
Applied Formal Methods for Elections

Jian Wang

Advisor: Carsten Schürmann

Submitted: March 2016

iii

Abstract

Information technology is changing the way elections are orga-

nized: In many countries voters are nowadays voting with electronic

voting machines, some countries even offer internet elections as al-

ternative voting channels, and it is to be expected that information

technology will change the way ballots are tabulated and parliaments

are elected. There are many reasons explaining why election com-

missions around the world pursue an agenda of digitizing elections.

Indeed, technology renders the electoral process more efficient, but

things could also go wrong: Voting software is complex, it consists of

thousands of lines of code, which makes it error-prone. Software and

hardware problems may cause delays at polling stations, or even de-

lay the announcement of the final result. This thesis describes a set

of methods to be used, for example, by system developers, admin-

istrators, or decision makers to examine election technologies, social

choice algorithms, and voter experience.

Technology: Verifiability refers to voting software producing evi-

dence so that can be retroactively analyzed, in case that something

went wrong, or there is a suspicious of foul play. Although veri-

fiability is an elegant concept, it is by no means easy to judge, if

an implementation implements verifiability correctly. There are two

ways to analyze implementations for verifiability, first statically, i.e.

before the technology is deployed, which gives the developers the

opportunity to fix issues during development time, or second dy-

namically, i.e. monitoring while an implementation is used during an

election, or after the election is over, for forensic analysis.

This thesis contains two chapters on this subject: the chapter An-

alyzing Implementations of Election Technologies describes a tech-

nique for checking verifiability properties directly on the source code

of e-voting systems using modern code scanning tools. Verifiability

properties are expressed in linear temporal logic, then translated into

Büchi automata and checked using off the shelf static analyzers that

compute all possible execution paths. We demonstrate the technique

using a particular tool, the Coverity static analyzer. In the chapter

Epistemic Policies for Voting Systems, we turn our attention to the

logs generated by e-voting systems for policy compliance checking.

The novel contribution is that we use epistemic linear time logic to

express properties about distributed e-voting systems that then be

checked by model-checkers.

iv

Algorithms: The advances in technology open the possibility that

the very algorithms and social choice functions we use in elections are

going to evolve. Besides first-past-the-post, there are many variants

of D’Hondt, Sainte-Laguë and single transferable vote (STV), and

these algorithms continue to be adjusted, evolved, and refined.

This thesis contains a chapter Verifying Voting Schemes that

focuses on the use of formal methods to ensure that these algorithms

have the intended meaning and conform to the desired democratic

principles. As a case study, we define two semantic criteria for STV

schemes, formulated in first-order logic over the theories of arrays and

integers, and show how bounded model-checking and satisfiability

modulo theories (SMT) solvers can be used to check whether these

criteria are met.

Voter Experience: Technology profoundly affects the voter expe-

rience. These effects need to be measured and the data should be

used to make decisions regarding the implementation of the electoral

process.

This thesis contains a chapter Measuring Voter Lines that de-

scribes an automated data collection method for measuring voters’

arrival and waiting time, and discusses statistical models designed to

provide an understanding of the voter behavior in polling stations.

Acknowledgements

First, I want to express my gratitude to my supervisor, Prof. Carsten

Schürmann for guiding me through my PhD study and leading me to an

amazing research area – theoretical computer science. He could always

find time to discuss about my work with great patience and enlightenment.

Without him, I could not image of being able to finish my PhD.

I also would like to thank my friends and colleagues from PLS group

and DemTech project, Daniel, Marco, Lorena, both Nicolas, Agata, Peter,

Alec, etc., some of whom inspired me on my research, and some of whom

arranged wonderful after work events. I enjoyed my work and life here at

ITU for the past years because of them.

In addition, I want to thank Prof. David Basin for having me as a

visiting student; thank Prof. Joseph Kiniry for showing me the charm of

formal methods; thank Prof. Achim D. Brucker, Prof. Robert Krimmer

and Prof. Thomas Hildebrandt for being in my thesis committee.

Most of all, I would like to thank the most valuable people in my life,

my beloved wife Ruiyu Lin, my parents and my parents-in-law. I feel so

lucky with you standing behind me and supporting me all the time.

Contents

Contents vii

1 Introduction 1

1.1 Properties and Model Checking 2

1.2 Election Technology . 4

1.3 Voting Schemes . 7

1.4 Voter Experience . 8

1.5 Related Work . 9

1.6 Structure and Contribution 12

1.7 Conclusion and Future Work 12

2 Analyzing Implementations of Election Technologies 15

2.1 Introduction . 15

2.2 Evidence Flow . 17

2.3 Policy Language . 18

2.4 An Abstraction Language 22

2.5 Application . 26

2.6 Case Study . 29

3 Epistemic Policies for Voting Systems 37

3.1 Introduction . 37

3.2 A Language for System Properties 40

3.3 Finite Model Checking . 45

3.4 Checking Logs . 50

3.5 Examples of Policy Checking 53

3.6 Metric EFOTL . 60

3.7 Conclusion . 62

4 Verifying Voting Schemes 65

4.1 Introduction . 65

viii Contents

4.2 Basic Definitions . 68

4.3 Semantic Criteria for Analysing Voting Schemes 69

4.4 Checking Properties Using SMT Solver 76

4.5 Case Study: Variants of the STV Scheme 86

4.6 Conclusion . 96

5 Measuring Voter Lines 97

5.1 Introduction . 97

5.2 White Boxes-technique . 99

5.3 Implementation . 101

5.4 Security . 103

5.5 Privacy . 105

5.6 Field Study . 106

5.7 Findings . 119

Bibliography 123

A Appendix 133

A.1 Additional Example of SMT Solver: Norwegian and Aus-

tralian Election . 133

A.2 Device Appearance . 136

A.3 Average Waiting Time via Averaging Method 139

A.4 Average Waiting Time via Little’s Method 142

Chapter 1

Introduction

An election is a decision making process that allows voters choose to express

their preferences via ballots. Elections enable voters to participate in the

democratic process in a representative democracy. Examples for elections

include parliamentary elections, local elections, association elections, pri-

vate organization elections and so on. The electoral cycle [78, 73] is a visual

planning and training tool for assisting the organization of elections. The

electoral cycle is divided in three periods, and each includes many processes,

• the pre-electoral period, including planning, training, voter registra-

tion, etc.

• the electoral period, including vote casting, ballot counting, result

verification, etc.

• the post-electoral period, including audits and evaluations, legal re-

form, etc.

The aim of this thesis is to show that formal methods can be used

to check and to improve the application of election technology and the

voter experience in polling places. In this thesis, we use formal methods to

analyze the properties of two processes in the electoral period - vote casting

and ballot counting.

Vote Casting. There are various vote casting forms, including paper

voting, mail voting and electronic voting (e-voting). Voters can either cast

their ballots in polling stations (via e-voting, paper voting) or remotely (via

internet e-voting, mail voting). Information technology is changing the way

elections are organized: as a modern ballot casting method, e-voting has

2 Chapter 1. Introduction

gained popularity alongside the rapid prevalence of computers and smart-

phones. In some countries [51] voters are nowadays voting with e-voting

machines in polling places such as the direct-recording electronic (DRE)

systems in the US and the vVote system in Victorian State (Australia)

election. Voters can even vote remotely in a few countries, such as Estonia

and Norway. E-voting systems can be very complicated, and they usually

run on even more complicated operating systems, both of which can easily

have glitches and bugs, which could be exploited by attackers and adversely

affect the election quality. Besides the vote casting forms, technology also

profoundly affects the voter experience in polling stations. These effects

also need to be measured and the data should be used to make decisions

regarding the implementation of the electoral process.

Ballot Counting. Proportional representation and plurality voting are

the two major methods for allocating seats in parliamentary elections. In

proportional representation electoral systems, divisions in an electorate are

reflected proportionately by the application of voting schemes (ballot count-

ing methods). There are many voting schemes, which turn ballots into de-

cisions of distributing mandates seats, used around the world. The ballot

content for a proportional representation system can be either a single choice

or a preferential rank of multiple choices of candidates. Seats distribution

computing methods (voting schemes) for single choice voting include the

largest remainder method like Hare quota and the highest average method

like D’Hondt method. Voting schemes for ranked voting include the instant-

runoff voting, Borda count, single transferable vote (STV) and so on.

In this thesis, we use formal methods to analyze the electoral cycles, in

particular the vote casting process and ballot counting process. We focus

on three topics, properties of election technology, criteria of voting schemes

and user experience in polling stations.

1.1 Properties and Model Checking

We make use of time and temporal descriptions in election requirement,

such as ”the election should be held in two weeks after the prime minister

declared it”, ”a voter’s ID should be checked before he/she is allowed to

vote”, ”a voter can not vote again after he/she has voted”. We use words

like ”after”, ”in two weeks” to show that something will or should happen

1.1. Properties and Model Checking 3

in the future, and we use ”before” to describe things in the past. There is

a type of formal logic, temporal logic, which is designed to represent and

reason about time and temporal information.

As an extension of classical logic, temporal logic includes the opera-

tors, such as the conjunction (∧) and disjunction (∨) of two formulas,

the negation (¬) of a formula. In addition, temporal logic enriches clas-

sical logic by the temporal operators like #, ♦, �, which represents ”at

next state in time”, ”at some future state in time” and ”at all future (in-

clude current) states in time” respectively. For example, when it is re-

quired that ”whenever a send message action happens, then some time

later there should be a receive message action take place.”, the formula

�(send message → ♦receive message) describes this policy. These tem-

poral properties usually can be a safety property, which states that nothing

should go wrong, or a liveness property, which states that the right thing

should finally happen. [2]

The notion of security policy and security model was introduced in 1982

by Goguen and Mesequer [66]. We call these requirements of system states

system properties (or security policies). Note that there is a subtle different

between system properties and security policies in some scenarios, however,

we consider them interchangeable in this thesis. Temporal logic can be used

to express the requirements of systems states, and it plays an important role

in system verification.

In this thesis we will use temporal logic to describe system properties,

and use model checking method to verify them. Model checking started

from the early works [37, 101] and has been a widely used method for

system property verification. Model checking refers to exhaustively and

automatically checking if the model meets a specification, in our case the

temporal formulas. For checking some properties, the model checker con-

tinues until all possible states are checked. A good overview of the model

checking can be found [9].

Instead of enumerating reachable states in model checking, symbolic

model checking considers a large set of possible states at one time. Sym-

bolic model checking with Binary Decision Diagrams (BDDs) has been suc-

cessfully used for formal verification of finite state machine, but BDDs may

grow exponentially for the verification. To solve this problem, a method

called Bounded Model Checking (BMC) is introduced by Biere [23]. It was

an attempt to replace BDDs with SAT and SMT solvers in symbolic model

checking, and to find counter examples with a SAT-solver.

4 Chapter 1. Introduction

1.2 Election Technology

1.2.1 Code Checking

Verifiability is a key feature of e-voting technology, as it allows voters and

auditors using evidence, such as a ballot receipt, to verify the correctness

of the result. Verifiability entails that a voter or administrator can inspect

evidence that is generated during the run-time of the election technology,

and judge, beyond some level of doubt, that the process is correct. The

concept of end-to-end verifiability [83, 82, 33] has emerged as a valuable

mechanism for accountability of e-voting technology, and it includes three

properties, cast as intended, stored as cast and counted as stored. For

each of these properties, it is time intensive to check for implementations,

and those properties for end-to-end verifiable systems normally are only

checked in system design level. Although there has been a considerable

amount of work on devising and checking verification procedures for vot-

ing systems on the design specification (see related work section), there is

relatively little work has been done in the fine-tuned checking in software

implementation of election technologies. In Chapter 2, we are exploiting

the possibility of applying software model checking to election technologies

by using off-the-shelf static code analysis tools (Coverity 7.7.0) to verify

whether an e-voting implementation actually produces evidence correctly

for the verification procedure.

In our application, we focus on the code scanning based method for ev-

idence flow analysis. Evidence flow is the flow of generating the evidence

from starting point to an ending point in the middle of ballot processing.

Taint analysis is an important branch for data flow analysis, which can

be used to track the evidence flow. It can trace the data flow throughout

the program paths through symbolic execution, which provide an impor-

tant tool for evidence checking in voting systems, because the interaction

between the server (voting center) and the client (voting machine).

We show that it is possible to carry out the checks in two modes. Mode

1, we can track the forward flow of the ballot from input, to the place in the

source code where the evidence such as a ballot receipt for later checking

is generated. By mode 1 checking, we are able to verify that the evidence

is generated correctly. And mode 2 is the backward flow analysis, in which

we can check that every evidence generated in the end should correspond

to some input, which means the evidence should be able to be traced back

to the input source. For example, a ballot receipt should be able to trace

1.2. Election Technology 5

back to to a starting point, where the ballot is cast.

In the method we use, a Büchi automaton is built from a property ex-

pressed by temporal logic, which is then checked with the implementation’s

function call paths generated by flattening function calls following the idea

from taint analysis. We prove that our abstraction method is a TI ab-

straction, which means we can replace the source code property checking

problem by checking the property in the function call path. TI abstrac-

tion [62], as defined in Definition 1.2.1, can be used to achieve a fast check

of the complex systems in a high level description of the source code, and

yet be able to check the properties for the original model.

Definition 1.2.1 (TI Abstraction). f is TI abstraction iff, for all formulas

p if p in Th(S) then f(p) in Th(f(S)), where f is an abstraction between a

pair of formal systems. Th(S) is the theorems in formal system S.

1.2.2 Log Checking

A log refers to a document that records relevant events in the order they

occurred. The purpose of logs are numerous, including retroactive forensic

analysis in the case that something went wrong, providing evidence that

assigned tasks have been conducted responsibly, and conducting statistical

analysis about the system operation. A poll book is a classic example, where

the distribution of ballots is carefully recorded and used to estimate voter

participation at the end of voting day. But this is not everything. There is

an extra feature of these kind of logs that is worth highlighting: Complete

logs can create trust in those who read them, in particular because they

often allow the reader to reconstruct the steps in between and therefore

retrace all steps of a process and to gain confidence in whatever the process

set out to execute.

Besides the traditional usage, logging is also highly recommended in

software system engineering security standards [100]. There are many log-

ging standards or guides created for a variety of systems. These standards

define the log structure and log content, like the NIST’s “Guide to Com-

puter Security Log Management” [84] and the “NCSA Common log for-

mat” [76]. ”Secure programming with static analysis” [28] advocates some

basic requirements for good logging: time-stamped log entries, consistent

logging of all important actions, and controlled access to log data. With-

out the time-stamp, the forensic value will be much less important, since

time-stamps can help to reconstruct the sequence of logged events.

6 Chapter 1. Introduction

When we turn our attention to logging systems that are prevalently

used in computer systems, it is clear that those kind of logs aim to achieve

very similar outcomes. Web-server access logs record who connected to the

server and from which IP address, and in the case of a break-in (that has to

be noticed by other means like intrusion detection system), often provides

some evidence revealed by forensic analysis. The messages log file in a Linux

system, for example, contains information about which process did what,

and if a problem was detected or an exception was raised. Finally, logs can

serve to provide statistical information, as how many connection requests

were received or how many pages were served. There is one thing, however,

that distinguishes computer logs from traditional logs. They do not aim to

be as complete as the traditional book keeping, because there are simply

too many steps that could be logged. Thus nobody would expect a log to

generate trust into the correctness of an entire application.

When a system fails during run time due to some errors, these errors are

reproducible with enough information logged. By following the log entries,

a system administrator can reconstruct the sequence of events leading to

the errors. In addition, logs can be used for analysis like collecting data for

voting sessions and voters [69]. The role of logging and logs for electronic

voting systems, which is a necessary step towards a trustworthy e-voting

system, is presented and studied in Chapter 3.

Though log checking is different from the dynamic execution states

checking of a system, it is still possible to track some information from

the system execution with proper deployment of logging and log monitor-

ing components, and it can also be checked dynamically at run-time. Log

handling always starts with installation of a logging framework in a system,

which records system events log entries during the operation of the system.

After or during recording, logs can be used for checking adherence of system

properties with model checking methodology.

A lack of information in the logs may lead to the negligence of some

problems, as some properties may not be able to check due to missing in-

formation. Too few entries will lead to the omission of some important

information, and when doing automatic log analysis, it slows the log check-

ing program’s efficiency. Thus a certain amount of data from the logs is

always required before running the aforementioned checking and analysis.

So some systems log as much information as possible. In scenarios like

e-voting, extensive logging may adversely affect the confidentiality and pri-

vacy of the voter. However, the log information leakage analysis is not

covered in this thesis.

1.3. Voting Schemes 7

1.3 Voting Schemes

Voting schemes in elections are functions that compute the seat distribution

from a set of preferences recorded on ballots. In the study of social choice

functions, various new voting systems are created and pre-existing schemes

are adjusted and refined constantly. Voting schemes are designed to fol-

low certain social choice criteria like the Condorcet criterion [114], defined

as ”the candidate who wins against each other candidate in a one-on-one

contest should be the election winner”. Voting schemes can be analyzed

according to many different criteria. For example, the Condorcet criterion

is satisfied by the Schulze and Copeland voting schemes, but not the single

transferable vote (STV) and its variants.

However, no voting scheme exists that would satisfy all reasonable gen-

eral criteria simultaneously. In the case of preferential voting, Arrow’s im-

possibility theorem [6] states that no scheme can be designed to satisfy all

of the three fairness criteria simultaneously:

Unanimity. If all voters prefer candidate A over candidate B, then A is

ranked over B in the election result.

Independence of irrelevant options. If some voters change their ballot

but keep the relative position of candidates A and B on their bal-

lot, then the relative position of A and B remains unchanged in the

election result.

Non-dictatorship. There is no single voter whose preferences always pre-

vail in the election result.

The possibility to use computers for counting ballots allows us to design

new voting schemes that are arguably fairer than existing schemes designed

for hand-counting. In Chapter 4, we study the applicability of formal meth-

ods for the purpose of criteria checking of voting schemes. We argue that

formal methods can and should be used to ensure that such schemes behave

as intended and conform to the desired democratic properties. Specifically

as examples, we define two semantic criteria for STV schemes, which are

used in the Victoria State election and many others, and formulate them

in first-order logic over the theories of arrays and integers, and show how

bounded model-checking and SMT solvers can be used to check whether

these criteria are met. As a case study1, we then analyze an existing voting

1In this thesis we use case study interchangeably with practical experiment

8 Chapter 1. Introduction

scheme for electing the board of trustees for a major international con-

ference and discuss its deficiencies. We also show in Chapter 4 that the

variant of STV implements the majority rule instead of the proportional

rule as intended, which violates the original design intention of the social

choice algorithm.

1.4 Voter Experience

When talking about voter experience, we are referring to the impact of

choices that the election officials make on the voter during the electoral

cycle. These includes for example, the voter registration, the location and

design of polling places, the management of voter flow, voting technology,

etc. [16]

These effects need to be measured and quantified, and the insight gained

can be used to help organizing the elections. For example, the voters may

balk if there is a long queue ahead, even though the queue may actually

move fast, which will affect the quality of the voter experience. Shortening

the queues in polling stations and providing the expected waiting time for

the voters are two possible solutions of the balk-out problem. In Chapter 5

of the thesis, we will look at the voter experience of an election, more

specifically, queues in the polling stations.

In Chapter 5, we present an automated data collection technique called

white boxes-technique, which is designed

• to analyze the voter behavior in polling stations including the mea-

surement of arrival and waiting times and the determination of arrival

frequency;

• to assist the management of polling places to make decisions regarding

the distribution of resources and to identify areas for future improve-

ment;

• and to provide hard data to guide the political decision making process

with respect to the choice of voting technologies.

We describe the technology that we used, analyze its security, give an

empirical analysis how the technique compares to traditional manual data

collection techniques, such as the ones proposed for US elections 2 by the

2http://web.mit.edu/vtp/

http://web.mit.edu/vtp/

1.5. Related Work 9

CalTech/MIT Voting project, using data collected during the 2015 Danish

parliamentary election. We record the voters‘ arrival and departure times

and analyze the average time in five polling places in the context of queueing

theory [41].

1.5 Related Work

This section gives a general survey of the related work with respect to

different topics mentioned above.

Properties and Model Checking. Policy languages are usually tai-

lored to their application domains. There are languages that capture time

and time-outs [13], access control [60], and aggregation [12]. Much related

work has been done in the field of security policy formalization and security

policy checking. Perhaps most closely related to our work is the work of

Basin that covers metric first-order temporal logic (MFOTL) [14], which

supports security policy that refer to “real-time”, and its generalization to

aggregates [12]. The application of epistemic temporal logic to security in-

formation flow analysis is discussed in [10], and there has also been some

work regarding the aximatization of epistemic temporal logic [20]. In recent

years, information-flow security properties were studied in systems as Hy-

perLTL and HyperCTL∗ [38] express information-flow policies by explicit

quantification over multiple traces.

An introduction to temporal logic and its application can be found

in [55]. [88, 90, 55] show examples how temporal logic can be used in

program specification, and [9, 52, 74] show that temporal logic can be used

for system verification. Some application of temporal logic in multi-agent

systems are discussed in [56, 7].

As to the translation from LTL to Büchi Automata, we use the LTL2BA

program created by Gastin [61] in Chapter 2. There are some other trans-

lation methods, such as [74, 47, 107, 105, 8]. Holzmann [74] in the model

checker Spin also introduced a translation method, and LTL2BA uses the

same modeling language as SPIN. [65] also shows a method of model check-

ing for programming languages. More algorithms for the translation are

listed on the SPOT wiki3.

An introduction to bounded model checking using SAT solving is pro-

vided in [36, 5]. [79] discusses a methodology for formal analysis of software

3http://spot.lip6.fr/wiki/LtlTranslationAlgorithms

http://spot.lip6.fr/wiki/LtlTranslationAlgorithms

10 Chapter 1. Introduction

programs via SAT-based bounded model checking. More discussion about

SAT based bounded model checking is given in [59, 23, 22]

[34] presents the idea of using finite automaton to check securities for

piece of source code. It uses a pushdown automaton to represent the pro-

gram, and a finite automaton for the policy. Our method is similar to this

one but we formalize the properties and the generating of the paths. [94]

introduces a tool to find some security problems in file reader socket Java

code, like resource injection, path manipulation. Another useful tool for

Java project analysis is the Java path finder [113], which requires extra an-

notation to the source code to run non-functional property checking. A list

of source code analysis tools are listed in OWASP website4.

Logging and Log Analysis. Much work has been done in the area of

logging and log analysis. We focus only on some relevant related work.

The logging topic has been studied in the aspects like replayable logs [42],

the integrity of logs [43], and usage of logs for process mining [112]. The

model-checking based log auditing is discussed in [103], which introduces

the idea of using temporal logic model checking for logs.

AccuVote Optical Scan (AV-OS) terminal event log analysis derived

from an abstract finite state model is presented in [4]. In “Automated

Analysis of Election Audit Logs” [17], a method to analyze logs from Di-

rect Recording Electronic (DRE) voting machines is discussed, in which a

web application and toolset for uploading and analyzing DRE voting logs

and ballot image files are built. As a continued work from [4], “A System-

atic Approach to Analyzing Voting Terminal Event Logs” [96] introduces

a forensics tool based on context-free grammars, which also focuses on the

AV-OS terminal logs. Voting logs for Estonia’s I-Voting analysis is pre-

sented in [69] and [70].

E-Voting and Verification. E-voting systems’ report and analysis can

be found in [68, 71] for I-Voting system Estonian elections, for the Norwe-

gian system [64, 63], for the Australian vVote project [31, 45, 44, 46] and

others [35, 106]. The analysis of the remote e-voting systems is discussed

in [87], and a world map that depicts the world wide use of e-voting and

new voting technologies is provided by E-voting.CC [51].

There is some previous work on the formal analysis of voting schemes

using methods and tools from the computer aided verification and auto-

4https://www.owasp.org/index.php/Source_Code_Analysis_Tools

https://www.owasp.org/index.php/Source_Code_Analysis_Tools

1.5. Related Work 11

mated deduction communities in our sense, such as the formal analysis of

actual implementations of such schemes [92, 85, 39]. Methods regarding E-

voting system verification can be found in [85, 40, 111, 86], most of which

focus on the system design level. In McGaley’s thesis [93], the ballot secrecy

and the voter verified traits are discussed, and also in Aida’s thesis [1], the

cryptographic techniques for e-voting are presented.

Voting Schemes. Voting schemes have been investigated by social choice

theorists for many decades. These tend to be mathematical analyses which

prove various (relative) properties of different voting schemes: see [98, 6].

Such work tends to concentrate on what we have referred to as theoretical

schemes and is often couched in terms of a formal theorem and its proof in

natural language.

Many general criteria that voting schemes preferably should satisfy have

been proposed in [26]. There is also a significant body of research on various

properties of vote-casting schemes, particular security properties [110, 67,

102].

Voting Lines and Queueing Data Collection. The MIT/CalTech

project [109] has conducted research in the general area of voter line for-

mation and queuing behavior. A study conducted during the 2008 US

presidential primary election compares the formation of lines in polling sta-

tions that use DRE voting machines to those using non-DRE voting systems

by analyzing manually collected data [108]. An alternative way to study

voter lines is by a post-election survey involving local election officials as

documented in [3]. [16] provides the report and recommendations on the

voter experience of American presidential elections, in which the long queue

problem is also discussed.

With respect to the automatic collection of queueing data, [30] describes

a smartphone app for collecting waiting times via crowdsourcing informa-

tion of client side actively uploading location information from GPS and

Wi-Fi to a server. This technique requires active participation of those

waiting, which distinguishes it from our study. A related way of monitoring

waiting times for public transit is provided in [117] predicting bus arrival

times by data analysis of cell tower signals and audio recordings, and similar

work has been done in [54].

12 Chapter 1. Introduction

1.6 Structure and Contribution

This thesis is a collection of manuscripts and published papers. It con-

sists of three parts, which covers the three aforementioned topics, election

technology, voting schemes and voter experience.

The first part contains two chapters, Chapter 2 and Chapter 3, which

discuss the verifying properties of e-voting system technologies through code

scanning and log checking respectively. Chapter 2 is a joint work with

Carsten Schürmann, and Chapter 3 is a joint work with Carsten Schürmann

and Daniel Gustafsson. For both chapters, I contributed to the theory and

the experiments for code checking and log checking.

The second part is Chapter 4, and it focuses on voting scheme criteria

and their verification. It is a paper published in Journal of Information

Security and Applications (JISA) 2014, and it is a joint work with Bernhard

Beckert, Rajeev Goré, Carsten Schürmann and Thorsten Bormer. Bormer

and I were in charge of the SMT solver and bounded model checking part,

in addition I added some extra examples of the property formulating.

The last part is Chapter 5, which talks about the voter experience. It

provides a way of collecting voter behavior data, voters’ arrival and depar-

ture time, for the voter experience analysis. This paper will appear in In-

ternational Conference for E-Democracy and Open Government (CeDEM)

2016, and it is a joint work with Carsten Schürmann. I mainly contributed

to the design and implementation of the white box-technique experiments,

and I also processed and analyzed the collected data. In addition, I took

part in the manual data collection.

The tools and implementations mentioned in this thesis can be found

on http://itu.dk/people/jwan/.

1.7 Conclusion and Future Work

This thesis aims on improving the current election quality, and it provides

and demonstrates possible methods to do so from both technical and theo-

retical point of views. With all the work discussed in this thesis, we reach

a conclusion that election procedure can be checked and improved with ap-

plied formal methods. We tested and showed that there are ways to make

the election and e-voting an even better way to serve democracy by making

the e-voting move towards verifiability and making the experience in polling

places better.

http://itu.dk/people/jwan/

1.7. Conclusion and Future Work 13

The future work of this thesis can be carried out in the following di-

rections with respect to each chapter. First, the code scanning chapter

can be continued by extending from just function names to variables and

data flows after we obtain the license to do taint analysis. and also can

be continued by dealing with the complexity problem. When we test our

method in the Victorian vVote system, complexity is not considered since

the system is relatively small, but efficiency needs to be considered when

we want to make it universally applicable. For the log checking chapter,

the long term goal is to formalize end to end verifiability, as described in

Section 1.2, with log checking. For the voting schemes part, the future

work is to improve the reach and the efficiency of SMT-based analysis as

described in Section 4.4. This will allow us to investigate larger classes of

voting schemes and to use more complex criteria. We also plan to extend

our analysis to criteria that measure the quality of election results based

on difference measures [95] in addition to yes/no criteria. The future work

for the white box chapter is the automatic online data collection, which

means we need to solve the problem of a reliable secure way of transferring

the data to a server that offers online real time information of the polling

stations. Besides these chapters, the continued work of this thesis can also

be the analysis of processes in the electoral cycle not covered, such as the

voter registration process and the result verification process.

Chapter 2

Analyzing Implementations of

Election Technologies1

2.1 Introduction

Software verification is a difficult endeavor. Given a program and a spec-

ification, we try to argue, that when executed, the program behaves as

specified. Even with all the progress in the field, software verification of

production quality software is still an elusive goal. There are several rea-

sons for this. (1) Production quality software systems are complex, they

use different programming languages, build on large bodies of libraries, and

require configurations. (2) The specification of a program can be expressed

in a logic; different logics require different levels of support, like source code

annotation. (3) It is possible to find specifications for small programs, but

this task becomes increasingly difficult the larger and the more complex a

program becomes. (4) Software verification is extremely time intensive, and

verified software proofs are often bridle to changes of the program that is

being checked. Small changes in an implementation may require large parts

of the system to be reverified.

For election technologies, a trend has emerged to require that voting

software, used for example in kiosk based voting machines or internet vot-

ing solutions, is verifiable. Verifiability entails that a judge (or in many

cases the voter) can inspect evidence that is generated during the execu-

tion (run-time) of the election technology and judge, beyond some level

of doubt, that the result is correct. Examples of such evidence include

cryptographic proofs, such as proofs of knowledge, logical proofs, such as

1Joint work with Carsten Schürmann

16 Chapter 2. Analyzing Implementations of Election Technologies

formal certificates and log files, and statistical proofs, for example through

auditing paper evidence (which are less important for this chapter). The

advantage of evidence based computation is that it will be (at least in the-

ory) checkable by others, using their own evidence checking tools, such as

zero-knowledge proof checkers, certificate checkers, or log analyzers. Trust

in election technologies therefore does not rely solely on the correctness

proof of an implementation (that is hard to come by as election technology

solutions are huge), but is instead diversified by offering control mechanisms

for post-election analysis.

This means that instead of full-fledged analysis using software verifica-

tion (which would provide the highest levels of quality assurance, but at

enormous cost), we may, at least in this very specific settings where soft-

ware systems run only for limited amount of time, conduct meaningful and

more lightweight analyses on the source code by checking that the flow of

evidence is correct. Evidence flow analysis combined with the post-mortem

check on the correctness of the evidence, yields a much more appealing

argument for the correctness and thus also trustworthiness of an election

technology than software verification alone ever could.

Contributions: This chapter makes the following contributions.

• Evidence analysis. We use LTL as a policy language to express the

property of evidence flow. Here, we assume that there is a set of

functions used to generate evidence. Evidence analysis consists of

two parts. First, we check that the designated sources of information

to compute evidence flow into the designated function that computes

the evidence, and second we check that the evidence generated flows

to the designated sinks, for example, a bulletin board, a SMS delivery

service, or a log file.

• We use standard code scanning technologies, in our case Coverity, but

any other customizable code scanning product would work, to com-

pute the set of all abstract execution paths. The advantage of using

such tools is that they work with the real programming language, and

not just a toy subset of it. We work only with TI abstractions [62], tak-

ing advantage of the fact that if the abstract version of the execution

path violates the policy, then the real execution path also violates it.

We use standard LTL model checking techniques to validate abstract

execution path.

• We apply the proposed technique to a real world example, the vVote

2.2. Evidence Flow 17

system 2, an end-to-end voter verifiable kiosk based voting system that

was used in the state elections of the state of Victoria in Australia.

2.2 Evidence Flow

Evidence in this chapter refers to the proof that the e-voting system imple-

mentation processes the ballot correctly, and flow means a starting point

(source) and an ending point (sink) exist for the processing of the ballot. As

required by end-to-end verifiability, the ballot should be cast as the voter

intended, recorded in the server as the voter cast, and counted as recorded.

There are corresponding evidences for each of these three verifiability prop-

erties. For example, the SMS text return message proves that the ballot

has been received by the service correctly, and a ballot receipt generated

after the voter has voted in a kiosk voting machine provides an evidence

for checking the ballot be correctly counted. It’s also possible to composite

evidence flow, so the source and sink flow can be plugged together. For

example, once the source and sink evidence flow is checked for an e-voting

server for different procedures, it’s possible to claim some properties for

the whole system, such as that the end-to-end verifiability contains three

individual requirements.

We propose two modes to check the evidence flow. Mode 1 tracks the

forward flow of the ballot from initial input, until the generating of the final

evidence such as the SMS return code or a ballot receipt. Through mode

1 checking, we are able to verify that the evidence has been generated cor-

rectly following the e-voting system’s procedures, such as ballot validation,

ballot storing, receipt generation, etc. Mode 2 is the backward flow anal-

ysis, in which we want to show that evidence generated in the end should

correspond to a certain input, which means the evidence should be able to

be traced back to the input of a ballot. For example, a ballot receipt should

correspond to a starting point, where the ballot is entered.

There are different flavors of evidence flow in the e-voting implementa-

tion, such as function calls, data flows and class hierarchy. In this chapter,

we assume all critical handling of the evidence, such as ballot validation,

happens in functions, therefore we use the path of function calls to ver-

ify the evidence flow. However, our method is not restricted to functions,

and it can be extended with variables for data flow analysis, which will be

covered in future work.

2https://bitbucket.org/vvote/, version 2014-09-17 5fea6

https://bitbucket.org/vvote/

18 Chapter 2. Analyzing Implementations of Election Technologies

2.3 Policy Language

When the e-voting system is designed, the behaviors of the system are

predefined in the specification. Such behaviors are usually of the form that

one action step leads to another. Temporal logic is often used to formalize

this kind of properties. According to Gabbay [57], specifications in temporal

logic can be re-written into the executable form, which states “If A holds in

the past, then do B”, where A and B are some system actions. Unlike [57],

in which the states in the system models are treated different according to

the current time point, the past are considered declarative and the future

are imperative, we consider the whole system model as declarative, and

check the properties in the model, because the system implementation is

already available when we apply the checking method.

We present here the standard linear temporal logic for expressing the

properties of the system behaviors. This linear temporal logic has two frag-

ments, one is the past linear temporal logic (PLTL), and the other is the

future linear temporal logic (FLTL), each with different temporal modal-

ities. In the rest of the chapter, we refer the future linear temporal logic

as linear temporal logic (LTL) for reasons of simplicity, unless specifically

described.

2.3.1 Linear Temporal Logic

The syntax and semantics of linear temporal logic with past and future

modalities are given in Definition 2.3.1 and Definition 2.3.2 respectively.

An atomic formula is either p from the propositional variables or the

constant true. For any formula ϕ, we can negate it with ¬ and get a new

formula ¬ ϕ, read as “not ϕ”. Two formulas ϕ, ψ can be conjuncted with

the operator ∧ to ϕ ∧ ψ, read as “ϕ and ψ”.

The above part forms the non-temporal part, and is used in both FLTL

and PLTL. There are two temporal operators for PLTL and two corre-

sponding ones for FLTL. For FLTL, # is read as ”next”, and U is read

as ”until”. This can be used to describe properties like “the ballot casting

machine stays locked until a voter inserts the smartcard and enters the cor-

rect PIN code” is read as ”previous”, and S is read as ”since”, which

can be used to describe requirement such as “since the incorrect PIN code

was entered twice, the smart could not be used anymore”.

2.3. Policy Language 19

Definition 2.3.1 (Syntax of Future Linear Temporal Logic).

ϕ, ψ ::= true | p | ¬ ϕ | ϕ ∧ ψ | #ϕ | ϕ U ψ

Definition 2.3.2 (Syntax of Past Linear Temporal Logic).

ϕ, ψ ::= true | p | ¬ ϕ | ϕ ∧ ψ | ϕ | ϕ S ψ

Next, the standard path semantics [75] for the logic is provided. We

denote π = π0, π1, . . . , πn as a path, and L as a function mapping from a

path node πi to a set of atomic propositions L(πi). The model relation is

defined as π, i |= ϕ, where 0 ≤ i ≤ n and ϕ is a future/past linear temporal

formula. We denote the language of ϕ as L(ϕ) defined as the set of all π

such that π, 0 |= ϕ.

Definition 2.3.3 (Semantics of Future Linear Temporal Logic).

π, i |= true iff TRUE

π, i |= p iff p ∈ L(πi)

π, i |= ¬ ϕ iff π, i 6|= ϕ

π, i |= ϕ ∧ ψ iff π, i |= ϕ and π, i |= ψ

π, i |= #ϕ iff i < n and π, i+ 1 |= ϕ

π, i |= ϕ U ψ iff ∃j ≥ i.∀i ≤ k < j.π, k |= ϕ and π, j |= ψ

Definition 2.3.4 (Semantics of Past Linear Temporal Logic).

π, i |= true iff TRUE

π, i |= p iff p ∈ L(πi)

π, i |= ¬ ϕ iff π, i 6|= ϕ

π, i |= ϕ ∧ ψ iff π, i |= ϕ and π, i |= ψ

π, i |= ϕ iff π, i− 1 |= ϕ

π, i |= ϕ S ψ iff ∃0 ≤ j ≤ i.∀j < k ≤ i.π, k |= ϕ and π, j |= ψ

Definition 2.3.5 (Syntactic sugar for Linear Temporal Logic).

ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ) ϕ→ ψ ≡ (¬ϕ) ∨ ψ
false ≡ ¬true ♦ϕ ≡ true U ϕ
�ϕ ≡ ¬(♦¬ϕ) ϕ R ψ ≡ ¬(¬ϕ U ¬ψ)

It’s easy to see that properties in mode 1 and mode 2 correspond to

PLTL and FLTL respectively. For example, ”After the server receives a

ballot message from the voter, the sever should validate it” is a property in

20 Chapter 2. Analyzing Implementations of Election Technologies

Mode 1, and it can be formulated as receiveBallot→ ♦validateBallot, ”If

a sever validates a ballot, then the ballot must came from a message from

the voter” is a mode 2 property.

Past-time modalities do not add expressiveness to future-time linear

temporal logic [58], but past-time modalities are used to express properties

more succinctly, and [91] shows the gap of the transition between LTL

and FLTL is at least single exponential. In addition, for our purpose of

application, the succinct expression is important for formalizing properties.

Before we move to the translation from LTL to automaton, we show

that the model relation of PLTL can be translated into the model relation

FLTL. Next we show an important feature between the past and future

LTL. A function {| · |} is provided to map PLTL formula to LTL formula,

and it is defined in Definition 2.3.6

Definition 2.3.6 (Converse Formula from PLTL to FLTL).

{|true|} if P is true

{|p|} if P is p

{|¬ ϕ|} if P is ¬ {|ϕ|}
{|ϕ ∧ ψ|} if P is {|ϕ|} ∧ {|ψ|}
{| ϕ|} if P is #{|ϕ|}
{|ϕ S ψ|} if P is {|ϕ|} U {|ψ|}

We use the symbol {||} for path π as well, {|π|} = πn, πn−1, . . . , π0,

where π = π0, . . . , πn−1, πn
Theorem 2.3.1 shows that for all PLTL formula checking can be done

via LTL checking, thus we only need to focus on the method of checking

LTL formulas.

Theorem 2.3.1 (Symmetricity between PLTL and FLTL)

For any PLTL formula ϕ and its FTLT converse ϕ′ = {|ϕ|}, the checking of

a path π for ϕ yields the same result as checking π’s reversed path π′ = {|ϕ|}
with ϕ′, which means π, i |= ϕ if and only if π′, (n− i) |= ϕ′

Proof idea. By induction on the formula ϕ. For example, it’s easy to show

that π, i |= ϕ if and only if π′, (n− i) |= #{|ϕ|} provided that π, (i−
1) |= ϕ if and only if π′, (n− i+ 1) |= {|ϕ|}.

2.3.2 Büchi Automata

The linear temporal logic formula can be translated to Büchi Automaton.

A Büchi Automaton is defined as A = (Q,Σ, I, T, F), where Q is a finite

2.3. Policy Language 21

set of states, Σ is the input (alphabet), I ⊆ Q is the set of initial states,

T ⊆ Q× Σ×Q is the set of transitions, and F ⊆ Q is the set of accepting

states.

Linear temporal logic with future-time operators has been studied inten-

sively. As discussed in the related work section, there are many algorithms

that have been proposed in study of the relation between temporal logic

and Büchi automata. We describe briefly the future-time linear temporal

logic algorithm from [61] by Gastin and Oddoux. There have been more

efficient solutions like [49], but they are not within the scope of this chapter.

Gastin’s translation algorithm consists of three steps.

1. Pre-processing the original formula to negation normal form ϕ

The pre-processing consists of two steps, one is rewrite formulas into

negation normal form, in which the negation is only directly applied to

predicates. Based on the equivalence relation of the syntactic sugar,

the negation normal form of the formulas can push the negation op-

erator until the predicate level.

2. Translate ϕ into a generalized Büchi automaton A′ϕ with the help of

Very Weak Alternating Automata (VWAA).

From a pre-processed formula ϕ, a generalized Büchi automaton (GBA)

A′ϕ can be constructed. This construction has two steps, LTL to

very weak alternating automata (VWAA), and VWAA to generalized

Büchi automata.

3. Post-processing A′ϕ, simplify and translate it into a Büchi automaton

A′ϕ.

The proof of the correctness theorem of the translation, Theorem 2.3.2,

can be found in [61]. The theorem states that the accepted input for the

automaton are the same as that which models the formula. We use L(A) to

denote the accepted language of the automaton. This is the fundamental

correctness theorem for our method discussed in the next section. With

this theorem, we can translate the model relation problem into the Büchi

automaton acceptance problem. Later we will show how the finite sate in

Büchi automaton helps to reduce the checking spaces.

Theorem 2.3.2

The Büchi automaton Aϕ accepts precisely the models of ϕ, i.e.

L(Aϕ) = L(ϕ)

22 Chapter 2. Analyzing Implementations of Election Technologies

Definition 2.4.1 (An Abstraction Language).

Method ::= Identifier(Expression (, Expression)*) | Identifier()

Expression ::= Expression (&&, ||, ==, >, <, +, -, *, /) Expression

| Method | Identifer | IntegerLiteral | true | false
Statement ::= if (Expression) Statement else Statement

| while (Expression) Statement

| MethodMethod;

| Expression=Expression;

| {(Statement) ∗ }

2.4 An Abstraction Language

2.4.1 Language

Checking programs using automata has to make use of two components, the

automaton and the input for the automaton. In this section, we show how

to extract the input to the automaton from the system that needs to be

verified. We give the grammar of an abstraction language which represents

the content of a function, and then show the abstract input to the automa-

ton can be represented by a set of paths. This abstraction language is an

abstraction from practical programming languages including only some es-

sential components, which means the representation is suitable for many

programming languages. But we will show later that this abstraction lan-

guage requires more effort to apply then those with more details.

An identifier is a sequence of letters, digits, and underscores, starting

with a letter. An integerliteral is a sequence of decimal digits that denotes

the corresponding integer value, including negative sign. Reserved symbols

are denoted in red. “*” means repetition, and “()” groups items together.

There are some restrictions in this grammar. In object-oriented lan-

guages, this simplified grammar doesn’t differentiate method (function)

calling in classes with “.”, and these calls will only be recognized as a

special identifier. So we need to use an external way to handle classes and

other types, which will be discussed in Section 2.5.2. Other loops, like for

loop and do ... while loop can be reformed in to the while loop without

any difficulty.

2.4. An Abstraction Language 23

Next, we define the path generated from that abstraction language. We

focus on the function calling (method invocation) part of the language, and

we also assume the input to the Büchi automaton is a list of method names

(identifiers), which means there’s a mapping between the logic predicate

and the function names. We assume that both branch of if statement are

covered, which means there should be no dead code in the if branch. The

path can later be extended to path with variables and data sensitivity.

Definition 2.4.2 (Function Path).

F ::=Identifier F | Nil
S, S’ ::=ifl F S

| ifr F S

| whl F S

| F
| S S ′

In order to obtain the paths, we define an auxiliary function J·K, which

maps the program code (either Statement, Expression or Method) to the

path S (also denoted as π) defined above. By keeping the only type of

terminal symbols (method identifier), we get a set of paths as input for the

automaton.

24 Chapter 2. Analyzing Implementations of Election Technologies

Definition 2.4.3 (Path Generating Function JP K =).

Method

{Identifier Nil} if P is Identifier()
{Identifier JE0K ...} if P is Identifier(E0, ...)

Expression

JMethodInvocationK if P is a MethodInvocation
JE1K× JE2K if P is E1(&&, ...)E2

{Nil} if P is other Expressions

Statement

{ifl JEK JS1K; ifr JEK JS2K} if P is if (E) S1 else S2

{whl JEK JSK} if P is while (E) S
JMethodInvocationK if P is MethodInvocation ;

JE1K× JE2K if P is E1=E2 ;

JS0K× JS1K× ... if P is {S0;S1; ...}

JS0K × JS1K is a path concatenation in the style of Cartesian product,

for example {p1; p2} × {p3} is {p1 p3; p2 p3}. It is easy to check that the

branching of path only happens in the if statement.

For the whl path node, we have to check all possible numbers of loops,

because there’s no way to determine the number of runs correctly in all

possible while statement without further analysis on the semantic level.

We prove in Theorem 2.4.1 that the maximum number for looping is bound

by the number of states in the automaton. So the {whl E S} paths set

becomes {E; E S E; E S E S E; E S E S E S E; ...} which repeats S E until

the number of states in the automaton Aϕ.

Theorem 2.4.1

For the unrolling of the {whl E S} statement, the maximum iterations is

the number of states in the automaton A.

Proof idea. This proof is based on the pigeon hole principle. First, we group

input within the whl statement as a single transition together, because when

2.4. An Abstraction Language 25

the program runs the while statement, all inputs are executed as a group.

Here we only consider the case that the automaton will not end up stuck

due to the input leading to no transition at all, otherwise the automaton

will surely not end up in an accepting state. From any state in A after the

total number of state transitions, there will be a state which has already

appeared in its previous transition. Therefore, any further unrolling will

have a same result shown with less number of unrolling.

After the unroll of the whl statement, all paths are branching and loop

free. The checking function takes in all the paths, and runs each of them

as an input to the Büchi automaton. The result of this checking is true if

it ends in an accepting state otherwise false, unless the rejected path has

another path which is unfolded from the same loop that was accepted. This

means we are checking the existence of the correct path.

Theorem 2.4.2

The set of paths Π = JP K captures the abstraction program P ’s all method

calls (identifier).

Proof. This can be proved by induction on the program P . Because the

method calls will only appear in Method according to the grammar, and

all Method is captured by J·K, all method calls (identifiers) are captured in

the paths Π = JP K.

2.4.2 Properties

There are several abstraction levels: from the implementation source code to

the abstraction language program, from the abstraction language program

to the class path. The correctness and termination of the abstraction from

the implementation language to the abstraction language heavily depends

on the code scanner tool that is used, and more is discussed in Section 2.5.2.

The second part of the abstraction is discussed here, and some theorems

for termination and abstraction of this checking method are presented.

Theorem 2.4.3 (Termination of Path Generation)

The checking of an automaton A will terminate with generated path π as

input.

Proof. The idea of the proof is that, trees of the program execution path

are at most finite branching with if statement, but (possibly) with infinite

depth through while loop. Theorem 2.4.1 has proved the infinite depth

26 Chapter 2. Analyzing Implementations of Election Technologies

in while loop can be unrolled into finite paths without losing any trace of

checking the program paths. Thus the total number of paths for the input

will be finite, and all these paths are finite, which means the checking is

actually the finite input for an automaton, then leads to the termination.

Definition 2.4.4 (Path Acceptance). A path π is accepted by the automa-

ton if and only if at least one of the path’s unrolled (by unrolling whl loop)

paths is accepted by the automaton.

Theorem 2.4.4 (Abstraction Theorem)

If the specification policy ϕ is followed in program P up to the abstraction

level, i.e. only function calls are considered, then paths generated from

program P are accepted by the automaton Aϕ.

Proof. The idea of the proof is that, all possible execution paths of the

program are checked if they follow the policy ϕ. The only difference between

the execution paths and the abstract paths is the whl loop, which is checked

for existence based on Theorem 2.4.1. If the ϕ is followed in the source code

up to the function call level, then path π generated by JK should accepted

by L(ϕ). Then by theorem 2.3.2, we have π is also accepted in Aϕ.

Theorem 2.4.4 shows that our abstraction is TI abstraction [62]. We

would like to remark that our techniques works for any TI abstraction,

which means, that more information the generated paths contain, the more

precise the analysis will.

2.5 Application

2.5.1 Source Code Analyzer

The typical way the source code analyzers may be used for static analysis

consists of the following steps. The source code is first translated into an

abstract model, which is optimized for further analysis. During this trans-

lation, the code scanner tool generates an abstract model from the source

code. In the traditional setting of a source code analyzer, like Coverity,

some security policies are predefined, and users can use the checker to an-

alyze the software, for example via pattern matching, to these predefined

behaviors in the source code. For example, after a resource is required,

2.5. Application 27

there should always be a release happening for this resource after it’s re-

quired. If a hazardous behavior pattern shows up in the source code, such

as the release of a resource never happens, the analyzer will generate some

error or warning messaging.

These patterns predefined in the analyzer are also called non-functional

properties, which means software systems should generally should follow

these guidelines to avoid some common mistakes in software engineering.

These patterns and checks includes inputs handling, buffer overflow, error

and exception handling, and so on. For the purpose of our evidence flow

analysis, we focus on the functional properties. The functional properties

are system specific, such as the properties defined in the system specifica-

tion. With different code scanning tools, multiple programming languages

are supported, which means our application is not restricted to one single

programming language.

After specifying the properties, the problem now lies in the building

of the model. The abstraction level of the model heavily influences the

complexity and the result of the checking. We use a very high level of ab-

straction, function calls only, for the modeling as shown above. When the

abstract syntax tree is built, the execution path of the implementation is

also provided as the traversal from root to end nodes. This opens opportu-

nities to design and create our own checker on top of many off the shelf code

and functionalities. The paths can be very helpful to check some system

properties. In this chapter, we use the Coverity analyzer to generate the

needed input for us.

2.5.2 Coverity

We conduct our test with the SDK extension from Coverity, and use the

LTL2BA [61] tool to generate the Büchi automaton from LTL properties.

The syntax of the automaton is in PROMELA, a modeling language intro-

duced by Gerard J. Holzmann in SPIN [74]. We build the automaton from

the PROMELA file, as shown in Section 2.6.1, in Coverity SDK (Version

7.7.0), and checking the properties by feeding the paths as input.

There are two possible ways to run the model checking, one is the orig-

inal property, and the other is the negation. Though, the negation one can

sometime be faster and terminate earlier than checking the original formula

directly. For simplicity reason, we show the original one as example.

The evidence flow as we discussed is closely related to taint analysis.

Taint analysis usually does the following: it tracks a sensitive data and

28 Chapter 2. Analyzing Implementations of Election Technologies

runs the data flow analysis to see if the tainted data ends up in a hazardous

state. Some related actions can be defined for the evidence, including define

the source (starting point of the evidence) and the sink (end point of the

evidence), add the pass through action (passing the evidence to another

function or variable) and the cleanse action (after which, the data is con-

sidered non sensitive). These actions can be mapped to the function call

handling, for example, the source can be defined as the message receive

action, and the sink can be the signature or error send back action. The

pass through action can be seen as the variable containing the sensitive

data (e.g. a ballot) passing to another variable (e.g. ballot signature). We

have not obtained the license to use Coverity’s taint analysis, therefore we

had to cut corner and to implement our method with the idea from taint

analysis.

Coverity’s code scanning is based on the abstract syntax tree, and its

store based checking and type based checking. The abstraction from the

source code to the abstract language, and further the path are also imple-

mented in Coverity SDK. The store based checking is path sensitive, but can

not expend between different function calls. However, the type based check-

ing can be used to propagate function calls path by flatten some functions.

Each path in the abstract syntax tree is considered as an input path for

the automaton for the property checking. The auxiliary function discussed

in Section 2.4.1 is implemented in Coverity SDK. In the implementation,

we extract the path by pattern matching function calls, also check if they

are in loops or not. All loops will be unrolled in the end according to the

number of states in the automaton generated from the property.

2.5.3 Practical Considerations

We make use of Coverity for getting the abstract path from the Java source

code for vVote, but there are several problems needed to be handled. The

Coverity SDK provides a path sensitive way to extract function paths and

a set pattern matching functions to retrieve the method names. But when

we want to get a complete execution path, instead of a single path in one

function, we will need to flatten some of the function calls to its execution

path by replacing the function call with the set of paths that function

contains.

2.6. Case Study 29

Flatten out method calls

We flatten the method call up to the level that the function name is also

used as a predicate, and set a maximum number for unnecessary flattening.

For unique declaration, this should not be any problem, but for the case

with method override and abstract method, this is more complicated. The

flatten method is based on the type of the function, and the type information

is generated from the type based checking in Coverity, which generates the

parent class and methods of each method. We used Coverity to generate

the necessary type information, and flatten the functions with the help of

the type information from the functions.

Multi Threads

Our method does not cover the multi thread case, which means that the

interaction between threads will not be captured automatically. So we

handle each thread manually with hard coded checking information, such

as checking the “run” method in the related thread. More detail is given in

the Victoria example in Section 2.6.2.

2.6 Case Study

2.6.1 A Simple Example

Actions have some dependency on each other in a temporal order, and we

show here how it can be expressed in LTL and then checked. We present a

property, as a simple example, that is close to the Victorian case study in

Section 2.6.2.

Example 2.6.1. Formula ϕ = �(checkV ote → ♦sendConfirm) means

whenever a check vote action happened, a confirmation should be send

back. Formula ψ = �(sendConfirm → �checkV ote), means whenever

a confirmation is sent, there should be a check vote that happened before.

We provide details of checking ϕ, and the formula ψ can be checked using

the converse method discussed in Section 2.3.

First, formula ϕ will be translated into a Büchi Automaton Aϕ as shown

in Figure 2.1. There are two states, ”init” state and ”1” state, where both

the initial and the accepting state is the ”init” state. The transition labels

are the predicate names, and ”1” in the label matches any predicate names.

30 Chapter 2. Analyzing Implementations of Election Technologies

”!checkVote” means any predicate but checkVote, and a || b is used used

to match either a or b.

Figure 2.1: Büchi Automaton Example

The LTL2BA generated Büchi automaton code in PROMELA is shown

as following.

never { /* G (checkVote -> F sendConfirm) */

accept_init : /* init */

if

:: (! checkVote) || (sendConfirm) -> goto accept_init

:: (1) -> goto T0_S2

fi;

T0_S2 : /* 1 */

if

:: (1) -> goto T0_S2

:: (sendConfirm) -> goto accept_init

fi;

}

Next, we take a piece of code as an example for the property checking.

Example 2.6.2. A simple piece of code

checkVote ();

sendConfirm ();

checkVote ();

while (a_boolean_value) {

sendConfirm ();

2.6. Case Study 31

}

The function names F = checkVote | sendConfirm | checkVote

After applying J·K to the code above, the returned path is {checkVote,
sendConfirm, checkVote, (whl Nil sendConfirm)}.

The input for Büchi Automaton Aϕ is the set of path {checkVote,
sendConfirm, checkVote; checkVote, sendConfirm, checkVote,

sendConfirm; checkVote, sendConfirm, checkVote, sendConfirm,

sendConfirm} by unrolling the whl statement up to two times, and the

decoration symbol whl and the empty symbol Nil will be gone after the

unrolling.

The second and the third path of the input set end in the ”init”’ state,

which is the accepting state, thus the policy is followed. In contrast, paths

from the following code will not be accepted, thus the property is not fol-

lowed. Because all paths end up in the non-accepting state ”1” after the

unrolling.

checkVote ();

while (a_boolean_value) {

sendConfirm ();

checkVote ();

}

2.6.2 State of Victoria

The Australian state of Victoria used a variant of the Prêt à Voter [31, 45]

cryptographic voting protocol for the 2014 state election. There are many

components involved in the system, such as the POD which prints the empty

ballot, EBM (also called EVM) which helps voter to vote, public bulletin

board which publishes information for receipt checking, and private bulletin

board (WBB) which acts as the server and is in charge of coordinating the

ballot generating, ballot casting and receipt generating.

We take the private Bulletin board’s ballot receiving process as a case

study. WBB contains multiple peers. Communication between peers is

considered internal, and communication between a WBB peer and EBM is

external. All income and outcome packets for each WBB peer are treated

differently depends on the packet type, such as the “StartEVMMessage”

and the “VoteMessage”.

Figure 2.2 shows the diagram for handling the vote message from EBM

32 Chapter 2. Analyzing Implementations of Election Technologies

Receive Vote

Is serialNo
Valid?

Create Error
Sig Share

Create Vote Sig
Share under SK1

Store Signature
in local db

Send signature
to other peers

Sleep for 1 second
AND tim er++

End
Have any new shares

been received?

Is tim er>tim eout

Does invalidCound+validCount
=TotalNoPeers ?

Notify m anagem ent service
of error - no threshold can

be obtained

End

Set current_share=
first_received_share

Store share
in local db

is share valid Set invalidCount++

Set validCount++ Are there m ore shares?

Set current_share=
next_received_share

Com bine shares

Store com bined
signature in local db

Return signature
under SK2 to EBM

Yes

No

Have I received a
threshold of
valid shares?

Yes

Yes

No

No

No

Yes

Yes

No

No

Yes

Figure 2.2: EBM Message in WBB [44]

in a WBB peer. We can use the following formula to formulate this speci-

fication in Mode 1. Similarly, the specification in mode 2 can be defined.

1. �(ReceiveV ote → ♦CheckSerialNo)

2. �(CheckSerialNo → ♦(CreateSigSK1 ∨ CreateErrorSig))

3. �((CreateSigSK1 ∨ CreateErrorSig) → ♦StoreSiginDB)

4. �(StoreSiginDB → (♦SendPeerSig ∧ ♦Sleep))

5. �(Sleep → ♦(CheckNewShares))

6. �(CheckNewShares → ♦(ReceiveThreshold∨SetCurrentShareF irst))

2.6. Case Study 33

7. �((SetCurrentShareF irst∨SetCurrentShareNext) → ♦(StoreShareinDB))

8. �(StoreShareinDB → ♦(IsShareV alid))

9. �(IsShareV alid → ♦(SetInvalidCount ∨ SetV alidCount))

10. �((SetInvalidCount ∨ SetV alidCount) → ♦CheckMoreShare)

11. �(CheckMoreShare → ♦(SetCurrentShareNext∨ReceiveThreshold))

12. �(ReceiveThreshold → ♦(TotalPeerNoReceive∨CombineShare))

13. �(CombineShare → ♦StoreCombinedSig)

14. �(StoreCombinedSig → ♦ReturnSigSK2)

15. �(TotalPeerNoReceive → ♦(TimeOut ∨ ThresholdFailed))

16. �(TimeOut → ♦(ThresholdFailed ∨ (♦Sleep ∧ ♦SendPeerSig)))

2.6.3 Test and Findings

We specified some of the flatten steps in our implementation to generate the

path in order to avoid unroll too many non-necessary overridden functions,

and then checked the aforementioned properties for EBM message. For

example, when “External Message” is received, for our checking purpose,

we take the “Vote Message”, a subclass of “External Message” to flatten

the method. The type of the message is run-time dependent, it checks the

incoming external message from the ballot marking machine, and parses the

message in JSON format, in which the type field of the message is included.

The whole procedure contains the following three threads: the external

message receive thread, the message process thread, and the timeout thread.

Method “WBBExternalPeerThread.run()” is in the external message

thread, in which method “TimeoutManager.addDefaultTimeout(Runnable

task)” is used in the external peer thread to handle timeout, and the method

“SerialExecutor.execute(Runnable r)” is used to process the message in

message process thread.

The core process part is the message process thread, the external mes-

sage thread takes care of read in message, and validates the message. How-

ever these threads do not run independently, the external peer thread initi-

ates the timeout thread, and starts the process message before it ends. We

concentrate the flattened run() function in these three threads, and then

unfold them to check if the design specification is followed.

34 Chapter 2. Analyzing Implementations of Election Technologies

We managed to construct execution traces based on the unique unman-

gled name of the method and some hard coded flattening of the functions.

It takes about 2.9 seconds to generate paths in WBB, which includes 88 java

files and 99 classes, and there are 1142 paths consider different functions

individually before flattening.

Here we give some examples of how property checking is conducted.

In the design, it is required that before any processing of the message,

the message itself should be validated first. The following property states

that every message should be validated before it gets processed.

�(preProcessMessage → �performV alidation)

We check the formula through its converse, which is

�(preProcessMessage → ♦performV alidation)

, with a reversed order of the paths in class WBBExternalPeerThread

One challenging for tracking evidence flow by function calls is that not

all steps for the evidence go through the function calls. This means not all

formulas described in the previous subsection are able to map into func-

tion call representation. For example, the ”TotalPeerNoReceive” predicate

won’t appear in the path, because it is represented by a return value from

checking the threshold.

Here, we provide a list of mapping examples between the function names

in the source code and the predicate in the formulas in Table 2.1.

2.6. Case Study 35

Predicate Function Name
ReceiveVote parseMessage
CheckSerialNo performValidation
CreateSigSK1 createInternalSignature
StoreSiginDB storeIncomingMessage
SendPeerSig sendToAllPeers
ReceiveThreshold checkThreshold
TimeOut checkAndSetTimeOut
Sleep sleep
ThresholdFailed canOrHaveReachedConsensus
TotalPeerNoReceived canOrHaveReachedConsensus
CombineShare constructResponseAndSign

Table 2.1: Function Names and Predicates

We describe here two policies that are violated.

1. �(TimeOut → ♦(ThresholdFailed ∨ (♦Sleep ∧ ♦SendPeerSig)))

2. �(ReceiveThreshold → ♦(TotalPeerNoReceive∨CombineShare))

The first formula states that, when timeout is checked, it either send

the signatures again to other peers and goes to sleep for a while, or goes to

the threshold failed state. In our test, this policy is not followed, because

the timeout thread directly goes to send the error back in the source code

instead of checking the threshold once the time is out. By looking back

at the design, we also notice that there is a problem in the design. The

design forms a possibly infinite loop with checking the threshold count after

time is out, then it goes back to timeout again if the total number of

peer’s signature is not received. Meanwhile in the code, timeout checker

terminates the loop when time is out. The related path of these actions are

marked as dotted red in Figure 2.2.

The second policy above is also not followed, because the message pro-

cess thread ends directly after checking the threshold. The implementation

handled this in a listener, which processes the peer’s signature share mes-

sage separately. This violation is caused by the difference between the

actual implementation and the design specification.

We remark that, because the source code uses try...catch block to

capture exception all the time, there are plenty of exit points before they

36 Chapter 2. Analyzing Implementations of Election Technologies

continue with the route shown in Figure 2.2, which also leads to other

difference between the design and the implementation.

Chapter 3

Epistemic Policies for Voting

Systems1

3.1 Introduction

Chapter 2 provides a method to verify property in a static way on source

code. This chapter, we turn our attention to property verification based on

log checking.

In modern voting systems, disputes regarding claims that something

went wrong during an election are usually settled by inspecting logs, as

these are often the only persistent records of the events that occurred dur-

ing operation. Typical challenges include that a vote was not properly

counted, that it was changed by and adversary, that the election com-

mission permitted voters to vote multiple times, or that the secrecy of a

vote was compromised. Voter-verifiable systems provide additional mecha-

nisms to allow voters to check if his or her vote was cast-as-intended and/or

counted-as-cast also rely on logs when it comes to settling claims, for ex-

ample, that a server was compromised or when a software “glitch” caused

a system to fail.

One way to cope with this challenge is to formulate in a precise man-

ner what a “valid” log should look like by describing its properties in a

mathematical concise way. These descriptions are generally referred to as

security policies. In this chapter, we study the role of security policies for

electronic voting systems, and describe a tool that we developed to analyze

them automatically.

1Joint work with Daniel Gustafsson and Carsten Schürmann

38 Chapter 3. Epistemic Policies for Voting Systems

Most security policy languages are based on logic. Early examples

include the Chinese wall security policy [27], security policies in deontic

logic [21], and the logic-based security language Binder [50], but there are

many others. Security policy languages are usually tailored to their appli-

cation domains. There are languages that capture time and time-outs [13],

access control [60], and aggregation [12].

This chapter presents a model-checker for the epistemic first-order tem-

poral logic (EFOTL) to express security protocols for distributed and com-

municating systems. EFOTL is an extension of first-order linear time tem-

poral logic with an epistemic connective representing knowledge for specific

agents. The hallmark characteristic of EFOTL is a set of modal connectives,

also called knowledge modalities, that allow us to express epistemic security

policies in terms of what each agent knows. Every node in a distributed

system, for example servers, client computers, printers, can be considered

agents and by using the different knowledge modalities, we can express

security policies that involve several agents, concisely and succinctly.

When we try to express global security policies in First-Order temporal

logic, we need to do this via user-defined predicates, such as knows(a, P)

that capture that an agent a (for example, representing a voter, a database,

a printer) knows P . Although this is possible, it tends to lead to complex

and convoluted security policies that are difficult to maintain.

The combination of epistemic and temporal features of EFOTL allows us

to formulate a large class of important policies for voting systems. Examples

of such epistemic security policies include the authentication between two

or more principals, commitments to shared-secrets between agents, checks if

threshold were reached before decision were made, and protocol conforming

communication patterns. Every send instruction initiated by one agent

must be matched by a receive instruction of another agent. Ballot papers

must be created, stored, retrieved, completed, and submitted or audited,

and all events must happen in a particular order.

As case study, we derive epistemic security policies for the Victoria 2014

state election, Australia and analyze the log files that were given to us.2

Only few voters were permitted to use the machines (voters with disabili-

ties, or voters living in the UK) in this election, and only 1121 ballots were

cast during the election. For other reasons, the logs that we were given were

from a handful of polling stations and contained data for even fewer (24)

votes. Despite these small numbers, the technology scales reasonably well.

2Access to the log data courtesy of Craig Burton, Victorian Election Commission.

3.1. Introduction 39

We have scaled our experiments to much larger, automatically generated

logs (for several thousands of votes). The findings, when this model-checker

is applied to the logs that were generate by the vVote system during the

Victoria 2014 state election and the possible logs for Norwegian 2013 par-

liamentary election, is also reported.

The knowledge modalities of EFOTL allow us to express security policies

for an entire system, while referring to local knowledge (logs) of each agent.

Each agent may run multiple sessions of the same protocol, for example,

for the purpose of authentication, voting, cleansing, and mixing. In a slight

deviation from the standard semantics, we identify worlds with sessions.

The information about which world a log entry is associated with is usually

contained within a log, as our case study shows, and can be easily derived.

For the purpose of this chapter we therefore assume that every log entry

can be uniquely identified as belonging to a particular session.

Especially for voting systems, where the same protocol is executed over

and over again, each log may contain repeated sequences of the similar

events. In order to exploit the symmetries between different runs of the

same protocol, we will show in this chapter that it is sound to reason about

equivalent sessions, i.e. sessions that cannot be further distinguished by

inspecting the log. For example, consider two agents Alice and Bob and

two instances of the same protocol. Alice and Bob exchanges a sequence of

messages. If Bob, by inspecting his own log (for the two sessions) cannot

distinguish between the messages sent to Alice, he may not identify the

two sessions explicitly. Alice on the other hand may have logged more

information and thus can identify the two sessions. Therefore in EFOTL

reachability relations are indexed by agents, which supports reasoning about

sessions modulo reachability.

This chapter describes a language for expressing security policies about

different agents and their local logs and a a reachable world semantics,

that allows us to identity similar sessions, which is described in Section 3.2,

a model-checker for checking epistemic security policies described in Sec-

tion 3.3, and a technique for turning logs into models, which is described

in Section 3.4. Furthermore, we describe a case study using the logs from

the Victory 2014 State Election in Section 3.5. In Section 3.6, we show

a possible way to include the metric part, which allows us to express se-

curity policies using real time constraints, for example if a certain event

happened before, during, or after a certain time interval. Finally, we assess

conclusions and describe future work in Section 3.7.

40 Chapter 3. Epistemic Policies for Voting Systems

3.2 A Language for System Properties

EFOTL extends first-order temporal logic by epistemic connectives indexed

by agents. An agent could refer to a particular participant in a commu-

nication, a principal, the name of a computer in a distributed system, or

possibly even just a process.

We denote agents by a, b, . . . and refer to the set of all agents as A =

{a, b, . . . }. For example, each node of the web bulletin board [46] that was

used during the Victoria State 2014 election is for this work is considered an

agent. We denote the time points by i, j, . . . and refer to the set of all time

points as I = {i, j, . . . }. Each entry in a log (that is usually time-stamped

when the entry was written) corresponds to a time point relative to the other

log entries and their time points. Several log entries may be generated by

one single protocol run (session). Examples of such sessions include requests

to a bulletin board to store a receipt. In this work, we identify sessions with

modal worlds. Worlds are denoted by W = {w, v, . . . }. In Section 3.4 we

return to the interpretation of worlds as sessions and explore this connection

in detail.

The term algebra of EFOTL is finite and generated from variables V :=

{x0, x1, ...} and uninterpreted constants C. We may therefore refer to the

set of terms as T := {t0, t1, ...tn}. We write P := {P0, P1, ...} for the set of

predicates. These predicates are given a priori, and can, for example, be

extracted from the log to be checked. To refer to the arity of a predicate

Pn, we write |Pn|.

Definition 3.2.1 (Syntax of EFOTL).

ϕ, ψ ::= true | Pn(t1, ..., t|Pn|) | ¬ ϕ | ϕ ∧ ψ | ∃x. ϕ |
 ϕ | #ϕ | ϕ S ψ | ϕ U ψ | Kaϕ

In this work, we assume that time is linear and not branching. We

identify each entry in the log with a world, a time point and a agent. The set

of well-formed formulas that we will use to express security policies below,

contain the finite set of predicates Pn(t1, ..., t|Pn|) (including propositions

which are 0-ary predicates) and are closed under negation, conjunction, and

existential operators as well as linear time operators such as ϕ and #ϕ,

which states that ϕ holds at the previous or next time point, respectively.

Furthermore the set is closed under ϕ S ψ and ϕ U ψ, which express that ϕ

holds since ψ and ϕ holds until ψ holds, respectively. Finally, we close the

set of well formed-formulas also under the epistemic operator Kaϕ (to be

3.2. A Language for System Properties 41

read as a knows ϕ), which allows us to specify security policies that include

multiple agents, and multiple local logs.

We say that a formula ϕ is closed if all terms in the predicates from ϕ are

either constants or bound by the existential operator, following standard

convention. Below, we will make extensive use of the following connectives

defined as syntactic sugar.

Definition 3.2.2 (Syntactic sugar in EFOTL).

ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ) ϕ→ ψ ≡ (¬ϕ) ∨ ψ
∀x.ϕ ≡ ¬∃x.¬ϕ ♦ϕ ≡ true U ϕ
�ϕ ≡ true S ϕ �ϕ ≡ ¬(♦¬ϕ)

�ϕ ≡ ¬(�¬ϕ)

The connectives ∨, → and � (always in the future), � (always in the

past), ♦ (eventually in the future), � (eventually in the past) and the

quantifier ∀ are defined in a standard classical way.

We begin now with the description of the semantics of EFOTL using a

Kripke structure with a possible world model. A Kripke structure is defined

as M = (W,D, µ, (Ra)a∈A), where D is the domain, each Ra ⊂ W ×W
describe the reachability relation on worlds that belongs to agent a. Recall

that different agents may have different views on the worlds.

We write µ for the standard interpretation of predicates that associates

with each possible world w, time point i, and agent a, a set of instances:

µ(w, i, a). For convenience, we use Mi
(w,a)(P) for µ(w, i, a)(P). Analo-

gously, we capture variable binding by an valuation function ν : V → D,

which we extends straightforward to terms as ν : T → D. Terms ti are

mapped to a corresponding element in the domain.

Next, we define temporal structures indexed by time point i for world w

as (M, ν, w, i). Based on this, we can now define the relation |=, where

(M, ν, w, i) |=a ϕ reads as ”From agent a’s view, ϕ is true or satisfied, in

world w at time point i of structure M”. We use M |=a ϕ to represent

(M, ν, w, i) |=a ϕ for all possible ν, w and i, and (M, w) |=a ϕ to represent

(M, ν, w, i) |=a ϕ for all possible ν and i.

Definition 3.2.3 (Semantics of EFOTL). The meaning of formula ϕ is

defined as (M, ν, w, i) |=a ϕ in Figure 3.1.

The semantics of the first-order logic fragment for connectives ¬, ∧ and ∃
is standard. The cases for the temporal connectives are also standard. Note,

how # (next) and (past) affect the time point i by moving forwards and

42 Chapter 3. Epistemic Policies for Voting Systems

(M, ν, w, i) |=a true iff TRUE

(M, ν, w, i) |=a P (t1, ..., t|P |) iff (ν(t1), ..., ν(t|P |)) ∈ Mi
(w,a)(P)

(M, ν, w, i) |=a ¬ ϕ iff (M, ν, w, i) 6|=a ϕ
(M, ν, w, i) |=a ϕ ∧ ψ iff (M, ν, w, i) |=a ϕ and

(M, ν, w, i) |=a ψ
(M, ν, w, i) |=a ∃x. ϕ iff for some d ∈ D, (M, ν[x :=

d], w, i) |=a ϕ
(M, ν, w, i) |=a ϕ iff (M, ν, w, i− 1) |=a ϕ
(M, ν, w, i) |=a #ϕ iff (M, ν, w, i+ 1) |=a ϕ
(M, ν, w, i) |=a ϕ S ψ iff for some j ≤ i (M, ν, w, j) |=a

ψ, and for all k ∈ [j + 1, i + 1)
(M, ν, w, k) |=a ϕ

(M, ν, w, i) |=a ϕ U ψ iff for some j ≥ i (M, ν, w, j) |=a ψ,
and for all k ∈ [i, j) (M, ν, w, k) |=a

ϕ
(M, ν, w, i) |=a Kb(ϕ) iff for all w′ ∈ W, s.t. (w, w′) ∈ Ra,

(M, ν, w′, i) |=b ϕ

Figure 3.1: Semantics of EFOTL

backwards in time, respectively. As to the semantics for the until-connective

U and since-connective S, it can literally be read as that ϕ needs to be valid

until ψ is valid at j, or that ϕ is valid since Ψ was valid at j, respectively.

Finally, the semantics of the epistemic connective Kb(ϕ) is defined based

on the possible word semantics. In order to define the meaning of this

formula relative to agent a and world w, it is checked in terms of the meaning

of ϕ relative to b and every world reachable from w according to a. This

semantics is designed due to the strong connection between the worlds and

the agents in logs, which are defined with respect to the truth local to an

agent instead of the standard global one. This design allows us to pinpoint

problems when a policy fails to check, and to optimize the checking process

as shown in Theorem 3.2.2 below.

Depending on the properties of the family of reachability relation (Ra)a∈A
we can classify EFOTL as model logic S4 if the each relation is reflexive

and transitive, and as S5, if each relation is an equivalence relation, i.e., it

is also symmetric. We summarize this observation as a theorem:

Theorem 3.2.1

For all formulas ϕ and ψ, all structures M and all agents a, b, where each

accessible world relation is an equivalence relation.

3.2. A Language for System Properties 43

1. The distribution property. M |=b (Ka(ϕ) ∧ Ka(ϕ→ ψ))→ Ka(ϕ)

2. The knowledge generalization rule. If M |=a ϕ then M |=b Ka(ϕ)

3. The knowledge of truth property. M |=a Ka(ϕ)→ ϕ

4. The positive introspection property. M |=b Ka(ϕ)→ Kb(Ka(ϕ))

5. The negative introspection property. M |=b ¬Ka(ϕ)→ Kb(¬Ka(ϕ))

Proof. (of Theorem 3.2.1)

1. If (M, w) |=b Ka(ϕ) ∧ Ka(ϕ → ψ), then for all worlds w′ such that

(w,w′) ∈ Rb, we have both (M, w′) |=a ϕ and (M, w′) |=a ϕ→ ψ,

from which we get (M, w′) |=a ϕ. Thus for all w′ such that (w,w′) ∈
Rb, (M, w′) |=a ψ, therefore (M, w) |=b Ka(ψ).

2. If (M, w) |=a ϕ for all worlds w in W, then for all world w and all w′

such that (w,w′) ∈ Rb, we have (M, w′) |=a ϕ, thus (M, w) |=b Ka(ϕ)

for all worlds w.

3. Suppose that (M, w) |=a Ka(ϕ). Because (w,w) ∈ Ra for Ra is re-

flexive, we have (M, w) |=a ϕ.

4. Suppose that (M, w) |=b Ka(ϕ). Consider any w′ such that (w,w′) ∈
Rb, for all w′′ with (w′, w′′) ∈ Rb, we have (w,w′′) ∈ Rb since Rb is

transitive, thus (M, w′′) |=a ϕ, therefore we have (M, w′) |=b Ka(ϕ).

By the definition of |=, we have (M, w) |=b Kb(Ka(ϕ))

5. Suppose that (M, w) |=b ¬Ka(ϕ), then exits w′, such that (w,w′) ∈
Rb and (M, w′) |=a ¬ϕ. For all w′′ such that (w,w′′) ∈ Rb, we

have (w′′, w′) ∈ Rb since Rb is transitive and symmetric, which means

for all w′′ such that (w,w′′) ∈ Rb, (M, w′′) |=b ¬Ka(ϕ). Therefore

(M, w) |=b Kb(¬Ka(ϕ)).

44 Chapter 3. Epistemic Policies for Voting Systems

From now on, we only consider reachability relations that are indeed

equivalence relations. Thus, for our practical purposes, EFOTL is a modal

logic S5.

We construct the equivalence relations (w,w′) ∈ Ra if for all time point

i, predicate P , µ(w, i, a)(P) = µ(w′, i, a)(P). By only considering this

equivalence relations, we save time by avoiding redudant checking, since

the following theorem permits us to exploit these symmetries during model-

checking.

Theorem 3.2.2 (Symmetry)

For all formula ϕ, if the accessible world relation is an equivalence rela-

tion created as above, then for all agent a and for all (w,w′) ∈ Ra, then

(M, ν, w, i) |=a ϕ iff (M, ν, w′, i) |=a ϕ.

Proof idea. (of Theorem 3.2.2) Since Ra is symmetric we need to only prove

the if direction which we do by induction on the formula. We demonstrate

below only the cases which involves worlds here:

If ϕ = P (t1, ..., t|P |), then the implication holds by definition of Ra.

If ϕ = Kb(ψ), then for all world w1 such that (w,w1) ∈ Ra then (M, ν, w1, i) |=b

ϕ. We need to show that for all worlds w2 such that (w′, w2) ∈ Ra then

(M, ν, w2, i) |=b ϕ. Since Ra is transitive we therefore have (w,w2) ∈ Ra

and we are done.

Agents and terms define distinct syntactic categories. Sometimes, it is

useful to be able to refer to agents in predicates, for example to express

that a message was send to or received from a particular agent. In order to

do so, we denote with paq the constant in C that corresponds to agent a.

p·q is injective.

Example 3.2.1 (Channel Reliability). As our first example, consider a

binary communicating systems, with agents a and b. The first property

that we wish to discuss is channel reliability. Every message sent by a will

eventually be received by b.

� ∀m. Ka(send(pbq,m))→ ♦Kb(receive(paq,m))

We comment briefly on the choice of predicates. The formula

Ka(send(pbq,m)) is true if and only if send(pbq,m) appears in a’s log. This

means that in the case of send, the first argument refers to the receiver, and

in the case of receive to the sender. In both cases, the second argument

3.3. Finite Model Checking 45

refers to the message itself. Without epistemic connectives, send and receive

would have to be designed as tertiary connectives, by respectively adding

sender and receiver explicitly. With epistemic connectives, as it is the case

in this example, they may remain implicit.

Example 3.2.2 (Channel Authentication). This example is very similar

to the previous one. It is the inverse to channel reliability: Any message

received by a, must previously have been send by b.

� ∀m. Ka(receive(pbq,m))→ �Kb(send(paq,m))

Extended examples and case studies may require that safety policies

quantify of over agents. Our logic currently does not support this, but we

believe that it could be easily extended. We leave an extended design to

future work.

Example 3.2.3 (Sequentiality). The final example expresses a security

policy, which states that no session may overlap. Any session that was

started must run to completion before another can be started. The following

EFOTL captures this:

�∀id.∀id′.start(id)→ ¬start(id′) U end(id)

Note, that this policy, for example, prevents deadlocks, because only one

session may run at a time.

It may be possible to strengthen EFOTL further, for example, by adding

support for uninterpreted function symbols, higher-order quantification,

and quantification over worlds. In the interest of brevity and elegance, how-

ever, we describe in this chapter only the basic version of EFOTL, which

is sufficiently powerful to capture interesting security policies that we wish

to express about distributed and communicating systems.

3.3 Finite Model Checking

In the setting of voting systems, logs are always finite, and hence we will

restrict our attention in this section to finite models only. A consequence is

that model checking is decidable, which means that we can always decide

if a formula is satisfied in a given model or not.

46 Chapter 3. Epistemic Policies for Voting Systems

Definition 3.3.1 (Finite Models). A model M = (W, D, µ, (Ra)a∈A) is

finite iff W and D are finite sets and there exists a time point i such that

for all j > i or j < 0, agent a, world w and predicate symbol P then

Mj
(w,a)(P) = ∅.

Next, we begin the discussion of some basic insights that will help us

define the model checking Algorithm 3.2. Let us return briefly to the se-

mantics of EFOTL. To check if a model satisfies a security policy means

to unroll the equivalences described in Figure 3.1, until done. This is all

straightforward, except for the two temporal connectives such as U and

S where we will have to guess the correct j. In order to aid with this

choice, we compute an upper and a lower constant point, or a window if

you wish, outside of which the security policy expressed as formula ϕ will

have a constant truth-value. The lower constant point is denoted by bϕ cM
and the upper constant point by dϕ eM.

Definition 3.3.2 (Lower (Upper) constant point). Let ϕ be a formula and

M be a model then n is a lower (an upper) constant point for ϕ inM if forall

i ≤ n (forall i ≥ n) then (M, ν, w, n) |=a ϕ if and only if (M, ν, w, i) |=a ϕ.

Definition 3.3.3 (Bounds). Let M be a finite model, ϕ a formula. We
construct a lower and an upper constant points as defined below, where
bP cM refers to the earliest time point when P was mentioned in the µ-
component of M, and dP eM is the last.

Formula ϕ bϕ cM dϕ eM
True 0 0

P (t1, ..., tn) bP cM − 1 dP eM + 1

¬ϕ bϕ cM dϕ eM
ϕ ∧ ψ bϕ cM t bψ cM dϕ eM u dψ eM
∃x.ϕ bϕ cM dϕ eM
 ϕ bϕ cM + 1 dϕ eM + 1

#ϕ bϕ cM − 1 dϕ eM − 1

ψ S ϕ bϕ cM dϕ eM u dψ eM
ψ U ϕ bϕ cM t bψ cM dϕ eM
Ka(ϕ) bϕ cM dϕ eM

We will use these constant points as upper/lower bounds, when checking

a model. They are not tight, but they do the job of limiting the search for

j. If we were to take also agents and worlds into consideration, we could

achieve much better bounds. This would improve the performance of our

model checker, but would lead to a much more unwieldy Definition 3.3.3.

3.3. Finite Model Checking 47

We now prove that these functions indeed will compute a lower and an

upper constant point. In order to to be more concise we only write the time

point for the Kripke semantic.

Theorem 3.3.1

LetM be a finite model, and ϕ be a formula then bϕ cM is a lower constant

point for ϕ in M.

Proof. (of Theorem 3.3.1) By induction on ϕ, we only demonstrate the

case for ϕ U ψ, the remaining cases follow in a similar fashion. Let n =

bϕ cM t bψ cM and assume k ≤ n we need to show that k |= ϕ U ψ iff

n |= ϕ U ψ. In the if direction, by the semantics of k |= ϕ U ψ, there exists

an j ≥ k such that j |= ψ and the interval [k, j) |= ϕ. For this j, either

j ≥ n in which case n |= ϕ U ψ as we want, or j < n in which case by

induction hypothesis on ψ we have bψ cM |= ψ and because n ≤ bψ cM
we get n |= ψ and we are done. The only if direction follows in a similar

fashion.

Theorem 3.3.2

LetM be a finite model, and ϕ be a formula then dϕ eM is an upper constant

point for ϕ in M.

Proof idea. By induction on ϕ, this proof is symmetric to the proof of The-

orem 3.3.1 .

We now present our algorithm in Figure 3.2 for checking finite models,

and prove some properties of this algorithm. This algorithm follows closely

the definition of the semantics from Figure 3.1, and is given as a lazy func-

tional program. Observe, how we use dψ eM and bψ cM in the cases for

checking ϕ U ψ and ϕ S ψ to guarantee termination of the algorithm. The

algorithm uses auxiliary functions like isElem and mu. x ‘isElem‘ xs is

used for checking if x is an member of the set xs, and mu m i w a p is used

to compute Mi
(w,a)(P) defined in the semantics.

48 Chapter 3. Epistemic Policies for Voting Systems

check :: Formula → Model → Nu → World → Time → Agent →
Bool

check f m nu w i a = case f of

Truth → True

-- nu: valuation function ,

--mu: get interpretation of predicates

Prop p ts → apply nu ts ‘isElem ‘ mu m i w a p

Not p → not (check p m nu w i a)

And p q → check p m nu w i a && check q m nu w i a

Exists x p → or [check p m (extend nu x d) w i a

| d ← domain m]

Previous p → check p m nu w (i - 1) a

Next p → check p m nu w (i + 1) a

-- lcp: get lower constant point

Since p q → check q m nu w i a

|| (i > (lcp m q) && check p m nu w i a

&& check (Since p q) m nu w (i - 1) a)

-- ucp: get upper constant point

Until p q → check q m nu w i a

|| (i < (ucp m q) && check p m nu w i a

&& check (Until p q) m nu w (i + 1) a)

-- rel m a w: get the relation for agent a from world w

Knows k p → and [check p m nu w’ i k | w’ ←
rel m a w]

Figure 3.2: Model Checking Algorithm

Next, we show the partial correctness of the checking algorithm in Fig-

ure 3.2 in Theorem 3.3.3.

Theorem 3.3.3 (Partial correctness of Model Checking)

1. If check ϕM ν w i a = True then (M, ν, w, i) |=a ϕ.

2. If check ϕM ν w i a = False then (M, ν, w, i) 6|=a ϕ.

Proof. (of Theorem 3.3.3) check differs from the Kripke semantics in Fig. 3.1

only in the case for U and S. In the case of ϕ1 U ϕ2 we check every possible

time point until dϕ2 eM. If ϕ2 don’t become true until then it will never

be true and we can conclude that ϕ1 U ϕ2 will not hold. A symmetric

argument is made for S.

3.3. Finite Model Checking 49

Total correctness of the algorithm in Figure 3.2 is provided by proving

that it will terminate.

Theorem 3.3.4 (Termination of Model Checking)

Let ϕ be a formula and M be a finite model then check ϕM ν w i a will

terminate.

Proof. (of Theorem 3.3.4) In the case of ∃x.ϕ1 we are recursing on a sub-

formula, and we know that the domain D is finite. The case for Ka(ϕ′)
is similar, and here we know that W is finite. The remaining cases either

returns immediately or recurse on the subformula, with the exception of S
and U . In the case of ϕ1 U ϕ2 the distance between the current time point i

and dϕ2 eM will decrease until i > dϕ2 eM. If this point is reached the algo-

rithm immediately returns. The case for S follows a similar argument.

This establishes that model checking in finite models is decidable, and we

will now address the complexity of algorithm in Figure 3.2. The complexity

of the algorithm is shown in Theorem 3.3.5.

Theorem 3.3.5 (Complexity for Model Checking)

Let ϕ be a formula and M be a finite Kripke model. Given the world w,

time point i, and agent a, the decision problem for (M, ν, w, i) |=a ϕ is in

O(|M||ϕ|). The size of the model |M| is |W|+ |D|+ j, where j is the time

point where no predicate are no longer true.

Proof. (of Theorem 3.3.5))

We show this by showing that the Algorithm 3.2 have this complexity,

which is done by induction on the structure of ϕ.

• P (c1, ..., c|P |) :, this is a set contain problem, and it requires polyno-

mial time respecting to size of structure.

• ¬ϕ1 :, this is a constant time with respect to checking ϕ1.

• ϕ1 ∧ ϕ2 :, this is constant to the complexity of checking ϕ1 and ϕ2.

• ∃x. ϕ1 :, this is enumerating elements from the domain, and as such

|M| · |M ||ϕ1| ≤ |M ||ϕ1|+1.

• ϕ1 S ϕ2 and ϕ1 U ϕ2 : the worse case is that the number of iterations

needed are the length of the whole model which is bounded by j which

leads to the following time |M|(|M ||ϕ1| + |M ||ϕ2|) ≤ |M||ϕ1|+|ϕ2|+1.

50 Chapter 3. Epistemic Policies for Voting Systems

• Kbϕ′ : the worse case is to enumerate all worlds, in which case we

have |M| · |M||ϕ
′| ≤ |M||ϕ

′|+1.

3.4 Checking Logs

Next, we focus on how to transform logs into Kripke structures that can

be subsequently be checked using Algorithm 3.2. This is an important step

for the whole log checking procedure. This is not always easy, as it may

be unclear who to assign events to sessions, and the clocks of the different

agents may not always be synchronized properly. In the first part of the

section, we assume an ideal world, and sketch the steps involved. In the

second, we comment on our specific experiences doing so for checking the

logs of the 2014 Victoria state election in Australia. Throughout this section

we assume that we are given a set of EFOTL signatures, which include the

predicate, the agent. However, the worlds are created during the model

generation.

3.4.1 Model Generation

Let us assume that we are given the logs generated by all the agents that

participated in a distributed system. For simplicity, we assume here that the

local clocks of each agent are properly synchronized, for example, accessing

a time server, and that all log events are appropriately time stamped. We

also assume the events log entries are recorded in plain text. The tasks that

we need to execute to reconstruct a Kripke structure are as follows:

• Translate the plain text into pairs of EFOTL predicates and worlds.

• Partition the logs according to the world.

• Map real time into discrete time points that are understood by EFOTL.

• Update the reachability relation according symmetries among ses-

sions.

Translation: For the first step, we consider the log from one agent, and

treat other agent’s log the same way. We then iterate through the log and

translate each entry event into an EFOTL predicate by retrieving a suitable

predicate name, and generating a vector of arguments from the domain D.

3.4. Checking Logs 51

Agent names a will be translated to the corresponding domain element paq
as shown in Example 3.2.2. Then we translate the information in a entry

event that identifies the session, in which this particular event was a part,

in into a world. Such information could be a session identifier or the serial

number of particular ballot. The worlds are global for all logs across the

multiple agents after the translation.

Partition: As a next step, we partition each log for each of the agents

into sets of events that belong to the same world according to the translation

world identifier. Such as a log contains information from several sessions,

the identifier can be the session id. After this step is complete, we can

identify all events that participated in one session, as they share the same

world.

Mapping: Next, we can create a total order of all events from all agents

in one session, because we assume that they are time-stamped. We assign

time points starting with 0 in order to each event. These are the time points

for the model. We call this mapping process synchronization.

Symmetry: Finally, we update the reachability relation for each agent a

and each worlds in the following way. Initially, each world denotes one ses-

sion. We identify two worlds in the reachability relation Ra, if the sequence

of log events for both worlds is equivalent for agent a. This way, we make

symmetries for the model checker explicit, who can use this information to

optimize search.

After completion of these four steps, we have all the ingrediants to cre-

ate a Kripke structure for checking our epistemic security policies (see Sec-

tion 3.2): The Kripke model M = (W,D, µ, (Ra)a∈A) can now be defined.

The worlds W are defined to be the collection of all sessions, D the set of

all constants that appear in any log, including elements denoting agents.

The mapping is defined µ(i, w, a)(P) as the set of predicate P that are

true for agent a, at time point i in world w. Making the symmetry step

from above more precise, the family of relations (Ra)a∈A is defined so each

relation is an equivalence relation in the following way: (w,w′) ∈ Ra iff

∀iP.µ(i, w, a)(P) = µ(i, w′, a)(P).

We illustrate this process using two examples.

Example 3.4.1. An event of the form “@ 2014-10-02-13:00, session 15.

Message m sent to principal a” will be translated into “2014-10-02-13:00

(send (m, a), 15)”. D must be chosen to contain elements denoting message

m and agent a. “send” is a predicate symbol.

52 Chapter 3. Epistemic Policies for Voting Systems

Time Log from a
13:00:00 (send(pBq,M), 1)
13:00:02 (send(pBq,M ′), 2)
13:00:03 (send(pBq,M), 3)

Time Log from b
13:00:01 (receive(pAq,M), 1)
13:00:04 (receive(pAq,M ′), 2)
13:00:05 (receive(pAq,M), 3)

Figure 3.3: Log Sample of three sessions

Time Point World [1] , World[3] World [2]
Log A Log B Log A Log B

0 send(pBq,M) send(pBq,M ′)
1 receive(pAq,M) receive(pAq,M ′)

Figure 3.4: Result of synchronisation of Log Sample Figure 3.3

Example 3.4.2. As a concrete example we return to Example 3.2.1 and

consider two hypothetical logs depicted in Figure 3.3 generated during three

sessions. Each entry of the contains a pair of an EFOTL predicate and the

corresponding session (world). The two agents talking to one another are a

and b. The setting is such that whenever a sends a message, b will receive

it. In the log shown in Figure 3.3, we write directly the predicates send and

receive. Figure 3.4 gives an account for how this information is represented

in the Kripke structure. Note, that by symmetries, session 1 and 3 form an

equivalence class modulo reachability, whereas 2 remains the only element

in the equivalence class generated by 2.

One special thing here is that Ra and Rb are the same here just because

their local view of world 1 and world 3 are equivalent, however, if at 13:00:05

b receives M ′′ instead of M then pair (World 1, World 3) is still in Ra but

not in Rb.

3.4.2 Empirical Observations

We now describe our solution to various practical challanges that arose when

trying to reconstruct the Kripke structure from the logs for the Victoria

2014 state election.

Translation: We could parse logs line by line, as originally intended.

Network errors, printer warning etc. left many multi-line warning together

with Java traces in the logs. These exceptions are harmless though form a

parsing point of view, as we simply skipped them.

We associate each relevant log entry with a predicate, consisting of a

predicate symbol and an array of arguments, i.e. constants in D. In the

logs, events are usually represented as large serialized JSON objects, which

3.5. Examples of Policy Checking 53

Election #Agents #Worlds Time
Norway Election 2 1000 92sec
Victoria State Election 7 17 1.4sec

Figure 3.5: Experiments

means that we needed to formulate and execute complex filter operations

to access the information relevant for our model.

Partition: One of our main challenges was to identify sessions. Most log

entries, but regrettably not all, provide the serial number of the ballot the

event should be associated with. If the serial number exists, we use it as

world, if not, we extrapolate a suitable world from contextual information,

for example, which was the last serial number seen. This heuristics is very

crude, and could be easily improved upon by logging more information.

3.5 Examples of Policy Checking

In this section we demonstrate the usefulness of EFOTL and illustrate its

expressiveness by describing a set of epistemic security policies for both,

the Norwegian 2013 parliamentary and Victoria 2014 state election. Fur-

thermore, we report on the results of checking the security policies using a

prototype implementation of Algorithm 3.2 in Haskell [81]. As input to the

model construction, we used in the Victoria case the logs that were given by

the Victorian Election Commission, which amounted to 24 ballots. Since

we did not have access to the Norwegian logs, we synthesized sample logs

for about 1500 ballots, a third of which accounts for double votes. We used

those as input to our model-checker.

Below we describe the two case studies in detail. We state the stage, and

background and setup of each election system and derive epistemic security

policies. Our findings are reported in Figure 3.5.

3.5.1 Norwegian Electronic Voting

Background: Norway offered in 2013 internet voting as a supplement to

traditional pen-and paper based voting. 75000 internet ballots were cast.

As we did not have access to the logs, we decided to rebuild part of the

infrastructure in our lab and focus on the vote collector that is the server

that collects all incoming encrypted votes and the cleanser, i.e. the server

54 Chapter 3. Epistemic Policies for Voting Systems

that removes double votes. Note, that in a Norwegian election the incoming

encrypted votes carry identifiying information, as voters may vote several

times. Only the last vote counts.

Time Vote Collector Server (V) Cleanser (C)

@ 13:00 (Ballot(1001), 1)
@ 13:02 (Ballot(1002), 1)
@ 13:04 (Ballot(1003), 2)
@ 13:05 (Ballot(1004), 1)
@ 13:06 (Ballot(1006), 2)
@ 14:00 (Read(1001), 1)
@ 14:01 (Read(1002), 1)
@ 14:03 (Read(1003), 2)
@ 14:04 (Read(1004), 1)
@ 14:05 (Read(1006), 2)
@ 14:07 (Reject(1001), 1)
@ 14:08 (Reject(1002), 1)
@ 14:09 (Reject(1003), 2)
@ 14:11 (Accept(1004), 1)
@ 14:12 (Accept(1006), 2)

Time point Voter 1 Voter 2
Vote (V) Cleanser (C) Vote (V) Cleanser (C)

0 Ballot(1001) Ballot(1003)
1 Ballot(1002) Ballot(1006)
2 Ballot(1004) Read(1003)
3 Read(1001) Read(1006)
4 Read(1002) Reject(1003)
5 Read(1004) Accept(1006)
6 Reject(1001)
7 Reject(1002)
8 Accept(1004)

Figure 3.6: Log Sample for Cleanser and Vote Collector Server before and
after synchonisation in Norwegian election.

An example of a log that we analyzed can be found in Figure 3.6. We

define the following predicates for reconstructing log events. Note, that

each log event is a pair, where the second component represents the voter,

which is, in EFOTL, a world.

• (Ballot(id), v) is an event that may occur in the log of the vote collec-

tor. It testifies that a ballot was received from voter v with a unique

3.5. Examples of Policy Checking 55

ballot id number id. For simplicity, we omit the ciphertext repre-

senting the encrypted vote, as our security policies do not mention

it.

• (Read(id), v) is an event that may occur in the cleanser’s log and

testifies that a ballot with id cast by voter v was read.

• (Accept(id), v) is an event that this is the ballot that will count as

v’s ballot. It also means taht it will be forwarded to the mixer and

eventually to the final counting, components, that we have not but

could model in our system.

• In contrast, (Reject(id), v) is the log entry that says that this ballot

(from voter v) was discarded.

In this case study, there are only two agents, the vote collector V and

the cleanser C. Each voter forms a world. As each ballot has its unique

identification number, the logs will not exhibit any exploitable symmetries.

As a consequence, each (Ra)a∈{V,C} will only consists of singelton pairs

{(v, v)|v voter}. The result of synchronisation can be found in Figure 3.6.

Epistemic Security Policies: The first policy that we describe here is

that vote collector and the cleanser agree on which ballots actually exist.

This property is expressed by two forumulas that relate Ballot events in

the log of the vote collector server V and the Read events in the log of the

cleanser C. The first policy states that each ballot must be read by the

cleanser. The second formula states the converse namely that every ballot

in the cleanser needs to be in vote collector server.

�∀ id. (KV (Ballot(id))→ ♦KC(Read(id)))

�∀ id. (KC(Read(id))→ �KV (Ballot(id)))

Furthermore since the order of ballots matters, we wish to make sure

that the ordering of any two ballots is preserved between V and C.

�∀ id, id′. (KV (Ballot(id) ∧ ♦Ballot(id′))

→ ♦KC(Read(id) ∧ ♦Read(id′)))

The remaining policies focus on the cleanser, and establish a relation

between the predicates Reject and Accept on the one side and Read on the

other. For example, every read ballot must either be accepted or rejected

later.

�∀ id. KC(Read(id)→ ♦(Accept(id) ∨ Reject(id)))

56 Chapter 3. Epistemic Policies for Voting Systems

A ballot should not both be rejected and accepted.

�∀ id. KC(Accept(id)→ (¬�Reject(id) ∧ ¬♦Reject(id)))

The next policy expresses the only the lastw vote castshould be accepted

accepted. The policy requires therefore require that all earlier ballots from

the same voter must be rejected. Here we use the # modality to make sure

we are not counting the same ballot twice.

�∀ id, id′. KC((Read(id) ∧#♦Read(id′))→ ♦Reject(id))

Finally, the last policy guarantees that for every voter who voted, at

least one ballot is accepted.

�∀ id. KC(Read(id)→ ♦∃ id′.Accept(id′))

Summary: Not surprisingly, our experiments showed that no violations

of this set of epistemic security policy were found.

3.5.2 Victoria Sate (Australia) Electronic Voting

The Australian state of Victoria used a variant of the Prêt à Voter [31, 45]

cryptographic voting protocol for the 2014 state election. The implemen-

tation is called vVote, which uses a centralized logging framework slf4j.

While in operation, the system generated detailed logs of the import ac-

tions during the election. In this section we describe our case study, where

we develop epistemic security policies and checked the logs for violations.

Background: The Victoria State voting system has the following main

components: web bulletin board (private and public ones), print-on-demand

printer, randomness generation server, electronic ballot maker, etc. The

reliability of this system depends on a threshold signature scheme, which

allows a subset of the private bulletin board peers above a particular thresh-

old to jointly generate signatures for certain message. Voting in this system

has three core procedures, ballot generation, printing ballot on demand and

vote casting. All of these procedures are implemented in a distributed way

and rely on the interact of the different components of vVote. The logs

that we evalute were generated by the private bulletin board peers (MBB),

print-on-demand printer (VPS) and the electronic ballot maker (EVM).

Before the election, VPS generates empty ballots with the help of ran-

domness servers. Each ballot contains a permuted candidate list. The

3.5. Examples of Policy Checking 57

process of casting a vote is as follows: The voter enters a polling sta-

tion, registers, and receives the permuted candidate list before entering

the booth. In the booth he or she uses the list to authenticate to the EVM,

casts the vote (or alternatively audits the ballot). Upon casting the vote,

the voter receives a receipt with his preferences listed in the same order

as the permuted candidate list. He or she can check that both match up.

As the candidate list is required to be shredded after the voting, the re-

ceipt provides evidence that a vote was cast, but it does not reveal to vote

preferences.

When a voter begins the vote casting process in the voting booth, a

pre-generated ballot is authenticated by MBB and a message recExt of

type “pod” is logged in MBB’s log and a signed response (sendRes) is then

sent back to VPS. This is shown in Figure 3.7. Once the signatures of four

out of five MBB peers are validated, the VPS logs that the threshold of

reporting peers was met (meThld()) and it prints out the ballot for the

voter.

After the voter obtains the ballot, the voter can decide whether to run

a confirmation checking (audit), which ensures the ballot is well-formed,

or to cast a vote with this ballot(vote). The audit is done by VPS and

reveals the randomness used for permuting the candidates and proves its

correctness to MBB with a message of type “audit”. If the voter decides

to audit the ballot, he or she may not use it for voting but must instead

request a new ballot. A ballot is cast with the help of EVM, and the casting

process consists of a start EVM message (with message of type “startevm”)

and a vote message (with message of type “vote”). The predicates used are

the following:

• sendM (ty): the client sends a message to all MBB peers with a ballot

of type ty.

• recExt(ty): MBB peer receives from a client a message with ballot of

type ty.

• sendRes(): MBB peer sends response with its signature back to the

client who sent the external message to it.

• validSig(pprq): The client validates the signature received from MBB

peer pr.

• recRes(pprq, ty): The client receives the response from peer pr for

ballot of type ty.

58 Chapter 3. Epistemic Policies for Voting Systems

Time point VPS MBB peer1
0 @ 13:52:36,308 sendM (94,pod)
1 @ 13:52:40,063 recExt(94,pod)

... (Internal Message)
2 @ 13:52:46,759 sendRes()
3 @ 13:52:46,762 recRes(94, ppeer1q,pod)

... (Other peers’ Message)
4 @ 13:52:48,393 validSig(ppeer1q)
5 @ 13:52:48,396 validSig(ppeer5q)
6 @ 13:52:48,398 validSig(ppeer3q)
7 @ 13:52:48,401 validSig(ppeer4q)
8 @ 13:52:48,402 metThld()

Figure 3.7: Logs from VPS, MBB

• metThld(): The threshold of responses received and signature vali-

dated is met.

Epistemic Security Policies: Without loss of generality, we specify our

epistemic secruity policies only for MBB peer1. The policies for the other

peers are similar, and we check them as well. In this case study, we choose

ballot serial numbers to represent worlds. Each such serial number is

unique. Wheras the agents are VPS (V), EVM (E) and the five MBB

peers (named: peer1 (P1), peer2 (P2), ..., peer5 (P5)). The first policy we

show is that when a peer i receives an external messages, they must have

been originated from either from VPS or EVM.

�∀ ty. KPi
(recExt(ty))→

�(KV (sendM (ty)) ∨ KE(sendM (ty)))

The second policy that we check is that the threshold is only met if it is

proceeded by at least four (out of five) valid signature checks from different

peers. Formally we check that at least one of the five possible scenarios are

satisfied which is what the formula ϕ does.

Let ψ(ps) =
∧
p∈ps �validSig(p)

Let peers = {ppeer1q, ppeer2q, ppeer3q, ppeer4q, ppeer5q}
Let ϕ = metThld()→

∨
p∈peers ψ(peers \ {p})

We check this policy, ϕ, for every client, i.e for both VPS and EVM.

�KV (ϕ) ∧ KE(ϕ)

3.5. Examples of Policy Checking 59

Third, we check that if a client validates a response from a peer, it

should have first received a response from that peer. Since this should hold

for every client we define this as formula ϕ′ as before.

Let ϕ′ = ∀ pr. validSig(pr)→ (�∃ ty. recRes(pr, ty))

We check this policy, ϕ′, for every client VPS and EVM in a way similar

as before.

�KV (ϕ′) ∧ KE(ϕ′)

Finally, we define two security policy to check two error conditions. The

first expresses that any ballot that was audited on peer i, it should not be

used later for voting. If such a case occurs EVM should have logged ”error”.

�KPi
(recExt(”audit”) ∧ ♦recExt(”startevm”))

→ KE(♦∃ pr.recRes(pr, ”error”))

The second being that a voter cannot reuse a ballot, which will also

incur a logged error message by EVM.

�KE((sendM (”startevm”) ∧ #♦sendM (”startevm”))

→ ♦∃ pr.recRes(pr, ”error”))

Summary We have used the EFOTL checker to check all policies on 17

ballots. Because synchronization failed on some of the logs, we excluded

them and hence 7 ballots from our analysis. One of the ballots that we

inspected was audited. The result is summarized in Figure 3.5 after the

synchronization of peer clocks.

We remark that synchronizing clocks in a distributed environments is

challenging. We observe that not all agents synchronized their clocks. As

shown in the following example, it is a severe problem for logging. In one

session, one agent sends a message to another and logs it at 09:46:15, and the

recipient receives the message and logs this event with time stamp 10:45:37.

However, the response is logged to have been sent at 10:45:44 and the

response is recorded as received at 09:46:25, which shows a clear difference

of clocks due to the time zone or other causes. For log checking purpose,

we offset the clients time manually to compensate for the difference.

There are two reasons for this synchronization problem. In a distributed

system live vvote, time stamps shows the order of events, but the peers of

the system are not proper set with the correct time.

60 Chapter 3. Epistemic Policies for Voting Systems

The first reason is that the clock of all standalone servers are not prop-

erly set and the time zone are not correctly logged, which means the clock

is not accurate and the logs missed the time zone information. The second

reason is the logged event time is not the exactly time of this event, and this

is caused by the time difference between logging and event execution. The

first problem is easy to fix using methods network time protocol and log-

ging time zone properly. The second problem can be fixed via logging two

entries of the event, one before the execution and one after the execution

of the event, and this gives a range of time for the logging checking.

3.6 Metric EFOTL

We continue the work of EFOTL with an extension of the metric prop-

erty [13] for temporal operators. EFOTL with the metric extension is named

as epistemic metric first-order temporal logic (EMFOTL) in the following

chapters. The logs from Victoria election is further analyzed as a case study

for this extension.

3.6.1

The metric property reasons about a real time interval. For the temporal

part of EMFOTL, we use I to refer to a time interval. More explicitly,

a time interval is defined as I = [n1, n2), where n1 and n2 are real time

clocks, and n2 is a clock greater than n1 or +∞. I represents a set {i | n1 ≤
i and i < n2}.

Definition 3.6.1 (Syntax of extended EMFOTL).

ϕ, ψ ::= Pn(t1, ..., t|Pn|) | ¬ ϕ | ϕ ∧ ψ | ∃x. ϕ |
 Iϕ | #Iϕ | ϕ SI ψ | ϕ UI ψ | Ka(ϕ)

As in EFOTL, we also use a Kripke structure with a possible world

model to describe the semantics of EMFOTL. A Kripke structure is defined

as M = (W,D, µ, τ, (Ra)a∈A), where D is the domain, each Ra ⊂W×W
describe the reachability relation on worlds that belongs to agent a. Recall

that different agents may have different and possibly incompatible views on

world.

The semantics of EMFOTL for non-temporal part of EMFOTL is the

same as we defined before, while the temporal part requires another func-

tion. The model is extended by introducing a function τ that maps current

3.6. Metric EFOTL 61

(M, ν, τ, w, i) |=a Iϕ iff (M, ν, τ, w, i− 1) |=a ϕ,
and τwi − τwi−1 ∈ I

(M, ν, τ, w, i) |=a #Iϕ iff (M, ν, τ, w, i+ 1) |=a ϕ,
and τwi+1 − τwi ∈ I

(M, ν, τ, w, i) |=a ϕ SI ψ iff for some j ≤ i, (M, ν, τ, w, j) |=a ψ
and τwi − τwj ∈ I,
and for all k ∈ [j + 1, i+ 1)
(M, ν, τ, w, k) |=a ϕ

(M, ν, τ, w, i) |=a ϕ UI ψ iff for some j ≥ i (M, ν, τ, w, j) |=a ψ
and τwj − τwi ∈ I,
and for all k ∈ [i, j)
(M, ν, τ, w, k) |=a ϕ

Figure 3.8: Semantics of EFOTL

world (w)’s time point (i) into a real time value τwi . Time stamps of all

agents are synchronized when constructed the model, so τ is agent inde-

pendent.

There are two ways to look at the temporal operators without metric

interval, one is consider it a different operator, and the other is set the

interval to be [0,+∞). Here we use the second option, and omit the [0,+∞)

when used in formula.

A formula ϕ is bounded if all occurrences of U[n1,n2) in ϕ, n2 is not

infinity.

Definition 3.6.2 (Semantics of EMFOTL). The meaning of formula ϕ is

defined as (M, ν, τ, w, i) |=a ϕ in Figure 3.8.

3.6.2 Finite Model Checking

Definition 3.6.3 (finite models). A model M = (W, D, µ, τ, (Ra)a∈A)

is finite iff W and D are finite sets and there exists a time point i such

that for all j > i or j < 0, agent a, world w and predicate symbol P then

Mj
(w,a)(P) = ∅.

The world relation now changes to (w,w′) ∈ Ra if for all time point i,

predicate P , µ(w, i, a)(P) = µ(w′, i, a)(P) and τ(w, i) = τ(w, i).

The finite models are defined similarly as for EFOTL, however, the

constant point does not apply for EMFOTL structure due to the introducing

62 Chapter 3. Epistemic Policies for Voting Systems

of time intervals. Because the time interval constrain is satisfied differently,

when time point index moves.

So instead of using the constant point for boundary point checking, we

here simply define the checking out of boundary exception, because there’s

no time point defined out side the boundary. Whenever the time point out

of the finite model are accessed, the checking algorithm will return Unkown.

This will have some side effects as when true is checked out the scope the

algorithm will still return Unkown.

3.6.3 Checking Logs

In the Australian voting system technical report [45], there’s a requirement

states that the printed empty ballot can only be used within 5 minutes after

printed. We are now able to express this policy with the metric extension.

Here shows two formulas that expresses the policy.

�KP (SendRes() ∧ ♦[300,+∞)RecExt(”startevm”)→ ¬♦[300,+∞)RecExt(”vote”))

This formalization means if the “startevm” is received by the peer 300

seconds after the ballot is confirmed by the peer, then it can not be used

by EVM for casting a vote.

�KP (RecExt(”vote”)→ �(RecExt(”startevm”) ∧ ♦[0,300)SendRes()))

This formalization states if a vote is cast, then there must be a “startevm”

for checking the ballot signature and the “startevm” is no later than 300

seconds after the ballot is confirmed by the peer.

When our prototype checking tool is tested, a violation of the 5 minutes

police is found in the log entry, in which a ballot generated at ”11:08:28”

was cast at ”11:14:09”. The cause of this problem can be the time syn-

chronization problem discussed in the EFOTL Victoria case stuty part in

Section 3.5.2.

3.7 Conclusion

In this chapter we describe how to verify security policies of distributed

systems by inspecting the content of logs of different agents. We describe

3.7. Conclusion 63

the logic EFOTL as a security policy language and discuss its properties.

EFOTL is an extension of first-order linear-time temporal logic that allows

us to express security policies that refer explicitly to the local knowledge

(aka. logs) of agents using epistemic connectives. We describe a model

checker algorithm that we applied to checking various epistemic security

policies of voting systems. Furthermore we describe a procedure for ex-

tracting Kripke structures from logs. As a case study, we showed how to

formulate some policies for the Norwegian system, and we also apply our

tools to the logs that were generated during the Victoria 2014 state elec-

tion. Several epistemic security policies are given and checked. In the end,

a brief discussion of adding metric time into EFOTL is discussed.

The underlying possible world semantics allows us to identify sessions

with worlds. This means, that references to session and time may remain

implicit, which leads to elegant formulations of security policies.

Chapter 4

Verifying Voting Schemes1

4.1 Introduction

The goal of any social choice function is to compute an “optimal” choice

from a given set of preferences. Voting schemes in elections are a prime

example of such choice functions as they compute a seat distribution from

a set of preferences recorded on ballots. By voting scheme we refer to the

method for counting ballots and computing who won – as opposed to an

actual computer implementation of such a scheme or a scheme describ-

ing the process of casting votes via computer. The difficulty in designing

preferential voting schemes is that the optimisation criteria are not only

multi-dimensional, but multi-dimensional on more than one level. On one

level, we want to satisfy each voter, so each voter is a dimension. On a

higher level, there are desirable global criteria such as “majority rule” and

“minority protection” that are at least partly inconsistent with each other.

It is well-known that “optimising” such theoretical voting schemes along

one dimension may cause them to become “sub-optimal” along another.

This observation is not new and voting specialists have proposed a series

of mathematical criteria [26] that can be used to compare various voting

schemes with one another. A classic example is the notion of a Condorcet

winner, defined as the candidate who wins against each other candidate

in a one-on-one contest. Such a winner exists provided that there is no

cycle in the one-to-one contest relation. A voting scheme is said to satisfy

the Condorcet criterion if the Condorcet winner is guaranteed to be elected

when such a winner exists. Another is the monotonicity criterion which

1Based on “Verifying Voting Schemes” [19], joint work with Bernhard Beckert,
Rajeev Goré, Carsten Schürmann and Thorsten Bormer, published in JISA 2014

66 Chapter 4. Verifying Voting Schemes

requires that a candidate who wins a contest will also win if the ballots

were changed uniformly to rank that candidate higher.

In practice, theoretical voting schemes are often simplified in many ways

when used in real-world elections, typically to reduce their complexity to

allow counting by hand. Such practical schemes may not satisfy general

properties such as the Condorcet criterion simply because it is intractable to

compute the Condorcet winner by hand, but they may satisfy some weaker

version of “optimality” that is specific to that particular scheme. It may

even happen that one among the optimal winners is chosen at random [25]

(as allowed by the Australian Capital Territory’s Hare-Clark Method) or

that someone other than the optimal winner is elected.

Voting schemes also evolve over time – for national elections in the

large, and local elections, union elections, share holder elections, and board

of trustee elections in the small. Incremental changes to the electoral sys-

tem, the tallying process and the related algorithms challenge the common

understanding about what the voting scheme actually does. For example,

since 1969 some local elections in New Zealand adopted Meeks’ method [72],

which is a voting scheme for preferential voting that uses fractional weight-

ings in its computations and is too complex to count by hand. This also

required an adjustment of understanding about who will now be elected.

In general, it is often not clear whether changes to the electoral system

improve or worsen the overall quality of a voting scheme with regard to the

various dimensions of optimisation. Changes to the electoral system in Ger-

many, for example, have created paradoxical situations where more votes

for a party translate into fewer seats and fewer votes into more seats, and

have prompted Germany’s Supreme Court to intervene at several occasions

(see, e.g., [32]).

Many jurisdictions around the world are now using computers to count

ballots according to traditional voting schemes. Using computers to count

ballots opens up the possibility to use voting schemes which really are op-

timised along multiple dimensions, while retaining global desiderata such

as the Condorcet criterion. The inherent complexity of counting ballots ac-

cording to such schemes means that it may no longer be possible to “verify”

the result by hand-counting, even when the number of ballots is small. It

is therefore important to imbue these schemes with the trust accorded to

existing schemes. Note that our focus is on trust in the voting scheme, not

trust in the computer-based process for casting votes.

One way to engender trust in such complex yet “fairer” voting schemes

is to specify the desiderata when the scheme is being designed, and then for-

4.1. Introduction 67

mally check that the scheme meets these criteria before proposing changes

to the legislation to enact the scheme. Such formal analyses could con-

tribute significant unbiased information into the political discussions that

typically involve such legislative changes and also assure voters that the

changes will not create paradoxical situations as described above.

Formal analysis, however, is only practicable when we possess formal

specifications of the voting scheme. We argue that it is important to give

declarative specifications of the properties of a voting scheme for two rea-

sons: (1) For understanding their properties and how they change during

the evolution process, so that improving a scheme in one aspect does not

by accident introduce flaws with respect to other aspects. (2) For checking

the correctness of the scheme from both an algorithmic and implementation

perspective. We also argue that general criteria are not sufficient and crite-

ria are needed that are tailor-made for specific (classes of) voting schemes.

The properties in question are difficult to state, to formalise, to under-

stand, to analyse, and to describe declaratively (as opposed to algorithmi-

cally) because: the final voting scheme may have to compromise between the

conflicting demands of multiple individual desirable properties; the voting

scheme may evolve and we may have to revisit these desiderata; even when

the properties can be made mathematically precise, the resulting mathe-

matical statement cannot serve as a specification if the electoral law defines

a voting scheme that does not (always) compute the optimal solution.

In this chapter, we show that seemingly innocuous revisions to a voting

scheme can have serious implications on the desired properties of the sys-

tem and how analysis techniques employing Satisfiability Modulo Theories

(SMT) solvers [24] can be used to discover them. As a running example,

we use the preferential voting schemes single transferable vote (STV) that

is used in elections world-widely, such as the Victoria election in Australia,

but also for smaller professional elections.

In Section 4.3, we define two tailor-made criteria to establish the desired

properties of the voting scheme. Both criteria are formulated using first-

order logic and are amenable for bounded model checking with Z3, which is

the tool of choice for our formal analysis (Section 4.4). Besides the experi-

ments, we also discuss advantages and disadvantages of different verification

techniques. Subsequently, we discuss (Section 4.5) a particularly interest-

ing variant of the Single Transferrable Vote Algorithm (CADE-STV) for

the board of trustees of the International Conference on Automated De-

duction (CADE). We explain its oddities and differences to standard STV,

68 Chapter 4. Verifying Voting Schemes

and give a historical account of the conception and the stepwise refinement

of the algorithm.

4.2 Basic Definitions

The basic notions related to voting schemes are defined below.

Definition 4.2.1. (Voting scheme, ballot, ballot box, election result) Given

a non-empty set C of candidates, a voting scheme 〈B, T 〉 is characterized

by:

• a set B of possible ballots that can be cast by voters;

• a tallying function T assigning to each possible ballot box an elec-

tion result, where a ballot box is a (finite) multiset of ballots and an

election result is a (finite) duplicate-free sequence of candidates (the

elected candidates).

Given a non-empty set V of voters we assume that each voter casts

exactly one ballot in the election, allowing us to use the term voter and

ballot interchangeably when identifying specific voters and ballots.

According to our definition of a voting schemes (Definition 4.2.1), the

order of ballots in a ballot box is irrelevant and tallying functions are de-

terministic. Also, by definition, the order in which candidates are elected is

part of the election result. These assumptions hold for all voting schemes

considered in this chapter, but the results and methods presented in the

following apply as well to more general notions of voting schemes.

In this chapter, we focus on preferential voting schemes.

Definition 4.2.2. (Preferential voting scheme) In a preferential voting

scheme 〈B, T 〉, the possible ballots b ∈ B are partial linear orders on can-

didates.

A ballot for a preferential voting scheme orders candidates according to

the voter’s preference.

Suppose that C candidates, numbered 1, 2, . . . , C, are competing. Then,

we use the notation [c1, c2, . . . , ck] for a ballot that ranks a subset of the

candidates in decreasing order of preference, where ci ∈ {1, 2, . . . , C} and

ci 6= cj for i 6= j.

4.3. Semantic Criteria for Analysing Voting Schemes 69

4.3 Semantic Criteria for Analysing Voting

Schemes

We distinguish between general criteria that preferably each voting scheme

should satisfy and tailor-made criteria that distinguish between different

classes of schemes and capture the essence of particular classes. Both kinds

of criteria are important for the specification and analysis of voting schemes.

Below, we first describe a few important examples of general criteria

found in literature. We then give two examples for tailor-made criteria

applicable to the STV family of voting schemes.

4.3.1 General Criteria

Many general criteria that voting schemes preferably should satisfy have

been proposed (for an overview see [26]). Note that, even though these

basic criteria seem obvious and indispensable for voting schemes on first

sight, they are in fact not always satisfied by each reasonable voting scheme.

Most real-word voting schemes violate at least some basic criteria for some

possible ballot box input.

An “obvious” and widely used criterion is the majority criterion, which

states that, if a candidate c is ranked first by a majority of voters, then c

must be elected. This is indeed satisfied by all reasonable preferential voting

schemes that use votes ranking candidates. However, the majority criterion

can be violated by preferential voting schemes where voters can attach a

numerical preference to candidates instead of just ranking them (Borda

count scheme).

Another “obvious” criterion is the monotonicity criterion [115]. Assume

that there are two ballot boxes b and b′ where b′ results from b by raising the

preference for a candidate c in one or more of the votes and leaving the votes

otherwise unchanged (i.e., a vote of the form [c1, . . . , ci−1, c, ci+1, . . . , ck] is

replaced by [c1, . . . , cj−1, c, cj, . . . , ci−1, ci+1, . . . , ck] (j < i). The mono-

tonicity criterion states that, if c is elected using the ballot box b, then c

must also be elected using b′. Surprisingly, some real-world voting schemes

– including STV – do not satisfy monotonicity [115].

A third simple criterion is the fill-all-seats criterion, which states that

all available seats are filled provided that there are sufficiently many can-

didates, i.e., C ≥ S. In practice, this criterion is often used in a restricted

form, e.g., candidates can be elected only if they reach a certain minimal

quota.

70 Chapter 4. Verifying Voting Schemes

The majority criterion fully describes the election result for the simple

case of a single seat and a candidate with a majority of first preferences. But

we desire criteria characterising the “right” result in increasingly complex

situations.

An example is the Condorcet criterion. A candidate c is a Condorcet

winner if c wins a one-to-one comparison against all other candidates, i.e.,

for all c′ 6= c there are more voters preferring c over c′ than there are

voters preferring c′ over c. The Condorcet criterion states that a Condorcet

winner c must be elected if there is one. And, as long as there are open

seats and there are Condorcet winners among the remaining candidates,

these must also be elected.

The majority and the Condorcet criteria present each an example of

a conditional criterion. They apply to a ballot box only in the case the

given condition (e.g., the existence of a Condorcet winner in the Condorcet

Criterion) is satisfied; in this case attesting the property (e.g., a Condorcet

winner must be elected). Otherwise they hold trivially. This means, that

there are two degenerate cases of a conditional criterion: the first is when

the condition is never satisfied by a ballot box, in which case the crite-

rion will always hold, no matter which ballot boxes we apply it to. For

the second case, when the property of the criterion simply yields true, the

condition of the criterion becomes irrelevant and a similar observation ap-

plies. We therefore propose to analyze criteria according to coverage and

restrictiveness.

Coverage Should apply to as many different ballot boxes as possible.

Restrictiveness The number of possible election results for ballot boxes

to which the criterion applies should be as restricted as possible.

Returning to our criteria, we note that the majority and Condorcet criteria

are very restrictive (they specify exactly one winner), but they do not have

good coverage (they only apply if there is a clear winner). The fill-all-

seats criterion, on the other hand, has full coverage (it restricts the possible

outcome for all ballot boxes), but it is not very restrictive. But, even criteria

with poor coverage, such as the Condorcet criterion, provide important

insights into voting schemes: It is well known, for example, that STV (which

we use as a case study) does not satisfy the Condorcet criterion.

Ideally, one would like to characterise schemes by a criterion that allows

exactly one result for every possible ballot box, i.e., has full coverage and is

fully restrictive. But for many voting schemes used in practice, such criteria

4.3. Semantic Criteria for Analysing Voting Schemes 71

do not exist. In these cases, we rely on tailor-made criteria that strike a

compromise between coverage and restrictiveness.

In summary, voting schemes can be analyzed according to many differ-

ent criteria, some criteria are considered important others less important.

We remark, however, that no voting scheme exists that would satisfy all rea-

sonable general criteria simultaneously. In the case of preferential voting,

Arrow’s impossibility theorem [6] states that no scheme can be designed to

satisfy the three fairness criteria:

Unanimity. If all voters prefer candidate A over candidate B, then A is

ranked over B in the election result.

Independence of irrelevant options. If some voters change their ballot

but keep the relative position of candidates A and B in their bal-

lot, then the relative position of A and B remains unchanged in the

election result.

Non-dictatorship. There is no single voter whose preferences always pre-

vail in the election result.

4.3.2 Tailor-made Criteria for Preferential Voting

Schemes

As stated previously, many more voting scheme criteria have been developed

and are described in the literature. So, as a first approach to specifying and

analysing a particular voting scheme, one could select some of these to

characterise the scheme’s properties. For a detailed analysis, however, that

is not sufficient. General criteria cannot distinguish between variants of the

same voting scheme (or the number of available general criteria would have

to be very high).

For example, for our analysis of preferential voting, we have devised two

tailor-made criteria that capture the essence of preferential voting (Crite-

rion 2) with proportional representation (Criterion 1) and are applicable to

our case study STV:

(1) There must be enough votes for each elected candidate.

(2) If the preferences of all voters with respect to two particular candidates

are consistent, then that collective preference is not contradicted by

the election result.

72 Chapter 4. Verifying Voting Schemes

The first criterion only considers number of votes and ignores prefer-

ences, while the second criterion only considers preferences and ignores

number of votes. This separation of the two dimensions (number of votes

and preferences) is the key to finding strong criteria that can be described

declaratively.

The two criteria compromise in different ways on the two goals of gen-

erality and restrictiveness: Criterion 1 has full coverage. It applies to all

ballot-boxes without being too restrictive (as the order of preferences is

not considered). Criterion 2 has lower coverage. It only applies if the vot-

ers’ preferences are not contradictory. In that case, however, it is rather

restrictive as only a small number of election results are permissible.

Criterion 2 is a weaker version of the Condorcet criterion that, in con-

trast to Condorcet, is satisfied by STV. It assumes a preference to be col-

lective if all voters agree (or at least not disagree), while the Condorcet

criterion assumes a preference to be collective if it is supported by a ma-

jority of voters.

These two criteria may not cover all the desired properties that we ex-

pect to hold, however, they offer a good starting point for a formal analysis

of voting schemes, especially those based on STV. For additional properties

currently not covered, the two criteria may need to be refined accordingly.

4.3.3 Criterion 1: Enough Votes for each Elected

Candidate

One core element of any STV system is the transfer of surpluses from elected

to remaining candidates. Here, a surplus is defined by the number of votes

of the elected candidate above the required quota. We note, that in some

variants of STV, surplus votes are transfered as a whole, whereas other vari-

ants of STV transfer votes at a fractional value. To argue that a particular

transfer is sensible and justifiable, some regulations require that each ballot

can only be used once to elect a candidate marked on the ballot, which leads

us to the definition of the first criterion. It says, that the entire ballot box

can be partitioned into (disjoint) groups of (used) ballots such that each

elected candidate is supported by exactly one group.

Definition 4.3.1. (Criterion 1: Enough votes for each elected candidate)

Let 〈B, T 〉 be a preferential voting scheme (Def. 4.2.2). Let Q be the quota,

C the number of candidates, V the number of voters, and S the number of

seats.

4.3. Semantic Criteria for Analysing Voting Schemes 73

We define that 〈B, T 〉 satisfies Criterion 1 iff, for all ballot boxes

b = {|β1, . . . , βV|} with βi = [ci1, . . . , c
i
ki

] ∈ B

and corresponding election results T (b) = [r1, . . . , rσ] (σ ≤ S is the number

of elected candidates), there is a partition

b = b1 ∪̇ . . . ∪̇ bσ ∪̇ brest

such that, for 1 ≤ i ≤ σ, the following holds:

1. |bi| = Q (there are exactly Q votes in each class that supports an

elected candidate).

2. ri ∈ β for all β ∈ bi (each vote β in the class bi supports candidate ri,

i.e., the candidate occurs somewhere among the preferences of β).

Note, that here the actual order of preferences is not taken into consid-

eration.

Example 4.3.1. Assume there are four candidates A,B,C,D for two va-

cant seats, the votes to be counted are [A,B,D], [A,B,D], [A,B,D], [D,C], [C,D],

and the quota is Q = 2. The election result [A,D] satisfies Criterion 1 using

the partition {[A,B,D], [A,B,D]}, {[C,D], [D,C]}, {[A,B,D]}, where

the first group supports candidate A and the second supports candidate D.

Example 4.3.2. Criterion 1 does not capture election results exactly, it

over-approximates them: Since we ignore the order of preference markings,

the criterion may hold for unintended election results. The result [B,D]

is not a valid election result because it violates the majority criterion: A,

despite its majority of first preferences, is not elected. Nevertheless, it satis-

fies Criterion 1, by virtue of the same partition from the previous example,

because the first group also supports B as elected candidate.

Example 4.3.3. But, Criterion 1 also rules some election results as invalid.

The result [A,B], for example, which contradicts proportional representa-

tion, is not supported by this or any other partition (which shows that this

criterion is indeed related to the requirement of proportional representa-

tion).

74 Chapter 4. Verifying Voting Schemes

Formalisation To formalise the criteria, we use first-order logic over the

theories of natural numbers and arrays with the following notation in ad-

dition to the notation defined previously:

b: is a two-dimensional array representing the ballot box (b in Defini-

tion 4.3.1), where b[i, j] ∈ {1, . . . , C} represents the number cji of the

candidate that is ranked by vote i in the jth place. Thus, i’s prefer-

ence is [b[i, 1], b[i, 2], . . .]. If vote i ranks only k ≤ C candidates, then

b[i, j] = 0 for k < j ≤ C.

r: is an array representing the result T (b), where r[i] is the ith candidate

that is elected (1 ≤ i ≤ S). If less than S candidates are elected, then

r[i] = 0 for the empty seats.

Our criterion is formalised by a formula φ in which all the above (free)

variables occur. We also use an existentially quantified variable a of type

array that represents the partition and the assignment of classes in the

partition to elected candidates as follows:

a[i] = k if the ith vote supports the kth elected candidate r[k]. If the ith

vote does not support any elected candidate, then a[i] = 0. Using

this representation, a class bk (as introduced in Definition 4.3.1) can

be written as: bk = {βi | a[i] = k, 1 ≤ i ≤ V}; votes not supporting

any candidate are collected in brest = {βi | a[i] = 0}.

Then, the formula φ = ∃a(φ1 ∧ . . . ∧ φ4) is the existentially quantified

conjunction:

∀i
(
1 ≤ i ≤ V→ 0 ≤ a[i] ≤ S

)
(φ1)

∀i
(
1 ≤ i ≤ V→ (a[i] 6= 0→ r[a[i]] 6= 0)

)
(φ2)

∀i
(
(1 ≤ i ≤ V ∧ a[i] 6= 0)→ ∃j(1 ≤ j ≤ C ∧ b[i, j] = r[a[i]])

)
(φ3)

∀k
(
(1 ≤ k ≤ S ∧ r[k] 6= 0)→
∃count(count [0] = 0 ∧

∀i(1 ≤ i ≤ V→ (a[i] = k → count [i] = count [i− 1] + 1) ∧
(a[i] 6= k → count [i] = count [i− 1])) ∧

count [V] = Q)
)

(φ4)

Formulas φ1 and φ2 express well-formedness of the partition. Formula φ3

expresses that only votes can support a candidate in which that candidate

is somewhere ranked. Formula φ4 expresses that each class supporting a

4.3. Semantic Criteria for Analysing Voting Schemes 75

particular elected candidate has exactly Q elements. To formalise this, we

use an array count such that count [i] is the number of supporters among

votes 1, . . . , i that support the kth elected candidate.

Note, that this criterion assumes all seats to be filled and has to be

relaxed if a voting scheme does not satisfy the fill-all-seats criterion or there

are not enough candidates that can reach the quota.

4.3.4 Criterion 2: Election Result Consistent with

Preferences

We also consider a second criterion that can be considered orthogonal to

Criterion 1. We check that the election result respects the preferences of

the majority, as stated in the following definition.

Definition 4.3.2. (Criterion 2: Election result consistent with preferences)

Given a ballot box b, let R =
⋃

b be the union of the partial linear orders

given by the votes β ∈ b, and let R+ be the transitive closure of R. Then,

there is an argument for ranking candidate c1 over c2 iff c1R
+c2.

We define Criterion 2 to hold for a preferential voting scheme 〈B, T 〉 iff,

for all ballot boxes b and for all candidates x, y, the following holds:

If there is an argument for ranking x over y but not for ranking

y over x then y must not be ranked higher than x in the election

result T (b).

Note that, in the above definition, R and R+ may not be order relations.

Formalisation That there is an argument for ranking x over y implies

that there is a sequence c of candidates such that x = c[0], . . . , c[k] = y

and there is a sequence of votes v[1], . . . , v[k] such that v[i] prefers c[i− 1]

over c[i] (1 ≤ i ≤ k).

We formalise that vote v[i] prefers candidate c1 over candidate c2 by:

φ(v, i, c1, c2) = ∃j(1 ≤ j ≤ C ∧ b[v[i], j] = c1 ∧
∀j′(1 ≤ j′ < j → b[v[i], j′] 6= c2))

The first line of the above formula says that voter v[i] gives the prefer-

ence j to candidate c1. The second line says that v does not give a higher

preference j′ < j to c2: i.e., gives c2 lower preference or no preference at all.

76 Chapter 4. Verifying Voting Schemes

Now, we can formalise that there is an argument for ranking x over y

by:

Φ(x, y) = ∃v∃c∃k(x = c[0] ∧ y = c[k] ∧
∀i(1 ≤ i ≤ k → (1 ≤ v[i] ≤ V ∧ 1 ≤ c[i] ≤ C ∧

φ(v, i, c[i− 1], c[i]))))

In a similar way as with φ, we can formalise the fact that the voting

result gives a higher ranking to candidate c1 than to candidate c2 as follows:

ψ(c1, c2) = ∃j(1 ≤ j ≤ S ∧ r[j] = c1 ∧
∀j′(1 ≤ j′ < j → r[j′] 6= c2))

Using the formulas Φ and ψ, the criterion can be formalised as follows:

∀x∀y
(
(1 ≤ x ≤ C ∧ 1 ≤ y ≤ C ∧ x 6= y ∧ Φ(x, y) ∧ ¬Φ(y, x)) → ¬ψ(y, x)

)
4.4 Checking Properties Using SMT Solver

4.4.1 Overview: Different Approaches to

Verification with SMT Solvers

In this section we discuss a range of methods that employ Satisfiability

Modulo Theories (SMT) solvers for verifying that a voting scheme satis-

fies any of the aforementioned semantic criteria. Our motivation to chose

SMT solvers for this task is twofold: firstly, SMT solvers have evolved into

powerful reasoning tools that are successfully used in model checking and

software verification, and secondly, the theories supported by SMT solvers

allow us to express semantic criteria easily.

Modern SAT solvers are programs that efficiently decide the satisfiability

of a given set of formulas of classical propositional logic [53]. Although

this problem is NP-complete, modern SAT solvers can easily solve problem

instances with hundreds of propositional variables.

SMT solvers are SAT solvers that are extended by theories meaning

they provide domain-specific and highly optimised solvers for arithmetic,

arrays, uninterpreted functions, and so on. There are many SMT solvers

under active development, such as CVC, MathSAT5, Yices, Z3, etc. and

there are annual SMT solver competitions continuously driving the progress

regarding theoretical and engineering aspects of SMT solver technology.

Among all SMT solvers, Z3 has emerged as a powerful and comprehensive

4.4. Checking Properties Using SMT Solver 77

tool that is also practical in that it provides APIs for various programming

languages, for example Python. Z3’s support for first-order logic over the

theories of natural numbers and arrays is outstanding, which we applied to

formalize semantic criteria of voting systems. These are the main reasons

why we chose Z3 to conduct our experiments.

In the following, we first give an overview of the different ways to apply

SMT solvers for checking semantic criteria of voting schemes and present

experimental results for the applicability of one of these methods. We

address the question of how to represent semantic criteria in the input

language of Z3 (using Z3’s Python API) and demonstrate feasibility of

expressing common semantic criteria at several examples.

To choose a particular technology for the task of verification, we must

strike a balance between the ease of use of a particular tool and the quality

of the resulting proof. In general, it is not possible to combine both full

automation and a full verification, which would be the most desirable result.

Full verification is to provide a general correctness argument for arbi-

trary vote instances of any size. In order to achieve full verification using

SMT solvers, we first need to provide the solver with a logical representation

of the voting algorithm (the implementation of the voting scheme). These

representations can be derived using off-the-shelf methods, such as weakest

precondition generation [11]. As these tools usually cannot derive all loop

invariants automatically, they may have to be assisted by a manual, time

intensive, error-prone, and sometimes unsuccessful process (see Sec. 4.4.3).

If, however, the loop invariants are known, SMT solvers can be used to

discharge first-order proof obligations,

If we unroll loops in the voting algorithm to a specified finite bound, we

speak of bounded verification. The advantage over full verification is that,

as there are no loops left after unrolling, no manual assistance is required.

The disadvantage is that we provide a proof of correctness only for a subset

of vote instances.

Perhaps the most automatic but in general least precise method of veri-

fication is bounded model checking, which exhaustively checks properties for

finitely many concrete vote instance up to a certain size. While the scal-

ability of this method is restricted in general, its main strengths are that

it neither relies on explicit loop invariants nor weakest precondition gener-

ation. It is thus a good candidate for the initial examination of a voting

scheme.

78 Chapter 4. Verifying Voting Schemes

4.4.2 Bounded Model Checking

We examine voting schemes for their semantic criteria by exhaustively test-

ing voting instances using a bounded model checker. That is, we exhaus-

tively run the voting algorithm on the fixed set of input data defined by a

given bound and test whether the result produced by each concrete execu-

tion of the algorithm satisfies the criterion. If the bounded model checker

does not find a bad state, we have established that the criteria are satisfied,

which by the small scope hypothesis [80] is not a proof but indicates the ab-

sence of programming bugs and conceptual problems. If the model checker

finds a bad state, it is possible to extract a counter example for future

inspection. Bounded model checking is well understood, and its applica-

tion to voting schemes was discussed in an earlier paper [18], where linear

logic was used to express voting schemes, and bounded model checking was

performed via proof search within linear logic.

Here we check the criteria using Z3 by encoding the semantic criteria

in first-order logic (plus theories supported by Z3) instead of a linear logic

framework. In addition we encode input and output of the individual ex-

ecution of the voting algorithm, as well as relevant intermediate values of

program variables. The generated formula is satisfiable iff the semantic cri-

teria hold for the result produced by the voting algorithm. If Z3 reports

that the formula is unsatisfiable, the voting instance serves as a counter-

example.

We comment on two scalability issues when using exhaustive testing

to verify properties of a voting scheme: (a) the size of the input given to

a single test run (e.g., the number of ballots or candidates) and (b) the

number of different possible ballot boxes (and thus test runs needed) given

an upper bound on the number of ballots and candidates. Unsurprisingly,

exhaustively testing all voting instances for a large number of votes or

candidates is intractable. But even the result of a single test run may be

difficult to check if the input is large and we require quantification over

array elements of arrays whose size depends, e.g., on the number of votes.

If a criterion does not only relate a single ballot box to the result pro-

duced by the voting algorithm, but involves multiple ballot boxes, appli-

cability of exhaustive testing is restricted even further. One example for

such a criterion is monotonicity (see Sec. 4.3.1), which relates the ballot box

B, the input to the voting algorithm, to another, slightly changed ballot

box B′. As a prerequisite to be able to determine whether the semantic

criterion holds for a particular voting instance, for all such ballot boxes B′

4.4. Checking Properties Using SMT Solver 79

we need to know the result of applying the voting algorithm to B′. While

we can still apply instance checking as before by simply running the checks

for vote instance B with all possible ballot boxes B′, this clearly aggravates

the scalability issues.

One improvement to this “brute force” approach is to narrow down the

search space by generating only ballot boxes B′ that actually relate to the

vote instance B as required by the semantic criterion (e.g., for monotonicity,

enumerate only the B′ which result from B by solely raising the preference

for a candidate c in one or more of the votes). A different solution to this

problem is to use weakest precondition generation as described in Sec. 4.4.3

to capture the effect of the voting algorithm in first-order logic with theories.

Furthermore, concerning scalability of instance checking, the perfor-

mance of the SMT solver depends crucially on the way semantic criteria

and relevant data of the program run are encoded in first-order logic over

theories. The effects of different encodings on performance are shown in

the following.

Experiments: Checking Tailor-made Criteria for STV using Z3

To demonstrate that the use of bounded model checking tools is viable, we

report here on our experiments on STV implemented in Python using the

SMT-based model checker Z3 on the two semantic criteria of STV described

in Sections 4.3.3 and 4.3.4.

We first produced a straightforward encoding in Z3 of the semantic

properties as given in first-order logic. This one-to-one encoding preserves

the structure of the original first-order formulas (including all quantifiers)

and uses Z3’s theories of integers and arrays. Unfortunately, Z3 was not

able to handle quantification over the integers in the one-to-one encoding,

i.e., Z3 could not determine whether the formula in question was satisfiable

or not.

In a second experiment, we eliminated most of the quantifiers in the

formula given to Z3 by replacing a universally quantified formula by a con-

junction over all instances, and replacing some existentially quantified for-

mulae by providing witnesses (e.g., the array variable a in the first STV

criterion), which is possible as the quantifiers range over a small bounded

domain.

With quantifiers mostly eliminated, Z3 was able to check the properties

for concrete voting instances as shown in Figure 4.1b.

80 Chapter 4. Verifying Voting Schemes

(a) Encoding over bitvectors (no quantifier
elimination)

(b) Encoding over integers with quantifier
elimination

Figure 4.1: Z3 performance for checking both semantic criteria (as stated
in Sec. 4.3.3 and Sec. 4.3.4) of single STV vote instances. The z-axis shows
average Z3 run-time in seconds for a single, randomly chosen ballot box
with fixed number of candidates and votes. Translucent bars indicate that
test runs exceeded a timeout of 1800s. Test runs executed on 12-Core AMD
Opteron Processor at 2.1 GHz, with 32 Z3 instances running in parallel.

A third encoding variant takes advantage of the fact that we are in the

bounded case, which means that the integers used in a concrete instance

are also of bounded size and can thus be represented by bitvectors of a

fixed length. For bitvectors, Z3 provides a strategy good enough to handle

formulas with the original structure and without eliminating quantifiers.

In fact, as shown in Figure 4.1a, for bitvectors, Z3 achieves clearly better

performance than reasoning over the integers with quantifiers eliminated.

The drop of Z3’s runtime at the boundary of 14 candidates respectively

votes indicate a change in Z3’s proof search strategy – whether this can be

further exploited to improve scalability of our model checker is future work.

Combining the use of bitvectors with quantifier elimination does not

lead to further increases in performance. This indicates that Z3’s internal

handling of quantifiers for the bitvector theory is more sophisticated than

what is achieved by our elimination of quantifiers in the formula given to Z3.

Regardless of the encoding, the bounded model checking technique does

not scale to the size of ballot boxes found in real elections. It is, however,

still useful (due to the small model hypothesis) to pinpoint some of the

possible errors in the voting scheme, and to check specific larger instances

of interest.

4.4. Checking Properties Using SMT Solver 81

Using Z3 and Its Interface

In this section, we give a brief introduction to Z3, and explain how we use

Z3 to check encodings of semantic criteria introduced in Sec. 4.3.1.

Z3 provides APIs for C/C++, .Net, Python, and OCaml. In this chap-

ter, we consider only the Python version. The Z3 API comprises many

classes and functions, only some of which are explained here (a complete

manual can be found on the Z3 website2).

At the class level, the Solver class plays a central role. It allows to

add assertions, check assertions for consistency, and generate models for

consistent assertions.

The API provides functions to construct formulas. For example, the

Int() and BitVec() functions create an integer and a bit-vector constant

respectively. The functions Array() and K() create array variables con-

stants respectively. And the functions ForAll(), Exists(), And(), Or(),

Not() provide logical operators.

Generating a Z3 input formula consists of two parts. One is encoding

the voting instance from electoral raw data; the other is formalising the

criteria.

A voting instance consists of the voting settings (e.g., the number of

candidates, the number of voters, the number of vacant seats, etc.), the

ballots, the voting result (elected candidates), and sometimes the interme-

diate variables such as each ballot’s support candidate in STV. Entities

such as candidates are represented by integers instead of names.

Examples for constructing voting instances in Z3 using bitvectors and

integers, respectively, are shown in Figure 4.2. The function to1DimZ3Array

converts a list of integers into bit-vectors, the function to2DimZ3Array is

defined analogously and hence omitted.

The integer library provides a function Update() that we use set values

of voting instances. Alternatively, we can use assignments in formulas that

are subsequently executed by the solver.

Next we explain the construction of Z3 input formalising criteria. The

majority criterion and the first criterion from Sec 4.3.3 are shown as an

example in Figure 4.3 and 4.4, respectively. We explain each in turn.

In Figure 4.3, the definition of b (ballot) and r (result) are transcribed

literally from the formulation of the criterion. In the formula, the universal

quantifiers are unfolded into conjunctions (using And()), and similarly, ex-

istential quantifiers are unfolded into disjunctions (using Or()). In line 7,

2http://research.microsoft.com/en-us/um/redmond/projects/z3/z3.html

82 Chapter 4. Verifying Voting Schemes

Voting instance with bitvectors
1 def to1DimZ3Array(a):
2 AllZero = K(Char, BitVecVal(0, BITVECSIZE))
3 res = AllZero
4 for i, val in enumerate(a):
5 res = Update(res, i + 1, val)
6 return res

8 b = to2DimZ3Array(ballots_instance)
9 r = to1DimZ3Array(result_instance)

Voting instance with bitvectors

Voting instance with integers
1 ballot_sort = ArraySort(IntSort(), IntSort())
2 b = Array(’ballots’, IntSort(), ballot_sort)
3 for i in range(V):
4 one_ballot = Array(’ballot’, IntSort(), IntSort())
5 for j in range(C):
6 one_ballot = Update(one_ballot, j, ballot_instance[i][j])
7 b = Update(b, i, one_ballot)

9 r = Array(’result’, IntSort(), IntSort())
10 for i in range(S+1):
11 r = Update(r, i, result_instance[i])

Voting instance with integers

Figure 4.2: Formalisation of Voting Instance

Majority criterion
1 [Implies(Exists(count, // count is a counter
2 And(count[0] == 0, count[V] > V/2, // V is total number of voters
3 And([And(Implies(b[i][0] == c, count[i+1] == count[i]+1),
4 Implies(b[i][0] != c, count[i+1] == count[i]))
5 for i in range(V)]))),
6 Or([r[j] == c for j in range(1, S+1)])) // S is the number of elected candidates
7 for c in range(1, C+1)] // C is the total number of candidates

Majority criterion

Figure 4.3: Encoding of the majority criterion

for c in range(1, C+1) is used to represent “for all candidates”. The

body of this loop reads as follows: If a candidate accumulates more than

50% of the votes, he or she will appear in the in the final elected result r.

Figure 4.4 depicts the formalisation of the first criterion from Sec 4.3.3

in Z3. The formalisation is a one-to-one transliteration. Consider, for ex-

4.4. Checking Properties Using SMT Solver 83

First criterion
1 F1 = [And(a[i] >= 0, a[i] <= S) for i in range(V)]

3 F2 = [Implies(a[i] != 0, r[a[i]] != 0) for i in range(V)]

5 F3 = [Implies(a[i] != 0, Or([b[i][j] == r[a[i]] for j in range(C)]))
6 for i in range(V)]

8 F4 = [ForAll(k,
9 Implies(And(1 <= k, k <= S, r[k] != 0),

10 Exists(count,
11 And(count[0] == 0,
12 count[V] == Q,
13 And([And(Implies(a[i] == k, count[i+1] == count[i]+1),
14 Implies(a[i] != k, count[i+1] == count[i]))
15 for i in range(V)])))))]

First criterion

Figure 4.4: Formalisation of First Criteria for STV

ample, the Z3-formula F1 that encodes the corresponding first order formula

∀i
(
1 ≤ i ≤ V→ 0 ≤ a[i] ≤ S

)
.

Note that there is an index shift. While the voters’ index starts from 1 in

the original formalisation, it starts from 0 in the Z3 representation.

4.4.3 Full and Bounded Verification

Scalability issues of the bounded model checking approach, which requires

exhaustive instance checking, call for other techniques that allow to ana-

lyze either all voting instances up to a considerable size, or even guarantee

correctness independent of the size or concrete content of the ballot box.

In the following, we demonstrate two established methods for this purpose

on a small sample program.

For this, consider the program to compute the sum of the first n inte-

gers plus a constant c (both c and n are input parameters), as shown in

Figure 4.5a. Besides the actual program (in black), we label (in gray) prop-

erties of the program state during program execution. The property n ≥ 0

is the precondition of the program and x = (n2 + n)/2 + c its postcondi-

tion. The precondition captures in which states we intend this program to

be invoked, and the postcondition states what property to expect after the

program terminates.

84 Chapter 4. Verifying Voting Schemes

n ≥ 0
int i = 0

int x = 0

while (i < n)

{

i++

x += i

}

x += c

x =
n2 + n

2
+ c

(a) Original pro-
gram

n ≥ 0
int i = 0

int x = 0

while (i < n)

inv i ≤ n

∧ x =
i2 + i

2
{

i++

x += i

}

x += c

x =
n2 + n

2
+ c

(b) Program
with annotated
loop invariant

n ≥ 0
int i = 0

int x = 0

if (i < n) {

i++

x += i

if (i < n) {

assume false
} else goto out

}

out: x += c

x =
n2 + n

2
+ c

(c) Program with
loops unrolled once

Figure 4.5: Verification example

With full verification, we are able to prove that the program adheres to

its pre- and postcondition pair (using weakest precondition computation,

as explained below). For the unbounded case, the user needs to supply

information describing the effect of executing (a variable number of) loop

iterations in the program via loop invariants. For our example program,

the appropriate invariant is shown in Figure 4.5b. Finding the right loop

invariant for this example is trivial – for concrete voting algorithms, how-

ever, this is a difficult and sometimes infeasible task, as there might not

even be a suitable abstraction in form of a concise invariant that describes

the loop’s effects.

Another option which does not need further user-supplied information

is to use bounded verification. Loops in the program are dealt with by ex-

amining only program executions up a small number of loop iterations (the

bound). This allows us to transform loops into if-cascades – as depicted

in Figure 4.5c for executions containing at most one loop iteration. The

assume statement inserted by the transformation in the second if-block is

used for weakest precondition computation: independently from the prop-

erties that actually hold at this point in the execution, this statement adds

false as an assumption so that from this point on, any property holds, ef-

fectively treating all executions of the original program that pass this point

as if they unconditionally establish the postcondition.

Starting from either the original program with annotated invariants or

4.4. Checking Properties Using SMT Solver 85

(0 < n→
(
(1 < n→ true) ∧ (1 ≥ n→ 1 + c < 9)

)
∧

(0 ≥ n→ 0 + c < 9)
int i = 0; int x = 0

(i < n→
(
(i + 1 < n→ true)∧

5 (i + 1 ≥ n→ x + (i + 1) + c < 9)
)
∧

(i ≥ n→ x + c < 9)
if (i < n) {

(i + 1 < n→ true) ∧ (i + 1 ≥ n→ x + i + c < 9)
x += i; i++

10 (i < n→ true) ∧ (i ≥ n→ x + c < 9)
if (i < n) {

false→ x + c < 9⇔ true
assume false
x + c < 9

15 } else goto out

}

x + c < 9
out: x += c

x < 9

Figure 4.6: Weakest precondition computation for property: x < 9

the unrolled program, the next step in showing correctness of the program

is to generate the weakest precondition for the given postcondition with

respect to the program, resulting in a first-order logic formula. The weakest

precondition is a property of program states s.t., if the program is started

in a state satisfying the weakest precondition, then it terminates in a state

that satisfies the postcondition. If the actual precondition of the program

implies the weakest precondition, then the program is correct with respect

to the given pre-/postcondition pair. Whether this implication holds is

typically checked automatically using an SMT solver.

For our example program, Figure 4.6 shows the intermediate properties

resulting from weakest precondition computation for a simple postcondition

P : x < 9. For P to hold after execution of the final statement x+=c in

line 18 of the program, P with all occurrences of x replaced by x+ c has to

be true beforehand. Corresponding rules for the other statement types are

applied to all statements of the program to get the weakest precondition

of the program with respect to P , as seen in lines 1-2 in Figure 4.6. The

constructed weakest precondition is equivalent to (n = 1 → c < 8) ∧ (n ≤
0→ c < 9).

As explained, bounded verification only guarantees correctness up to a

given number of loop iterations. Thus for parameters that affect the number

of loop iterations in the program execution (in our example: n), we only get

correctness results for a subset of values. In the weakest precondition for our

86 Chapter 4. Verifying Voting Schemes

example program in Figure 4.6, the sub-formula (1 < n → true) captures

this: for any concrete value for n greater than one, the whole formula simply

evaluates to true, although the postcondition x < 9 actually may not hold.

With the number of loop iterations depending on the values of input pa-

rameters, we get similar scalability issues as described for bounded model

checking, if we want to examine larger parameter values. In contrast to

bounded model checking, however, for variables not affecting the number of

loop iterations, the result of bounded verification applies to all values, as

variables are handled symbolically by the technique. Additionally, on this

abstract level, analysis of program properties might be simplified by ex-

ploiting symmetries in the program behaviour. For these reasons, bounded

verification is a promising approach to check properties of voting schemes.

4.5 Case Study: Variants of the STV

Scheme

Single transferable vote (STV) is a preferential voting scheme [116] for

multi-member constituencies aiming to achieve proportional representation

according to the voters’ preferences.

4.5.1 The Standard Version of STV

There are many versions of STV, but most are an extension or variant of

the standard version that is shown in Figure 4.7.

For input and output of the algorithm, we use the same notation and

encoding as in Section 4.3. There are V voters electing S of C candidates,

and:

b: is the input ballot box, where b[i, j] is the number of the candidate

that is ranked by vote i in the jth place. If the vote does not rank all

candidates, then b[i, j] = 0 for the empty places.

r: is the output election result, where r[i] is the ith candidate that is

elected (1 ≤ i ≤ S). If less than S candidates are elected, then r[i] = 0

for the empty seats.

We assume the input for the algorithm to satisfy the following conditions

(which are pre-conditions for running the standard STV algorithm): (1) C ≥

4.5. Case Study: Variants of the STV Scheme 87

Standard Version of STV
1 // Initialisation
2 r := [0, ..., 0]; // no one elected yet
3 e := 1; // e is the next seat to be filled
4 cc := C; // cc is the number of (continuing) candidates
5 Q := bV/(S + 1)c+ 1; // Droop quota

7 // Main loop: While not all seats filled and
8 // there are more continuing candidates than open seats
9 // In each iteration one candidate is elected or one candidate eliminated

10 while (e ≤ S) ∧ (cc > S− e + 1) do

11 // QuotaReached is the set of candidates for which the number of
12 // first-preference votes reaches or exceeds the quota Q
13 QuotaReached := {c | 1 ≤ c ≤ C ∧ #{v | 1 ≤ v ≤ V ∧ b[v, 1] = c} ≥ Q};
14 if QuotaReached = ∅ then

15 // no one has reached the quota,
16 // eliminate a weakest candidate by deletion from the ballot box
17 Weakest := {c | 1 ≤ c ≤ C ∧ #{v | 1 ≤ v ≤ V ∧ b[v, 1] = c} is minimal};
18 choose c ∈ Weakest;
19 delete(c);
20 else

21 // one or more candidates have reached the quota,
22 // elect one of them
23 choose c ∈ QuotaReached;
24 r[e] := c; // put c in the next free seat
25 e := e + 1; // increase the number e of the next seat to be filled
26 do Q times // Q of the votes that
27 choose i ∈ {i | 1 ≤ i ≤ V ∧ b[i, 1] = c}; // give c top preference
28 for j = 1 to C do b[i, j] := 0; od // get erased
29 od

30 delete(c); // delete c from the ballot box
31 fi

32 cc := cc− 1; // in any case we have one less continuing candidate
33 od

35 // Fill the empty seats
36 if e < S then

37 fill the remaining seats r[e, . . . , S] with the remaining cc candidates

39 // procedure for deleting candidate c from votes in b
40 procedure delete(c) begin

41 for i = 1 to V do for j = 1 to C do

42 if b[i, j] = c then

43 for k = j to C− 1 do b[i, k] := b[i, k + 1] od;
44 b[i, C] := 0;
45 fi

46 od od

47 end

Standard Version of STV

Figure 4.7: The standard STV algorithm

88 Chapter 4. Verifying Voting Schemes

S, (2) V ≥ 1. and (3) votes are linear orders of a subset of the candidates,

i.e., for all 1 ≤ i ≤ V and all 1 ≤ j, j′ ≤ C:

• 0 ≤ b[i, j] ≤ C,

• if b[i, j] 6= 0 and j 6= j′ then b[i, j] 6= b[i, j′],

• if b[i, j] = 0 then b[i, j′] = 0 for all j′ ≥ j.

The initialisation part of the STV algorithm, in particular, computes a

quota necessary to obtain a seat (line 5). Different definitions of quotas are

used in practice. The most common is the Droop quota Q = bV/(S + 1)c+1.

To determine the election result, STV uses an iterative process, which

repeats the following two steps until either a winner is found for every seat

or the number of remaining candidates equals the number of open seats

(lines 10–33).

1. If no candidate reaches the quota of first-preference votes, a candidate

with a minimal number of first-preference votes is eliminated and that

candidate is deleted from all ballots (lines 17–19).

2. Otherwise one of the candidates with Q or more first-preference votes is

chosen (line 23) and declared elected (line 24). Of the first-preference

votes for that candidate, Q are chosen and erased (lines 26–29). These

are the votes that are considered to have been “used up”. If the

candidate has more than Q votes, the surplus votes remain in the

ballot box. Finally, the elected candidate is deleted from all ballots

still in the box.

The procedure for deleting a candidate c (lines 40–47) works by searching

for the candidate in each vote and, if c is found to have preference j, then

the candidate with preference j + 1 moves to preference j, the candidate

with preference j + 2 moves to preference j + 1, and so on.

When the main loop of the standard STV algorithm as shown in Fig-

ure 4.7 terminates, either (a) all seats are filled, or (b) the number cc of

remaining candidates is equal to the number of open seats. In case (b), a

further step is needed to distribute some or all of the remaining candidates

to the equal number of remaining seats. The default is to fill all the re-

maining seats with the remaining candidates (line 37). Alternatively, one

may continue the main STV loop to see if the further candidates get elected

(which may leave seats open).

4.5. Case Study: Variants of the STV Scheme 89

Example 4.5.1. We consider the same situation as in Example 4.3.1, i.e.,

there are four candidates A,B,C,D for two vacant seats, and the votes

to be counted are [A,B,D], [A,B,D], [A,B,D], [D,C], [C,D]. The Droop

quota in this case is Q = b5/(2 + 1)c+ 1 = 2.

In the first iteration of the main loop, candidate A meets the quota and

is hence elected. Two of the votes [A,B,D] are erased, the third is a surplus

vote. It is transformed into [B,D] by deleting A from the ballots.

In the second iteration no candidate reaches the quota, thus the weakest

of the remaining candidates B,C,D is eliminated – which one depends on

the kind of tie-breaker used as all three have exactly one first-preference

vote at that point. (1) If the tie-break eliminates B, the aforementioned

transformed vote [B,D] will be transformed again and will become a vote

for D, so that D will be elected in the next iteration. (2) If the tie-break

eliminates C, the vote [C,D] will be transformed into a vote for D, and thus

D will be elected. (3) If the tie-break eliminates D, then C will be elected,

analogously, in the next iteration. In summary, the algorithm reports either

[A,D] or [A,C] as the election result but not, for example, [A,B] or [B,D].

If the number of second-preference votes is used as a tie-breaker, then B is

eliminated first (case 1 above).

The standard STV algorithm has three choice points that produce non-

determinism. Different variants of STV resolve them in different way:

1. Who is eliminated if several candidates have the same minimal number

of first preferences (line 18)?

2. Who is elected if several candidates have reached the quota (line 23)?

3. How are the votes chosen that are deleted when an elected candidate

has more than quote votes (line 27)?

Choice points (1) and (2) are typically handled – to some extent at least

– by defining various kinds of tie-break rules. They can also be handled

by declaring all weakest candidates eliminated resp. declaring all strongest

candidates elected. That, however, is not always possible (there may not

be enough open seats). And it can affect the election result in unexpected

ways.

Choice point (3) can be eliminated using the notion of fractional votes.

Instead of erasing a fraction of the votes that needs to be chosen, the same

fraction of each vote is erased and the remaining fraction remains in the

90 Chapter 4. Verifying Voting Schemes

ballot box. This is done in many versions of STV used in real-world elec-

tions.

The above considerations illustrate that the STV algorithm as presented

in this section is not only one but an entire family of vote counting algo-

rithms. There are a number of parameters to play with: the quota, the

choice of tie-breakers, placement of candidates once there are as many free

seats as remaining candidates.

There are further options that – we argue in Section 4.5.2 – lead to

election systems that can no longer be considered part of the STV family.

4.5.2 The CADE-STV Election Scheme

The bylaws of the Conference on Automated Deduction (CADE) specify an

algorithm for counting the ballots cast for the election of members to its

Board of Trustees [77]. The intention of the bylaws is to design a voting al-

gorithm that takes the voters’ preferences into account. The algorithm has

been implemented in Java and used by several CADE Presidents and Secre-

taries in elections for the CADE Board of Trustees. It has also been used by

TABLEAUX Steering Committee Presidents, including one of the authors,

for the election of members to the TABLEAUX Steering Committee.

Pseudo-code for the CADE-STV scheme is included in the CADE by-

laws [77], making it an interesting target for formal analysis. CADE-STV

differs from the standard version of STV (shown in Figure 4.7) in several

ways:

Quota Instead of the Droop quota, CADE-STV uses a quota of 50% of

the votes – independently of the number of seats to be filled. That is,

line 5 in Fig. 4.7 is changed to “Q := round(V/2)”.

Empty seats CADE-STV does not fill seats that remain open at the end

of the main loop, i.e., lines 36–37 are removed, and “cc > S - e + 1”

in lines 10 is changed to “cc > 0”.

Restart Each time a candidates c reaches the quota Q of first-preference

votes and gets elected, the election for the next seat restarts with the

original ballot box – with the only exception that the elected candi-

date c is deleted. Thus, (a) the Q votes used to elect c are not erased

but are only changed by deleting c, and (b) weak candidates that have

been eliminated are “resurrected” and take part in the election again.

4.5. Case Study: Variants of the STV Scheme 91

That is, (a) the code for erasing votes (lines 26–29) is removed and

(b) replaced by code for resurrecting the eliminated candidates.

4.5.3 Applying Bounded Model Checking to

CADE-STV

As already explained in Section 4.4.2, we have applied SMT-based bounded

model checking to CADE-STV. There, we drew conclusion regarding the

applicability of bounded model checking and the use of Z3. In this section,

we report what can be concluded from the experiments w.r.t. properties of

CADE-STV.

First, the experiments validated that CADE-STV (like standard STV)

satisfies Criterion 2 (Def. 4.3.2). But since an exhaustive model search was

only done up to a small bound on the number of votes and number of

candidates, this does not constitute a full proof.

Second, running our bounded model checker on CADE-STV confirms

that, in difference to standard STV, CADE-STV does not satisfy Criterion 1

(Def. 4.3.1), which is closely related to proportional representation.

In addition, we have used SMT-based bounded model checking to check

the correctness ratio of CADE-STV voting instances. In this experiment,

we generated all possible ballot boxes for CADE-STV up to a certain size

and used Z3 to check if the CADE-STV counting results meet Criterion 1

for that instance.

As an example, the number of candidates is fixed to 4, the number of

vacant seats is varied from 1 to 3 and the number of voters is set from 3

to 5. The result of the experiment is shown in Tab. 4.1. All possible ballot

instances for 4 voters and 2 vacant seats are tested, while for others only

the first 100,000 ballot instances are checked. And when CADE-STV fails

to seat all the vacant seats, the voting instance is not counted in the correct

ratio.

For the one-vacant-seat case, the criterion is met by CADE-STV con-

stantly, because there is no difference between standard STV and CADE-

STV (unless no candidate reaches the quota, in which case standard STV

picks a random candidate while CADE-STV leaves the seat empty). When

there are more than two vacant seats, the criterion is unsatisfiable with

CADE-STV because there not enough ballots to support all elected can-

didates as the quota is 50%. For the two candidates case, CADE-STV

sometimes does not reuse the ballot when picking the second candidate,

and in these cases the criterion can be satisfied.

92 Chapter 4. Verifying Voting Schemes

Table 4.1: Test First STV Criterion on CADE-STV

Voters \Vacant Seats 1 2 3
3 100% 0% 0%
4 100% 87.2% 0%
5 100% 0% 0%

4.5.4 Effects of the Differences between CADE-STV

and Standard STV

Effects of Restart

To illustrate the effect of the restart mechanism in CADE-STV on the

election result, we consider an example:

Example 4.5.2. Let us run CADE-STV on Example 4.3.1. First, we com-

pute the majority quota Q = 3. In the first iteration, A has three first prefer-

ences, so that A is the majority winner and is seated. Since CADE-STV uses

restart, A’s votes are not deleted but are redistributed at the end of the first

iteration. Now the ballot box contains [B,D], [B,D], [B,D], [D,C], [C,D].

Following the algorithm, we observe that now B is the majority candidate

with 3 first preference votes and is seated. The election is over, and the

election result is [A,B] (which is different from the possible results [A,D]

or [A,C] of standard STV).

Indeed, our bounded model checker finds smaller counter examples than

the one shown in Example 4.5.2, but these are not as illustrative.

The effect of the differences between standard STV and CADE-STV is

further clarified by the following theorem and its corollary: in certain cases,

there is no proportional representation in the election results computed by

CADE-STV. See also Example 4.5.3 below.

Theorem 4.5.1

If a majority of voters vote in exactly the same way with ballot [c1, . . . , ck],

then CADE-STV will elect the candidates c1, . . . , ck preferred by that ma-

jority in order of the majority’s preference.

Proof. Since a majority of voters choose c1 as their first preference, no other

candidate can meet the “majority quota”. Thus c1 is elected in the first

round. When redistributing the ballots, each of the majority of ballots

with c1 as first preference have c2 as second preference. All become first

preferences for c2. Thus candidate c2 is guaranteed to have a majority of

4.5. Case Study: Variants of the STV Scheme 93

first preferences and is elected in round two, and so on until all vacancies

are filled.

Corollary 1

If the electorate consists of two diametrically opposed camps that vote for

their candidates only, in some fixed order, then the camp with a majority

will always get their candidates elected and the camp with a minority will

never get their candidate elected.

Standard STV does not use the restart mechanism and so it will elect

the first ranked candidate of the majority, but will then reuse only the

surplus votes and not all votes as done by CADE-STV. Thus the second

preference from the majority is not necessarily the second person elected.

Consequently, majorities do not rule outright in standard STV.

Effects of High Quota and No Filling of Empty Seats

No matter how many candidates there are and how many seats need to

be filled, a candidate can only be seated by CADE-STV if he or she accu-

mulates more than 50% of the votes. Any candidate with less than 50%

of the vote is defeated. Thus, CADE-STV obviously violates the fill-all-

seats criterion. But because of the high quota it also prevents proportional

representation as candidates supported by a large minority can neither be

elected via reaching the quota nor via filling seats left empty at the end of

the main loop.

In fact, if the high quota of 50% and no filling of empty seats were

the only changes w.r.t. standard STV, only a single candidate could be

elected because more than 50% of the votes would be used up by electing

that candidate. CADE-STV requires the restart mechanism to elect further

candidates.

Example 4.5.3. Assume there are 100 seats and two parties nominat-

ing candidates A1, . . . , A100 and B1, . . . , B100, respectively. Further as-

sume that there are 51% of A-voters and 49% of B-voters. All A-voters

vote [A1, . . . , A100] and B-voters vote [B1, . . . , B100]. Standard STV elects

A1, . . . , A51, B1, . . . , B49, i.e., the result is a perfect proportional represen-

tation.

With a quota of 50% and no filling of empty seats, only A1 gets elected

and then nothing further happens, which is clearly undesirable. But CADE-

STV also uses the restart mechanism, therefore, like standard STV, it fills

94 Chapter 4. Verifying Voting Schemes

all seats. The result is different, however, because the votes used to elect

A1, . . . , A51 do not get erased. CADE-STV produces the election result

[A1, ..., A100].

The above example again shows that the majority can rule with CADE-

STV and there is no proportional representation in that case (Corollary 1).

4.5.5 Observations on the History of CADE-STV

We discuss the history of the CADE-STV scheme because it illustrates the

problem of evolving an election scheme without using formally specified

semantic criteria and a formal definition of the input to the scheme. It

is publicly known that there were lots of discussions among the CADE

Trustees over a long period of evolving CADE-STV. But we do not know

what the non-public deliberations actually where. The following is based

on our interpretation of the publicly available material.

The Violation of Proportional Representation

The CADE-STV voting scheme is the result of a long discussion among the

board of trustees that took place in the years 1994–1996. David A. Plaisted

published various concerns about the existing voting scheme which can be

found on his homepage [99].

One of Plaisted’s concerns was that a minority supporting candidates

standing for re-election could re-elect these candidates against the wishes of

the majority as that majority is not sufficiently coordinated in its behaviour

to elect alternative candidates [99]:

Of course, one of the main purposes of a democratic scheme

is to permit the membership to vote a change in the leader-

ship if there is a need for this. However, the new bylaws make

this more difficult in several ways. The problem is that those

who are unsatisfied with the scheme will tend to split their votes

among many candidates (unless they are so disgusted as to put

the trustee candidates at the very bottom of the list), but those

who are satisfied will tend to vote for the trustee nominees. This

means that the trustee nominees tend to be elected even if only

a minority is happy with the scheme.

We believe that because of Plaisted’s concerns the board introduced the

high 50% quota and did not include a mechanism for filling seats that

4.5. Case Study: Variants of the STV Scheme 95

remain empty. On first sight, this seems good because it solves the problem

illustrated in Plaisted’s scenario. But, as explained above, this deviation

from the standard STV setup not only violates the fill-all-seats criterion but

also the goal of proportional representation (see Example 4.5.3). Thus, the

CADE-STV scheme protects the majority at the expense of the minority.

Also, as explained above, if the high quota and the remaining empty

seats were the only changes, only a single candidate could be elected. So,

in effect, one was forced to change the algorithm further. The result was

that the restart mechanism was added to the algorithm, that reuses the

original ballot box for each seat and does not erase votes (because then

more candidates can be elected, see Example 4.5.3).

There would have been a different solution than using a restart that

would have solved Plaisted’s problem without restricting proportional rep-

resentation as much: One could have used Standard STV with an additional

rule that – before the main algorithm is started – anybody who does not ap-

pear (with arbitrary preference) on at least 50% of the votes is immediately

eliminated.

Example 4.5.4. Using the same input ballots as in Example 4.5.3, the al-

gorithm would then elect [A1, ..., A51], which still suppresses the B minority,

but at least gives the A party only those seats that are proportional to the

A votes.

Well-formedness and Interpretation of Input

Apparently, during some CADE elections, there was some confusion about

the meaning of not listing a candidate at all on a ballot and how that should

be translated into input for the CADE-STV voting scheme.

The instruction was given to the voters that not listing a candidate is

the same as giving that candidate the lowest possible preference. But that

is not the correct interpretation. It is easy to see that for both standard

STV and CADE-STV, there is a difference between giving a candidate the

lowest possible preference and not listing the candidate at all. For example,

if there are candidates A,B,C, then [A,B] is different from [A,B,C]. When

candidates A and B get eliminated, [A,B,C] turns into a vote for C and

may help to elect C, which [A,B] does not. One could transform a ballot

of the form [A,B] into an input vote [A,B,C] (and, thus, make them equal

by definition). But that only works if a single candidate is missing from

the ballot. If more are missing, they would have to be put in the same

spot on the ballot, which is not possible. Indeed, CADE-STV does not

96 Chapter 4. Verifying Voting Schemes

work correctly if input votes contain candidates with equal preference, i.e.,

if the pre-condition that a vote is a partial linear order is violated. As that

pre-condition was never clearly specified, fixing the problem in CADE-STV

was a lengthy process that took several years.

This shows that not formalising the pre-conditions which the input must

satisfy is problematic. Besides the possibility of errors or unintended be-

haviour of the algorithm, it is important that the voters understand how

their ballot is transformed into input for the algorithm.

4.6 Conclusion

We have discussed semantic criteria to formalize desired properties of voting

schemes. Formal specification and verification do not provide a mechanism

for deciding which properties are desirable for a particular vote. But they

are methods for the analysis and development of voting schemes.

Our case study demonstrates the importance of formal criteria both

for analysis of voting schemes and their evolution and the development

process. Semantic criteria need to be explicitly stated. A discussion of

voting schemes using anecdotal descriptions of individual voting scenarios

is not a good basis for making electoral laws.

Furthermore, we demonstrated that SMT solvers are well-suited to dis-

cover bugs in voting schemes. In particular, we have shown that the formal-

isation of semantic criteria in first-order logic over the theories of integers

and arrays is a good choice for SMT-based analysis.

An addition example of applying SMT solvers to the Norwegian and

Australian examples (discussed in Chapter 3) is given in Appendix A.1

Chapter 5

Measuring Voter Lines1

5.1 Introduction

The question of how to improve the voters’ experience when going to

the polls is of central importance to many electoral management bodies

(EMBs). Good voter experience is often associated with an efficient and

professionally organized electoral process, which in turn is expected to lead

to elevated levels of voter participation, voter satisfaction, and also trust in

the overall election and its outcome. In a recently published report by the

US Presidential Commission on Election Administration on the American

Voting Experience [16], for example, one of the recommendations calls for

state-of-the-art techniques to assure efficient management of polling places,

including tools the Commission is publicizing and recommending for the ef-

ficient allocation of polling place resources. Such state-of-the-art techniques

can be roughly divided into two categories: techniques that render polling

places more efficient and techniques that measure polling place efficiency.

Denmark, for example, uses digital voter registration systems to increase

efficiency: By presenting a voter registration with a machine readable bar-

code, voters can be quickly and efficiently checked of the electoral roll.

This chapter presents a state-of the-art technique for analyzing the effi-

ciency of a polling place by measuring the times voters are present in and

around a polling place. This analysis technique is called the white boxes-

or simply wb-technique. The results of the wb-technique are datasets from

which we can infer information, for example, when a voter arrived at the

polling place, or when he or she left. We conducted the experiments in three

1Based on “Measuring Voter Lines” [104], joint work with Carsten Schürmann,
accepted and to appear in CeDEM16

98 Chapter 5. Measuring Voter Lines

elections in Denmark: Danish local elections in 2013, European Parliament

election in 2014 and Danish general (parliamentary) election in 2015.

Using statistics, we can deduce valuable information that can assist

administrators in rendering polling places more efficient. Examples of the

effects of such a method include: Reallocating resources from one polling

station to another in the case of a demographic change; purchasing new

equipment, such as new ballot boxes, additional registration desks, voting

machines or curtains, with the goal to shorten long waiting times; it may

also lead to restructuring the layout of polling places to improve flow; or

collecting statistical information to quantify voting culture, for example,

how many voters skip out of a voting line and leave, how many return

again, and how many remain in the polling place after they cast the ballot

to wait for friends or chat with acquaintances.

With every redistribution of resources, there is some risk that the quality

of the election decreases instead of increases. For example, there are reports

from US elections, for example, that after gerrymandering some polling

places experienced extremely long waiting times, for example during the

2012 presidential election in Richland County [29]. The data that we collect

at polling places can be used to understand these problems better and

evaluate the effectiveness of counter measures. It can be used to justify

expenses towards more efficient polling place administration and to disarm

arguments based on circumstantial evidence, for example unsubstantiated

complaints about excessive waiting times.

In the US, there is a critical awareness that such data is invaluable. Per

recommendation of the CalTech/MIT voting project [109], several precincts

have already collected or are planning to collect queuing data the old fash-

ioned way, i.e. by having election officials count the number of people stand-

ing in line at regular intervals, or by handing out pieces of paper to voters

that are stamped with arrival and eventually also the departure times; and

by tracking individuals throughout the voting process, marking the arrival

times at individual service points. In this chapter we show that our wb-

technique, is on all accounts superior to the manual counting: It is more

reliable in that it is virtually free of human error; it is more consistent as

information is continuously recorded; it permits (at least in theory) the

reconstruction of the path of individual voters through the polling station

by trilateralization and it is unobtrusive, because sensors can be installed

in the polling place out of sight of the polling officials and voters. Fur-

thermore, in this chapter we show, that the wb-technique and the manually

collected data can be correlated. In this chapter we show, that it is possible

5.2. White Boxes-technique 99

to replace the manual collection of queuing data by a technological solution,

while improving the accuracy of the measurement.

Legal Concerns

According to Danish data protection agency Datatilsynet, media access

control (MAC) addresses are considered sensitive (personenfølsom) infor-

mation, which means that they are protected by national data protection

laws. It is illegal to record this information without prior permission of the

voter, unless permitted by Datatilsynet. Being aware of the privacy im-

plications for the voter, the DemTech project has applied and was granted

permission by the Danish data protection agency to record this data for

scientific purposes based on the Danish Data Protection Law (Personen-

datalov 2), Chapter 4, Paragraph 6, Section 5.

This chapter is organized as follows. In Section 5.2 we describe the white

box-technique. The hardware and software that we chose to implement the

technique are described in Section 5.3. Security and privacy considera-

tions are discussed in Sections 5.4 and 5.5, respectively. We describe a

pilot study with this technology that we conducted during the 2015 Danish

parliamentary election in Section 5.6. We deployed the technology in five

polling stations including three in Copenhagen and two in Aarhus. For one

polling place in Copenhagen, Holbergskolen, we conducted CalTech/MIT

style manual collection of inflow data, which we use to evaluate the qual-

ity of our method. Finally, we assess results and describe our preliminary

findings in Section 5.7. We conclude that the white box method provides a

precise and accurate information to measure waiting times in polling places.

5.2 White Boxes-technique

The basic idea behind this technique, is that mobile phones send out wireless

packets that can be recorded by a sensor for future analysis. Abstractly,

we can describe the data collected this way as a set of observations O, that

records wireless packets in the form of pairs

(p, t) ∈ O

where p denotes the identifier of a mobile phone and t the time at which

a wireless packet was observed. The sensors that record the packets sent

2https://www.retsinformation.dk/forms/r0710.aspx?id=828

https://www.retsinformation.dk/forms/r0710.aspx?id=828

100 Chapter 5. Measuring Voter Lines

out by mobile phones have only limited range. Therefore, it will become

necessary to deploy multiple sensors for one polling station, which entails,

that we will also have to combine multiple sets of observations O1, . . . , On

for our analysis. To compute for how long a mobile phone, aka voter was

present at a polling place, we have to combine the sets of observations and

compute the following presence relation:

(p, s, e) ∈ Presence(O)

where s (e) refers to the earliest (latest) time when (p, s) ((p, e)) was

recorded in O. In other words, we can compute precisely for how long

each device stayed in a polling place — by subtracting s from e.

Noise: In our pilot study that we describe below in Section 5.6, we

have observed that empirically collected data sets contain noise. This noise

may be due to other devices emitting wireless packets, such as, for exam-

ple, routers that are installed in the building hosting the polling station,

mobile phones of voting officials or people passing by without voting, or mo-

bile phones of voters that run out of batteries. We remove the noise from

the dataset using common statistical methods, in particular, one standard

deviation, which is defined as follows.

σ =
√
E[(T − µ)2]

where µ = E[T] computes the expected value. Data outside the range of

[µ− σ, µ+ σ] is treated as noise.

Accuracy: Each sensor, will accurately record any wireless packet ob-

served within its range, assuming that the local clock of the sensor is con-

figured correctly. This has two consequences. First, if the waiting queue

extends outside the range of a sensors installed, it will not “see” the end of

a line, and conversely, a mobile phone may be detected while the voter is

still in progress of enqueuing. In the former case, it is important that the

voting officials can predict where the line will form and then use sufficiently

many sensors to monitor the queue.

Completeness: We note, that not every voter will carry a mobile phone

that emits packets. In our experience, this is not problematic, because of

the way lines are formed, as long as sufficiently many people in line carry

such a phone. Our data shows, that most commonly every third to fourth

voter (in extreme cases every eighth voter) carries such a phone. Naturally,

the more mobile phones are present in a voting place, the more accurate

our estimates for waiting times will become.

5.3. Implementation 101

Technology Range
RFID tracking < 1m
Bluetooth tracking ca. 10m
WiFi tracking < 100m
UTMS, GSM 800m− 40km

Table 5.1: Tracking Technologies

We also note, that the frequency with which mobile phones emit packets

depends very much on the phone’s operating system. This is because the

probe frequency, for example, for WiFi ranges from 4 packets per minute

to less than one.

We anticipate a future complication with the wb-technique when phones

come pre-configured with anonymization enabled. This technique hides the

device identifier of the phones during the probing phase. However, this is

currently not a concern, as only few phones have this feature enabled [97],

in part, because it is so inconvenient to enable it. All notification services,

email, messages, etc. must be disabled for this feature to work.

5.3 Implementation

Next, we describe our design choices for implementing the wb-technique, in

preparation for a real election.

5.3.1 Hardware

The first design choice is which kind of wireless packets we intend to record.

There are several options as outlined in Table 5.1. Among these options,

we have selected WiFi tracking: Most smartphones and smartwatches have

active WiFi on their phones, simply for convenience. This way the phone

will try to connect automatically to an access point at home or in the

office. When trying to connect, the smartphone periodically emits a probing

packet, which we will then record. The range of WiFi phones in the open

is around 100m, indoors between 10 and 20m and is therefore better than

Bluetooth, which has a much smaller range. In addition many more people

use their smartphones to connect to access points than have Bluetooth

enabled. We briefly also considered RFID tracking, but discarded this idea

102 Chapter 5. Measuring Voter Lines

because of low range and security concerns. Recording UMTS or GSM

signals is in general illegal.

WiFi enabled devices usually transmit on 11 different channels. When

trying to connect to an access point they transmit a broadcast packet on

all channels, which means that for our system, it is sufficient to listen only

to one channel (channel 1) which uses a frequency of 2412 MHz. Note,

that the mobile phone has also Bluetooth enabled, there might be some

interference between WiFi and Bluetooth.

The second design choice is the particular technology that we shall use

to record wireless packets. There are many possibilities, ranging from small

computers (for example, Raspberry Pi) to routers. In preliminary experi-

ments, we used a TP link travel router TP-MR3020.3 These routers have

the advantage that we can install OpenWRT (a Linux derivative) on them.

They also come with a USB port, which we use to connect a USB drive

to record the data persistently, which we found worked well. We also used

USB drives in an earlier pilot Danish Municipal election 2013, without any

problems.

An alternative technology are 3G antennas, which we used for the Eu-

ropean parliament election 2014, where we encrypted and transmitted the

data directly to DemTech’s server. This had the advantage that in prin-

ciple, we could provide online queuing data information. However, the 3G

connection to the server was less reliable than expected, so that our data

collection was spotty at best.

One drawback of these sensors was that they needed to be connected to

an external power source, which means that the location for the sensors in

a polling place was largely determined by the location of power outlets.

For the 2015 Danish Parliamentary election we therefore started to look

for another technology and we chose the TP link travel router TP-MR13U4

and 16GB SanDisk Cruzer Fit USB Flash drives. This router comes with an

embedded battery large enough to power the sensor for 48 hours straight,

ample time to be deployed during an election. Just like with the TP-

MR3020, OpenWRT can be installed on this sensor and they can be pro-

grammed to start and stop collecting data at precise time points. Practically

speaking a polling station can be prepared the day before the election, and

the sensors can be collected after the polling station closes.

3http://www.tp-link.com/en/products/details/cat-4691_TL-MR3020.html
4http://wiki.openwrt.org/toh/tp-link/tl-mr13u

http://www.tp-link.com/en/products/details/cat-4691_TL-MR3020.html
http://wiki.openwrt.org/toh/tp-link/tl-mr13u

5.4. Security 103

5.3.2 Software

To prepare the routers, we flush the router’s firmware and replace it with

OpenWRT 5, an operating system based on the Linux kernel that is opti-

mized for network traffic management. Next, we set the wireless interface

of each sensor into passive mode, which means that the sensors can only

listen. One can think of the sensors as microphones, recording all wireless

traffic around them.

OpenWRT supports many of the common networking tools,in partic-

ular, tcpdump6 a tool that we configured to record wireless packets. We

configured the sensors in such a way that they would automatically start

recording packets at 08:00 and stop at 21:00 on the election day.

5.4 Security

We review the security of our system from the point of assets and vulnera-

bilities [15] in the polling places. In our experiments, the physical assets are

the routers and their respective USB drives. The physical assets’ integrity

can be violated due to unexpected damage to the sensors, for example,

through water, fire, or theft. As logical assets we refer to the router’s soft-

ware and the data collected on the USB flash drive.

Regarding the protection of the physical assets, there is little we can do

beyond physically securing them, because the sensors are not monitored.

During the experiments described below, we placed the routers in difficult

to access places and out of the voters sight.

We therefore direct the focus of this security analysis on the integrity

and security of the logical assets. Here, we even assume that the sensor

itself is under the adversary’s control, and therefore as the primary security

mechanism we protect all data on the USB flash drive, by encrypting the

relevant partition on the drive. The key for decrypting the flash drive was

not stored on the sensor, but kept in our office.

As a secondary security mechanism, we restrict the attack surface of

each sensor: the only way to access it is by attaching network cable and

logging in through ssh.

The only personnel authorized to access are the system administrators,

who are usually not in field. A system administrator has all keys and

5https://openwrt.org/
6http://www.tcpdump.org/

https://openwrt.org/
http://www.tcpdump.org/

104 Chapter 5. Measuring Voter Lines

thus has the access to all critical data. We argue that the system is secure

keeping in mind that an attacker could easily record the same wireless traffic

without having to breach the security measures that we have put into place.

Next, we’ll address the protection of the collected data. Each recorded

packet contains identifying information about the identity of the mobile

phone, the so called MAC address. Even though it is possible to reset the

MAC address of any such device, it is uncommon for users to do so. Note,

that for the purpose of this work, it is important, that

• MAC addresses are properly anonymized to protect the identity of

the voter,

• only data relevant to our experiments is kept, including anonymized

MAC addresses, time stamps, and signal noise ratios, and

• the anonymization of MAC addresses is deterministic, because we

need to correlate packets across multiple sensors.

For practical purposes, during the voting day, all data is recorded. Any

anonymization and analysis of the data is done post-election.

The data collected during this pilot must be classified as “sensitive”

because MAC addresses are considered personal data. To do an appropriate

security analysis of our design, we consider which possible adversary might

be interested in stealing the data we collect. An adversary may want

• to steal data out of curiosity,

• to gain access to recorded information,

• to discredit the election commission,

• or to interrupt the pilot.

It is therefore important to take the necessary technical and operational

security precautions. However, in general, the security threat is at most

moderate, as many polling places are within the range of wireless routers

that could be reprogrammed to collect similar kinds of information. Every

smart phone can be programmed to do the same.

We use disk encryption (AES based, SHA1, 256 bit) to deter attackers

and to secure the data stored on the USB drive on the sensor. The disk

encryption subsystem is part of the Linux kernel (dm -crypt). This way,

we can guarantee that all data on the USB drive is encrypted and thus

rendered useless for an attacker stealing it.

5.5. Privacy 105

5.5 Privacy

The MAC address for a network interface, is factory preset for each net-

worked device. This includes smartphones, but also standard networking

hardware that can be found in laptops and other computers. A MAC ad-

dress contains 6 octets, as shown in Figure 5.1, where the first 3 octets

identify the organization that issued this MAC. Using this and the remain-

ing 3 octets, it is possible to identify the device that owns the MAC.

Figure 5.1: MAC address

For most devices, in particular Apple’s iPhone or Android phones, the

MAC address can be reset by the user to any randomly chosen 6 octets 7.

For example c2:31:9d:d0:30:e8 is a valid MAC address. As each octet is 8

bit, there are 248 unique MAC addresses. Standard anonymization tech-

niques, for example, by computing the SHA256 digest for the MAC address

from a voter’s phone provide only low levels of security, because a sim-

ple dictionary attack would allow an adversary to relate the anonymized

identifier to the original MAC address. Therefore, we chose to use HMAC

(keyed-hash message authentication code) to hide the MAC addresses be-

fore we published the raw data, so that the HMAC key protects against

such a dictionary attack.

For reliability, when we use tcpdump to capture the wireless packets, we

do not filter out the packet header during recording. Instead, we store the

whole packet, and remove the packet’s body offline. The secrecy of each

packet’s content depends on the type of security method used for wireless

communication, for example WEP, WPA, or WPA2. In addition, most

voters will not be able to connect to any of the local networks in the polling

station, which means that all the captured packets will only be handshake

beacons, instead of payload carrying network packets, which arise when

checking email or surfing the web.

Our security and privacy measures are not designed to protect against

inside attacks, which means if the keys are misused by an inside attacker,

the attacker may gain free access to the data on the USB drive and recover

7Some special MACs are reserved

106 Chapter 5. Measuring Voter Lines

the original MAC addresses from the anonymized ones. If the attacker is

in possession of the secret key used to compute the HMAC, he will be able

to brute force the original MAC address.

5.6 Field Study

In this section we describe the 2015 pilot project, where we recorded network

traffic using the white boxes method and recorded them manually following

the CalTech/MIT style.

The general parliament election was held in Denmark on 18 June 2015

from 09:00 to 20:00 to elect the 179 members of the Folketing (Danish

parliament). We installed our white box technology in 5 polling places in

two cities, Aarhus and Copenhagen, and deployed in total 18 white boxes

with a minimum of 3 white boxes installed in each polling station. Out of

the 5 polling places, 3 were located in Copenhagen, namely Holbergskolen,

Bellahøj Skole and Islands Brygge Skolen, and 2 were located in Aarhus,

namely Møllevangskolen and Frederiksbjerg Hallerne.

5.6.1 Installation

The position for each white box in a polling place was carefully chosen, in an

effort to ensure that the combination of white boxes cover the entire polling

station and the area where there queues were expected to form. In some

polling places we placed white boxes in such a way to achieve a higher level

of redundancy, useful for the case sensor failure. As shown in Figure 5.2a,

3 sensors were placed in Holbergskolen polling place in Copenhagen, where

the bottom two sensors were placed to record the mobile devices before

voters go through the entrance (IND) and after they leave (UD). The small

circles mark the registration desks, the first service point. After registration,

the voters received a blank ballot and proceeded to the second service point,

waiting for an empty voting booth, marked in Figure 5.2a by a crossed out

circle. The queues formed alongside the building, along the dotted line in

the picture.

5.6. Field Study 107

(a) Holbergskolen (b) Islands Brygge Skolen

(c) Bellahøj Skole

Figure 5.2: Layout Maps of White Boxes in Copenhagen

On the day before the election, we deployed five teams who visited one

of the five polling places each, and installed 3-4 sensors. The sensors were

programmed to record from 08:00 to 21:00. The sensors were completely

autonomous and did not require any servicing during election day. Each

team collected the sensors after close of polling station and returned them

to the lab for further processing.

5.6.2 Data Preprocessing

The data collected by each sensor consists of a list of packets. These lists

contain several millions of packets each. Each packet is described by a

108 Chapter 5. Measuring Voter Lines

time stamp, an anonymized MAC address, and a value representing signal

strength.

Figure 5.3 depicts a plot of one of these sensors, before noise was re-

moved. The x axis describes time and the y axis the identifier of the mobile

phone, sorted in order of first appearance. As we can see, several sensors

leave long lines to the right; this may be due to routers in proximity to the

polling station being turned on, or other reasons.

First, we tweak the data a little:

1. We preprocess the data in the following format, summarizing all

observations at times t1...tn of the same identifier into one tuple

(p, {t1, . . . , tn}, l). l refers to the duration an identifier was within

scope of the polling station l = tn − t1.

2. We remove all tuples from this set, where l = 0.

3. We remove all tuples, where 60min < l.

4. We remove all tuples, recorded 30min before the polling station opens,

i.e. where t1 < 08:30.

5. We remove all tuples, recorded 30min after the polling station closes,

i.e. where 20:30 < tn.

6. We remove all tuples corresponding to spurious identifiers, where l <

1min.

7. We remove all tuples corresponding to transient identifiers, i.e. there

exists an i, such that 10min < ti+1 − ti.

8. Finally, we apply the noise removal techniques described earlier, which

significantly improved the overall quality of the data. With a running

average (deviation) µ (σ) of the duration l for 10 minute intervals

(empirically determined), we remove in addition all those tuples for

which l < µ− σ or µ+ σ < l.

It is also conceivable to preprocess the data set even further: For ex-

ample, for each wireless packet, we could determine the manufacturer in-

formation from the MAC address (before anonymization). Based on this

information, we could decide to keep or remove the tuple. This is possible,

because the first 24 bits of a MAC address identify the manufacturer as

5.6. Field Study 109

discussed in Section 5.5 (unless the MAC address was reset). There are

online inverse MAC-address lookup services.

When we black-listed the five common router manufacturers, and re-

moved all packets from those devices from our data set, we observed, that

our method produced nearly identical results. This means, that our data

processing step effectively removed all black-listed devices automatically.

We also observed, that our sensors sometimes behave erratically. The

sensor No.7’s unprocessed data depicted in Figure 5.3, for example, ap-

peared to have malfunctioned as it stopped recording packets for about one

hour. The damage could be mitigated, because the other sensors in polling

places worked well. We remark, that this was also the only malfunctioning

that we observed.

Figure 5.3: White Box No.7 Data

5.6.3 Devices

In Denmark, it is common practice to publish statistical information about

each election on the internet. The official election homepage [48], for ex-

ample, lists how many voters voted in each polling place. We use this in-

formation to approximate, how many voters carried a WiFi enabled mobile

phone (see Table 5.2). The overall penetration of smart phones in Denmark

110 Chapter 5. Measuring Voter Lines

was 59% in 2013 8.

Polling Places Voters Devices Percentage
Holbergskolen 4997 1333 26.68%
Bellahøj Skole 5789 1942 33.55%
Islands Brygge Skolen 7931 3494 44.05%
Møllevangskolen 8043 3132 38.94%
Frederiksbjerg Hallerne 10578 3798 35.90%

Table 5.2: Device Capture Ratio

5.6.4 Queues

We now discuss how to interpret the data that we have collected using

the polling station at Islands Brygge Skolen as an example. The results

for the other polling places are given in Appendix A.2, Appendix A.3 and

Appendix A.4.

First, we visualize the data we have collected. As previously stated, our

data set consists of a set of tuples of the form (p, t1, tn, l), where p stands for

the anonymized identifier of each mobile phone, t1 the point in time when

the device was detected first, and tn when it was seen last. Below we refer

to this data set as D. l refers to the total voter’s waiting time (time spend

in the polling place). The graph in Figure 5.4 visualizes this — the vertical

axis ranges over device IDs ordered by t1, and the horizontal axis ranges

over time. For each device, we mark t1 by a blue and tn by a red dot.

Next, we describe two analysis techniques, for computing the average

time that voters spent in a polling place. First, we use the method of

averaging, which is described in Section 5.6.4, and second, we use a method

based on Little’s theorem [89] in Section 5.6.4.

Method based on averaging

With this method, we compute the running averages of the time spent in

a polling place, using a sliding window of 10 minutes, 30 minutes, and 1

hour, respectively:

8https://en.wikipedia.org/wiki/List_of_countries_by_smartphone_

penetration

https://en.wikipedia.org/wiki/List_of_countries_by_smartphone_penetration
https://en.wikipedia.org/wiki/List_of_countries_by_smartphone_penetration

5.6. Field Study 111

Figure 5.4: Device Appearance in Islands Brygge Skolen Copenhagen

µlen(t) =

∑
l∈L l

|L|

where L is defined as {l|(p, t1, tn, l) ∈ D and t− len
2
≤ t1 ≤ t+ len

2
} and len

is the size of the window. Figure 5.5 depicts a green, blue, and red graph

for the polling place at Islands Brygge Skolen representing the running

averages for a 10 minute, 30 minute, and one hour window, respectively.

The horizontal axis denotes time and ranges from 08:30 to 20:30. The

vertical axis denotes the average waiting time, in seconds.

112 Chapter 5. Measuring Voter Lines

Figure 5.5: Average Time (Averaging Method) in Islands Brygge Skolen
Copenhagen

Method based on Little’s theorem

In queuing theory, Little’s theorem is widely applied. Little’s theorem

states [89]: ”The average number of customers in a system (over some

interval) is equal to their average arrival rate, multiplied by their average

time in the system.” Based on this theorem, we can compute the average

time the voters spent in the polling station as

µlen(t) =
Vlen(t)

λlen(t)
,

where len stands for the size of the window, as above. Vlen is the average

number of voters in the polling station at time t, and λlen is the arrival rate

also at time t.

The accumulated inflow values, outflow values, and their difference,

which corresponds to the number of voters present in the polling station

at a particular time, are plotted in Figure 5.6. The grey, green, and blue

graphs, correspond to inflow, outflow, and number of voters, respectively.

Figure 5.7 shows the average time voters spent in the Islands Brygge

Skolen polling station for any particular point in time during the voting

day. The color schemes are consistent with those used above, green refers

to a 10 minute window, blue to a 30 minute window, and red to a one hour

window.

5.6. Field Study 113

Figure 5.6: Device Flow in Islands Brygge Skolen Copenhagen

Figure 5.7: Average Time (Little’s Method) in Islands Brygge Skolen
Copenhagen

5.6.5 Manual Count

In order to validate our method, we conducted in addition to the automatic

method a manual count in parallel, following the CalTech/MIT recommen-

dations, for assessing waiting times in polling places. In this section, we

report which data we collected, and how to compare the white box method

114 Chapter 5. Measuring Voter Lines

with the manual method. The CalTech/MIT recommendation proposes two

different kinds of manual data collection.

1. The first method asks an observer to follow and record the individual

activities of random voters throughout the polling station. This in-

cludes, arrival times, for example, at the end of the queue, or different

service points, and the departure of the voter from the polling station.

Table 5.3 depicts a fragment of the log that we manually recorded at

the polling station, Holbergskolen.

No. Description Check-in Arrival
registra-
tion

Leave
registra-
tion

Enter
booth

Leave
booth

Ballot
cast

16 green coat 10:51:40 10:53:00 10:53:15 10:53:24 10:54:09 10:54:14
17 purple jacket 10:59:45 11:00:35 11:00:51 11:00:57 11:02:00 11:02:11
18 lime jacket 11:10:06 11:10:58 11:11:20 11:11:30 11:12:22 11:12:28
19 red coat 11:19:10 11:19:24 11:19:40 11:19:48 11:20:26 11:20:28
20 white pants 11:28:10 11:28:30 11:28:44 11:28:46 11:29:16 11:29:20

Table 5.3: Example Data of Manual Count in Holbergskolen

2. The second method for data collection requires an observer to count

the number of arriving voters in 10 minute intervals. The two left-

most columns of Tables 5.5–5.7 display this information for 4 different

polling places. Due to a lack of observers, we were not able to record

this data for the polling station at Frederiksbjerg Hallerne.

Next, we discuss the comparison between the white box method and the

manual methods.

Queues

Here, we compare the data that we have collected in Holbergskolen using

the white box method to Table 5.3 above. From this data, we compute

the time that each voter spent in the polling place, by subtracting “check-

in time” from the “ballot cast time”. Using the averaging methods, we

compute the running averages using a window size of 30 minutes and one

hour, respectively. We remark that a window size of 10 minutes did not

provide usable information, in part because of a lack of observations. These

5.6. Field Study 115

two graphs are depicted in Figure 5.8 and Figure 5.9, using the colors light

blue (30 minutes), and gray (1 hour). The remaining three plots (green,

blue, and red) display the white box data for this polling place using the

averaging method (see Section 5.6.4) and Little’s method (see Section 5.6.4).

Figure 5.8: Comparison of White Box (Averaging Method) and Manual
Count in Holbergskolen Copenhagen

116 Chapter 5. Measuring Voter Lines

Figure 5.9: Comparison of White Box (Little’s Method) and Manual Count
in Holbergskolen Copenhagen

Devices

Here, we compare the second type of data that we collected manually with

the data recorded using the white boxes. There is only one polling station,

namely Holbergskolen, for which we recorded inflow manually during the

whole day. Figure 5.10 depicts the inflow and outflow, recorded by our

sensors in green and gray, respectively, and the inflow recorded manually

in red. Note, that we did not record manually the outflow of voters from a

polling station.

5.6. Field Study 117

Figure 5.10: Device Flow in Polling Station Holbergskolen Copenhagen
including manual count

Figure 5.11 presents the same information but in a slightly different

form. The red plot describes the average percentages of voters who carried

a mobile phone, in 10 minute intervals.

Figure 5.11: Device Capture Ratio from 8:30 to 20:10 in Holbergskolen
Copenhagen

118 Chapter 5. Measuring Voter Lines

In addition to the inflow collected from Holbergskolen (Table 5.4), we

also recorded the inflow for one hour period between 16:00 and 17:00 for

three further polling places, including Bellahøj Skole (Table 5.5), Islands

Brygge Skolen (Figure 5.6), and Møllevangskolen (Table 5.7). This allows

us to compare the inflows between all four polling places during this hour.

Time Voters Devices Percentage
.
16:00 - 16:10 80 29 36.25%
16:10 - 16:20 74 25 33.78%
16:20 - 16:30 97 27 27.84%
16:30 - 16:40 102 14 13.73%
16:40 - 16:50 108 27 25.00%
16:50 - 17:00 112 33 29.46%
.

Table 5.4: Device Capture Ratio in Holbergskolen Copenhagen

Time Voters Devices Percentage
16:10 - 16:20 90 28 31.11%
16:20 - 16:30 85 33 38.82%
16:30 - 16:40 132 42 31.82%
16:40 - 16:50 122 43 35.25%
16:50 - 17:00 118 47 39.83%
17:00 - 17:10 130 48 36.92%

Table 5.5: Device Capture Ratio in Bellahøj Skole Copenhagen

5.7. Findings 119

Time Voters Devices Percentage
16:00 - 16:10 107 56 52.34%
16:10 - 16:20 183 77 42.08%
16:20 - 16:30 145 79 54.48%
16:30 - 16:40 200 84 42.00%
16:40 - 16:50 211 93 44.08%
16:50 - 17:00 193 88 45.60%

Table 5.6: Device Capture Ratio in Islands Brygge Skolen Copenhagen

Time Voters Devices Percentage
16:00 - 16:10 138 49 35.51%
16:10 - 16:20 160 64 40.00%
16:20 - 16:30 170 76 44.71%
16:30 - 16:40 173 76 43.93%
16:40 - 16:50 165 73 44.24%
16:50 - 17:00 201 83 41.29%

Table 5.7: Device Capture Ratio in Møllevangskolen Aarhus

5.7 Findings

This section describes some findings from the white box data.

1. The white box method provides a precise and accurate method to

collect information for measuring waiting times in polling places. We

have observed and recorded data in one polling station in two different

ways, using our white box method and a manual counting method.

Figure5.9 reports our observations. We can see that both data sets

(green and light blue) follow roughly the same trend, but that the au-

tomatic method recorded overall higher waiting times than the man-

ual method. We attribute this difference to our setup, where mobile

phones are detected earlier by our white box sensors because they

record mobile phones while they are approaching the polling station

and not just upon arrival. This can be compensated for by using more

sensors but with restricted range. To a lesser extent, it may also be

due to the inaccuracy inherent in manual data collection and the low

sampling rate.

120 Chapter 5. Measuring Voter Lines

2. We can also refine the setup to collect more detailed data, for example,

by increasing the number of sensors, or by using location algorithms,

such as trilateralization. It might even be possible to track individual

mobile phones or to predict where a line will form. Such extensions

are however beyond the scope of this chapter.

3. Some polling places experienced an increase in waiting times between

16:00 and 18:00. For example, at Islands Brygge Skolen waiting time

doubled around 17:00. We suspect that this because many voters

voted after work. To alleviate these service bottlenecks, our find-

ings indicate that either more registration desks or more curtains are

needed.

4. Our findings also show that every polling station has a characteristic

service time. This is the minimal amount time a voter requires to tra-

verse the polling station. In the Islands Brygge Skolen polling station,

the minimal service time is around 200 seconds, whereas in Bellahøj

Skole, it is closer to 270 seconds. Factors that affect the service time

include polling station layout and processing speed. Election officials

may respond to such observations for future elections and monitor

effectiveness.

5. The white box data can also be used to analyze the percentages of the

voting populations, who have smartphones and this information can

be correlated with voter participation. It is also possible to conduct a

further statistical analysis, for example by correlating our data with

the official voter registration data.

6. In general, the averaging method and Little’s method provide very

similar results, although the latter appears to be more fine-grained.

In particular, the plots obtained by Little’s method in the Figures

above and the Appendix below show interesting periodic fluctuations,

that we will analyze in future work.

7. Not surprisingly, all polling places show a peak in waiting times at the

beginning of the voting day. We observed long queues forming outside

polling places, before they opened. After the voting had started, and

polling places had been operating at full capacity for a little while,

the waiting times dropped dramatically.

8. In Frederiksbjerg Hallerne (as shown in Appendix A.3, Figure A.10),

there is a dip in the graph around 10am, which coincides with the

5.7. Findings 121

malfunction of sensor No. 7 placed at the entrance at the polling

place, as discussed in Figure 5.3. This means that area covered by our

sensors was somewhat smaller during this time, resulting in reduced

waiting times in this polling place.

Bibliography

[1] Ben Adida. Advances in cryptographic voting systems. PhD thesis,

Massachusetts Institute of Technology, 2006.

[2] B Alpern and FB Schneider. Defining Liveness. Information process-

ing letters, 1985.

[3] Stephen Ansolabehere and Daron Shaw. Assessing (and fixing?) Elec-

tion Day lines: Evidence from a survey of local election officials. Elec-

toral Studies, 41:1–11, 2016.

[4] Tigran Antonyan, Seda Davtyan, Sotiris Kentros, Aggelos Kiayias,

Laurent Michel, Nicolas Nicolaou, Alexander Russell, and Alexan-

der A. Shvartsman. Automating Voting Terminal Event Log Analysis.

Electronic Voting Technology Workshop, 2009.

[5] Hans van Maaren Armin Biere, Marijn Heule and Toby Walsh.

Bounded Model Checking. In Handbook of Satisfiability, volume 185,

pages 457–481. 2009.

[6] Kenneth J. Arrow. A Difficulty in the Concept of Social Welfare,

1950.

[7] a.S. Rao and M.P. Georgeff. Modeling rational agents within a BDI-

architecture. Readings in agents, pages 317–328, 1997.

[8] Tomáš Babiak, Mojmı́r Křet́ınský, Vojtěch Řehák, and Jan Strejček.

LTL to Büchi Automata Translation: Fast and More Deterministic.

volume 061, pages 95–109. 2012.

[9] Christel Baier and Joost-Pieter Katoen. Principles Of Model Check-

ing, volume 950. 2008.

124 Bibliography

[10] Musard Balliu, Mads Dam, and Gurvan Le Guernic. Epistemic tem-

poral logic for information flow security. Proceedings of the ACM

SIGPLAN 6th Workshop on Programming Languages and Analysis

for Security - PLAS ’11, pages 1–12, 2011.

[11] Mike Barnett and K. Rustan M. Leino. Weakest-precondition of un-

structured programs. ACM SIGSOFT Software Engineering Notes,

31:82, 2006.

[12] David Basin, Felix Klaedtke, Srdjan Marinovic, and E Zălinescu.

Monitoring of temporal first-order properties with aggregations. Run-

time Verification, 2013.

[13] David Basin, Felix Klaedtke, and Samuel Müller. Monitoring secu-

rity policies with metric first-order temporal logic. Proceeding of the

15th ACM symposium on Access control models and technologies -

SACMAT ’10, page 23, 2010.

[14] David Basin, Felix Klaedtke, and Samuel Müller. Policy monitoring

in first-order temporal logic. Computer Aided Verification, 2010.

[15] David Basin, Patrick Schaller, and Michael Schlapfer. Applied In-

formation Security. Springer Berlin Heidelberg, Berlin, Heidelberg,

2009.

[16] Robert F. Bauer and Benjamin L. Ginsberg. The American Voting

Experiance: Report and Recommendations of the Presidential Com-

mission on Election Administration. Technical Report January, 2014.

[17] Patrick Baxter, Anne Edmundson, Keishla Ortiz, Ana Maria

Quevedo, Samuel Rodŕıguez, Cynthia Sturton, and David Wagner.

Automated Analysis of Election Audit Logs. Electronic Voting Tech-

nology Workshop, 2012.

[18] Bernhard Beckert, R Goré, and C Schürmann. Analysing Vote Count-

ing Algorithms via Logic. Automated Deduction–CADE-24, pages

135–144, 2013.

[19] Bernhard Beckert, Rajeev Goré, Carsten Schürmann, Thorsten

Bormer, and Jian Wang. Verifying Voting Schemes. Journal of In-

formation Security and Applications, 19:115–129, 2014.

Bibliography 125

[20] Francesco Belardinelli and A Lomuscio. First-order linear-time epis-

temic logic with group knowledge: An axiomatisation of the monodic

fragment. Fundamenta Informaticae, pages 1–16, 2011.

[21] Pierre Bieber and Frederic Cuppens. Computer Security Policies and

Deontic Logic. Computer Security Policies and Deontic Logic, 1994.

[22] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Masahiro Fu-

jita, and Yunshan Zhu. Symbolic model checking using SAT proce-

dures instead of BDDs. Proceedings of the 36th annual ACM/IEEE

Design Automation Conference (DAC99), pages 317–320, 1999.

[23] Armin Biere, Alessandro Cimatti, Edmund M Clarke, and Yunshan

Zhu. Symbolic Model Checking without BDDs. In Proceedings of

the 5th International Conference on Tools and Algorithms for Con-

struction and Analysis of Systems, volume TACAS 99, pages 193–207,

London, UK, 1999. Springer-Verlag.

[24] N. Bjorner and L. de Moura. Z3: An efficient SMT solver. [cited 2010

July]; Available from:http://research.microsoft.com/projects/Z3,

4963 LNCS:337–340, 2007.

[25] Steven J Brams. Voter Sovereignty and Election Outcomes. (Novem-

ber), 2003.

[26] Felix Brandt, Vincent Conitzer, and Ulle Endriss. Computational

Social Choice. In G. Weiss, editor, Multiagent Systems. MIT Press,

2012.

[27] DFC Brewer and MJ Nash. The Chinese Wall Security Policy. Secu-

rity and Privacy, pages 206–214, 1989.

[28] Jacob West Brian Chess. Secure Programming with Static Analysis,

volume 53. Addison-Wesley Professional, Cambridge, 2007.

[29] Duncan a Buell. An Analysis of Long Lines in Richland County, South

Carolina. Presented as part of the 2013 Electronic Voting Technology

Workshop/Workshop on Trustworthy Elections, 1(1):106–118, 2013.

[30] Muhammed Fatih Bulut, Yavuz Selim Yilmaz, and Murat Demirbas.

Crowdsourced Line Wait Time Estimation using Smartphones. Mo-

bicase, 2012.

126 Bibliography

[31] Craig Burton, Chris Culnane, James Heather, Thea Peacock, Pe-

ter Y. A. Ryan, Steve Schneider, Sriramkrishnan Srinivasan, Vanessa

Teague, Roland Wen, and Zhe Xia. Using Prêt à Voter in Victoria

State Elections. Electronic Voting Technology Workshop, 2012.

[32] BVerfG. Provisions of the Federal Electoral Act from which the effect

of negative voting weight emerges unconstitutional, 2008.

[33] David Chaum, Peter Y A Ryan, and Steve Schneider. A practical

voter-verifiable election scheme. Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lec-

ture Notes in Bioinformatics), 3679 LNCS(December):118–139, 2005.

[34] Hao Chen and David Wagner. MOPS: an Infrastructure for Examin-

ing Security Properties of Software. CCS ’02 Proceedings of the 9th

ACM conference on Computer and communications security, pages

235–244, 2002.

[35] Jeremy Clark and Urs Hengartner. Selections : Internet Voting with

Over-the-Shoulder Coercion-Resistance. Financial Cryptography and

Data Security, pages 47–61, 2012.

[36] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu.

Bounded Model Checking using SAT Solving. Journal of Formal

Methods in System Design, 19(1):7–34, 2001.

[37] Edmund M Clarke and E Allen Emerson. Design and Synthesis of

synchronization skeletons for branching time temporal logic. Logics

of Programs Workshop, New York, May 1981, 131:52–71, 1982.

[38] MR Clarkson and Bernd Finkbeiner. Temporal Logics for Hyperprop-

erties. Principles of Security and Trust, pages 1–20, 2014.

[39] Dermot Cochran. Secure internet voting in Ireland using the Open

Source Kiezen op Afstand (KOA) remote voting system. (March),

2006.

[40] Dermot Cochran and Joseph R Kiniry. Verification of Vote Counting

in Irish Elections. pages 1–13.

[41] Robert B. Cooper. Introduction to Queueing Theory. Elsevier North

Holland, New York, 2nd ed. edition, 1981.

Bibliography 127

[42] Arel Cordero and David Wagner. Replayable Voting Machine Audit

Logs. Electronic Voting Technology Workshop, 2008.

[43] Scott A. Crosby and Dan S. Wallach. Efficient Data Structures for

Tamper-Evident Logging. Proceedings of the 18th USENIX Security

Symposium, 2009.

[44] Chris Culnane, James Heather, Steve Schneider, and Zhe Xia. Soft-

ware Design for VEC vVote System. Technical report, 2013.

[45] Chris Culnane, Peter Y A Ryan, Steve Schneider, and Vanessa

Teague. vVote: a Verifiable Voting System. Technical report, 2014.

[46] Chris Culnane and Steve Schneider. A Peered Bulletin Board for Ro-

bust Use in Verifiable Voting Systems. IEEE 27th Computer Security

Foundations Symposium (CSF 2014), pages 169–183, jan 2014.

[47] Marco Daniele, Fausto Giunchiglia, and Moshe Y Vardi. Im-

proved Automata Generation for Linear Temporal Logic. In

Link.Springer.Com, volume 1633, pages 249–260. 1999.

[48] Danmarks Statistik. Oversigt over valgkredse i Danmark, 2015.

[49] S Demri and P Gastin. Specification and verification using temporal

logics. Modern applications of automata theory, pages 1–39, 2011.

[50] J. DeTreville. Binder, a logic-based security language. Proceedings

2002 IEEE Symposium on Security and Privacy, pages 105–113, 2002.

[51] E-voting.cc. E-Voting Map, 2015.

[52] Doron Peled Edmund M. Clarke, Orna Grumberg. Model Checking.

MIT Press Cambridge, MA, USA, 1999.

[53] Niklas Eén and Niklas Sörensson. An Extensible SAT-solver. Theory

and Applications of Satisfiability Testing, pages 502–518, 2004.

[54] B Ferris, K Watkins, and A Borning. OneBusAway: results from

providing real-time arrival information for public transit. Proceedings

of the SIGCHI Conference on Human Computer Interaction, pages

1807–1816, 2010.

[55] Michael Fisher. An Introduction to Pratical formal Methods Using

Temporal Logic. John Wiley & Sons, Inc., 2011.

128 Bibliography

[56] Michael Fisher and Michael Wooldridge. Temporal Reasoning in

Agent-Based Systems. chapter Fisher2005, pages 469–495. 2005.

[57] Dov Gabbay. The declarative past and imperative future. Temporal

Logic in Specification, 398:409–448, 1989.

[58] Dov Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi.

On the temporal analysis of fairness. Proceedings of the 7th ACM

SIGPLAN-SIGACT symposium on Principles of programming lan-

guages - POPL ’80, pages 163–173, 1980.

[59] Malay Ganai and Aarti Gupta. Accelerating High-level Bounded

Model Checking. In 2006 IEEE/ACM International Conference on

Computer Aided Design, pages 794–801. IEEE, nov 2006.

[60] Deepak Garg. Proof theory for authorization logic and its application

to a practical file system. PhD thesis, Carnegie Mello University, 2009.

[61] Paul Gastin and Denis Oddoux. Fast LTL to Büchi Automata Trans-

lation. Computer Aided Verification 2001, 2102(1):53–65, 2001.

[62] Fausto Giunchiglia and Toby Walsh. A theory of abstraction. Artifi-

cial Intelligence, 57(2-3):323–389, 1992.

[63] Kristian Gjøsteen. Analysis of an internet voting protocol. pages

1–43, 2010.

[64] Kristian Gjøsteen. The Norwegian Internet Voting Protocol. E-Voting

and Identity, pages 1–13, 2011.

[65] Patrice Godefroid. Model checking for programming languages

using VeriSoft. POPL {’}97: Proceedings of the 24th ACM

SIGPLAN-SIGACT symposium on Principles of programming lan-

guages, 1(January):174–186, 1997.

[66] JA Goguen and J Meseguer. Security policies and security models.

1982 IEEE Symposium on Security and Privacy, pages 11 – 20, 1982.

[67] Jens Groth. Evaluating security of voting schemes in the universal

composability framework. Applied Cryptography and Network Secu-

rity, pages 1–18, 2004.

Bibliography 129

[68] Sven Heiberg, Peeter Laud, and Jan Willemson. The Application of

I-voting for Estonian Parliamentary Elections of 2011. E-Voting and

Identity, 2011.

[69] Sven Heiberg, Arnis Parsovs, and Jan Willemson B. Log Analysis of

Estonian Internet Voting 2013-2014. VoteID 2015, 9269:19–34, 2015.

[70] Sven Heiberg, Arnis Parsovs, and Jan Willemson. Log Analysis of

Estonian Internet Voting 2013-2014. E-Voting and Identity, Voteid

2015, 9269:19–34, 2015.

[71] Sven Heiberg and Jan Willemson. Verifiable Internet Voting in Esto-

nia. In Proceedings of the 6th Conference on Electronic Voting, pages

23–30, 2014.

[72] I D Hill, B A Wichmann, and D R Woodall. Single Transferable Vote

by Meek’s Method. The Computer Journal, 30(3):277–281, 1987.

[73] Veronika Hinz and Markku Suksi. The Electoral Cycle: On the Right

to Participate in the Electoral Process. In Election Elements: On the

International Standards of Electoral Participation, pages 1–42. 2003.

[74] Gerard J Holzmann. The Model Checker SPIN. Ieee Transactions on

Software Engineering, 23(5):279–295, 1997.

[75] Michael Huth and Mark Ryan. Logic in Computer Science, volume 1.

Cambridge University Press, Cambridge, 2004.

[76] IBM. NCSA Common log format, 2004.

[77] CADE Inc. CADE Bylaws (effective Nov. 1, 1996; amended July/Au-

gust 2000), 2000.

[78] International IDEA. What is the Electoral Cycle.

[79] Franjo Ivančić, Zijiang Yang, Malay K. Ganai, Aarti Gupta, and

Pranav Ashar. Efficient SAT-based bounded model checking for

software verification. Theoretical Computer Science, 404(3):256–274,

2008.

[80] Daniel Jackson. Software Abstractions: Logic, Language, and Analy-

sis. MIT Press, 2006.

130 Bibliography

[81] Simon Peyton Jones. Haskell 98 Language and Libraries – The Re-

vised Report. Journal of Functional Programming, 2003.

[82] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-Resistant

Electronic Elections. Proc. workshop on Privacy in the electronic

societ, pages 61–70, 2005.

[83] Carmen Kempka. Coercion-Resistant Electronic Elections with Write-

In Candidates. Electronic Voting Technology Workshop, 2012.

[84] Karen Kent and Murugiah Souppaya. Guide to Computer Security

Log Management. National Institute of Standards and Technology,

2006.

[85] Joseph R. Kiniry, Dermot Cochran, and Patrick E. Tierney.

Verification-Centric Realization of Electronic Vote Counting. Elec-

tronic Voting Technology Workshop, 2007.

[86] Steve Kremer, Mark Ryan, and Ben Smyth. Election Verifiability in

Electronic Voting Protocols.

[87] Robert Krimmer, Stefan Triessnig, and Melanie Volkamer. The de-

velopment of remote e-voting around the world: A review of roads

and directions. E-Voting and Identity, pages 1–15, 2007.

[88] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools

for Hardware and Software Engineers [Book Review]. Computer,

35(9):81–81, 2002.

[89] John D. C. Little. A Proof for the Queuing Formula: L = λ W, 1961.

[90] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and

Concurrent Systems, volume 53. Springer New York, New York, NY,

1992.

[91] Nicolas Markey. Temporal logic with past is exponentially more suc-

cinct. EATCS Bulletin, 79(2):122–128, 2003.

[92] M. A. McGaley. Electronic Voting: A Safety Critical System. 2003.

[93] Margaret Mcgaley. E-voting: an Immature Technology in a Critical

Context. PhD thesis, National University of Ireland, Maynooth, 2008.

Bibliography 131

[94] Natarajan Meghanathan. Source Code Analysis to Remove Security

Vulnerabilities in Java Socket Programs: A Case Study. International

Journal of Network Security and Its Applications, 5(1):1–16, 2013.

[95] Tommi Meskanen and Hannu Nurmi. Closeness Counts in Social

Choice. In Power, Freedom, and Voting, pages 289–306. Springer

Berlin Heidelberg, Berlin, Heidelberg.

[96] Laurent D. Michel, Alexander A. Shvartsman, and Nikolaj Volgu-

shev. A Systematic Approach to Analyzing Voting Terminal Event

Logs. USENIX Journal of Election Technology and Systems (JETS),

2(2):34–53, 2014.

[97] Motorola Solutions. Analysis of IOS 8 MAC Randomization on Lo-

cationing. Technical Report October, 2014.

[98] Eric Pacuit. Voting Methods, 2012.

[99] David A. Plaisted. A Consideration of the New CADE Bylaws.

[100] NIST Special Publications. Generally Accepted Principles and Prac-

tices for Securing Information Technology Systems. Number Septem-

ber. 1996.

[101] J. P. Queille and J. Sifakis. Specification and verification of concurrent

systems in CESAR. pages 337–351. 1982.

[102] A Riera and J Borrell. Practical Approach to Anonymity in Large

Scale Electronic Voting Schemes. {NDSS’99}, Network and Dis-

tributed System Security Symposium, pages 69–82, 1999.

[103] Muriel Roger and Jean Goubault-Larrecq. Log Auditing through

Model Checking. In Proc. 14th IEEE Computer Security Foundations

Workshop (CSFW’01), number June, pages 220–236, 2001.

[104] Carsten Schürmann and Jian Wang. Measuring Voter Lines. Technical

Report November, IT University of Copenhagen, 2015.

[105] Roberto Sebastiani and Stefano Tonetta. “More Deterministic”

vs.“Smaller” Büchi Automata for Efficient LTL Model Checking. Cor-

rect Hardware Design and Verification . . . , pages 126–140, 2003.

132 Bibliography

[106] Ben Smyth, Mark Ryan, Steve Kremer, and Mounira Kourjieh. To-

wards automatic analysis of election verifiability properties. Lec-

ture Notes in Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics), 6186

LNCS:146–163, 2010.

[107] Fabio Somenzi and Roderick Bloem. Efficient Buchi Automata from

LTL Formulae. Computer Aided Verification, (1855):1–17, 2000.

[108] Douglas M Spencer and Zachary S. Markovits. Long Lines at Polling

Stations? Observations from an Election Day Field Study. Election

Law Journal, 9(1):3–17, 2010.

[109] Charles Stewart-III. Managing Polling Place Resources. Technical

Report November, Caltech/MIT Voting Technology Project, 2015.

[110] Yanjie Sun, Chenyi Zhang, Jun Pang, Baptiste Alcalde, and Sjouke

Mauw. A trust-augmented voting scheme for collaborative privacy

management. Journal of Computer Security, 20(4):437–459, 2012.

[111] Thomas Tjøstheim, Thea Peacock, and Peter Y. A. Ryan. A model

for system-based analysis of voting systems. Security Protocols, pages

1–19, 2010.

[112] Wil M. P. van der Aalst. Process Mining: Discovery, Conformance

and Enhancement of Business Processes. Springer, 2011.

[113] Willem Visser, Klaus Havelund, Guillaume Brat, Seungjoon Park,

and Flavio Lerda. Model checking programs. Automated Software

Engineering, 10(2):203–232, 2003.

[114] Wikipedia. Condorcet Criterion.

[115] Wikipedia. Monotonicity Criterion.

[116] Wikipedia. Single Transferable Vote.

[117] Pengfei Zhou, Yuanqing Zheng, and Mo Li. How Long to Wait?:

Predicting Bus Arrival Time with Mobile Phone based Participatory

Sensing. Proceedings of the 10th international conference on Mo-

bile systems, applications, and services - MobiSys ’12, 13(6):379–392,

2012.

Appendix A

Appendix

A.1 Additional Example of SMT Solver:

Norwegian and Australian Election

We continue the study of election systems from Norway and Victoria state

of Australia discussed in Chapter 3. In this section, We show how these

properties presented in Chapter 3 can also be formulated with the method

for voting scheme analysis, which provides us another way of checking these

properties.

A.1.1 Norwegian Election

The related events in the logs of the vote collector server and the cleanser

are encoded into arrays.

1. Ballot denotes the ballot array from the vote collector server, where

each Ballot(i) := (id, v) is the tuple of stored ballot id and voter id;

2. Read denotes the read event array from the cleanser, where each

Read(i) := (id, v) is the read-in ballot id and voter id;

3. Accept denotes the accept event array, where each Accept(i) is the

accepted ballot id;

4. Reject denotes the reject event array, where each Reject(i) is the re-

jected ballot id.

134 Appendix A. Appendix

We use |A| to represent the length of the array A. We define (id, v) =

(id′, v′) if and only if id = id′ and v = v′. And also define (id, v)[1] := id

and (id, v)[2] := v.

Policy 1: The vote collector and the cleanser agree on which ballots actu-

ally exist. The formula states that each ballot must be read by the

cleanser and conversely that every ballot in the cleanser needs to be in

vote collector server. Furthermore since the order of ballots matters,

we wish to make sure that the ordering of any two ballots is preserved

between vote collector server and cleanser, where as in Chapter 3 we

separate the two requirements into two formulas.

(|Ballot | = |Read |) ∧ (∀i.(1 ≤ i ≤ |Ballot |)→ Ballot [i] = Read [i]))

Policy 2: Every read ballot must either be accepted or rejected later.

∀i.(1 ≤ i ≤ |Read |)→ (∃j.(Accept [j] = Read [i][1])∨(Reject [j] = Read [i][1]))

Policy 3: A ballot should not both be rejected and accepted.

∀i.(1 ≤ i ≤ |Accept |)→ (∀j.(1 ≤ j ≤ |Reject |)→ (Accept [i] 6= Reject [i]))

Policy 4: The next policy expresses only the last vote cast should be ac-

cepted. The policy requires that all earlier ballots from the same voter

must be rejected.

∀i, j.(1 ≤ i < j ≤ |Read |∧Read [i][2] = Read [j][2])→ ∃k.Reject [k] = Read [i][1]

Policy 5: For every voter who voted, at least one ballot is accepted.

∀i.(1 ≤ i ≤ |Ballot |)→ ∃j, k.Ballot [i][2] = Read [j][2]∧Ballot [j][1] = Accept [k]

A.1.2 Victoria State Election

In the same way as the Norwegian example, we encode the Victoria State of

Australia election logs from different agents into arrays. Each ballot’s serial

number is unique. The agents are client VPS, client EMV and the 5 MBB

peers. We show here that by including temporal order (time stamps) in the

array, temporal properties can be expressed without temporal operators.

1. RecExt denotes the receive external message event, where RecExt [i] :=

(t, id, ty), t is the time, id is the ballot id and ty is the message type;

A.1. Additional Example of SMT Solver: Norwegian and Australian Election135

2. SendM denotes the send message event from either VPS(SendM [1])

or EVM (SendM [2]), where Send [i][j] := (t, id, ty) is defined same as

RecExt ;

3. RecRes denotes the client (VPS, RecRes [1] or EVM, RecRes [2]) that

receives the confirmation from the peers, where RecRes [i][j] := (t, id, peer, ty),

t is the time, id is the ballot id, peer is the MBB peer {1...5}, ty is

the response message type;

4. ValidSig denotes the client (VPS, ValidSig [1] or EVM, ValidSig [2])

that validates the signature, where ValidSig [i][j] := (t, id, peer) is the

same as defined above;

5. MetThld denotes the client (VPS, MetThld [1] or EVM, MetThld [2])

that check if that threshold is met, where MetThld [i][j] := (t, id) is

the same as defined above, t is the time, and id is the ballot id.

Policy 1: The first policy we show is that when a peer receives an external

messages, it must have originated from either from VPS or EVM.

t′ < t means time t′ is earlier than t.

∀i.(1 ≤ i ≤ 5)→
∀(t, id, ty) ∈ RecExt [i].∃(t′, id, ty) ∈ SendM [1] ∪ SendM [2].t′ < t

Policy 2: The second policy that we check is that the threshold is only met

if it is preceded by at least four (out of five) valid signature checks

from different peers. Formally we check that at least one of the five

possible scenarios are satisfied which is what the formula ϕ does.

Let ψ(t, id, c, ps) =
∧
p∈ps ∃(t′, id, p) ∈ ValidSig [c].t′ < t

Let peers = {1, 2, 3, 4, 5}
Let ϕ(c) = ∀(t, id) ∈ MetThld [c].

∨
p∈peers ψ(t, id, c, peers \ {p})

We check this policy, ϕ, for every client, i.e for both VPS and EVM.

ϕ(1) ∧ ϕ(2)

Policy 3: If a client validates a response from a peer, it should have first

received a response from that peer. First we define formula ϕ′(c) for

one client c.

∀(t, id, peer) ∈ ValidSig [c].∃(t′, id, peer, ty) ∈ RecRes [c].t′ < t

136 Appendix A. Appendix

We check this policy, ϕ′, for every client VPS and EVM in a way

similar to before.

ϕ′(1) ∧ ϕ′(2)

Policy 4: Any ballot that was audited on peer i, it should not be used later

for voting. If such a case occurs EVM should have logged ”error”.

∀(t, id, ”audit”) ∈ RecExt [i].

(∃(t′, id, ”startevm”) ∈ SendM [2] ∧ t′ > t

→ ∃(t′′, id, peer, ”error”) ∈ RecRes [2] ∧ t′′ > t′)

Policy 5: A voter cannot reuse a ballot, which will also incur a logged

error message by EVM.

∀(t, id, ”startevm”) ∈ sendM [2].(∃(t′, id, ”startevm”) ∈ SendM [2] ∧ t′ > t→
∃(t′′, id, peer, ”error”) ∈ RecRes [2] ∧ t′′ > t′)

A.2 Device Appearance

Figure A.1: Device Appearance in Bellahøj Skole Copenhagen

A.2. Device Appearance 137

Figure A.2: Device Appearance in Holbergskolen Copenhagen

Figure A.3: Device Appearance in Islands Brygge Skolen Copenhagen

138 Appendix A. Appendix

Figure A.4: Device Appearance in Møllevangskolen Aarhus

Figure A.5: Device Appearance in Frederiksbjerg Hallerne Aarhus

A.3. Average Waiting Time via Averaging Method 139

A.3 Average Waiting Time via Averaging

Method

Figure A.6: Average Time (Averaging Method) in Bellahøj Skole Copen-
hagen

Figure A.7: Average Time (Averaging Method) in Holbergskolen Copen-
hagen

140 Appendix A. Appendix

Figure A.8: Average Time (Averaging Method) in Islands Brygge Skolen
Copenhagen

Figure A.9: Average Time (Averaging Method) in Møllevangskolen Aarhus

A.3. Average Waiting Time via Averaging Method 141

Figure A.10: Average Time (Averaging Method) in Frederiksbjerg Hallerne
Aarhus

142 Appendix A. Appendix

A.4 Average Waiting Time via Little’s

Method

Figure A.11: Device Flow in Bellahøj Skole Copenhagen

Figure A.12: Average Time (Little’s Method) in Bellahøj Skole Copenhagen

A.4. Average Waiting Time via Little’s Method 143

Figure A.13: Device Flow in Holbergskolen Copenhagen

Figure A.14: Average Time (Little’s Method) in Holbergskolen Copenhagen

144 Appendix A. Appendix

Figure A.15: Device Flow in Islands Brygge Skolen Copenhagen

Figure A.16: Average Time (Little’s Method) in Islands Brygge Skolen
Copenhagen

A.4. Average Waiting Time via Little’s Method 145

Figure A.17: Device Flow in Møllevangskolen Aarhus

Figure A.18: Average Time (Little’s Method) in Møllevangskolen Aarhus

146 Appendix A. Appendix

Figure A.19: Device Flow in Frederiksbjerg Hallerne Aarhus

Figure A.20: Average Time (Little’s Method) in Frederiksbjerg Hallerne
Aarhus

	Contents
	Introduction
	Properties and Model Checking
	Election Technology
	Voting Schemes
	Voter Experience
	Related Work
	Structure and Contribution
	Conclusion and Future Work

	Analyzing Implementations of Election Technologies
	Introduction
	Evidence Flow
	Policy Language
	An Abstraction Language
	Application
	Case Study

	Epistemic Policies for Voting Systems
	Introduction
	A Language for System Properties
	Finite Model Checking
	Checking Logs
	Examples of Policy Checking
	Metric EFOTL
	Conclusion

	Verifying Voting Schemes
	Introduction
	Basic Definitions
	Semantic Criteria for Analysing Voting Schemes
	Checking Properties Using SMT Solver
	Case Study: Variants of the STV Scheme
	Conclusion

	Measuring Voter Lines
	Introduction
	White Boxes-technique
	Implementation
	Security
	Privacy
	Field Study
	Findings

	Bibliography
	Appendix
	Additional Example of SMT Solver: Norwegian and Australian Election
	Device Appearance
	Average Waiting Time via Averaging Method
	Average Waiting Time via Little's Method

