> G)
(g : G) (r : F) (hs : Vector.t G (n + 1))
(ms : Vector.t F (n + 1)) :=
dot (g ^ r)
(prod_vh_commitment H1 H2 H3 ^ dot hs ms)

Finally, we can extend the idea of vector Pedersen commitment to commit a
matrix of size N× N, for some arbitrary natural number N. To do so, we can
call the ped_vec_commitment on every column of the matrix. Consequently,
we will get a vector of commitments of length N.

6.4 Sigma Protocol: Efficient Zero-Knowledge Proof

A sigma protocol is a two party protocol, a prover P and a verified V, where
prover P tries to convince the verifier V that she holds a private input x for
some public input w such that a binary relation R holds, i.e. (x, w) ∈ R.
Sigma protocol, in general, is a three step protocol:

1. Initialisation: P generates a random challenge r, commits it, and sends
the committed message to V

2. Challenge: V generates a random challenge e and sends it to V

3. Response: P sends a response z to V
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Finally, upon receiving the response z and other public inputs, V either ac-
cepts the proof or rejects the proof, depending on if the public inputs are
consistent with protocol or not. The verification step is modelled as a boolean
function that takes all the public inputs and returns true or false. Now we
define the sigma protocol in Coq by using record data type.

Record SigmaProtocol (Statement : Type) (* Statement x *)
(Witness : Type) (* witness w *)
(R : Statement -> Witness -> bool) (* decidable relation *)
(RandCoin : Type) (* random coin *)
(Commitment : Type) (* commitments *)
(Challenge : Type) (* challenges *)
(Response : Type) (* response *) :=

MkSigma {
(* initial commitment send by the Prover *)
initial : RandCoin -> Commitment;
(* Randomness send by the verifier. *)
challenge : Challenge;
(* response generate by prover *)
response : Statement -> Witness ->

RandCoin -> Challenge ->
Response;

(* verify the response *)
verify : Statement * Commitment * Challenge * Response
-> bool;
(* Simulator *)
simulator : Statement -> Challenge -> Response ->

Statement * Commitment * Challenge * Response;
(* Extractor *)
extractor : Challenge -> Response -> Challenge ->

Response -> Witness;

(* Completness *)
Completness : forall (s : Statement) (w : Witness)
(r : RandCoin) (e : Challenge), R s w = true ->
verify (s, initial r, e, response s w r e) = true;

(* Special Soundness *)
Special_Soundness : forall s c e1 e2 r1 r2,
e1 <> e2 ->
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verify (s, c, e1, r1) = true ->
verify (s, c, e2, r2) = true ->
R s (extractor e1 r1 e2 r2) = true;

(* Special honest verifier zero knowledge proof. Explicit
randomness makes it nicer to work in theorem prover *)

Special_Honest_Verifier_ZKP (s : Statement)
(w : Witness) (e : Challenge):
R s w = true -> forall (r : RandCoin),
verify (s, initial r, e, response s w r e) = true <->
forall (z : Response), verify (simulator s e z) = true;

(* simulator correct *)
Simulator_correct : forall (s : Statement)
(e : Challenge) (r : Response),
verify (simulator s e r) = true;

}.

The record SigmaProtocol is indexed by:

• Statement, the public input known to P and V

• Witness, secret input known to P

• R such that (x, w) ∈ R, known to P and V

• RandCoin, the private random coin toss of P

• Commitment, commitment computed by P based on the random coin
toss

• Challenge, the random challenge of V to P

• Response, the response of P send to V

The body of record SigmaProtocol contains functions initia, challenge, and
response to reflect the three steps of sigma protocol with three auxiliary func-
tions and veri f y, simulator, and extractor. The veri f y, a boolean function,
checks if the data produced during the protocol is consistent or not, simulator
function produces a transcript and used for proving the special honest verifier
zero knowledge proof, and extractor function produces a witness and used in
special soundness of sigma protocol.
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We have four correctness properties about sigma protocol:

1. Completeness : if P and V follow the protocol, then verifier would accept
the proof.

2. Special_Soundness : if P is able to convince V with two accepting tran-
script for the same commitment, then V can extract the witness.

3. Special_Honest_Veri f ier_ZKP : recall that special honest verifier zero
knowledge proof amounts to a probabilistic polynomial time simulator
S which would generate a proof transcript for some statement s with
same probability distribution as if there were a real conversation be-
tween a prover P and a verifier V for the statement s and witness w
such that (s, w) ∈ R. Informally, the real proof transcript depends on
statement s, witness w, and challenge e, while the simulated proof tran-
script depends on statement s and challenge e. (simulator does have
not access to witness w, so to generate a accepting proof just by us-
ing s and e, it uses a concept call rewinding.) In our definition of
Special_Honest_Veri f ier_ZKP, we eschew the probabilistic reasoning by
making randomness explicit, and it states that for any given fixed state-
ment s, witness w, challenge e and assumption that R s w holds, then
for every random challenge r and a accepting real transcript, simulator
can construct an accepting transcript from all random responses drawn
from response space.

4. Simulator_correct : simulator is correct, i.e. any transcript created by
simulator checks out.

Finally, we can use our construction, SigmaProtocol, as a building block
for composing different kinds of sigma protocols, which we are not explaining
here. For example, we can define AND composition, EQ composition, OR
composition, etc.

6.4.1 Concrete Sigma Protocol: Discrete Logarithm

One of the most basic sigma protocol is proof of knowledge of discrete log-
arithm, i.e. given two elements g and h of a group G, prover convinces the
verifier that she knows the discrete logarithm (logg h) in zero knowledge. In
Camenisch-Stadler notation [Camenisch and Stadler, 1997] of zero knowledge
proof, it is represented as: ZKPoK{w | h = gw}. We can show that this is a
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sigma protocol inside Coq by encoding all the functions and proving all the
axioms mentioned in our record type SigmaProtocol. For example, we can
write the initial function as taking a input r and computing gr, challenge as a
function which simply returns a challenge e, and so forth:

initial g r := gr

challenge := e

response h w r e := r + e · w
verify g h a e z := gz = a · he

simulator g h s e z := (gz · h−e, e, z)

extractor c1 z1 c2 z2 := (z1 − z2) · (c2 − c1)
−1

Based on these definitions, we can easily discharge the three proofs,
Completeness, Special_Soundness, Special_Honest_Veri f ier_Zero_Knowledge,
and Simulator_correct axioms by simple algebraic manipulation.

6.4.2 Honest Decryption Zero Knowledge Proof

We have sigma protocol at our arsenal, we focus on honest decryption prob-
lem. How can we convince someone that for a given group (G, g, p, h) and
private key x (h := gx), the message m is the honest decryption of ElGamal
ciphertext (c1, c2) (which is (gr, gm · hr) for some randomness r with revealing
our private key x? To solve this problem, we use a well known protocol for
proving equality of the discrete logarithm [Cramer et al., 1997]. We first dis-
cuss the protocol, and later we will show that how we can adopt the protocol
for our purpose.

Diffie Hellman Tuple: a tuple (g, h, u, v) is a Diffie Hellman tuple if there
exists a w such that u = gw and v = hw. The protocol to prove it is:

• P chooses a random r and sends a = gr and b = hr.

• V sends a random e

• P sends z = r + e · w

• V check gz = a · ue and hz = b · ve
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Now we come back to our original problem, i.e. proving that m is the
honest decryption of (c1, c2). From these values, we construct a Diffie Hell-
man tuple by multiplying c2 with g−m, i.e. (g, h, c1, c2 · g−m). A simple al-
gebraic simplification shows that this tuple can be written as (g, h, gr, gm ·
hr · g−m) for some random r. A further simplification leads to (g, h, gr, hr),
and this tuple is clearly a Diffie Hellman tuple, where u = gr and v = hr.
We could not have been able to construct a Diffie Hellman tuple and proved
the equality of discrete logarithm if we had claimed anything other than the
origin value m. For example, suppose a cheating prover claims that m1 (differ-
ent from m) is the honest decryption of (c1, c2). Following the cheating prover
claim, we construct the Diffie Hellman tuple (g, h, gr, gm · hr · g−m1). Clearly,
the tuple (g, h, gr, hr · gm−m1) is not Diffie Hellman tuple; hence a cheating
prover would not succeed.

6.5 Homomorphic Tally

Now that we have sorted out the correct decryption, the next challenge in our
tally sheet is computing the final tally homomorphically. Since our encryption
is additive ElGamal, and recall that our ballot is a matrix of ciphertexts:

(gr11 , gm11 ∗ hr11) (gr12 , gm12 ∗ hr12) · · · (gr1N , gm1N ∗ hr1N)
(gr21 , gm21 ∗ hr21) (gr22 , gm22 ∗ hr22) · · · (gr2N , gm2N ∗ hr2N)

...
... . . . ...

(grN1 , gmN1 ∗ hrN1) (grN2 , gmN2 ∗ hrN2) · · · (grNN , gmNN ∗ hrNN)


To compute the finally tally, all we have to do is to stack all the valid bal-

lots (matrices) together and multiply the corresponding ciphertexts together
to get the final tally matrix (point wise matrix multiplication). The final com-
puted tally can be decrypted honestly by using the same principals described
in the previous section. We can capture all these concepts in Coq based on the
algebraic structures, group, field, vector space, and prove all the properties by
simple algebraic manipulation. We can represent encryption, decryption and
ciphertext multiplication for a given cyclic group (G, g, h, x) such that h = gx:

elGamal_enc (g h : G) (r : F) :=(gr, gm · hr)

elGamal_dec (g h : G) (c1, c2) := c2 · c−x
1

elGamal_mult (c1, c2)(d1, d2) := (c1 · d1, c2 · d2)



§6.6 IACR 2018 Election 125

In fact, by simple algebraic manipulation, we can prove that decryption is left
inverse of encryption.

elGamal_dec g h (elGamal_enc g h r) = elGamal_dec g h (gr, gm · hr)(un f olding)
= gm · hr · (gr)−x(un f olding)
= gm · (gx)r · (gr)−x(substitution)
= gm · gxr · g−rx(algebraic− simpli f ication)
= gm

The final decrypted tally would be a matrix filled with values like gm1+m2+···,
and we need to do a search to find the values of m1 + m2 + · · · from the final
decrypted tally. A drawback of this method is that if the number of candidates
and ballots are large, then calculating m1 +m2 + · · · from gm1+m2+···+mn is not
very practical [Cramer et al., 1997].

6.6 IACR 2018 Election

We follow some of these techniques explained above to write a formal certifi-
cate checker for IACR 2018 directors election scrutiny sheet 4. The 2018 IACR
directors election considered seven candidates to fill three positions on the
board of directors. The voting style is approval voting where all the eligible
voters, IACR members, could vote for as many candidates as they like. After
the counting, the top three members were elected to fill the positions.

The Helios voting system [Helios, 2016] was used for the election, and
the system was configured with four authorities, who generated an ElGamal
[ElGamal, 1985] public key such that all four authorities were required to de-
crypt efficiently. Every eligible voter received the credentials by email which
they used to cast their ballot from their personal computer. During the cast
process, each voter created seven ElGamal ciphertexts, encrypting either zero
or one, for the seven participating candidates. Since the vote was exponent,
the ElGamal cryptosystem became homomorphic additive. During this point,
the voter was then offered the chance to audit her encrypted ballot to check
that it indeed had the vote of her choice. If she chose to audit, she had to

4https://vote.heliosvoting.org/helios/elections/60a714ea-ce6d-11e8-8248-76b4ab96574c/
view

https://vote.heliosvoting.org/helios/elections/60a714ea-ce6d-11e8-8248-76b4ab96574c/view
https://vote.heliosvoting.org/helios/elections/60a714ea-ce6d-11e8-8248-76b4ab96574c/view
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discard this ballot and asked to cast a fresh ballot (this mechanism is called
called Benaloh challenge, and the purpose of this challenge is to catch "cheat-
ing machines". Moreover, this method ensures the cast-as-intended because
a cheating machine would not know when a voter would cast her ballot, so,
in the most likely scenario, a voter would end up cast her true intentions).
Once she had an unaudited ballot with which she was happy, she cast it.
The Helios website maintained an append-only bulletin board on which the
voter’s encrypted ballot appeared. After the voting period was over, all the
encrypted ballots corresponding to all candidates were multiplied together;
so that there was a single ciphertext for each candidate, encoding the number
of votes for that candidate. The authorities then decrypted these (seven) ci-
phertexts, announced the result and proved, using a sigma protocol, that the
announced result was the correct decryption.

Now that we have already explained the workings of IACR 2018 directors
election, we focus on three aspects of verifiability: cast-as-intended, collected-
as-cast, and tallied-as-collected. The cast-as-intended has already been as-
sured by Benaloh challenges, and collect-as-cast is ensured by every voter
checking her ballot on the bulletin board. The more complicated step is the
tallied-as-cast check. In order to verify the tallied-as-cast, a scrutineer has to
check only the valid ballots (those which are encryption of either zero or one)
has contributed to final tally, the final tally has been calculated correctly, and
the final tally has been decrypted honestly.

The algorithm, in more detail, to ascertain the tallied-as-cast, there is
a published list of encrypted ballots on the bulletin board and a published
result. Moreover, to enable scrutiny, the election authority publishes, non-
interactive, sigma protocol transcripts for correct encryption and decryption.
Using these transcripts, the scrutineer can verify the election by checking
the following three things. First, all the ballots included in final tally are
indeed the encryption of zero or one, and any ballot containing any other
value has been discarded. Second, the scrutineer reruns the (multiplication)
computation and checks that the resulting ciphertexts matches the published
one. Finally, she checks that the transcripts are valid for the decryption of
these combined ciphertexts with respect to the announced result. These three
checks suffice to ensure that the ballots were counted-as-collected.

IACR used Schnorr group [Schnorr, 1990] to avoid attacks various attacks
on solving the discrete logarithm problem. A Schnorr group is a multiplica-
tive Abelian subgroup of prime order q of the field of integers modulo a
prime p, where p = k * q + 1 for some integer. In IACR election, the primes
used were:
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Definition P : Z := 16328632084933010002384055033805457329601614771
1859553897391673090862148004064657990385836349537529416756455621824
9812075026498049238137557936767564877129380031037096474576701424363
8518442553823973482995267304044326777047662957480269391322789378384
6194285964464469846943061876447674624609656225800875643392126317758
1789595840901667639897567126617963789855768731707617721884323315069
5157881061257053019133078545928983562221396313169622475509818442661
0470184362648069010239662367183672047107559358990137503061077380023
6413791742659573740387111418775080434656473125060919684663818390398
2387884578266136503697493474682071.

Definition Q : Z := 61329566248342901292543872769978950870633559608
669337131139375508370458778917.

Since theorem provers are known for proving mathematical statements,
but not for being good at running computation inside their environment.
Naturally, proving any mathematical statement, e.g. number theoretic proofs,
which are computational intensive would not be a ideal situation for theorem
provers. However, the recent advancement in theorem provers (specifically
Coq) led us to prove primality of two large prime numbers inside the Coq. To
begin with we utilise the CoqPrime library5 to prove in Coq that the numbers
used to define the Schnorr group are in fact prime.

Lemma P_prime : prime P.

Lemma Q_prime : prime Q.

Finally, we extract the OCaml code from Coq proof scripts and write a
main file to glue the extracted code and parsing code. Upon execution, the
code returns yes, which asserts that the results produced are correct.

6.7 Summary

In this chapter, we have sketched the ideas for developing a formally verified
certificate checker for the certificate we produced in the last chapter. How-
ever, due to time constraint and complexity of shuffle primitive, we ended up
verifying a simple certification, which did not involve any zero-knowledge
proof of shuffle. Finally, in this chapter we closed the loop of decrease in

5https://github.com/thery/coqprime
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number of scrutineers because any one can run the certificate checker. More-
over, we open sourced 6 the checker, so that it can be inspected by anyone (we
would like to call it correctness by democratic process). One thing we would
like to emphasize that cryptographic concepts are inherently very complex,
so running a certificate checker certainly does not amounts to understand-
ing the various bits of cryptography and formal method used to develop the
certificate checker.

In the next chapter, we will discuss some of the properties of Schulze
method which we have formalized in Coq.

6https://github.com/mukeshtiwari/secure-e-voting-with-coq

https://github.com/mukeshtiwari/secure-e-voting-with-coq


Chapter 7

Machine Checked Schulze
Properties

Stay Hungry. Stay Foolish.

Steve Jobs

Contribution: In this chaper, we examine the correctness our implemen-
tation using the Arrow Impossibility framework, an ultimate stress testing
for any vote counting method. Moreover, we establish in the Coq theorem
prover that our implementation follows two key property, Condercet winner
and Reversal symmetry. This chapter is far from complete because of the lack
of time, but one day, I hope, I will get back and finish some other properties
as well.

Since the beginning of democracy, social scientists are constantly look-
ing for methods which would aggregate the individual choices to arrive at
acceptable group decisions. In general, these acceptable group decisions are
based on intuition of the society at that time, but not backed by mathematical
theory. The first mathematical treatment to combine the individual choices
(social mathematics) can be attributed to French philosopher and mathemati-
cian Marquis de Condorcet (Condorcet method, 1785) and his contemporary
and co-national mathematician Jean-Charles de Borda (Borda count, 1770).
However, the first formal system, foundational cornerstone of modern so-
cial choice theory, for collective preference was given by Kenneth Arrow. In
1950, Kenneth Arrow published a paper titled A Difficulty in the Concept of
Social Welfare [Arrow, 1950b]. In this paper, Kenneth Arrow envisioned an
axiomatic system having the following properties:

129
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• Unrestricted domain

• Non-dictatorship

• Pareto efficiency

• Independence of Irrelevant Alternatives

Moreover, he showed no preferential voting method which can combine
or aggregate the individual choices into a community wide ranking would
have all the properties of his axiomatic system. This result is now known as
Arrow’s impossibility theorem.

In the light of impossibility theorem, Schulze method, a preferential vot-
ing method, can not have all the properties, and it fails on Independence of
Irrelevant Alternatives (IIA) criterion. Despite the fact that Schulze method
fails on IIA, it has plenty of other desirable properties established in the so-
cial choice theory. In this chapter, we will discuss some of the properties.
Moreover, we will show that our implementation adheres to these properties.

7.1 Condorcet Winner

A Condorcet winner is a candidate who beats every other candidate in pairwise
comparison (also known as head to head competition). Recall that in Schulze
method, the pairwise comparison method was margin matrix, denoted as
marg, which defined as:

Given a set of ballots P and candidate set C, we construct graph
G based on the margin matrix marg : C × C → Z. Given two
candidates c, d ∈ C, the margin of c over d is the number of voters
that prefer c over d, minus the number of voters that prefer d over
c. In symbols:

marg(c, d) = ]{b ∈ P | c >b d} − ]{b ∈ P | d >b c}

where ] denotes cardinality and >b is the strict (preference) order-
ing given by the ballot b ∈ P.

Now we define the Condorcet winner in Coq as:
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Definition condorcet_winner (c : cand)
(marg : cand * cand -> Z) := forall d, marg (c, d) >= 0.

Informally, the definition, condorcet_winner, states that if a candidate c
is condorcet winner, then she has been ranked higher against every other can-
didate. Having the definition of condorcet winner, our goal is to concluded
that if there is a Condorcet winner, the Schulze method always elects it as a
winner.

(* if candidate c is Condorcet winner then it's winner of election *)
Lemma condorcet_winner_implies_winner (c : cand)

(marg : cand * cand -> Z) : condorcet_winner c marg ->
c_wins marg c = true.

Proof.
intros Hc.
pose proof condorcet_winner_genmarg.
pose proof c_wins_true.
apply H0. intros d.
pose proof (H c d (length cand_all) marg Hc).
auto.

Qed.

The proof of this theorem hinges on the two key facts:

1. If a canddiate beats everyone in pairwise comparison, then generalised
margin between her and every other candidate would be greater than
or equal to 0.

2. If a canddiate beats everyone in pairwise comparison, then generalised
margin between every other candidate and her would be less than or
equal to 0.

It is not very hard to see these two facts based on the definition of gener-
alised margin. Intuitively, if a candidate c is the Condorcet winner, then the
strongest path between her and every other candidate, say d, would be either
a direct path, marg(c, d), or a more stronger path, M(c, d), via some other
intermediate candidates.

A directed path in the graph, G, from candidate c to candidate d is
a sequence p ≡ c0, . . . , cn+1 of candidates with c0 = c and cn+1 = d
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(n ≥ 0), and the strength, st, of path, p, is the minimum margin of
adjacent nodes, i.e.

st(c0, . . . , cn+1) = min{marg(ci, ci+1) | 0 ≤ i ≤ n}.

For candidates c and d, let M(c, d) denote the maximum strength,
or generalised margin of a path from c to d i.e.

M(c, d) = max{st(p) : p is path from c to d in G}

We capture these two facts in Coq:

Lemma gen_marg_gt0 :
forall c d marg,
condorcet_winner c marg ->
M (c, d) >= 0.

Proof.
unfold condercet_winner.
intros c d n marg Hc.
rewrite M_M_new_equal.
revert d; revert n.
induction n; cbn; try auto.
intros d. pose proof (IHn d).
lia.

Qed.

Lemma gen_marg_lt0 :
forall c d marg ,
condorcet_winner c marg ->
M (d, c) <= 0.

Proof.
unfold condercet_winner.
intros c d n marg Hc.
rewrite M_M_new_equal.
revert d; revert n.
induction n.
+ cbn. intros d. pose proof (marg_neq c d marg).

pose proof (Hc d). lia.
+ cbn. intros d.

apply Z.max_lub_iff.
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split.
pose proof (IHn d). lia.
apply upperbound_of_nonempty_list; try auto.
intros x Hx. pose proof (IHn x).
lia.

Qed.

Using these two key facts, we conclude that for any Condorcet win-
ner candidate c, the generalised margin between her and every other op-
ponent is greater than or equal to generalised margin between every other
candidate and her. Formally, in Coq we prove the following theorem, con-
dorcet_winner_genmarg, on which the proof of condorcet_winner_implies_winner
hinges.

Lemma condorcet_winner_genmarg :
forall c d marg,
condorcet_winner c marg ->
M (d, c) <= M (c, d).

Proof.
intros c d n marg Hc.
pose proof (gen_marg_gt0 c d n marg Hc).
pose proof (gen_marg_lt0 c d n marg Hc).
lia.

Qed.

7.2 Reversal Symmetry

The Reversal symmetry is a voting method criterion which states that if the
voting method has produced a unique winner, say c, based on the cast ballots,
then c should not be elected if the individual choices were reversed. In context
of Schulze method, we first need to define the unique winner, and ballot
reversal.

Definition unique_winner
(marg : cand * cand -> Z) (c : cand) :=
c_wins marg c = true /\
(forall d, d <> c -> c_wins marg d = false).
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Informally, our definition of unique_winner states that the candidate c is a
unique winner if it wins the election with respect to computed margin matrix,
marg, and every candidate other than c loses the election.

We capture the ballot reversal in terms of margin matrix. For any given
ballot set, if the computed margin between two candidates c and d is:

marg(c, d) = ]{b ∈ P | c >b d} − ]{b ∈ P | d >b c}

If we reverse each ballot from the ballot set, then the new margin matrix,
denoted as rev_marg, would be:

rev_marg(c, d) = −1 ∗marg(c, d)

This fact can also be demonstrated using a single ballot ABC. The in-
terpretation is A is strictly preferred over B, and B is preferred over C (but
we do not need strict preferences to have this property). The margin matrix
constructed from this ballot is:


A B C

A 0 1 1
B −1 0 1
C −1 −1 0


After reversing the original ballot, we get CBA and the margin matrix is:


A B C

A 0 −1 −1
B 1 0 −1
C 1 1 0



We capture this notion formally in Coq as:

Definition rev_marg
(marg : cand -> cand -> Z) (c d : cand) :=
-marg c d.

Based on the our definition of rev_marg, we can formally state the rever-
sal symmetry as:
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Lemma winner_reversed :
forall marg c, unique_winner marg c ->
c_wins (rev_marg marg) c = false.

The lemma, winner_reversed, expresses that if a candidate c is a unique
winner with respect to marg (computed from some ballot set P), then she
is not a winner with respect to rev_marg (computed from reversing all the
entries in the ballot set P).

The proof for this lemma is fairly intuitive, but it takes some efforts to
prove it in Coq. In this lemma, we assume the existence of unique winner,
say c with respect to marg, which means that the generalised margin between
her and every other candidate would be greater than between the every other
candidate and her, i.e. ∀d, M(c, d) > M(d, c). If we compute the generalize
margin with respect to rev_marg, then for the candidate c it would be the case
that: ∀d, M_rev(c, d) < M_rev(d, c). One key observation is that the graph we
get after computing the generalised margin with respect to rev_marg is simply
a mirror image, every path is reversed, of the graph we get after computing
the generalize margin with respect to marg. In terms of Coq, it is:

Lemma path_with_rev_marg :
forall k marg c d,
Path marg k c d <-> Path (rev_marg marg) k d c.

Proof.
intros k marg c d.
split. intro H.
destruct (path_iterated_marg marg k c d H) as [n Hn].
destruct (proj1 (iterated_marg_char marg n c d k) Hn)
as [l [H1 H2]].

rewrite str_and_rev_str in H2.

assert (length (rev l) <= n)%nat.
rewrite rev_length. auto.
pose proof (path_len_iterated_marg

(rev_marg marg) n d c k (rev l) H0 H2).
pose proof (iterated_marg_path
(rev_marg marg) n k d c H3). auto.

intros H.
destruct (path_iterated_marg (rev_marg marg) k d c H)
as [n Hn].
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destruct (proj1 (iterated_marg_char
(rev_marg marg) n d c k) Hn) as [l [H1 H2]].

apply iterated_marg_path with (n := length l).
apply path_len_iterated_marg with (l := rev l).
rewrite rev_length. lia.
rewrite str_and_rev_str.
rewrite rev_involutive. auto.

Qed.

Using the lemma path_with_rev_marg, we conclude that if the strength
of a path going from c to d with respect to marg is greater than or equal to k
(by definition of Path inductive type), then the strength of a reverse path from
d to c would also be greater than or equal to k with respect rev_marg. Using
all these facts, and some auxiliary lemma the proof of reversal symmetry is
merely rewriting the facts 1.

7.3 Summary

Although, we have just proved two properties of Schulze method, and so far,
this chapter is far from being complete. The rationale behind this chapter
was to put forward the idea of not only implementing the voting method and
proving its correctness, but also proving that the implementation follows the
property of voting method. In the next chapter, I will conclude this thesis and
some possible direction for future work.

1At the time of writing this thesis, proof of reversal symmetry hinges on a auxiliary lemma
which is fairly intuitive, but demands a lot of Coq machinery (a typical situation in theorem
proving). We are in the process of proving it



Chapter 8

Conclusion and Future Work

Education is the most powerful
weapon which you can use to
change the world.

Nelson Mandela

This chapter summarizes the key outcomes of this dissertation, followed
by possible future work.

8.1 Conclusion

Recall that the journey started with the purpose to make the electronic voting
process transparent and trustworthy. The premise was:

Given the potential advantages of electronic voting, we need to ad-
dress correctness, privacy, and verifiability concerns for its widespread
adoption.

The current state of art software program used by many governments
is mostly black-box which takes a pile of ballots and produces result. To
improve the current situation, we focussed on answering the four main con-
cerns: (i) correctness, (ii) privacy, (iii) coercion resistance, and (iv) verifiability
(tallied-as-cast) by using Schulze method as an example.
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8.1.1 Correctness

With the intentions to solve the correctness in electronic voting, we approached
from mathematical logic route. Rather than implementing the Schulze method,
we gave a logical specification of the Schulze winning condition and losing
condition with respect to an already computed margin function. These spec-
ifications were simple enough that one can inspect them and make sure that
the intent is captured correctly. Moreover, we proved the correctness prop-
erties about our specification. Also, we put forward the idea of formalizing
the properties of voting protocol, in our case Schulze method, in the frame-
work developed by Kenneth Arrow in theorem prover itself. For example, in
the last chapter, we proved the Condorcet winner property of Schulze method.
Given that ballot counting is one of the most crucial phase of any election,
the correctness of counting software should be explored from all the possible
directions.

8.1.2 Verifiability

We answered the verifiability issue by producing a independently checkable
scrutiny sheet. In our case, it contained the step by step computation of mar-
gin, winners and loser with the proof why they win or lose the election. This
scrutiny sheet can be used any independent third party to verify the outcome
of election. In case of plaintext ballot, achieving verifiability was trivial, but
the encrypted ballot case was very complex. The reason for complexity was
the inherent nature of cryptography, so to keep the encrypted ballot elec-
tion verifiable we augmented the scrutiny sheet with zero-knowledge proofs.
Finally, we developed a formally verified certificate checker to ease the au-
diting of election (although, we ended up developing checker for a different
election).

8.1.3 Privacy and Coercion Resistance

Our approach to privacy and coercion problem was homomorphic encryp-
tion. To keep the content of ballot private, we did not decrypt any individual
ballot and computed the final tally homomorphically by multiplying the ci-
phertexts. In the final step, we decrypted the fully computed tally, which in
turn did not reveal any individual ballots. Since there was no decryption of
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any individual ballot, there was no way a voter could have convinced any one
about her choices.

8.2 Future Work

8.2.1 Formalizing Cryptographic Entities

During the formalization, we assumed the cryptographic primitives for vari-
ous construction, e.g. encryption primitive, decryption primitive, zero-knowledge-
proof primitive, etc. Moreover, we assumed axioms about their correctness
property. Formalizing all these primitives and proving the axioms we as-
sumed would further close the trust gap.

8.2.2 Formalizing Properties of Schulze Method

We have formalized just two properties, Condorcet winner, and Reversal sym-
metry, but taking it further and proving all the properties would put more
trust in the implementation. Moreover, it would be a good stress testing for
the specification/implementation and see how far it can go.

8.2.3 Formally Verified Checker

Another interesting avenue would be to explore the formally verified cer-
tificate checker. In our formally verified certificate checker, we extracted an
OCaml code for certificate checking. However, we wrote a substantial amount
of unverified OCaml code for parsing the scrutiny sheet. To alleviate this kind
of concerns, it would be worth exploring a verified parser, and, probably, eval-
uating the whole certificate inside Coq environment. There has already been
verified parsers written in Coq [Jourdan et al., 2012], and given that we proved
the two large primes inside a Coq, it does not seem a far fetched concept.
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8.2.4 Risk Limiting Audit for Preferential Voting Scheme

One challenging potential opportunity would be developing a risk limiting
audit system for the Schulze method. In nutshell, risk limiting audit is a
method to audit the election by randomly sampling the ballots. Risk limiting
is very well understood in the first-past-the-post voting system, and some of
the work has been done in the context IRV elections [Blom et al., 2018], but
so far none, to the best of my knowledge, for Schulze method.

8.2.5 Formalizing Code Extraction

This is orthogonal, but very important from the perspective of electronic
voting. One of the biggest concern with code extraction of Coq in OCam-
l/Haskell is that all the security properties proved inside Coq are no longer
valid in OCaml/Haskell. Taking the mission critical importance of electronic
voting into account, we need a mechanism to translate the proofs all the way
up to assembly level. CertiCoq [Anand et al.] seems promising, but it is not
very mature yet. The other possibility is using the CakeML [Kumar et al.,
2014] to develop the electronic voting schemes.
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