
Formal Methods for
Trustworthy Voting Systems

From Trusted Components to Reliable Software

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

von der KIT-Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Michael Kirsten
aus Dresden

Tag der mündlichen Prüfung: 26. Januar 2022

Referiert von:

1. Prof. Dr. rer. nat. Bernhard Beckert
Karlsruher Institut für Technologie (KIT)
Deutschland

2. Prof. Carsten Schürmann, Ph. D.
IT-Universitetet i København (ITU)
Dänemark

Copyright © 2022 Michael Kirsten. This work, except for Figures 8.1 and 8.2, is licensed under a

Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0):

https://creativecommons.org/licenses/by-sa/4.0/deed.en

Figures 8.1 and 8.2 are copyrighted by Tomasz Truderung.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
http://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Michael Kirsten

Formal Methods for Trustworthy Voting Systems
From Trusted Components to Reliable Software

Acknowledgements

Still experiencing a slight sense of disbelief—nonetheless immense delight—that I some-

how ended up finishing the writing of a doctoral dissertation, I am happy that I hereby

get the opportunity to acknowledge and express my appreciation to some of the people

without whom this project would not have been possible and who made the whole

journey worthwhile. A dissertation is not written by one person alone and—with the risk

of sounding cheesy—I cannot thank and mention all the many people who were involved

(in some way or another) in its process by name. Hence, I wish to start by thanking

everyone who supported me in this adventure! In the following, I would like to address

some of them explicitly.

Foremost, I would like to express my deep gratitude to my supervisor Bernhard Beckert

for both sparking my interest in formal logic and formal methods in his lectures in the

first place, and for giving me the opportunity, encouragement, and guidance to pursue

student research projects, my diploma thesis, and finally a PhD in his group. I wish to

thank Bernhard for lots of useful advice and inspiration throughout, productive and

motivating discussions in the process of some contributions to the results presented in this

thesis, and a great deal of patience and freedom to pursue the ideas and collaborations

of my choice without pressure or worries.

I am also very grateful to Carsten Schürmann both for agreeing without any hesitation

to act as my second referee—while also providing lots of patience—and for the great

collaboration during my visit in Copenhagen with a warm welcome in his group and the

fruitful cooperation on the subsequent publication. Thanks go also to Hannes Hartenstein

for his feedback on an early presentation of this thesis and for agreeing to act as examiner

with great cooperation on making it easy to find a date for my defense. I further appreciate

the effort and helpful feedback from all the anonymous reviewers on improving the

publications of the presented results. Additional proofreading of parts of this thesis was

thankfully provided by Jonas Schiffl.

Moreover, I thank all my collaborators for their contributions to the presented results

and the pleasant, inspiring and fruitful discussions during the process. In particular,

I thank Thorsten Bormer, Olivier Cailloux, Rajeev Goré, Daniel Grahl, Mihai Herda,

Vladimir Klebanov, Alexander Koch, Tomasz Truderung, Shmuel Tyszberowicz and

Mattias Ulbrich for the pleasant and rewarding discussions that—besides being inspiring,

providing helpful feedback, and supporting my research—made the whole process worth-

while. I would also like to thank the many students who I had the pleasure of supervising

or co-supervising over the years, where some of them contributed to significant parts of

this thesis either by helping me shape my ideas, or even as co-authors, co-developers, or

co-proof-engineers. Especially, I thank Stephan Bohr, Karsten Diekhoff, Jonas Klamroth,

v

Acknowledgements

Holger Klein, Jonas Krämer, Jörn Kußmaul, Florian Lanzinger, Till Neuber, Fabian Richter,

Jonas Schiffl, Michael Schrempp, Lukas Stapelbroek, and Marion Steinriede.

Many thanks go to all of my current and former colleagues—especially the ones I had the

pleasure to collaborate with in interesting research ideas and thesis supervisions—for

the nice working atmosphere, and great and fruitful discussions on- and off-topic, as they

always found the time for interesting and inspiring discussions. Notably, I wish to thank

Ralf Kölmel for his great support and patience with special requests and rescuing my

computer system for yet another time, Simone Meinhart for her support and patience with

all administrative tasks, helping me to stay focused and productive when most needed,

as well as Alexandra Andresh and Audrey Bohlinger for their great support in all the

formalities. Special thanks go to Tianhai Liu for being a great office mate, Sarah Grebing for

the inspiring cooperation on research-oriented teaching, and Lionel Blatter, Daniel Grahl,

Simon Greiner, and Mihai Herda for a lot of helpful feedback and many motivating

off-and on-topic discussions during lunch.

Furthermore, I would like to thank the COST Action IC1205, the German Research

Foundation (DFG), and the German Federal Ministry of Education and Research (BMBF)

for financing my work. I am also very grateful for the motivating words and great

atmosphere during this journey by all the friends and long-lasting acquaintances that I

made on project cooperations, workshops, conferences, and summer and winter schools.

Last but not least, I wish to thank my family and friends for all the understanding, trust,

and support and many helpful and joyful distractions over the years of this endeavor.

vi

Abstract

V
oting is prominently an important part of democratic societies, and its outcome may

have a dramatic and broad impact on societal progress. Therefore, it is paramount

that such a society has extensive trust in the electoral process, such that the system’s

functioning is reliable and stable with respect to the expectations within society. Yet,

with or without the use of modern technology, voting is full of algorithmic and security

challenges, and the failure to address these challenges in a controlled manner may

produce fundamental flaws in the voting system and potentially undermine critical

societal aspects.

In this thesis, we argue for a development process of voting systems that is rooted in

and assisted by formal methods that produce transparently checkable evidence for the

guarantees that the final system should provide so that it can be deemed trustworthy.

The goal of this thesis is to advance the state of the art in formal methods that allow to

systematically develop trustworthy voting systems that can be provenly verified. In the

literature, voting systems are modeled in the following four comparatively separable and

distinguishable layers: (1) the physical layer, (2) the computational layer, (3) the election

layer, and (4) the human layer. Current research usually either mostly stays within

one of those layers or lacks machine-checkable evidence, and consequently, trusted

and understandable criteria often lack formally proven and checkable guarantees on

software-level and vice versa.

The contributions in this work are formal methods that fill in the trust gap between the

principal election layer and the computational layer by a reliable translation of trusted and

understandable criteria into trustworthy software. Thereby, we enable that executable

procedures can be formally traced back and understood by election experts without the

need for inspection on code level, and trust can be preserved to the trustworthy system.

vii

Abstract

The works in this thesis all contribute to this end and consist in five distinct contributions,

which are the following:

(I) a method for the generation of secure card-based communication schemes,

(II) a method for the synthesis of reliable tallying procedures,

(III) a method for the efficient verification of reliable tallying procedures,

(IV) a method for the computation of dependable election margins for reliable audits,

(V) a case study about the security verification of the GI voter-anonymization software.

These contributions span formal methods on illustrative examples for each of the three

principal components, (1) voter-ballot box communication, (2) election method, and

(3) election management, between the election layer and the computational layer.

Within the first component, the voter-ballot box communication channel, we build a

bridge from the communication channel to the cryptography scheme by automatically

generating secure card-based schemes from a small formal model with a parameterization

of the desired security requirements. For the second component, the election method, we

build a bridge from the election method to the tallying procedure by (1) automatically

synthesizing a runnable tallying procedure from the desired requirements given as

properties that capture the desired intuitions or regulations of fairness considerations,

(2) automatically generating either comprehensible arguments or bounded proofs to

compare tallying procedures based on user-definable fairness properties, and (3) automat-

ically computing concrete election margins for a given tallying procedure, the collected

ballots, and the computed election result, that enable efficient election audits. Finally, for

the third and final component, the election management system, we perform a case study

and apply state-of-the-art verification technology to a real-world e-voting system that has

been used for the annual elections of the German Informatics Society (GI – “Gesellschaft

für Informatik”) in 2019. The case study consists in the formal implementation-level

security verification that the voter identities are securely anonymized and the voters’

passwords cannot be leaked.

The presented methods assist the systematic development and verification of provenly

trustworthy voting systems across traditional layers, i.e., from the election layer to the

computational layer. They all pursue the goal of making voting systems trustworthy

by reliable and explainable formal requirements. We evaluate the devised methods on

minimal card-based protocols that compute a secure AND function for two different decks

of cards, a classical knock-out tournament and several Condorcet rules, various plurality,

scoring, and Condorcet rules from the literature, the Danish national parliamentary

elections in 2015, and a state-of-the-art electronic voting system that is used for the

German Informatics Society’s annual elections in 2019 and following.

viii

Zusammenfassung

W
ahlen sind bekannterweise ein wichtiges Element in demokratischen Gesellschaf-

ten und ihr Ausgang hat potentiell einen dramatischen und weitreichenden Ein-

fluss auf den Fortschritt der Gesellschaft. Aus diesem Grund ist es immanent wichtig,

dass der Wahlvorgang umfangreiches Vertrauen der Gesellschaft genießt, damit die

Funktionsweise des Systems verlässlich und stabil die gesellschaftlichen Erwartungen

erfüllt. Wählen ist jedoch, mit oder ohne Unterstützung moderner Technologien, reich

an algorithmischen und sicherheitstechnischen Herausforderungen und ohne einen

kontrollierten Umgang damit führen diese zu womöglich fundamentalen Defekten des

Wahlsystems, mit dem Risiko, dass kritische Aspekte der Gesellschaft untergraben wer-

den.

In dieser Arbeit sprechen wir uns für einen Entwicklungsprozess von Wahlsystemen

aus, der auf formalen Methoden und deren Unterstützung aufbaut, die transparent

überprüfbare Evidenz für die Garantien des finalen Systems liefern, damit dieses als

vertrauenswürdig erachtet werden kann. Das Ziel dieser Arbeit ist die Weiterentwicklung

vom Stand der Technik formaler Methoden, die es ermöglichen, glaubwürdige Wahlsyste-

me, die mithilfe von Beweisen überprüft werden können, systematisch zu entwickeln. In

der Literatur werden Wahlsysteme in den folgenden vergleichsweise separierten und un-

terscheidbaren Schichten modelliert: (1) die physikalische Schicht, (2) die rechenintensive

Schicht, (3) die Wahlschicht und (4) die menschliche Schicht. Aktuelle Forschung bleibt

für gewöhnlich meist innerhalb einer dieser Schichten oder ihr mangelt es an maschinell

überprüfbarer Evidenz, sodass zuverlässigen und verständlichen Kriterien oft die formal

bewiesenen und prüfbaren Garantien fehlen und umgekehrt.

Der Beitrag dieser Arbeit sind formale Methoden die die Vertrauenslücke zwischen

der hauptsächlichen Wahlschicht und der rechenintensiven Schicht ausfüllen, indem sie

ix

Zusammenfassung

eine zuverlässige Übersetzung vertrauensbehafteter und verständlicher Kriterien zu

glaubwürdiger Software liefern. Damit ermöglichen wir ausführbare Prozeduren, die

von Wahlexpertinnen oder Wahlexperten formal zurückverfolgt und verstanden werden

können, ohne dabei den Programmcode durchsehen zu müssen, sodass das Vertrauen

bis zum glaubwürdigen System erhalten werden kann.

Die Arbeiten dieser Dissertation tragen dabei alle zu diesem Ziel bei und bestehen aus

den folgenden fünf unterschiedlichen Beiträgen:

(I) eine Methode zur Generierung sicherer spielkartenbasierter Kommunikationsprotokolle,

(II) eine Methode zur Synthese verlässlicher Auszählverfahren,

(III) eine Methode zur effizienten Verifikation verlässlicher Auszählverfahren,

(IV) eine Methode zur Berechnung zuverlässiger Gewinnmargen bei Wahlen zur Durchfüh-

rung verlässlicher Audits,

(V) eine Fallstudie zur Verifikation der Sicherheit der Anonymisierung von Wählenden

innerhalb des E-Voting-Systems bei der Gesellschaft für Informatik.

Diese Beiträge umfassen formale Methoden anhand illustrativer Beispiele für jede der

folgenden drei grundsätzlichen Komponenten, (1) dem Kommunikationskanal zwischen

Wählenden und der Wahlurne, (2) der Wahlmethode und (3) dem Wahlmanagementsys-

tem zwischen der Wahl- und der rechenintensiven Schicht.

Innerhalb der ersten Komponente, dem Kommunikationskanal zwischen Wählenden

und Wahlurne, bauen wir eine Brücke vom Kommunikationskanal zum kryptographi-

schen Protokoll, indem wir sichere spielkartenbasierte Protokolle automatisch generieren,

basierend auf einem kleinen formalen Modell, das in den gewünschten Sicherheitsei-

genschaften parametrisierbar ist. Für die zweite Komponente, die Wahlmethode, bauen

wir eine Brücke von der Wahlmethode hin zum ausführbaren Auszählverfahren, indem

wir (1) die ausführbare Prozedur für die gewünschten Anforderungen, in Form von Ei-

genschaften, die angestrebte Intuitionen oder Regulierungen von Fairnessbetrachtungen

abbilden, automatisch synthetisieren, (2) automatisch entweder verständliche Argumen-

te oder beschränkte Beweise generieren, mithilfe derer sich Wahlverfahren basierend

auf von den Anwendenden definierbaren Fairnesseigenschaften und Auszählverfahren

vergleichen lassen, sowie (3) automatisch konkrete Gewinnspannen einer Wahl für ein ge-

gebenes Auszählverfahren, abgegebene Stimmzettel, sowie das berechnete Wahlergebnis

berechnen, um effiziente Wahl-Audits zu ermöglichen. Abschließend führen wir für die

dritte und letzte Komponente, das Wahlmanagementsystem, eine Fallstudie durch, bei

der wir Verifikationstechnologien nach dem Stand der Technik auf ein real eingesetztes

E-Voting-System anwenden, das für die jährlichen Wahlen der deutschen Gesellschaft für

Informatik (GI) eingesetzt wurde. Die Fallstudie besteht aus der formalen Verifikation

x

Zusammenfassung

auf Implementierungsebene von einer Sicherheitseigenschaft, die die sichere Anony-

misierung der Identitäten aller Wählenden sicherstellt, damit deren Passwörter nicht

abfließen können.

Die vorgestellten Methoden unterstützen die systematische Entwicklung und Verifika-

tion von bewiesen glaubwürdigen Wahlsystemen über traditionelle Schichten hinweg,

das heißt von der, beispielsweise durch Regulierungen definierten, Wahlschicht hin zu

ausführbaren Prozeduren. Die Methoden verfolgen alle das Ziel eines Entwicklungspro-

zesses glaubwürdiger Wahlsysteme anhand verlässlicher und erklärbarer formaler An-

forderungen. Wir evaluieren die entworfenen Methoden für karten- und lauf-minimale

spielkartenbasierte Protokolle, die eine sichere UND-Funktion für zwei verschiedene

Kartensätze berechnen, ein klassisches Knock-Out-Turnier und verschiedene Condorcet-

Methoden, verschiedene einfache Mehrheitswahlverfahren, punktebasierte Verfahren

und Condorcet-Methoden aus der Literatur, die dänischen Parlamentswahlen 2015, sowie

ein E-Voting-System nach dem Stand der Technik, das für die jährlichen Wahlen der

deutschen Gesellschaft für Informatik (GI) genutzt wird.

xi

Contents

Page

List of Definitions and Theorems xvii

List of Figures xxi

List of Tables xxiii

List of Algorithms xxv

List of Listings xxvii

I Introduction and Foundations 1

1 Introduction 3
1.1 Objective . 4

1.2 State of the Art and Challenges . 6

1.2.1 Voter-Ballot Box Communication Channel 6

1.2.2 Election Method . 8

1.2.3 Election Management System . 9

1.2.4 Human Layer and Physical Layer 11

1.3 Contributions . 11

1.3.1 Voter-Ballot Box Communication Channel 13

1.3.2 Election Method . 14

1.3.3 Election Management System . 15

1.4 Previously Published Material . 15

1.4.1 Journal, Conference, and Workshop Publications 15

xiii

Contents

1.4.2 Software and Formal Proofs . 16

1.4.3 Publications . 17

1.5 Structure of this Thesis . 18

1.5.1 Part I—Introduction and Foundations 18

1.5.2 Part II—Secure Voter-Ballot Box Communication Channels 18

1.5.3 Part III—Reliable Election Methods 19

1.5.4 Part IV—Secure Election Management Systems 19

1.5.5 Part V—Related Work and Conclusion 19

1.5.6 Appendix . 20

2 Formal Methods and Techniques 21
2.1 Logic Programming . 21

2.2 Software Bounded Model Checking . 23

2.3 Deductive Program Verification . 24

2.3.1 Verification of Program Noninterference 25

2.3.2 The KeY Verification System . 27

2.4 Interactive Theorem Proving . 29

3 Preliminary Notions and Procedures 31
3.1 Secure Multi-Party Computation . 32

3.2 Social Choice Functions . 33

3.2.1 Voting Rules . 33

3.2.2 Social Choice Properties . 35

3.2.3 Seat Apportionment Methods . 36

3.3 Risk-Limiting Audits and Dependable Evidence 38

3.4 End-To-End Verifiability and Software Independence 40

II Secure Voter-Ballot Box Communication Channels 43

4 Generation of Secure Card-Based Communication Schemes 45
4.1 Card-Based Cryptographic Schemes . 47

4.1.1 A Simple Protocol with Five Cards 47

4.1.2 General Card-Based Protocols . 49

4.2 Computational Model and Security Notions 51

4.2.1 Computational Model and Protocol State Tree Representation . . 51

4.2.2 Security of Card-Based Protocols 53

4.2.3 Two-Color Deck Protocols . 56

4.3 Trace-Based Formal Security Verification 56

4.3.1 Standardized Program Representation 58

4.3.2 Verification Methodology . 60

4.4 Generation of Provenly Run-Minimal Schemes 61

xiv

Contents

4.4.1 Adaptations for Two-Color Decks 63

4.4.2 Verification Results . 64

4.5 Verification of Shuffle Set Maximality . 65

4.6 Summary . 68

III Reliable Election Methods 71

5 Synthesis of Reliable Tallying Procedures 73
5.1 Composition of Voting Rules . 74

5.1.1 Electoral Modules . 75

5.1.2 Sequential Composition . 76

5.1.3 Revision Composition . 76

5.1.4 Parallel Composition . 77

5.1.5 Loop Composition . 78

5.1.6 A Simple Example . 78

5.2 Compositional Framework . 78

5.2.1 Verified Construction Framework 79

5.2.2 Verified Construction based on Composition Rules 80

5.3 Verified Synthesis of Voting Rules . 82

5.4 Evaluation . 83

5.5 Summary . 86

6 Efficient Verification of Reliable Tallying Procedures 89
6.1 Functional and Relational Properties . 90

6.2 Exploitation of Symmetry Properties . 92

6.2.1 Symmetry Properties . 93

6.2.2 Symmetry Exploitation . 95

6.3 Efficient Relational Verification via Program Weaving 96

6.4 Relational Verification of Voting Rules . 97

6.5 Efficient Generation of Counterexamples 100

6.6 Definitions for the Experiments . 103

6.6.1 An Axiomatization of the Borda Rule 104

6.6.2 Two Axioms Not Satisfied by Borda 105

6.6.3 Two Condorcet Compatible Voting Rules 106

6.7 Experiments . 106

6.7.1 Borda and Pareto Dominance . 108

6.7.2 Counterexamples to Borda . 109

6.7.3 Automatic Comparison of Borda with Other Voting Rules 110

6.8 Efficient Verification via Program Transformations 112

6.9 Summary . 115

xv

Contents

7 Computation of Dependable Election Margins for Reliable Audits 117
7.1 Efficient Computation of Election Margins 118

7.2 Margin Computation for the D’Hondt Method 121

7.3 Automated Finding of Election Parameters 124

7.4 Evaluation for the National Danish Elections 127

7.5 Summary . 129

IV Secure Election Management Systems 131

8 Security Verification of the GI Voter-Anonymization Software 133
8.1 Electronic Voting and Secure Voter Credentials 134

8.2 Elections of the German Society for Computer Scientists 135

8.3 Verification in the KeY System . 138

8.4 Summary . 139

V Related Work and Conclusion 141

9 Related Work 143
9.1 Protocol Verification and Construction of Secure Circuits 144

9.2 Modular Verification and Program Synthesis 144

9.3 Relational Verification, Symmetries, and Counterexamples 145

9.4 Margin Computation . 146

9.5 Implementation-Level Information-Flow Verification 147

10 Conclusion 149
10.1 Summary . 150

10.2 Outlook . 152

References 153

Appendix 168

A Card Protocols and KWH Trees 171

B Rule Construction Graph 175

Index 177

xvi

List of Definitions and Theorems

Page

2.1 Noninterference . 25

2.2 Noninterference as value independence . 26

2.3 Noninterference as self-composition with state updates 26

2.4 Low-equivalence with isomorphism . 27

3.1 Voting rule . 34

3.2 Borda rule . 34

3.3 Black’s rule . 34

3.4 Copeland rule . 34

3.5 Condorcet winner . 35

3.6 Condorcet consistency . 35

3.7 Lifting . 36

3.8 Monotonicity . 36

3.9 Election margin . 38

4.1 State in a KWH tree . 51

4.2 Possibilistic security . 54

xvii

Contents

4.3 Similarity . 54

4.4 Reduced state . 55

5.1 Electoral module . 75

5.2 Sequential composition . 76

5.3 Revision composition . 77

5.4 Aggregator . 77

5.5 Maximum aggregator . 77

5.6 Parallel composition . 77

6.1 General voting rule, profile . 90

6.2 Preferential voting rule . 90

6.3 Functional property . 91

6.4 Majority criterion, majority winner . 91

6.5 Relational property . 91

6.6 Monotonicity criterion . 91

6.7 Consistency criterion . 92

6.8 Symmetry property . 93

6.9 Anonymity criterion (Fishburn, 1973) . 93

6.10 Family of symmetry properties . 94

6.11 Neutrality criterion (Fishburn, 1973) . 94

6.12 Monotonicity symmetry property . 94

6.13 Spanning set . 95

6.14 Symmetry resilience . 95

6.15 Symmetry breaking . 95

6.16 Symmetry breaking (expanded) . 96

6.17 Pareto dominance . 101

6.18 Reinforcement . 101

xviii

Contents

6.20 Elementary profile . 104

6.21 Cyclic profile . 105

6.22 Elementary axiom . 105

6.23 Cyclic axiom . 105

6.24 Cancellation axiom . 105

6.25 Reinforcement axiom . 105

6.26 Condorcet property . 106

6.27 Majority property . 106

6.28 Weak majority property . 106

xix

List of Figures

Page

1.1 Contributions of this thesis . 12

4.1 Start state . 51

4.2 Shuffle operation . 52

4.3 Turn operation . 53

4.4 Reduced shuffle operation . 55

4.5 Four-card protocol by Koch, Walzer, and Härtel (2015) 57

4.6 Generated two-color protocol situation for a minimal state 68

4.7 Generated standard-deck protocol situation for a minimal state 68

5.1 Central semantics of electoral modules in Isabelle/HOL. 79

5.2 Sample social choice properties for our framework in Isabelle/HOL. . . 81

5.3 Tree representation of the construction for sequential majority comparison 84

5.4 A simplified excerpt of the top-level monotonicity proof for SMC. 85

5.5 The modular construction of SMC in Isabelle/HOL. 86

6.1 Verification of the anonymity property for plurality voting 99

6.2 Running times for verification of Pareto for the Borda rule 107

6.3 Running times for verification of negated Pareto for the Borda rule . . . 108

6.4 Running times for the verification of Reinf for the Copeland voting rule. 110

6.5 Running times for the verification of Reinf for Black’s voting rule. 111

6.6 Implementation of Borda within BEAST. 113

6.7 Implementation of reinforcement property within BEAST. 114

7.1 Running times of margin computation for D’Hondt method 124

xxi

List of Figures

7.2 Running times of margin computation for Jefferson method 126

8.1 All phases in the Polyas 3.0 E-Voting system. 136

8.2 Voter registration phase in the Polyas 3.0 E-Voting system. 137

A.1 Four-card Las Vegas AND protocol using random cuts 172

A.2 Shorter version of five-card two-color AND protocol 173

B.1 The Isabelle session graph for the construction framework. 176

xxii

List of Tables

Page

4.1 Running times of protocol generation for standard and two-color decks . 65

4.2 Running times for proving shuffle set size maximality 67

6.1 Verification of majority for majority voting 100

6.2 Running times for verification of Canc for Black’s and Copeland rule . . 112

7.1 Official preliminary 2005 Schleswig-Holstein election results 123

7.2 Official 2015 Danish national election results 127

7.3 Danish constituency Sjællands Storkreds election results 128

xxiii

List of Algorithms

Page
4.1 Five-card AND protocol by Niemi and Renvall (1999) 48

4.2 Two four-card protocols . 58

4.3 General loop with nondeterministic choice for protocol actions 59

7.1 Binary search for election margin . 120

A.1 Our four-card AND protocol . 171

xxv

List of Listings

Page
4.1 C struct holding the state trees. 62

4.2 Simplified shuffle operation for CBMC. 63

4.3 Simplified start sequence assignment in the standard deck for CBMC. . . 64

4.4 Simplified start sequence assignment in the two-color deck for CBMC. . 64

4.5 Simplified maximality verification for CBMC. 66

6.1 Anonymity property as a C program . 98

6.2 Pareto-dominance specification for CBMC. 102

6.3 Setup for CBMC. 103

7.1 Implementation of the margin computation for CBMC. 119

7.2 Implementation of the D’Hondt method as a C program. 122

7.3 Implementation of the Jefferson method as a symbolic C program. 125

8.1 Simplified Password Generation Software 138

8.2 Ideal Hash Functionality in Java . 139

xxvii

“Begin at the beginning,” the King said,

gravely, “and go on till you come to the end:

then stop.”

Lewis Carroll, Alice in Wonderland, 1865

Part I

Introduction and Foundations

1
Introduction

An original idea. That can’t be too hard. The library

must be full of them.

Stephen Fry, The Liar, 1991

T
he task of voting is prominently an important part of – and may have a dramatic

and broad impact on – a democratic society. Therefore, fundamental flaws in a

voting system carry the potential of undermining critical societal aspects, especially

when much is at stake and conflicting interests arise, e.g., for electing a president or a

parliament. Balancing such interests – or requirements – for a reliable and acceptable

election outcome may generally be impossible in a strict sense, and finding a viable

and still reliable tradeoff is very often non-trivial, cumbersome, and error-prone. Hence,

the development of trustworthy voting systems is full of pitfalls that all potentially

compromise or harm the reliability of the whole system. Consequently, we argue for a

development that is rooted in and assisted by formal methods that produce transparently

checkable evidence for the guarantees that the final system provides so that it can be

deemed trustworthy.

Albeit this thesis targets specifically voting systems, the notions and definitions that

we use to model voting systems throughout this thesis span – to a large extent – the

general task of determining a collective decision from a set of individual choices. The

task of determining a collective decision from a set of individual choices is part of many

systems, e.g., for computations on large sets of data, in a distributed setting, or when

multiple agents are involved (see, e.g., the positions by Maggs and Sitaraman (2015)).

With increasing computing capacities, such aggregation tasks are often automated by

algorithms coined as some form of artificial intelligence (AI) and used ubiquitously,

3

Chapter 1. Introduction

e.g., when calculating optimal prices for a flight, preparing online recommendations

or search results, and in various other scenarios. Whether the intelligence is artificial

or not, such a task commonly involves a plethora of algorithmic or security challenges

to be addressed for the system to work reliably, especially when dealing with critical

or personal data, or when critical decisions depend on the computed result. Within

modern technology, such a system might be, e.g., an AI agent that provides personalized

services or products, a method that selects the best output from multiple specialized

machine learning classifiers (Cornelio et al., 2021; Conitzer and Sandholm, 2012), or a

distributed ledger (DLT) system that computes a (collectively) robust (block-)chain of

transactions (Sompolinsky, Wyborski, and Zohar, 2018). For the matter of this thesis,

we consider the task of making a single collective decision from multiple individual

preferences via a voting system. Voting, from an abstract point of view, subsumes many of

the aforementioned scenarios and is moreover, in concrete terms, clearly an important

and critical application in its own right, say when a group of people (the voters) wants to

elect one (or a limited amount) of many alternatives.

1.1 Objective

In this thesis, we devise and evaluate targeted formal methods which, for each principal

component of a voting system, enable a systematic development of trustworthy voting

systems which can be provenly verified. We start this development with some selected

formal requirements which are, e.g., translated from legal election regulations. The final

yield of the considered development is a reliable voting software with formal guarantees

that the given requirements are met, in a way that is comprehensible to informed users

and domain experts. For the remaining part of this thesis, we focus on the scenario of a

group of voters who, given their preferred choices, aim to elect one of multiple eligible

alternatives. Albeit the intuitions and examples throughout this thesis primarily target

the voting scenario, this is no principal or methodological limitation, and we occasionally

indicate applications to other or more general use cases.

The Targeted View. The departing point of this thesis is the objective of developing a

voting system in such a way that (1) a domain expert may afterward reliably comprehend

that the requirements are met, (2) selections of the given requirements may be reliably

justified or compared to other requirements, and (3) the trust obtained in objectives (1)

and (2) may be reliably scrutinized by other domain experts.

The Underlying Component-Based View. Before explaining the contributions of this

thesis, we need to substantiate our notion of a voting system. We refer to the component

4

1.1. Objective

model by Lundin (2010), where voting systems are “made up of parts from the four

comparatively separable and distinguishable layers”: (1) physical layer, (2) computational

layer, (3) election layer, and (4) human layer. Each layer comes with different characteristics

and expectations, and trustworthiness of a voting system cascades down the different

layers. Lundin proposes to think about (electronic) voting systems as being component-

based, and each layer further composes into separate components that each depend on a

specific component in the layer below and realize a specific component in the layer above.

The components by Lundin capture both the design and the implementation of a voting

system, where at the basis hardware-based aspects are provided by the components in

the physical layer, and finally at the top everything that faces the voter is realized in the

human layer. In-between, the human expectations are derived, e.g., into legal regulations

at the election layer, and are expected to be met by the software at the computational

layer. Lundin furthermore assigns each component to a particular position in the system

as a whole, where he distinguishes whether the component is close to and controlled by

either the voter, which he denotes as voter-close, or the election authority, which he calls

authority-close.

In the following, we focus on the step from the election layer to the computational layer

and the guarantees that are expected from the regulations in the election layer to be met

by the software at the computational layer. As our objective is to obtain a trustworthy

voting system for comprehending, arguing, and scrutinizing in a reliable way, we want to

make the involved software viable to such a process. The voting-specific problems are full

of algorithmic and security challenges, and yet voting has a dramatic and broad impact

on society, where the failure to address any of those challenges may undermine critical

societal aspects, as trustworthiness of a voting system is paramount for the stakeholders

to take part and accept the result.

It may still be feasible for the informed user or domain expert to comprehensibly scrutinize

the legal regulations, but inspecting the software for the fulfillment of the regulations

without being involved in its development may turn out to be infeasible and thereby

unsatisfactory at large. This is exactly the trust gap that we aim to fill in this thesis. The

involved components from the regulation, i.e., the election layer, are (a) the voter-ballot

box communication channel that considers, e.g., how ballots are filled out, cast, confirmed,

and transferred, (b) an election method, e.g., a simple rule where each voter chooses a

single alternative and the one with the most votes wins, and (c) an election management

system that includes the setup and instructions for all involved officials. Hence, we want

the resulting cryptography schemes, tallying procedures, and anonymization strategies

in the computational layer to reliably fulfill the requirements from the election layer.

5

Chapter 1. Introduction

1.2 State of the Art and Challenges

In the following, we present a short overview of the state of the art and associated

challenges for each of those components both on the regulatory (election layer) and on

the software (computational layer) side, as well as a brief description of the two remaining

layers, i.e., the human layer and the physical layer. A more in-depth explanation and

definition can be found in Chapter 3, with an overview of related work in Chapter 9.

1.2.1 Voter-Ballot Box Communication Channel

Description and Examples. The communication channel between voter and ballot

box concerns how a voter casts a ballot. This component allows, e.g., for a high-level

definition of the secrecy of the election, and describes the full procedure the voter goes

through to cast a vote in a way that can be understood by the general public (Lundin,

2010). While by a secret election, we generally understand that the ballots1are secret

(ballot confidentiality), we also want that the casting and processing of the ballots cannot

be manipulated, i.e., we want to have assurance that the ballots are cast and processed

exactly as the voters have filled them in (verified ballot integrity) (M. Bernhard et al., 2017).

The two desiderata of assured ballot integrity and ballot secrecy are obviously conflicting

with each other when taken to their full extent, as the more information we reveal about

a voter’s vote for being assured the vote is not manipulated, the more the secrecy of the

vote is undermined (Koitmäe, Willemson, and Vinkel, 2021). On this account, various

properties have been proposed in order to capture sufficient portions of the conflicting

desiderata. For the sake of completeness, we note here that wide availability and usability

of the channel between voter and ballot box are also commonly required, which are

requirements that – following Lundin’s component model – are to be dealt with in the

physical and the human layer, respectively.

Specific security notions that capture aspects of ballot confidentiality are, e.g., coercion

resistance, (everlasting) privacy, and receipt-freeness (M. Bernhard et al., 2017). Aspects of

ballot integrity are captured by security notions such as ballot cast assurance, collection

accountability, (verifiably) cast-as-intended, (verifiably) collected-as-cast, (verifiably)

counted-as-collected, dispute-freeness, end-to-end verifiability (E2E-V), and software

independence (M. Bernhard et al., 2017). Regarding verifiability, we note the distinction of

individual and universal verifiability (Küsters and Müller, 2017). Individual verifiability

denotes that the individual voter can determine whether their cast vote has correctly

reached its destination, whereas universal verifiability denotes that the final election

1Even though secrecy of participation is also considered good practice, e.g., by the European Commission

for Democracy through Law (Venice Commission) (2018, p. 22), since abstention is recognized to be a form

of political choice by itself, concealing already the fact whether any given eligible voter actually participated

is considered to be impossible to implement in practice (Koitmäe, Willemson, and Vinkel, 2021).

6

1.2. State of the Art and Challenges

result correctly reflects the content of the (universally) collected votes. In order to properly

address the above notions, we furthermore distinguish the four broad ballot casting

categories of remote voting over the internet (also known as i-voting), in-place voting via

electronic machines, postal remote voting via mail, and non-electronic in-place voting (e.g.,

in a voting booth). While the underlying challenge to balance integrity and confidentiality

persists for all four categories, the individual categories have significantly different

prerequisites and implications for each side.

As an illustration of the tradeoff between confidentiality and verified integrity of the

ballot, take, e.g., in-place ballot casting. While filling out the ballot in the privacy of

a voting booth may provide more secrecy of the individual ballot as eavesdropping

attacks are significantly harder to implement at scale1, mechanisms for individual voter

verifiability are harder to implement as a ballot usually cannot be directly traced to the

individual voter after the choice marked on the ballot has been added to the tally. As a

means to mitigate this verifiability gap, one could use digital receipts. However, a receipt

again increases the risk to the ballot’s secrecy.

Cryptography Scheme. Voting procedures and the respective cryptography schemes

that provide strong guarantees with respect to the above security notions of ballot

integrity and confidentiality are an active area of research in cryptography. For analyzing

and proving their security guarantees, cryptography schemecryptography schemes are

usually modeled as one of two kinds of cryptographic games (D. Bernhard and Warinschi,

2014). A cryptographic game consists of a winning condition and an attacker, and a scheme

is called secure with respect to the given notion of integrity or confidentiality if and only

if– depending on the kind of game – one of the following holds: (1) no (active) attacker

can win the game or (2) no (observing) attacker has more than random probability to

guess the game’s behavior The first kind of game is a trace game, in which the attacker

wins if they do something that should be impossible in a secure system, e.g., obtain a

voter’s secret key or forge a signature on a message that was never actually signed by the

signer. Moreover, the second kind of game is an indistinguishability game, in which the

attacker is asked to guess in which of two options the game behaved, and they win if they

guess the correct option with a probability of more than one half. For both kinds of games,

the security notion of interest defines the resources the attacker has at hand, i.e., the

moves that are available in the game, and the computational resources which the attacker

can use to perform their moves. Such moves often involve well-known cryptographic

primitives such as public-key encryption, homomorphic encryption, threshold techniques,

digital signatures, zero-knowledge proofs, or verifiable shuffling. Regarding the attacker’s

computational resources, we often distinguish between unbounded attackers, who may

1Yet, even in-place casting can easily exhibit quite severe vulnerabilities that are easy to overlook, as has

been demonstrated, e.g., by Ashur, Dunkelman, and Talmon (2016) for the Israeli general elections.

7

Chapter 1. Introduction

use unlimited resources, and polynomially bounded or efficient attackers, which is the

more common class for practical voting systems.

M. Bernhard et al. (2017) provide an extensive overview over and evaluate various promi-

nent voting systems and their employed cryptography schemecryptography schemes

with respect to the above security notions. Therein, they cover both, poll-site voting proce-

dures where voters record and cast ballots at predetermined locations, and remote voting

procedures where voters fill out ballots anywhere and then send them (electronically

or physically) to a central location to cast them. For poll-site procedures, these are, e.g.,

hand-counted in-person paper voting, direct-recording electronic voting (DREs), the

ThreeBallot system (Rivest and W. Smith, 2007), and the system Prêt-à-voter (Ryan, Bis-

mark, et al., 2009). For remote voting procedures, these are, e.g., the systems Helios (Adida,

2008), Civitas (Clarkson, Chong, and Myers, 2007), or Selene (Ryan, Rønne, and Iovino,

2016). A more in-depth explanation and definitions of the notions and schemes used

within this thesis can be found in Chapter 3.

1.2.2 Election Method

Description and Examples. The election method concerns how the cast and collected

ballots are interpreted and tallied, i.e., how the multiple individual choices by the voters

are aggregated into a collective decision, which is the election result. First, this component

includes the admissible choice by the voter, e.g., yes or no, one or multiple of a set of

alternatives, or more complex forms such as an allocation of scores or a ranking of the

alternatives. Second, we define admissible collective decisions, e.g., yes or no, a single

winner, a ranking, or the election of a full parliament. Third and most important, this

component includes a high-level description of the procedure that yields the election

result from the individual choices as well as the respective requirements for this decision.

Requirements may include simple properties such as parliament size, but may also

contain more complex properties that express a desired intuition of fairness, such as

proportionality of the result, capturing the will of the majority of the voters, or robustness

against strategic voting. Procedures and desiderata for this component are an active

area of research in the field of social choice theory that is at home in economic theory

and is also analyzed in mathematics and algorithmic theory, which is situated in the

field of computational social choice theory (COMSOC) (Brandt, Conitzer, et al., 2016;

Endriss, 2017). Therein, such procedures are denoted as social choice functions or –more

specifically– voting rules, and the desiderata are often captured in the form of formal

axioms denoted as social choice properties.

The origins of social choice theory in economic theory lie in finding optimal decisions

or distributions for a society and are also tied to mechanism design and game theory,

where one is interested in stable market decisions, and the individuals may obtain

8

1.2. State of the Art and Challenges

knowledge about the choices by other individuals and adapt their choices strategically

with the goal of changing the collective decision, e.g., by the market, in their favor. For

the matter of this thesis, we assume that the voters have stable individual preferences

on all involved alternatives, generally in the form of a total linear order, and they do

not know about the other voters’ preferences. Yet, various social choice properties also

capture forms of robustness against strategic voting, where certain non-truthful behavior

is prohibited to lead to favorable outcomes. Notably, modern social choice theory is rooted

in famous impossibility results, which state that strategic behavior cannot always be fully

avoided (Gibbard, 1973; Satterthwaite, 1975) and already the attempt to obtain a small

set of seemingly obviously desirable properties is theoretically impossible (Arrow, 1951).

As a consequence, modern social choice theory developed a plethora of different voting

rules that attempt to find good tradeoffs within this realm, and a variety of different

social choice properties have been devised for this purpose.

Tallying Procedure. Prominent examples of tallying procedures in social choice theory

range from the (simple) plurality rule, various Condorcet rules or the Borda rule, pro-

portional procedures such as D’Hondt, Saint-Laguë or Single-Transferable Vote (STV), to

algorithmically complex rules such as the Kemeny-Young rule. Practical adaptations and

combinations of such rules often exhibit some form of undesirable behavior (Beckert,

Goré, and Schürmann, 2013; Bundestagsdrucksache 17/11819, 2012).

1.2.3 Election Management System

Description and Examples. The election management system concerns how the voting

system is set up, e.g., by some trusted officials, as well as control and communication of

the whole process. This includes establishing the means and requirements that are needed

by the other components, conducting an electoral register and the running alternatives,

printing and distributing the ballot papers, securing and keeping up the election until it is

finished, and finally announcing the result of the election. Common roles in the election

management system are election provider, registrar, distribution facility, or election

administrators, which are all typically designated by the election council.

Informally, we understand an election management system as everything that is done

besides the actual voting. A trustworthy voting system entails that the means and re-

quirements for the voting and tallying, i.e., the voter-ballot box communication channel

and the election method, are also trusted by the voters and, e.g., for political elections,

the running candidates. For simple elections with only a few voters who maybe all know

each other personally or where the result is not critical, this might not be a concern at

all, since the process can be easily understood and scrutinized by the voters themselves,

or manipulation is simply not an issue. However, when elections have a larger scale or

9

Chapter 1. Introduction

the result may entail critical decisions, full oversight is not as easy or generally of high

importance. In order to cope with that problem, the involved third parties need to be

trusted and the election management system itself should provide means for scrutiny

such that expected properties can be reliably checked, e.g., by the voters, for the voting

system to be considered trustworthy.

Generally, we want this component to guarantee and preserve the desired properties

described for the other components, and additionally that the selections of eligible voters,

alternatives and maybe even of the third parties within election management are not

compromised, e.g., by adding additional illegitimate ballots also known as ballot stuffing.

Note that beyond guaranteeing that the third parties within the election management

system do not manipulate the process, we may also be concerned that these parties gain

unnecessary or any knowledge about confidential data within the voting system, e.g.,

the identities of the voters.

Unlike the other two – more fixed – components, our definition of the election manage-

ment system component is not as clearly specified and does not directly translate into a

single component within the computational layer. Within this thesis, we only consider

anonymization strategies at this point, since they play an important role in electronic remote

voting systems and can be defined in a relatively clear manner.

Anonymization Strategy. For ensuring prominent security properties in an electronic

voting system, we must break the link between digital receipts and plaintext votes

by performing an anonymization strategy. By these means, the voter’s intentions are

not revealed. Depending on the specifics, this component may heavily depend on the

employed cryptography scheme for the communication between the voters and the ballot

box. In some cases, they can also be defined independently, however. For example, when

anonymization is done by a re-encryption mix network, the employed cryptography

scheme can be chosen with some level of freedom (Lundin, 2010).

Another example for an anonymization strategy are decryption tables, which when

combined with secret mixing ensures that the full link from an encrypted receipt to a

plaintext vote is broken.

10

1.3. Contributions

1.2.4 Human Layer and Physical Layer

Albeit they are not targeted within this thesis, yet for the sake of completeness, we now

briefly describe the two remaining layers, namely the human layer and the physical layer.

Human Layer. The human layer concerns all aspects that are facing the (human) voter,

e.g., the ballot-form configuration, management and layout of the polling station, or a

verifiability front-end. This layer is of crucial importance in order to ensure both that

all voters can participate and that the usability of the system’s security procedures do

not render it insecure due to the voters’ failure to use them (Küsters and Müller, 2017).

Moreover, the aspects facing the voters must also be simple and comprehensible in order

to make sure that security and fairness – which may be obtained by formally proven

guarantees – are also well-perceived and accepted by the voters.

Physical Layer. Finally, the physical layer is at the lowest level and supports all other

layers with a physical infrastructure, e.g., a hardware authentication structure such as

a public-key infrastructure with an asymmetric key pair, a publishing strategy, and a

transfer method. Examples are cryptographic key pairs at the polling stations, the means

to publish encrypted receipts by a central repository for them to be publicly accessible,

or basic technical prerequisites as SSL encryption between polling stations and a central

repository.

1.3 Contributions

This thesis contains five distinct contributions that are aligned according to the principal

component of a voting system (as explained in Section 1.1) to which they belong, as

illustrated in Figure 1.1.

The first component, the voter-ballot box communication channel, is addressed by contri-

bution (I), which builds a bridge from the communication channel to the cryptography

scheme by automatically generating secure card-based schemes from a small formal

model with a parameterization of the desired security requirements.

The second component, the election method, is addressed by contributions (II) to (IV).

Contribution (II) builds a bridge from the election method to the tallying procedure by

automatically synthesizing a runnable tallying procedure from the desired requirements

given as social choice properties. Contribution (III) is also right between the two layers to

automatically generate either comprehensible arguments or bounded proofs to compare

voting rules based on user-definable social choice properties and tallying procedures.

11

Chapter 1. Introduction

Human Layer

Physical Layer

Voter-Ballot Box Communication

Cryptography Scheme

Election Method

Tallying Procedure

Election Management System

Anonymization Strategy

Election Layer

Computational Layer

I. Generation of Secure
Card-Based Schemes

II. Synthesis of Reliable
Tallying Procedures

III. Verification of Reliable
Tallying Procedures

IV. Computation of Depen-
dable Election Margins

V. Security Verification of
GI Voter Anonymization

Figure 1.1: Contributions of this thesis

Moreover, contribution (IV) allows to automatically compute concrete election margins

for a given tallying procedure, the collected ballots, and the computed election result.

Finally, the third and final component, the election management system, is addressed

by contribution (V). Contribution (V) concerns the anonymization strategy and is a case

study of a formal implementation-level security verification of the anonymization part

of a real-world election management software employed for the annual elections of the

German Informatics Society (GI – “Gesellschaft für Informatik”).

The distinct contributions are:

(I) a method for the generation of secure card-based communication schemes,

(II) a method for the synthesis of reliable tallying procedures,

(III) a method for the efficient verification of reliable tallying procedures,

(IV) a method for the computation of dependable election margins for reliable audits,

(V) a case study about the security verification of the GI voter-anonymization software.

The presented methods assist the systematic development and verification of provenly

trustworthy voting systems across traditional layers, i.e., from the election layer to the

computational layer. They all pursue the goal of making voting systems trustworthy by

reliable and explainable formal requirements. Since voting systems are inherently rich in

algorithmic and security challenges, reliable and explainable formal requirements are

12

1.3. Contributions

useful to allow that the inevitable tradeoffs can be made in a trustworthy manner. This

thesis provides contributions for all the three respective system components on illustrative

examples, and the devised formal methods provide translations of comprehensible

requirements to reliable implementations of the components.

In the following, we give a brief overview for each of them.

1.3.1 Voter-Ballot Box Communication Channel

Generation of Secure Card-Based Schemes. At the very core, secure elections boil down

to voters who want to determine a trusted collective result based on their secret individual

choices without letting the others know more about their choice than what can be directly

inferred from the result, i.e., a multi-party computation that is zero-knowledge. Here, we

consider the illustrative scenario of only two voters who perform multi-party computation

of a yes/no-decision with only a deck of cards. As already in this simple scenario the

combinatorial state space may become very large, traditional proofs in literature tend to be

involved and potentially error-prone. This contribution consists of a formal method that

allows to automatically generate secure card-based cryptography schemes for a given amount

of cards and protocol length, and can prove minimality for both parameters. In this work,

we devise strict possibilistic formal guarantees that imply traditional cryptographic

properties within an honest-but-curious model. The method is based on the lightweight

formal technique of software bounded model checking (SBMC) (Section 2.2).

13

Chapter 1. Introduction

1.3.2 Election Method

Synthesis of Reliable Tallying Procedures. As soon as more than two parties are

involved, however, a trusted result is based on more than securely computing or “tallying”

a correct collective result. Depending on, e.g., legislative requirements, even devising the

mathematical social choice function that determines the tally result from the individual

choices may turn out to be non-trivial and error-prone. In this work, we devise simple

trusted components and formal rules for the composition of such tallying procedures,

such that desired requirements of the composed procedure are provenly guaranteed by

the composition rules from properties of the underlying components. Our contribution

is a formal method that automatically produces an executable tallying procedure from

desired requirements and a computer-checkable proof that the procedure satisfies the

requirements. The method is based on the formal techniques of interactive theorem

proving (Section 2.4) and logic programming (Section 2.1).

Verification of Reliable Tallying Procedures. Yet, for scenarios where the desired

requirements are not clear beforehand or need to be re-evaluated, we want to devise

and optimize a social choice function based on potentially desirable requirements are of

particular interest. This interest may either stem from particularly desirable or paradoxical

behavior, and is demonstrated by particularly advantageous or disadvantageous voting

situations. In this work, we devise a lightweight formal method that allows to dynamically

adjust both the analyzed procedure and the requirement of interest, and generates

comprehensible counterexamples whenever a requirement is not met within a given

scope. Our contribution includes a simple way to express the requirements of interest

and can be used by non-expert users to argue for or against tallying procedures based on

comprehensible evidence in the form of counterexamples. The method is based on the

lightweight formal technique of software bounded model checking (SBMC) (Section 2.2).

Computation of Dependable Election Margins. Elections do, however, involve multiple

stakeholders, e.g., the running candidates, and a trustworthy voting system should be

able to provide them with –ideally software-independent– evidence to gain trust in a fair

and correct procedure and result. Such evidence can then be used under a transparent

process of scrutiny or trial, so that trust in the result can be either comprehensibly

established or comprehensibly refuted. In this work, we devise a general formal method

that automatically computes election margins for a given election result and tallying

procedure, which may then be applied in a trusted risk-limiting auditing process, e.g., by

scrutinizing a limited amount of ballot papers. The method is based on the lightweight

formal technique of software bounded modelchecking (SBMC) (Section 2.2).

14

1.4. Previously Published Material

1.3.3 Election Management System

Security Verification of GI Voter Anonymization. Further stakeholders, besides, e.g.,

the running candidates, are the voters. For simple elections, they may be able to observe

and comprehend the whole process, as in the card-based example above. Yet, for more

involved elections, eligible voters are usually identified by individual trusted credentials,

which serve both for anonymously casting their ballot, and for gaining trust in or being

able to challenge the collective result. In this work, we employ a formal method on software

level to verify the security of voter-credential anonymization within an electronic voting

system that has been used in the annual elections of the German Informatics Society (GI).

Our contribution is a case study with the precise verification of secure information flow

in an e-voting software, by which we evaluate applicability and scalability of formal

methods with high precision for a real-world voting system. The case study is performed

with the formal technique of deductive program verification (Section 2.3).

1.4 Previously Published Material

Significant parts, mainly Chapters 2 to 9, of this thesis have been previously published,

either completely or partially.

1.4.1 Journal, Conference, and Workshop Publications

The content of Chapter 4 (“Generation of Secure Card-Based Communication Schemes”)

has been first published by Koch, Schrempp, and Kirsten (2019) and further developed

for more general decks and the verification of shuffle set size maximality by Koch,

Schrempp, and Kirsten (2021), wherein the parts described in the chapter, i.e., regarding

formal methods and formal verification, have been written mainly by the author of this

thesis. Chapter 5 (“Synthesis of Reliable Tallying Procedures”) builds primarily upon the

publication by Diekhoff, Kirsten, and Krämer (2020) with a short version by Diekhoff,

Kirsten, and Krämer (2019), both written mainly by the thesis author, and has furthermore

been extended by work developed jointly with Fabian Richter during and based on his

master’s thesis (Richter, 2021). Moreover, the content of Chapter 6 (“Efficient Verification

of Reliable Tallying Procedures”) builds upon the work by Beckert, Bormer, Kirsten, et al.

(2016), and has been summarized by Beckert, Bormer, Goré, et al. (2017), both written

mainly by the thesis author. Further examples and advances in Chapter 6 have been

published by Kirsten and Cailloux (2018), which has also been written mainly by the

thesis author. The Chapter 7 (“Computation of Dependable Election Margins for Reliable

Audits”) has previously been published by Beckert, Kirsten, Klebanov, et al. (2017) and

again summarized by Beckert, Bormer, Goré, et al. (2017), all of which has been written

15

Chapter 1. Introduction

in large parts by the thesis author. Finally, Chapter 8 (“Security Verification of the GI

Voter-Anonymization Software”) is original work by the thesis author that has been

mainly unpublished, yet the setting and intentions have been published in a position

paper by Beckert, Brelle, et al. (2019) and the results were presented at the 2019 annual

meeting by the GI working group on formal methods and software engineering for secure

systems (FoMSESS). Accordingly, the collection of previous works and foundations in

Chapters 2 and 3 (“Formal Methods and Techniques” and “Preliminary Notions and

Procedures”), as well as the collection of related works in Chapter 9 (“Related Work”),

have for the most part been reworked from the appropriate parts –written mainly by the

thesis author– in the publications mentioned above.

1.4.2 Software and Formal Proofs

The software for Chapter 4 has been written mainly by the thesis author. For Chapter 5,

the formal proofs have been written mainly by Karsten Diekhoff, Jonas Krämer, Stephan

Bohr and the thesis author, and the software thereupon by Fabian Richter (Richter, 2021),

all of which has been planned and closely guided by the author of this thesis. The software

for Chapter 6 has been planned and closely guided by the author of this thesis, and

written mainly by Lukas Stapelbroek and Holger Klein. For Chapter 7, the software has

been written mainly by the thesis author. Finally, the analyzed software in Chapter 8

has been provided by courtesy of Tomasz Truderung from the POLYAS company and

translated meticulously from Kotlin to Java code by the author of this thesis. The formal

proofs described in Chapter 8 have been conducted mainly by Florian Lanzinger and

closely guided by the author of this thesis. The mentioned publications are cited where

used and are also, for a convenient orientation to the reader, listed below.

16

1.4. Previously Published Material

1.4.3 Publications

Beckert, Bernhard, Thorsten Bormer, Rajeev Goré, Michael Kirsten, and Carsten Schür-

mann (2017). “An Introduction to Voting Rule Verification.” In: Trends in Computational

Social Choice. Ed. by Ulle Endriss. .II: Techniques. AI Access. Chap. 14, pp. 269–287.

url: http://research.illc.uva.nl/COST-IC1205/Book/.
Beckert, Bernhard, Thorsten Bormer, Michael Kirsten, Till Neuber, and Mattias Ulbrich

(2016). “Automated Verification for Functional and Relational Properties of Voting

Rules.” In: Sixth International Workshop on Computational Social Choice (COMSOC 2016)

(Toulouse, France, June 22–24, 2016). Ed. by Umberto Grandi and Jeffrey S. Rosenschein.

url: https://irit.fr/COMSOC-2016/proceedings/BeckertEtAlCOMSOC2016.pdf.
Beckert, Bernhard, Achim Brelle, Rüdiger Grimm, Nicolas Huber, Michael Kirsten, Ralf

Küsters, Jörn Müller-Quade, Maximilian Noppel, Kai Reinhard, Jonas Schwab, Rebecca

Schwerdt, Tomasz Truderung, Melanie Volkamer, and Cornelia Winter (2019). “GI Elec-

tions with POLYAS: a Road to End-to-End Verifiable Elections.” In: Fourth International

Joint Conference on Electronic Voting (E-Vote-ID 2019) (Lochau / Bregenz, Austria, Oct. 1–

4, 2019). Ed. by Robert Krimmer, Melanie Volkamer, Bernhard Beckert, Véronique

Cortier, Ardita Driza-Maurer, David Duenas-Cid, Jörg Helbach, Reto Koenig, Iuliia

Krivonosova, Ralf Küsters, Peter Rønne, Uwe Serdült, and Oliver Spycher. Proceedings

E-Vote-ID 2019. TalTech Press, pp. 293–294. url: https://digi.lib.ttu.ee/i/?13563.

Beckert, Bernhard, Michael Kirsten, Vladimir Klebanov, and Carsten Schürmann (2017).

“Automatic Margin Computation for Risk-Limiting Audits.” In: First International

Joint Conference on Electronic Voting – formerly known as EVOTE and VoteID (E-Vote-ID

2016) (Lochau / Bregenz, Austria, Oct. 18–21, 2017). Ed. by Robert Krimmer, Melanie

Volkamer, Jordi Barrat, Josh Benaloh, Nicole J. Goodman, Peter Y. A. Ryan, and Vanessa

Teague. Vol. 10141. Lecture Notes in Computer Science. Springer, pp. 18–35. doi: 10.10
07/978-3-319-52240-1 2.

Diekhoff, Karsten, Michael Kirsten, and Jonas Krämer (2019). “Formal Property-Oriented

Design of Voting Rules Using Composable Modules.” In: 6th International Conference

on Algorithmic Decision Theory (ADT 2019) (Durham, NC, USA, Oct. 10–27, 2019). Ed.

by Saša Pekeč and Kristen Brent Venable. Vol. 11834.Short Papers. Lecture Notes in

Artificial Intelligence. Springer, pp. 164–166. doi: 10.1007/978-3-030-31489-7.

– (2020). “Verified Construction of Fair Voting Rules.” In: 29th International Symposium on

Logic-Based Program Synthesis and Transformation (LOPSTR 2019), Revised Selected Papers

(Porto, Portugal, Oct. 8–10, 2019). Ed. by Maurizio Gabbrielli. Vol. 12042. Lecture Notes

in Computer Science. Springer, pp. 90–104. doi: 10.1007/978-3-030-45260-5 6.

Kirsten, Michael and Olivier Cailloux (2018). “Towards automatic argumentation about

voting rules.” In: 4ème Conférence Nationale sur les Applications Pratiques de l’Intelligence

Artificielle (APIA 2018) (Nancy, France, July 2–6, 2018). Ed. by Sandra Bringay and

Juliette Mattioli. url: https://hal.archives-ouvertes.fr/hal-01830911.

Koch, Alexander, Michael Schrempp, and Michael Kirsten (2019). “Card-Based Cryp-

tography Meets Formal Verification.” In: 25th International Conference on the Theory

17

http://research.illc.uva.nl/COST-IC1205/Book/
https://irit.fr/COMSOC-2016/proceedings/BeckertEtAlCOMSOC2016.pdf
https://digi.lib.ttu.ee/i/?13563
https://doi.org/10.1007/978-3-319-52240-1_2
https://doi.org/10.1007/978-3-319-52240-1_2
https://doi.org/10.1007/978-3-030-31489-7
https://doi.org/10.1007/978-3-030-45260-5_6
https://hal.archives-ouvertes.fr/hal-01830911

Chapter 1. Introduction

and Application of Cryptology and Information Security (ASIACRYPT 2019) (Kobe, Japan,

Dec. 8–12, 2019). Ed. by Steven D. Galbraith and Shiho Moriai. Vol. 11921.I. Lecture

Notes in Computer Science. Springer, pp. 488–517. doi: 10.1007/978-3-030-34578-5 18.

Koch, Alexander, Michael Schrempp, and Michael Kirsten (2021). “Card-Based Cryptog-

raphy Meets Formal Verification.” Trans. by Takaaki Mizuki. New Generation Computing

39.1: Special Issue on Card-Based Cryptography, pp. 115–158. doi: 10.1007/s00354-020-001
20-0.

1.5 Structure of this Thesis

In the following, we give a brief outline for the rest of this thesis.

1.5.1 Part I—Introduction and Foundations

Within Part I, we introduce the terms and notions that are needed to understand the rest

of this thesis in Chapters 2 and 3.

We start in Chapter 2 with the formal methods and according tools that are employed

within this thesis and form the foundation for the targeted formal methods built therein.

The foundations comprise logic programming in Section 2.1, software bounded model

checking (SBMC) in Section 2.2, deductive!program verification of secure information

flow in Section 2.3, and general proof assistants with human-readable proof artifacts in

Section 2.4.

Within Chapter 3, we introduce the preliminary notions and procedures that are con-

sidered within this thesis, namely secure multi-party computation in Section 3.1, social

choice theory in Section 3.2, risk-limiting audits and election margins in Section 3.3, and

notions for end-to-end verifiability (E2E-V) in Section 3.4.

1.5.2 Part II—Secure Voter-Ballot Box Communication Channels

Part II introduces the first contribution on generating secure card-based protocols in

Chapter 4.

We give the general notions and definitions in Section 4.1 and our employed computational

model to express the security properties of interest in Section 4.2. Section 4.3 then explains

the core methodology and the standardized model of our approach, with an evaluation

in Section 4.4, the verification of bounds in shuffle set size to reduce complexity in

Section 4.5, and summarize in Section 4.6.

18

https://doi.org/10.1007/978-3-030-34578-5_18
https://doi.org/10.1007/s00354-020-00120-0
https://doi.org/10.1007/s00354-020-00120-0

1.5. Structure of this Thesis

1.5.3 Part III—Reliable Election Methods

Part III then considers election methods and tallying procedures, with our contribution

to the synthesis of reliable tallying procedures in Chapter 5.

Section 5.1 introduces the individual elements for composing voting rules, before Sec-

tion 5.2 describes the implementation in Isabelle/HOL. In Section 5.3, we describe the

further steps based on logic programming for an automated synthesis tool. Finally, we

evaluate our framework in Section 5.4 and summarize in Section 5.5.

In Chapter 6, we present our contribution for an efficient verification of tallying procedures

with automatic counterexample generation.

Section 6.1 gives definitions and classifications of the desired properties, which we

instrument in Section 6.2 for more efficient results. In Section 6.3, we show efficient

techniques for relational verification, which we evaluate in Section 6.4. Finally, we show

how to use these techniques for an argumentation approach based on counterexample

generation in Section 6.5 and summarize in Section 6.9.

Moreover, Chapter 7 gives a contribution for automatic computation of election margins.

Section 7.1 describes the approach, which is made more efficient in Section 7.3, with a

larger case study in Section 7.4, which we summarize in Section 7.5.

1.5.4 Part IV—Secure Election Management Systems

Part IV finally considers the election management system with a case study on a real-world

e-voting system in Chapter 8.

We describe the guarantees promised by the system in Section 8.1, illustrate how the

system works in Section 8.2, and describe our specification and verification process in

Section 8.3, which we summarize in Section 8.4.

1.5.5 Part V—Related Work and Conclusion

Part V finally concludes this thesis and discusses related work.

We give related work in Chapter 9, for formal methods regarding cryptographic pro-

tocols in Section 9.1, modular verification and synthesis of voting rules in Section 9.2,

related work on the techniques for efficient verification and counterexample generation

in Section 9.3, computation of election margins in Section 9.4, and verification of secure

information flow on implementation level in Section 9.5.

19

Chapter 1. Introduction

We finally conclude in Chapter 10, with a summary in Section 10.1 and potential future

work in Section 10.2.

1.5.6 Appendix

In Chapter A, we print card protocols found and analyzed within Chapter 4. Finally,

Chapter B illustrates the structure of our Isabelle framework from Chapter 5.

20

2
Formal Methods and Techniques

Le savant [ou la savante] doit ordonner ; on fait la

science avec des faits comme une maison avec des

pierres ; mais une accumulation de faits n’est pas

plus une science qu’un tas de pierres n’est une

maison.

Henri Poincaré, La Science et l’Hypothèse, 1917

T
his chapter introduces the formal methods and techniques that are employed within

the contributions of this thesis. We explain them starting with more lightweight up

to more heavyweight formal methods, i.e., from most simple and automated, but limited

in expressiveness, to more complex and interactive, but with a lot of expressiveness. For

each of the methods, we illustrate and explain the specific techniques and tools which

are used within this thesis.

2.1 Logic Programming

Logic programming is a formal technique that applies linear resolution and unification

algorithms to answer a given query, based on a number of logical clauses, i.e., facts and

rules (Apt, 1997). The algorithms are then used to derive a computation procedure that

answers, i.e., resolves, the given query by successively applying rules to facts with the goal

of generating the empty query based on the given one. When searching for a successful

derivation of the query, the constructed successions of derivations – the algorithms’ search

space – form a derivation tree. The tree is successful if one of the tree’s branches contains

21

Chapter 2. Formal Methods and Techniques

the empty query (that cannot be derived any further), a – finite – tree is not successful if

all its branches are failed derivations, i.e., they do not contain the empty query.

For the above technique to work efficiently and automatically, the logical clauses need to

be of a certain “simple” form, namely Horn clauses, i.e., a disjunction of literals where at

most one of them is not negated and all contained variables in a clause are universally

quantified. Horn clauses can be written as simple logical implications, where a conjunction

of nonnegated literals implies another nonnegated literal. Moreover, the query translates

to a goal clause that contains no nonnegated literals, and each fact consists of exactly one

nonnegated literal. These restrictions make the derivation problem of logic programming

decidable so that no user interaction is necessary. Note that one caveat of the technique’s

efficiency is the closed world assumption, i.e., only queries that the rules can actually

explicitly derive from the given facts are considered to be true.

Logic programming as described above is a simple form of theorem proving, but has

also been established as a programming paradigm with Prolog being the most popular

language where this paradigm is implemented.

The Prolog Programming Language

Prolog, which stands for “ProProProProProProProProProProProProProProProProProgramming in LogLogLogLogLogLogLogLogLogLogLogLogLogLogLogLogLogic,” is a declarative programming language

that implements the paradigm of logic programming based on linear resolution (Colmer-

auer and Roussel, 1993). While its prime target used to be natural language processing,

it is nowadays used for many applications, for example in computational logic, and it

is implemented in multiple standards and compilers. The language comprises a back-

tracking mechanism when retracting from one branch and searching the next one, as

well as the possibility for a user to implement specialized control facilities, such as for

defining their own search process as an alternative to the default depth-first search. Such

specialized control facilities are implemented by so-called meta-interpreters that allow to

evaluate Prolog’s internal computation procedure with access to various additional in-

termediate steps, states, and variables. These additional capabilities make Prolog flexible

and adaptable to numerous search and constraint problems, as long as the knowledge

base can be expressed in the form of Horn clauses. With this flexibility, some Prolog

implementations provide interfaces between Prolog and other programming languages.

Thereby, e.g., Prolog’s knowledge base can be precomputed from other contexts, or

Prolog’s computations can be employed within a greater software project that builds the

computation into more complex services or libraries.

22

2.2. Software Bounded Model Checking

2.2 Software Bounded Model Checking

Software bounded model checking (SBMC) is a formal (program) verification technique

that, given a program and a software property to be checked, verifies fully automatically

whether the program satisfies the property (Biere and Kröning, 2018). In a nutshell, that

question is translated into a reachability problem with respect to the given program.

SBMC symbolically, i.e., without the need for concrete values, executes the program and

exhaustively checks it for errors that could violate the given property within some given

bounds that restrict the amount of loop iterations and recursive method calls. Using

these bounds, SBMC limits all runs through the program to a bounded length and can

thereby unroll the control flow graph of the program and transform it into static single

assignment (SSA) form (Clarke, Kroening, and Yorav, 2003). This bounded program is

then translated into a formula in a decidable logic, e.g., an instance of the SAT problem.

The formula is satisfiable if and only if a program run exists that violates the given

software property within the given bounds.

Modern SAT or SMT solvers (Barrett and Tinelli, 2018; Gomes et al., 2008) can be used

to check whether such a program run exists, in which case the SBMC tool constructs

the corresponding problematic input and presents the counterexample to the user. If no

such program run is found, that may be either because the property is actually satisfied,

or because it is invalid only for runs exceeding the given bounds. In some cases, SBMC is

also able to infer statically which bounds are sufficient, in order to come to a definitive

conclusion.

SBMC tools also permit to extend the program with nondeterministic value assignments

and assume statements in order to restrict the values and states that are to be considered.

The properties to be checked are given in the form of assert statements. Hence, SBMC

checks whether there are any runs through the program that satisfy all encountered

assume statements but violate an assert statement. Let us now explain how SBMC can be

instrumented for checking software properties.

Checking Software Properties

We assume we are given a procedure 𝑃 under the form of an imperative program (for

example, written in the C language), that uses some parameter values taken among a set

of possible values 𝐼. An entry 𝑖 ∈ 𝐼 is a list of values, one value for each such parameter:

it gives a value to everything that a run of 𝑃 depends on, such as its input variables, or

anything that is considered nondeterministic from the point of view of 𝑃. For this reason,

those parameters are qualified as nondeterministic, to distinguish them from normal

parameters used in a programming language to pass information around. By contrast,

23

Chapter 2. Formal Methods and Techniques

some values can be derived, thus, computed in 𝑃 from the nondeterministic parameter

values, or declared as constants in 𝑃, and both values of nondeterministic parameters or

derived values can then be used as normal parameters in the program.

We are also given a software property to be checked about 𝑃, in the form 𝐶ant ⇒ 𝐶cons
,

where ant and cons stand for antecedent and consequence, respectively. Both 𝐶ant
and

𝐶cons
are sets of Boolean statements. A Boolean statement is a statement of𝑃 that evaluates

to a Boolean value, for example, a statement checking that some computed intermediate

value is odd. An entry 𝑖 is said to satisfy a set of Boolean statements if and only if

all Boolean statements in the set evaluate to true during the execution of 𝑃 using the

nondeterministic parameter values 𝑖, and is said to fail the set of Boolean statements

otherwise. The property 𝐶ant ⇒ 𝐶cons
requires that for all possible entries 𝑖 ∈ 𝐼, if 𝑖

satisfies 𝐶ant
, then 𝑖 satisfies 𝐶cons

. As an example, assume 𝑃 computes, given 𝑖, two

intermediate integer values 𝑣1 and 𝑣2, and then returns a third value 𝑣3. The property to

be checked could be: if 𝑣1 is negative, then 𝑣2 is positive and 𝑣3 is odd. A solver that is

asked to check a software property 𝐶ant ⇒ 𝐶cons
thus exhaustively searches for an entry

𝑖 that satisfies 𝐶ant
but fails 𝐶cons

. The property is valid iff it is impossible to find such an

entry.

2.3 Deductive Program Verification

Deductive program verification is based on a logical (program) calculus to construct a

proof for a formula expressing that a program satisfies its specification (Filliâtre, 2011;

Shankar, 2009). Typically, deductive program verification uses invariants and induction

to handle loops. In order to mitigate complexity, most deductive approaches employ

design by contract (Meyer, 1992), where functions respectively methods are specified

with formal pre- and postconditions. These additional annotations enable a modular

verification (Beckert, Bormer, Merz, et al., 2012), where each method is individually

proved to satisfy its contract. To this end, each method – together with its contract –

is translated into a formula, e.g., using some form of weakest precondition computa-

tion (Dĳkstra, 1975). Method calls are replaced by the contract of the called method

(instead of the method body), and loops are replaced by their invariants (instead of loop

unwinding). The resulting formulae are either discharged using automated theorem

provers, e.g., SMT solvers (Barrett and Tinelli, 2018), or shown to the user for interactive

proof construction.

For the matter of this thesis, we are interested in using deductive program verification

for the verification of secure information flow, which we express by the property of

noninterference. In the following, we briefly introduce the noninterference property and

24

2.3. Deductive Program Verification

then give insights into how deductive verification can be used to verify the property on

program level.

Noninterference. An established property guaranteeing confidentiality on code level

is noninterference. Noninterference holds if no information flow from a secret input (of

high security) to a public output (of low security) of the system is possible, i.e., if and

only if no secret input of a program may influence its public output. Research on secure

information flow dates back to the works by D. Denning (1976) and D. Denning and

P. Denning (1977) and later Goguen and Meseguer (1982). We distinguish high variables

containing secret data, which should be protected, from low variables, which are publicly

readable, and introduce the low-equivalence relation (∼𝐿) to characterize program states

that are indistinguishable for any potential attacker. A program state 𝑠 is an assignment

of values to program variables and program locations. We assume that the input of a

program is included in the program’s initial state and that the output of a program is

included in its final state. Two states, 𝑠 and 𝑠′, are low-equivalent if and only if all low

variables in 𝑠 have the same value as in 𝑠′.

Definition 2.1 (Noninterference) A program 𝑃 is noninterferent if and only if, for any
initial states 𝑠1 and 𝑠2, the statement

𝑠1 ∼𝐿 𝑠2 ⇒ 𝑠′1 ∼𝐿 𝑠′2

holds, where 𝑠′1 and 𝑠′2 are final program states after executing 𝑃 in the initial states 𝑠1

and 𝑠2, respectively.

This means that two program executions starting in two low-equivalent states must termi-

nate in two low-equivalent states, which guarantees that low outputs are not influenced

by high inputs. Note that we restrict ourselves to terminating programs. In the following,

we refer to noninterference with respect to a given high input and a given low output

simply as noninterference.

2.3.1 Verification of Program Noninterference

Logic-based program analysis of information flow takes the semantics of the program

language into account. The semantics of modern program languages provide a high

degree of expressiveness, which must be considered when sources of illegal information

leaks may be exploiting features of the program semantics. Logic provides a means for

abstraction and can capture such features and moreover, using logical calculi, enables

reasoning about their – direct or indirect, explicit or implicit – effects on any low program

variables or locations. However, this requires a logical representation of the program

25

Chapter 2. Formal Methods and Techniques

together with the precise property we want to prove. Using dynamic logic (Darvas,

Hähnle, and Sands, 2005) together with symbolic values, we can express the functional

property of partial correctness of a program 𝑃 for a precondition 𝜙 and a postcondition 𝜓
by the following formula:

𝜙→
[
𝑃
]
𝜓

This means that 𝜓 holds in all possible states in which 𝑃 terminates. Since we analyze

only deterministic programs, this means that either 𝑃 terminates and 𝜓 holds afterward,

or the program never terminates. Since we restrict ourselves to terminating programs,

we only need to prove partial correctness in the following. Applying a logical calculus

with a deductive theorem prover, we can hence symbolically execute 𝑃 and attempt to

prove the formula.

On this basis, we state the noninterference property based on value independence for a

high variable ℎ, a low variable 𝑙 and a program 𝑃 in the following way:

Definition 2.2 (Noninterference as value independence) When P is started with val-
ues l that are arbitrary, then the value 𝑟 of l – after executing P – is independent of the
choice of h (note the order of the quantifiers).

∀l ∃𝑟 ∀h
[
P
]
𝑟 = l

However, instantiating existential quantifiers hinders automation and requires user inter-

action. As a mitigation, Barthe, D’Argenio, and Rezk (2004) established a noninterference

formalization based on self-composition, effectively reducing it to a safety property. Us-

ing self-composition, the noninterference property of a program 𝑃 translates to a safety

property of a new program, which consists of 𝑃 composed with a renaming of 𝑃.

Furthermore, we need to introduce the concept of state updates (Ahrendt et al., 2016),

which capture the effects of symbolically executing program statements. We denote

updates by variable assignments enclosed by curly braces, which are applied to logical

terms and formulae, and thus change the program state.

We can now, based on the low-equivalence in Definition 2.1, extend our formalization of

noninterference in Definition 2.3.

Definition 2.3 (Noninterference as self-composition with state updates)

∀𝑖𝑛𝑙 ∀𝑖𝑛1
ℎ
∀𝑖𝑛2

ℎ
∀𝑜𝑢𝑡1

𝑙
∀𝑜𝑢𝑡2

𝑙
{𝑙 := 𝑖𝑛𝑙}(

{ℎ := 𝑖𝑛1
ℎ
}[𝑃] 𝑜𝑢𝑡1

𝑙
= 𝑙

∧ {ℎ := 𝑖𝑛2
ℎ
}[𝑃] 𝑜𝑢𝑡2

𝑙
= 𝑙

→ 𝑜𝑢𝑡1
𝑙
= 𝑜𝑢𝑡2

𝑙
)

26

2.3. Deductive Program Verification

Therein, we have two executions of 𝑃, one where the (high) program variable ℎ is renamed

to 𝑖𝑛1
ℎ
, and another one where it is renamed to 𝑖𝑛2

ℎ
. The (low) output variable 𝑙 is captured

in the variable 𝑜𝑢𝑡1
𝑙

after the first execution and in the variable 𝑜𝑢𝑡2
𝑙

after the second one.

Finally, we need to prove that both outputs 𝑜𝑢𝑡1
𝑙

and 𝑜𝑢𝑡2
𝑙

are equivalent in the final state

and assume equivalent low inputs via the variable 𝑖𝑛𝑙 . The self-composition formula can

hence be enclosed with purely universal quantifiers over the renaming variables for input

and output. When trying to prove noninterference for a program 𝑃, theorem provers can

now Skolemize these variables and greatly reduce the necessary user interaction.

Now, when dealing with object orientation, it is sometimes too strict to require all (low)

variables and locations in the final state to be equivalent. For this matter, Scheben and

Schmitt (2011) developed a variation of noninterference using a different semantics of

low-equivalence based on an object isomorphism as defined in Definition 2.4. Therein,

for any two states 𝑠1 and 𝑠2, and two isomorphisms 𝜋1 and 𝜋2, 𝜋1(𝑜) = 𝜋2(𝑜) holds if 𝑜 is

observable in both states 𝑠1 and 𝑠2.

Definition 2.4 (Low-equivalence with isomorphism) We call any two program states
𝑠, 𝑠′ low-equivalent if and only if they assign the same values to any low variables (where
𝐿 denotes the set of all low variables in the state 𝑠).

𝑠 ≃𝜋𝐿 𝑠′ ⇔ ∀ 𝑣 ∈ 𝐿 (𝜋(𝑣𝑠) = 𝑣𝑠
′)

The techniques described above together with this semantics are defined and imple-

mented in the deductive program verification tool KeY for Java programs, which we

explain in the following.

2.3.2 The KeY Verification System

KeY (Ahrendt et al., 2016) is a semi-interactive deductive theorem prover for statically

verifying sequential Java programs formally specified using the Java Modeling Lan-

guage (JML) (Leavens, Baker, and Ruby, 2006). In JML, each Java method can be an-

notated with pre- and postconditions, together with the program locations which the

method’s execution may change, such that verification can be done modularly. A success-

ful verification using KeY proves that the method, when started in a state satisfying the

precondition, terminates in a state satisfying the postcondition, and that it only affects

those memory locations for which changes are allowed by the specification. Modularity

is done at method level, i.e., method calls can be handled in proofs by replacing them

with the logical translation of their JML contracts. Specification in JML allows using

side-effect-free Java expressions in first-order predicates with extensions such as, e.g.,

quantifiers and abstract data types.

27

Chapter 2. Formal Methods and Techniques

Verification is done by automatically translating the specified Java method into a – logically

equivalent – formula in Java dynamic logic (JavaDL) (Beckert, Klebanov, and Weiß, 2016),

where the source code can be executed and reasoned about inside the logic using symbolic

execution to capture the method’s possible effects in logical formulae.

KeY uses a sequent calculus, consisting of various deduction rules, which may either

be applied automatically or interactively. As verification with KeY is done statically,

i.e., without actually running the program code, a successful verification produces a

formal proof which universally guarantees that, whenever the verified code is used in a

setting where the specified precondition is satisfied, the program will satisfy the specified

postcondition and change at most the specified memory locations. An advantage of static

analysis is that no run-time overhead is incurred as is the case with other approaches

such as runtime monitoring.

The KeY tool supports both automated and interactive verification, and proofs can often

be constructed automatically by the built-in strategies based on configurable heuristics

and various predefined macros. KeY’s support for user interaction permits deductive

program verification with respect to expressive specifications, e.g., for more involved

proof obligations such as security properties. In general, the problem is undecidable

and verification sometimes requires some share of the rule applications to be decided

by user interaction. KeY is capable of verifying noninterference for Java programs and

covers a wide range of Java features (Beckert, Bruns, et al., 2013). With this toolkit,

powerful specification elements are given for proving noninterference, also allowing for

declassification.

Efficient noninterference proofs are supported using modularization via the design-by-

contract concept with an extension of the Java Modeling Language (JML). Such a contract

specifies the low program variables and locations for the initial and the final state of

the specified program part. The proof obligation hence requires the low elements in the

final state to depend at most on the low elements in the initial state. When using the

semantics for object isomorphisms, these contracts may also contain a list of fresh objects

to be included in the isomorphism.

28

2.4. Interactive Theorem Proving

2.4 Interactive Theorem Proving

All the formal techniques introduced above fall into the category of computer-assisted

theorem proving with some restrictions to either automate the task or reduce proof

complexity by specialized formal languages, mainly to reason about computer programs.

However, when we abstract away from computer programs, we require more expressive-

ness. As our formalisms and proof obligations become more expressive, this should also

apply to the proofs themselves, including the possibility of considerable interactions on

the proof itself that are similar to interactions when writing a program (Paulson, 1989).

For this purpose, we employ a general-purpose interactive theorem prover, often simply

called a generic proof assistant. Supplementary to rigorous proof calculi, a generic proof

assistant allows the user to express their own formal model as well as targeted deductive

rules and theorems on this model. With this high level of freedom, it becomes even more

important that the mechanism for checking proofs is rigorous and trusted, and provides

clear feedback to the user as well as flexible methods of proof interaction. Moreover,

proofs within generic proof assistants should provide a good level of readability for

humans so that the user does not lose focus and can guide the proof efficiently and

successfully.

The Isabelle/HOL Proof Assistant

The Isabelle/HOL system is an established generic proof assistant which provides a

generic infrastructure for implementing deductive systems in higher-order logic (HOL)

and enabling to write tactics for human-readable and machine-checked proofs to show

that the deductive conclusions are indeed correct (Nipkow, Paulson, and Wenzel, 2002).

Higher-order logic is a language for writing formal mathematics and allows defining

very expressive, rigorous, and general theorems. Isabelle comes with a small trusted

core of rules in HOL, as well as extensive machine-checked libraries of mathematical

theories with flexible and strong assistance for writing proofs. Proofs are mostly written

in the Isar language which allows addressing the deduction rules in a relatively natural

(to a mathematician) way, combined with many flexible and rigorous tactics that enable

reasoning with the theories. By this means, a theorem written in Isar is – once proven

correct within Isabelle – re-checked and confirmed by Isabelle/HOL within a few seconds

every time the theorem is loaded.

Moreover, Isabelle comprises many automated techniques, e.g., based on SMT solvers,

that aim to make the proof search as natural as possible. Besides proof writing and

checking, Isabelle also contains a functionality to translate mathematical functions into

verified executable software programs which are proven to be correct with respect to the

theories in Isabelle.

29

3
Preliminary Notions and Procedures

Asking software engineers about computerized voting:
#1—“That’s terrifying.”

“Wait, really?” #1—“Don’t trust voting software and

don’t listen to anyone who tells you it’s safe.”

“Why?” #1—“I don’t quite know how to put this, but

our entire field is bad at what we do, and if you rely

on us, everyone will die.”

“They say they’ve fixed it with something called
‘blockchain.’ ” #1—“Aaaaa!!!”

#2—“Whatever they sold you, don’t touch it.”

#1—“Bury it in the desert.”

#2—“Wear gloves.”

Randall Munroe, xkcd #2030, 2018

B
efore describing the main contributions of this thesis, i.e., how we instrument the

formal methods in Chapter 2 to devise the targeted formal methods in this thesis,

we need to first introduce some preliminary notions and procedures. In the following, we

start by a brief description of secure multi-party computation in Section 3.1 for a better

understanding of the contribution within Chapter 4. We then give the core concepts and

definitions of social choice functions in Section 3.2 that are necessary to understand the

three contributions within Part III. The third contribution in that part, i.e., the formal

method for margin computation in Chapter 7, furthermore requires some understanding

of risk-limiting audits and election margins, which we provide in Section 3.3. Finally, we

briefly define security notions under the umbrella of end-to-end verifiability (E2E-V) as

31

https://xkcd.com/2030

Chapter 3. Preliminary Notions and Procedures

well as software independence in Section 3.4, which are useful to understand the design

of the e-voting system which we analyzed within the case study presented in Chapter 8,

our fifth contribution.

The contents of Section 3.2 have been extracted from previously published works by

Diekhoff, Kirsten, and Krämer (2020), Kirsten and Cailloux (2018), Beckert, Bormer, Goré,

et al. (2017), and Beckert, Bormer, Kirsten, et al. (2016). Finally, the contents of Section 3.3

have been extracted from previously published works by Beckert, Kirsten, Klebanov,

et al. (2017) and Beckert, Bormer, Goré, et al. (2017).

3.1 Secure Multi-Party Computation

As described earlier in Section 1.2, security of the communication between the voters and

the ballot box is particularly interesting as it combines the need for multiple desirable

requirements that are naturally in conflict with each other. One cryptographic technique

which provides particularly strong security guarantees for this communication, given

at least semi-trusted election authorities and no particular assumptions on the election

method, is secure multi-party computation (W. Smith, 2004). Within multi-party compu-

tation that is based on zero-knowledge proof protocols, we assume a number of mutually

distrustful parties that each provide a shared secret which is never known by any other

individual party or collusive subset, which amounts at most to some given threshold

number. Their goal is to compute a common forward-flow Boolean circuit of logic gates,

that is publicly known, based on their (shared) secrets. Within the computation process,

all the intermediate logical states and the output bits are shared secrets together with the

individual secret input bits. Furthermore, the computation guarantees that any external

observer, who views the parties communicating with each other, can become convinced

that the computation and thus the final result is indeed correct, but does not learn any-

thing non-trivial about any of the secret bits. Regarding complexity, the computational

work as well as the total amount of communicated bits are polynomial with respect to

the amount of parties and logic gates involved, and the individual work is preferably

roughly the same for each party. Nonetheless, any subset of the parties that is larger than

the given threshold number is easily able to cooperate for deducing and revealing any

desired subset of the shared secrets, particularly the output bit (which is the common

case).

We have described the general technique of secure multi-party computation, which

provides both a correctness and a zero-knowledge guarantee. A noteworthy concretization

that enables secure multi-party computation is a mix network (also called mixnet). Mix

networks themselves do not perform the actual computation, but they hide the link

between voter and ballot in such a way that subsequently, the votes can be decrypted, and

32

3.2. Social Choice Functions

then counted to compute the election result on a bulletin board for public view and hence

seen by everybody to be correct (W. Smith, 2004). The primary operation within mix

networks is shuffling, originally performing a sequence of individual permutations on,

the ballots so that the ballots’ order is random, and every involved party can be confident

that the ballots are shuffled, but no party knows the actual shuffle-permutation(s). For

each shuffle-permutation, a zero-knowledge proof is produced as a guarantee that no

ballots are exchanged, removed, or added on the way. The described network allows

mixers to be mutually distrustful, as even if some parties may know some permutations,

nobody can know the final product permutation. For large elections, mix networks must

potentially perform a large amount of communication and computation, but they can

handle arbitrary ballot formats (D. Bernhard and Warinschi, 2014). Nonetheless, as the

actual vote counting is seen by everybody, secure mix networks require that individual

votes are anonymizable, i.e., filling out a ballot in a unique1 way is practically infeasible or

useless.

Regarding the specifics, but also besides mix networks, there are many concretizations for

the model of (secure) multi-party computation that may each differ in various ways. We

will see one particularly noteworthy concretization using physical objects in Chapter 4.

Moreover, in Chapter 8, we analyze an electronic voting system that uses a mix network.

3.2 Social Choice Functions

In the following, we summarize some core concepts and definitions from social choice

theory for a more refined goal of the corresponding contributions of this thesis. For an

in-depth overview, we refer the interested reader to two comprehensive books by Brandt,

Conitzer, et al. (2016) and Endriss (2017), as well as the seminal paper by Arrow (1951).

3.2.1 Voting Rules

We consider a fixed finite set A of eligible alternatives and a finite (possibly ordered) set

K of voters (with cardinality 𝑘). In an election, each voter 𝑖 casts a ballot ≿𝑖 ∈ L(A), which

is a linear order2, ranking the alternatives A according to 𝑖’s preferences. We collect all

votes in a (preference) profile, i.e., a sequence ≿ = (≿1 , . . . ,≿𝑘) of 𝑘 ballots. Given the set

L(A) of linear orders on A, L(A)𝑘 defines the set of all profiles on A of length 𝑘, i.e., for

all voters. Hence, we have L(A)+ = ⋃
𝑘∈ℕ+ L(A)𝑘 , the set of all finite, nonempty profiles

on A, i.e., the input domain for a voting rule. Voting rules (see Definition 3.1) elect a

1The discovering of a voter identity by the pattern of their ballot is sometimes called the Italian attack, after a

once prevalent practice in Sicily.

2A linear order is a transitive, complete, and antisymmetric relation.

33

Chapter 3. Preliminary Notions and Procedures

nonempty subset C(A) of the alternatives as (possibly tied) winners, given C(𝑋) denotes

the set of all nonempty subsets1 of a set 𝑋.

Definition 3.1 (Voting rule) Given a finite set of alternatives A, a voting rule f maps
each possible profile ≿∈ L(A)+ to a nonempty set of winning alternatives in C(A):

f : L(A)+ → C(A).

In practice and in literature, a multitude of different voting rules are in use. A common

example is the function that returns all alternatives that are ranked at first position by a

plurality of the voters, hence called plurality voting. Another common kind of voting rules

assigns values for every ballot to each alternative according to their position occupied on

the ballot, and elects the alternatives with the maximal score, i.e., the sum of all such

values for them. Such rules are called scoring rules, e.g., the Borda rule, where the value of

an alternative on a ballot is the amount of alternatives ranked below them on that ballot.

From this, we can define the three classical voting rules by Borda, Black, and Copeland

in the following.

Definition 3.2 (Borda rule) The Borda rule, given a profile (≿𝑖)𝑖∈𝑁 , associates to each
alternative 𝑎 and voter 𝑖 the score 𝑠(𝑎, 𝑖) equal to the amount of alternatives that 𝑎 beats
in ≿𝑖 , and associates to each alternative 𝑎 the score 𝑠′(𝑎) = ∑

𝑖∈𝑁 𝑠(𝑎, 𝑖). The winners are
the alternatives that have the maximal score: 𝑓Borda((≿𝑖)𝑖∈𝑁) = arg max𝑎∈A 𝑠′(𝑎).

Definition 3.3 (Black’s rule) The Black (1958, p. 66) rule selects the Condorcet winner
if there is one, otherwise, the Borda winners.

Given a profile 𝑅 = (≿𝑖)𝑖∈𝑁 , let 𝑀𝑅(𝑎) denote the set of alternatives against which 𝑎

obtains a strict majority, and 𝑀𝑅
−1(𝑎) the set of alternatives that obtain a strict majority

against 𝑎.

Definition 3.4 (Copeland rule) The Copeland (1951) rule (actually a close variant of a
rule proposed by Ramon Llull in the 13th century (Colomer, 2013)), given a profile 𝑅,
gives to each alternative the score 𝑠(𝑎) = |𝑀𝑅(𝑎)| − |𝑀𝑅

−1(𝑎)|, and lets the alternatives
with maximal score win.

1In contrast, the power set P(𝑋) also includes the empty set, but is otherwise identical to C(𝑋).

34

3.2. Social Choice Functions

3.2.2 Social Choice Properties

Within social choice theory, the axiomatic method has established a number of general

fairness and reliability properties called (axiomatic) social choice properties. They formally

capture intuitively desirable or in other ways useful properties to compare, evaluate,

or characterize voting rules. Such properties are applicable in a general way, as they

are defined on abstract voting rules only with respect to profiles and returned sets of

winning alternatives. For the sake of simplicity, the examples illustrated in the following

only address properties of universal nature, i.e., they require that all mappings of a

given voting rule belong to some set of admissible ways, as formally described by the

property of interest, for associating sets of winners to profiles. Besides properties which

functionally limit the possible sets of winning alternatives for any one given profile,

properties may also relationally limit combinations (of finite arity) of mappings, e.g.,

certain (hypothetical) changes of a profile may only lead to certain changes of the winning

alternatives. Relational properties capture a voter’s considerations, such as how certain

ways of (not) filling out their ballot may or may not affect the chances of winning for

some alternatives.

In the following, we introduce Condorcet consistency and monotonicity as they serve as

running examples later on. Note here that the three previously defined voting rules

Borda, Black, and Copeland, all comply to Condorcet consistency. The functional property

Condorcet consistency (see Definition 3.6) requires that if there is an alternative 𝑤 that is

the Condorcet winner (see Definition 3.5), the rule elects 𝑤 as unique winner. A Condorcet

winner is an alternative that wins every pairwise majority comparison against all other

alternatives, i.e., for any other alternative, there is a majority of voters who rank the

Condorcet winner higher than that alternative.

Definition 3.5 (Condorcet winner) For a set of alternatives A and a profile ≿ ∈ L(A)+,
an alternative 𝑤 ∈ A is a Condorcet winner if and only if the following holds:

∀𝑎 ∈ A \ {𝑤} : |{𝑖 ∈ K : 𝑎 ≿𝑖 𝑤}| < |{𝑖 ∈ K : 𝑤 ≿𝑖 𝑎}|.

Note that, if a Condorcet winner exists, it is unique by the above definition.

Definition 3.6 (Condorcet consistency) For a set of alternatives A, a voting rule f is
Condorcet consistent if and only if for every profile ≿ ∈ L(A)+ and (if existing) the
respective Condorcet winner 𝑤 ∈ A, the following holds:

𝑤 is Condorcet winner for ≿ ⇒ f(≿) = {𝑤}.

Note here that for profiles for which no Condorcet winner exists, the property imposes no

requirements on the election outcome. The relational property monotonicity expresses that

35

Chapter 3. Preliminary Notions and Procedures

if a voter were to change their vote in favor of some other alternative, the outcome could

never change to the disadvantage of that alternative. Monotone voting rules are resistant to

some forms of strategic manipulation, where a voter could make their preferred alternative

the (unique) winner by misrepresenting their actual preferences and assigning a higher

rank to another alternative on their ballot. A voting rule is monotone (see Definition 3.8)

if and only if for any two profiles ≿ and ≿′ which are identical except for one alternative

𝑎 that is ranked higher in ≿′ (while preserving all remaining pairwise-relative rankings),

the election of 𝑎 for ≿ always implies their election for ≿′. We define this “ranking higher”

as lifting an alternative (see Definition 3.7).

Definition 3.7 (Lifting) For a set of alternatives A and two profiles ≿,≿′ ∈ L(𝐴)𝑘 , ≿′ is
obtained from ≿ by lifting an alternative 𝑎 ∈ A if and only if there exists a ballot 𝑖 ∈ [1, 𝑘]
such that ≿𝑖≠≿′𝑖 and for each such 𝑖 the following holds:

i. There exists some alternative 𝑥 ∈ A such that 𝑥 ≿𝑖 𝑎 and 𝑎 ≿′
𝑖
𝑥, and

ii. we have 𝑦 ≿𝑖 𝑧 ⇔ 𝑦 ≿′
𝑖
𝑧 for all other alternatives 𝑦, 𝑧 ∈ A \ {𝑎}.

We may thus define the monotonicity property as follows.

Definition 3.8 (Monotonicity) For a set of alternatives A and an alternative 𝑎 ∈ A, a
voting rule f is monotone if and only if for all profiles ≿,≿′ ∈ L(A)+ where ≿′ is obtained
from lifting 𝑎 in ≿, the following implication holds:

𝑎 ∈ f(≿) ⇒ 𝑎 ∈ f(≿′).

3.2.3 Seat Apportionment Methods

In the event of electing multiple representatives instead of a single winner (or a tie

between some of them), e.g., for a parliament, the above terms must be adapted. Such

procedures are commonly denoted as seat apportionment methods. Supplementary to the

above desiderata, seat apportionment methods are commonly required to elect a suffi-

ciently proportional selection of winners. For a comparison of different seat apportionment

methods, we refer the interested reader to the work by Gallagher (1991), who compares

various such methods on the basis of different kinds of measures to reflect their degrees

of proportionality.

One example of a method for seat apportionment that is widely-used, e.g., on various

political levels in Europe, is the D’Hondt or Saint-Laguë method (Stark and Teague,

2014). The D’Hondt method is a divisor method, i.e., tabulated votes are divided by a

given divisor and rounded in a particular manner, and is applied after vote counting and

36

3.2. Social Choice Functions

tabulation sorts the votes into stacks where each stack contains votes for a single political

party. The input then is the amount of votes for each party, i.e., the amount of votes in the

corresponding stack. The D’Hondt method proportionally allocates mandates to parties

in such a way that the amount of votes represented by mandates is maximized, i.e., the

votes-per-seats ratio – intuitively the price in amount of votes to be paid by a party to get

one seat – is chosen as high as possible while still allocating all seats in parliament. By

this means, D’Hondt achieves an – as far as possible – proportional representation in

parliament (Gallagher, 1991).

D’Hondt can be implemented as a highest-averages method in the following way: The

amount of votes for each party is divided successively by a series of divisors, which

produces a table of quotients (or averages). In that table, there is a row for each divisor

and a column for each party. For the D’Hondt method, these divisors are the natural

numbers 1, 2, . . . , 𝑚, where 𝑚 is the total amount of mandates to be distributed. Then,

the greatest numbers in the quotient table – respectively the parties in whose columns

these numbers are – are each allocated one seat. The “final” seat goes to the 𝑚’th greatest

number. Hence, the threshold level of the votes-per-seats-ratio lies in the interval between

the 𝑚’th greatest number and the (𝑚 + 1)’st greatest number of all computed averages in

the quotient table.

Alternatively, the D’Hondt method can also, equivalently, be described without a quotient

table. Instead, a quota is chosen, i.e., an amount of votes needed to “buy” one mandate,

such that the resulting mandates per party, when rounded down to the next natural

number, sum up to the required total amount of mandates. This is known as Jefferson’s

method and is similar to largest-remainder methods such as the Hare-Niemeyer method.

The quota corresponds to the lowest quotient in the D’Hondt table for which a mandate

is allocated.

Yet, there are many more methods of seat apportionment. We refer the interested reader

to Pukelsheim (2017) and Balinski and H. Peyton Young (2010) for a detailed overview.

37

Chapter 3. Preliminary Notions and Procedures

3.3 Risk-Limiting Audits and Dependable Evidence

A risk-limiting audit is a statistical method to create confidence in the correctness of

an election result by checking samples of paper ballots. Lindeman and Stark (2012)

distinguish ballot-polling audits, where they draw a carefully chosen random sample of

ballots to check whether the sample gives sufficiently strong evidence for the correctness of

the published election result. In contrast, a comparison audit checks the ballot interpretation

for a random sample during the audit against the ballot’s respective interpretation in a

vote-tabulation system.

Both auditing techniques, ballot-polling and comparison audits, rely on the availability

of the ballot manifest which describes in detail how the ballots are organized and stored,

including how many stacks there are and how many ballots can be found in each stack.

This information is needed for drawing the sample. In addition, we need to know what

the election margin is, i.e., the amount of votes that would need to be changed in order to

change the election outcome. This is also the amount of votes that would have had to be

miscounted or tampered with in order to change the election outcome. If the election

margin is large, only a small ballot sample needs to be audited. If it is small, the required

sample size increases.

We assume that the election function that we consider satisfies the anonymity property,

i.e., identical ballots have the same effect on the election outcome. Then, for a given

election with TOTAL votes, during the counting process, the votes are accumulated into

stacks 𝑆1 , . . . , 𝑆𝑘 , where each stack holds 𝑝𝑖 identical votes (𝑝𝑖 ≥ 0 is the size of 𝑆𝑖) and

TOTAL =
∑

𝑖 𝑝𝑖 . This allows us to use ⟨𝑝1 , . . . , 𝑝𝑘⟩ as input to the election function. In the

following, we assume that each stack is associated with a political party and that PARTIES

is the total amount of running parties, i.e., 𝑘 = PARTIES (there can also be stacks for special

cases such as invalid votes, which we would treat equivalently to parties in the following).

We call ⟨𝑝1 , . . . , 𝑝𝑘⟩ the vote table for the election. The election margin is the smallest

amount of votes that need to be put on stacks different from where they are in order to

change the outcome of the election.

Definition 3.9 (Election margin) The election margin for an election function f and a vote
table ⟨𝑝1 , . . . , 𝑝𝑘⟩ is the smallest number MARGIN such that there is a vote table ⟨𝑝′1 , . . . , 𝑝′𝑘⟩
with

f(⟨𝑝1 , . . . , 𝑝𝑘⟩) ≠ f(⟨𝑝′1 , . . . , 𝑝′𝑘⟩)

and

1. MARGIN =
∑𝑘

𝑖=1 𝑑𝑖 where 𝑑𝑖 = 𝑝′
𝑖
− 𝑝𝑖 if 𝑝′

𝑖
> 𝑝𝑖 and 𝑑𝑖 = 0 otherwise.

2.
∑𝑘

𝑖=1 𝑝
′
𝑖
− 𝑝𝑖 = 0

38

3.3. Risk-Limiting Audits and Dependable Evidence

The first condition in the above definition ensures that the total amount of votes that are

moved between stacks is of size MARGIN. Furthermore, the second condition ensures that

votes are moved from one stack to another and are not created or removed.

Besides the (global) margin defined above, more specialized audits might require other

margins than the ones defined in Definition 3.9, i.e., which are defined by different types

of changes in the vote table or by particular effects on the election result. For example, one

may compute the margin for increasing the amount of mandates allocated to a particular

party.

Instead of distinguishing between different types, in the following we focus on two-vote

overstatements of the margin, as these are suitable for a variety of election functions. An

audited ballot is a two-vote overstatement if it witnesses simultaneously two mistakes,

namely that it was counted wrongly towards someone who won, while it should have been

counted towards someone who lost. In contrast, a one-vote overstatement refers to a ballot

that was erroneously not counted towards the loser, but neither was it counted towards

the winner. For the purposes of this thesis, both one-vote and two-vote overstatements

are counted as one change in the vote tabulation. However, this can be extended to

distinguish between the two types of error, but we want our approach to be general

and the distinction between one-vote and two-vote overstatements does not exist for all

election functions (e.g., approval voting).

Next, we review the statistics underlying margin-based risk-limiting audits following

Stark (2010). Risk-limiting audits are performed in stages. At every stage, the theory

requires that we audit at least 𝑛 = 𝜌/� ballots, which is also called the sample size. The

value 𝜌 is called the sample-size multiplier and defined below. Each ballot is randomly

chosen among all the ballots, and the audit verifies that they were each counted for

the correct stack 𝑆𝑖 . The fraction � refers to the diluted margin, i.e., the percentage of

votes that would have to be changed to change the election outcome. It is computed as

� = MARGIN/TOTAL, where MARGIN is the election margin (Definition 3.9), and TOTAL is the total

amount of ballots cast.

Before the audit can start, a set of auditing parameters needs to be determined, which

allows us to calculate the size of the sample to be drawn. The auditing parameters include

• the risk limit 𝛼, which determines the largest chance that an incorrect outcome will

not be corrected by the audit (if we want to be 99% sure that the election outcome

is correct, then we choose 𝛼 = 0.01);

• the error inflation factor 𝛾, which controls the tradeoff between initial sample size

and the additional counting required if the audit finds too many errors;

39

Chapter 3. Preliminary Notions and Procedures

• and lastly the tolerance factor �, which describes the tolerance towards errors; it

is the amount of detected errors that is tolerated, expressed as a fraction of the

election margin (i.e., � = 0.1 means that 5 errors are tolerated when MARGIN = 50).

Finally, we have everything in place needed to define the sample-size multiplier 𝜌, which

only needs to be computed once for each audit, as follows:

𝜌 =
− log 𝛼

1
2𝛾 + � log(1 − 1

2𝛾)
.

In summary, the auditing process as described by Stark (2010) adheres to the following

steps:

First, the auditor commits values for 𝛼, 𝛾, and � and computes the value 𝜌 as shown

above. Then, the diluted margin � is computed, which explicitly depends on the election

margin MARGIN. Next, the real audit commences by drawing the sample of size 𝑛 = 𝜌/�
at random. If the audit encounters too many errors (more than � ∗ MARGIN), a new stage

is triggered, with a sample size that is increased by the factor 𝛾; otherwise the audit is

successfully concluded. In the worst case, the technique proceeds to a full hand-count

when the sample size exceeds TOTAL. For a more detailed description on how to compute

how much the sample must grow from stage to stage, consult Stark (2010).

In all of this, the true challenge is to compute the correct election margin. Different

election functions require different margin computations, and for many, an algorithm to

compute the margin is unknown.

3.4 End-To-End Verifiability and Software Independence

While we have described in Section 3.1 how to do secure voting using shared secrets, this

becomes quickly impractical for real-world elections with more than a handful of voters.

With complex systems and many stakeholders, it also gets more demanding for the indi-

viduals, e.g., the voters, to convince themselves that the election is carried out as expected.

For this matter, common security notions are concerned to provide convincing evidence

as built-in functionality, e.g., the notion end-to-end verifiability (E2E-V) denotes that each

individual voter can themselves monitor the integrity of the election (M. Bernhard et al.,

2017). From one end to the other, this comprises that voters can independently verify

(a) that their votes are correctly recorded (cast as intended), (b) that the representation of

their vote is correctly collected in the tally (collected as cast), and (c) that every well-formed

and collected vote is correctly included in the tally (tallied as collected).

E2E-V requires furthermore that it is possible to check the list of those voters who cast

ballots, such that no ballot-box stuffing can occur, i.e., no additional votes are added to the

40

3.4. End-To-End Verifiability and Software Independence

collection (eligibility verifiability). The first two monitoring mechanisms are also commonly

classified as individual verifiability since an individual voter can verify their own vote,

and the third one as universal verifiability since the collection of votes can be verified as a

whole.

Oftentimes when talking about verifiability notions in voting systems, also the term ac-

countability comes up, since it is based on verifiability mechanisms. For example, collection

accountability denotes that, once a voter detects that their vote has not been collected as

cast or intended within the vote!castingvote-casting protocol, they obtain evidence that is

convincing to an independent party in order to demonstrate that their vote has not been

correctly collected. Yet, when aiming to provide accountability, there is a likely tradeoff

with the confidentiality requirement of non-coercibility or coercion resistance, since the

voter might be forced to present the obtained evidence as a convincing argument to a

(malicious) coercer.

Another popular requirement directly concerns the mechanisms that provide the guar-

antees of individual, universal, and eligibility verifiability, namely the notion of software

independence (Rivest, 2008). While this term concerns not only monitoring, but also au-

diting mechanisms, it is of particular cryptographic interest for the various notions of

verifiability. Software independence requires for a voting system that undetected changes

or errors in its software cannot lead to undetectable changes or errors in the election

outcome. Once this further requirement is met, the monitoring mechanisms become fully

reliable without the need to inspect the software. However, it can also be argued that this

requirement only shifts the blame from the voting system to the monitoring mechanisms,

which are commonly also implemented as software. An even stronger form of software

independence is the notion of strong software independence, wherein any detected change

or error in the election outcome that is caused by the software can be corrected without

rerunning the election. Hence, if this requirement is met additionally to (regular) software

, the voting software has a means to recover, e.g., by requiring some other trail of evidence

such as a paper trail that can then be used instead of the – potentially buggy – software.

Finally, it should be mentioned, that a verifiable voting system does not automatically

verify that it has not been tampered with. Generally, this requires also that (a) enough

voters and observers must make use of the verification mechanisms and carefully check

their verification result, (b) random audits (e.g., triggered by a voter complaint) must

be sufficiently extensive and unpredictable such that critical changes or errors are likely

to get detected, and (c) any failed check must be reported to the election authorities

who then must take appropriate action, e.g., for a strongly software-independent voting

system to recover the system. However, these requirements reach into the human layer in

the sense that, e.g., the verifiability mechanisms must be sufficiently usable and available.

41

Democracy is best seen as the opportunity of

participatory reasoning and public decision

making - as “government by discussion.” Vot-

ing and balloting are, in this perspective, just

part of a much larger story.

Amartya Sen, The Diverse Ancestry of

Democracy, 2005

Part II

Secure Voter-Ballot Box
Communication Channels

4
Generation of Secure Card-Based

Communication Schemes

Lots of people working in cryptography have no

deep concern with real application issues. They are

trying to discover things clever enough to write

papers about.

Whitfield Diffie, Foreword to Crypto 101, 2017

B
esides the many challenges that come with the development of voting systems for

multiple different stakeholders and different voting channels, reliability and security

are already non-trivial when voting at a smaller scale. In the following, we consider the

smallest scale where we can still speak of voting, namely for two voters and a simple

yes/no-decision where unanimous approval is required. We also assume no incentive to

scrutinize the result on either side, but possibly to hide the individual votes to the other

voter.

For a simple example, take a decision where the individual vote might be embarrassing in

the event that the other voter does not vote similarly, e.g., the so-called “dating problem”.

The dating problem targets the scenario where two people are on their first date together

and would like to find out whether to have a second date thereafter. The problem hence is

the following: In case only one of them likes to meet again, it might be an uncomfortable

embarrassment for any of them to reveal their choice to the other person or to learn about

the other person’s choice, since – in this case – the preference is not mutual. Ideally, they

are interested in a discreet procedure that outputs “yes” if both share the mutual interest

to have a second date, and “no” otherwise, with no more information being revealed. In

45

Chapter 4. Generation of Secure Card-Based Communication Schemes

cryptography, this is called a secure multi-party computation (MPC), i.e., the act of jointly

computing a function while not revealing more information about each individual input

than absolutely necessary (Section 3.1). For the dating problem from above, we further

assume that the two people do not want to share their individual choices with anybody

else, also not a possibly corrupted computer. Fortunately, MPC can be already done with

simple physical objects, e.g., a (regular) deck of playing cards where the cards have

indistinguishable backs (which is commonly available). Card-based MPC is reasonably

simple and practicable, and it can be explained to non-experts – as no special knowledge

is required – and there is a bridge to reality (the cards).

Within this chapter, we consider card-based cryptographic protocols that perform a

multi-party computation for the AND function of two bits using only the two standard

card operations turn and shuffle. When combined with protocols for performing NOT and

COPY functions, such simple card-based AND protocols can be used to compute arbitrary

Boolean functions, e.g., also for any finite amount of voters who want to elect one of

two alternatives (Mizuki, Asiedu, and Sone, 2013). The contribution consists in a formal

method that automatically generates card-based AND protocols, that are secure and

correct, for as few as possible card operations and a minimal amount of cards. Our

method is flexibly adaptable to a variety of card-based protocols and desired restrictions,

and may thus support or complement the cumbersome and error-prone task of finding

such protocols or proving their non-existence by hand. We apply our method both to

a setting where all cards carry distinct symbols, i.e., a standard deck, and to the more

general setting where we only distinguish two symbols, e.g., the two colors ♣ and ♡, i.e.,

essentially a two-color deck. Finally, we also use our method to reduce computational

complexity by computing the maximal size of necessary permutation sets for the shuffle

operations as, e.g., for the two-color deck setting, the amount of possible distinguishable

card sequences for a given protocol state is potentially significantly smaller than the

amount of possible permutations on the card deck.

Our method exploits the observation that all findings in the literature employ only

protocols with runs of comparatively small length using only a few cards. Our hypothesis

is that we may always find some number 𝑛 which is greater than or equal to the length of

any run-minimal card protocol. For this scenario, we base our method on the automatic

off-the-shelf technique of software bounded model checking (SBMC) (Section 2.2). Thereby,

given such a bound 𝑛, we can encode the task into a decidable set of logical equations,

which can then be solved by a SAT or an SMT solver. Based on SBMC, our method hence,

given the desired numbers for amount of cards and protocol length, either constructs

such a protocol if and only if one exists, or otherwise proves the underlying SAT formula

to be unsatisfiable, i.e., shows that no such protocol exists.

The content of this chapter has been previously published by Koch, Schrempp, and

Kirsten (2021) and Koch, Schrempp, and Kirsten (2019).

46

4.1. Card-Based Cryptographic Schemes

4.1 Card-Based Cryptographic Schemes

Card-based cryptography tries to find protocols, e.g., for the above-mentioned AND func-

tionality, which are card-minimal, simple and practicable. For simplicity, many protocols

in card-based cryptography work with specially constructed decks, e.g., of only the two

symbols ♣ and ♡. This is easy for explanation, and there are nice and easily describable

protocols, such as the five-card trick by den Boer (1989) and the six-card AND protocol

by Mizuki and Sone (2009). The feasibility of card-based cryptographic MPC is due to

den Boer (1989), Crépeau and Kilian (1993), and Niemi and Renvall (1998), with a formal

model given by Mizuki and Shizuya (2014). Other works looking at standard decks are

by Niemi and Renvall (1999) and Mizuki (2016), and other works that provide lower

bound are given by Koch, Walzer, and Härtel (2015), Kastner et al. (2017), and Koch (2018)

for the two-color deck setting. A card-minimal protocol for this setting that uses only

practicable (i.e., uniform closed) shuffles is given by Abe et al. (2018).

4.1.1 A Simple Protocol with Five Cards

In order to get a feeling for how such card-based protocols work, let us introduce the

prominent five-card protocol by Niemi and Renvall (1999). The protocol uses five cards

with distinguishable symbols, which we denote – for simplicity – as 1 2 3 4 and 5 .

It is essential that the cards’ backs are indistinguishable, such that when they are put

face-down on the table, the only thing observable is . With these cards, each

of the two players can encode a commitment to a bit (yes or no) by the order of two cards

𝑖 𝑗 , 𝑖 , 𝑗 ∈ {1, . . . , 5} (with 𝑖 ≠ 𝑗) via the encoding

𝑖 𝑗 =̂

{
0, if 𝑖 < 𝑗 ,

1, if 𝑖 > 𝑗.

Player one inputs their bit by putting the cards 1 2 face-down and in the respective

order on the table (they put 1 2 for input 0, and 2 1 for input 1), while player two does

the same using their cards 3 4 . We furthermore need an additional helper card, for this

matter a 5 , which is put to the left of the two players’ cards.

The protocol starts by swapping the first player’s second card with the second player’s

first card in the card sequence (pile) on the table. In the resulting card configuration, the

order of the cards 1 and 4 in this sequence encodes the output of the protocol we are

interested in, i.e., it reads 4 1 if the output is 1, and 1 4 otherwise. Hence, by securely

removing the cards 2 and 3 (which is explained below), one directly obtains the desired

output. We see this by inspecting all possible cases as shown in the table below:

47

Chapter 4. Generation of Secure Card-Based Communication Schemes

Bits Input sequence After swap Removing 2 + 3

(0, 0) 5 1 2 3 4 5 1 3 2 4 5 1 x x 4

(0, 1) 5 1 2 4 3 5 1 4 2 3 5 1 4 x x

(1, 0) 5 2 1 3 4 5 2 3 1 4 5 x x 1 4

(1, 1) 5 2 1 4 3 5 2 4 1 3 5 x 4 1 x

We can remove the cards 2 and 3 , while keeping the relative order of all cards in the

sequence intact, by cutting the cards, i.e., rotating the sequence by a random offset which

is unknown to the players. We can then securely turn the first card and remove it in case

it is a 2 or a 3 . Due to the cut, the turned card is random and hence does not reveal

anything about the inputs. When both cards are removed, we reach a configuration where

5 is the first card by the same procedure, where the two remaining cards encode the

AND result. Here, the 5 plays the crucial role of a separator that keeps the relative order

of the remaining cards – starting from the separator – intact, when doing a random!cut.

For a pseudocode description, see Algorithm 4.1.

Algorithm 4.1 Five-card AND protocol by Niemi and Renvall (1999). The first bit is in

basis {1, 2}, the second in basis {3, 4}, and the output basis is {1, 4}.
1: (perm, (3 4))
2: repeat
3: (shuffle, ⟨(1 2 3 4 5)⟩)
4: 𝑣 := (turn, {1})
5: until 𝑣 = 2 or 𝑣 = 3
6: repeat
7: (shuffle, ⟨(2 3 4 5)⟩)
8: 𝑣 := (turn, {2})
9: until 𝑣 = 2 or 𝑣 = 3

10: repeat
11: (shuffle, ⟨(3 4 5)⟩)
12: 𝑣 := (turn, {3})
13: until 𝑣 = 5
14: (result, 4, 5)

As Niemi and Renvall state, the protocol’s running time in the amount of shuffle steps

is calculated as follows: The protocol starts with a shuffle that is then repeated with

probability 3/5. The second loop contains a shuffle that is repeated with a probability

of 3/4. The shuffle in the final loop is hence repeated with probability 2/3. In total, the

expected running time is 3 +∑∞𝑛=1
(3

5

)𝑛 +∑∞𝑛=1
(3

4

)𝑛 +∑∞𝑛=1
(2

3

)𝑛
= 3 + 1.5 + 3 + 2 = 9.5.

However, the last loop is actually neither required for correctness nor for security, and we

48

4.1. Card-Based Cryptographic Schemes

can directly determine the result when we look at the position of the 5 . Therefore, when

we omit the last loop, we have an expected amount of 3 + 1.5 + 3 = 7.5 shuffle steps.

4.1.2 General Card-Based Protocols

In the following, we introduce the general model for card-based protocols with some

basic required notions.

Basic Notions. Formally, a deck D of cards is a multiset over a (deck) alphabet or a symbol

set Σ. We denote multisets by ⟦·⟧, e.g., ⟦♡,♡, ♣, ♣⟧ is a deck over {♡, ♣}, and ⟦1, . . . , 𝑛⟧,
𝑛 ∈ ℕ, where each symbol occurs exactly once, is a deck over ⟦1, . . . , 𝑛⟧, 𝑛 ∈ ℕ. We call

the former ones two-color decks and, following Mizuki (2016), the latter ones standard decks,

because decks of common card games are a good representation of such formal decks.

A card that is lying on a table (as usual in card-based protocols) always has exactly one of

two orientations, either face-up (showing the symbol of the card), or face-down. A special

back symbol ‘?’ that is not part of Σ represents what is visible for a card that is turned

face-down. We hence describe a card lying on the table by a fraction symbol
𝑎
𝑏
, where exactly

one of 𝑎 and 𝑏 has the value ‘?’, and the other has a symbol from Σ. Here, 𝑎 represents

the part that is visible from the card when it lies on the table, hence
𝑎
𝑏

is a face-down

card if we have 𝑎 = ?, and a face-up card if 𝑎 ∈ Σ holds. As card-based protocols usually

involve some turning-over of the cards, the
𝑎
𝑏
-status will likely change during the course

of a protocol, causing the numerator and denominator to be swapped.

Card-based protocols proceed on sequences of cards (𝛼1 , . . . , 𝛼 |D|) where all cards from

the deck D are lying on the table as described in the given order. Taking the “visible”

numerators of all cards in the given order then yields the visible sequence. For example, the

sequence (?
♡ ,

?
♡ ,
♣
? ,

?
♣) yields the visible sequence of (?, ?, ♣, ?). The sequence trace of a finite

protocol run, and analogously its visible sequence trace, is then the sequence of all card

sequences and visible sequences, respectively, as they occur during the run. We denote

the set of sequences on deck D by SeqD
. Following Kastner et al. (2017), no computational

power is gained by leaving cards face-up after the respective turn operation, and we

safely assume that any face-down cards that are turned over during a step in the protocol

are directly turned back after learning its symbol. We denote the (face-down) sequence

of only the card symbols ((♡,♡, ♣, ♣) in the example above) by the shorthand symbol

sequence. Moreover, we assume a linear order on the card symbols in Σ, which is needed

when encoding a bit. Without any loss of generality, we take here the usual order on ℕ

for standard decks, and ♣ < ♡ for simple two-color decks.

49

Chapter 4. Generation of Secure Card-Based Communication Schemes

As in the example before, two face-down cards with distinct symbols 𝑠1 , 𝑠2 ∈ Σ then

encode a bit via the same rule:

𝑠1 𝑠2 =̂

{
0, if 𝑠1 < 𝑠2 ,

1, if 𝑠1 > 𝑠2.

Card-based protocols proceed essentially by two actions on the sequence or pile of cards:

(1) We introduce uncertainty (about which card is which) by shuffling them in an arbitrary

or a certain controlled way, e.g., by cutting the cards in a quick succession, such that the

players do not know which card ended up at which position in the card sequence (or pile).

Formally, a (uniform) shuffle is specified by a permutation!set, from which one element is

drawn uniformly at random and applied to the cards, without the players learning which

one it was. (2) Secondly, we may turn over cards and publicly learn their symbol, such

that we may act on the basis of this information. Moreover, we may deterministically

permute the cards.

A protocol computes a Boolean function 𝑓 : {0, 1}2 → {0, 1} if the possible start sequences,

corresponding to the players’ inputs 𝑏 ∈ {0, 1}2, do encode these inputs as described

above, and the cards that are declared to contain the output value upon termination of

the protocol do encode the output value 𝑜 = 𝑓 (𝑏) for each respective input 𝑏 ∈ {0, 1}2 as

described above.

Permutations and Groups. We now introduce more notation for the permutations that

happen within such protocols, in order to formalize their computational model such

that the security notions we are interested in can be readily expressed in a precise and

compact manner within Section 4.2. Let 𝑆𝑛 denote the symmetric group on {1, . . . , 𝑛}. For

the elements 𝑥1 , . . . , 𝑥𝑘 ∈ {1, . . . , 𝑛}, the cycle (𝑥1 𝑥2 . . . 𝑥𝑘) is the cyclic permutation 𝜋
with 𝜋(𝑥𝑖) = 𝑥𝑖+1 for 1 ≤ 𝑖 < 𝑘, 𝜋(𝑥𝑘) = 𝑥1 and 𝜋(𝑥) = 𝑥 for all 𝑥 not occurring in the

cycle. Every permutation can be written as a composition of pairwise disjoint cycles, e.g.,

(1 3 2)(4 5)maps 1 ↦→ 3, 3 ↦→ 2, 2 ↦→ 1, 4 ↦→ 5, and 5 ↦→ 4. The identity permutation is

denoted as id. Given the permutations 𝜋1 , . . . ,𝜋𝑘 ∈ 𝑆𝑛 , the groups that are generated by

𝜋1 , . . . ,𝜋𝑘 are denoted as ⟨𝜋1 , . . . ,𝜋𝑘⟩. A shuffle is a random cut if its permutation set is

the group ⟨𝜋⟩ = {𝜋0 , . . . ,𝜋𝑙−1} that is generated by a single cyclic permutation element 𝜋,

i.e., (𝑥1 𝑥2 . . . 𝑥𝑙). Furthermore, a shuffle is a random bisection cut if its permutation set is

generated by the composition of pairwise disjoint cycles of length 2. Finally, an 𝑆𝑘-shuffle

is a shuffle where the symmetric group 𝑆𝑘 is the permutation set.

50

4.2. Computational Model and Security Notions

4.2 Computational Model and Security Notions

While the sequence traces and notions above already fully capture the functionality and

correctness of card-based protocols, the analysis and definition of their security both

require a more involved model that additionally allows to distinguish different situations

that are simultaneously reachable from a given (card) situation. For this matter, the follow-

ing Section 4.2.1 describes the KWH trees as defined by Koch, Walzer, and Härtel (2015),

and shown to be equivalent to the computational model by Mizuki and Shizuya (2014)

and Mizuki and Shizuya (2017) in the work by Kastner et al. (2017). KWH trees compactly

illustrate the tree of all reachable card situations with their respective probabilities. We

then formalize their security notions in Section 4.2.2.

4.2.1 Computational Model and Protocol State Tree Representation

Let us first describe what a state during a run of a card-based protocol is. We start by

an exemplary start state in Figure 4.1 of a protocol in the very beginning, i.e., after the

players have put their cards that encode their inputs on the table.

12 34 𝑋00

12 43 𝑋01

21 34 𝑋10

21 43 𝑋11

Figure 4.1: The start state.

For the sake of compactness, we only write symbol sequences instead of full card se-

quences. Each line in the state depicted by the box above describes a card sequence that

is possible at this point in time in the protocol, together with a certain type of polynomial

in the variables 𝑋00 , 𝑋01 , 𝑋10 , 𝑋11. For example, the first line of the state can be read as

“the sequence (?1 , ?
2 ,

?
3 ,

?
4) lies on the table with the symbolic probability 𝑋00”. Here, 𝑋00

is a symbolic variable, and not a concrete value, that holds the probability value that

(0, 0) is the input of the protocol. Note that for the depicted state, we do not have any

information about the four probability values, as the input distribution can be arbitrary.

As described earlier, we see here that 12 and 34 encode 0, e.g., as shown in the first line

for the input (0, 0) (hence the name 𝑋00 for the probability variable). Moreover, the order

of the rows is of no significance.

We capture the formal notion of a state by the following definition:

Definition 4.1 (State in a KWH tree) Let D be a deck of a protocol P that computes a
Boolean function 𝑓 : {0, 1}2 → {0, 1}. A state � in P is a map � : SeqD → 𝕏2, where 𝕏2

of the form
∑

𝑏∈{0,1}2 𝛽𝑏𝑋𝑏 denotes the polynomials over the variables 𝑋𝑏 for 𝑏 ∈ {0, 1}2,

51

Chapter 4. Generation of Secure Card-Based Communication Schemes

1234 𝑋00 + 𝑋01

1243 𝑋10

2134 𝑋11

1234 1/2(𝑋00 + 𝑋01 + 𝑋10)
1243 1/2(𝑋00 + 𝑋01 + 𝑋10)
2134 1/2𝑋11

2143 1/2𝑋11

(shuffle, {id, (3 4)})

𝑠1 �(𝑠1)
...

...

𝑠ℓ �(𝑠ℓ)

𝑠′1
1/|Π|∑𝜋∈Π �(𝜋−1(𝑠′1))

...
...

𝑠′
𝑘

1/|Π|∑𝜋∈Π �(𝜋−1(𝑠′
𝑘
))

(shuffle,Π)

Figure 4.2: A shuffle operation, given by example (left), and the general action (right).

𝛽𝑏 ∈ [0, 1] ⊂ ℝ. Therein, �(𝑠) (𝑠 ∈ SeqD) is interpreted as the probability, in terms of the
symbolic probabilities on the inputs, that 𝑠 is the actual sequence on the table.

Such illustrative boxes are depictions of such a (state) map, where we only include exactly

those sequences 𝑠 ∈ SeqD
that have a non-zero probability. We annotate each such

sequence 𝑠 to their right with the polynomial �(𝑠).

Every standard-deck protocol starts by a state as in Figure 4.1, but we possibly add further

cards (5 , 6 , . . .) if a sequence extends further to the right of the players’ bits. The state

tree of a protocol is then a directed tree where the nodes are states as above, where

annotations at the outgoing edges of each state specify the action, i.e., card operation, that

is performed next. With the state � that has outgoing annotations, the possible actions

are defined as in the following enumeration:

1. (shuffle,Π) leads to �′ as in Figure 4.2 for the permutation set Π ⊆ 𝑆|D|.

2. (turn, 𝑇)branches the tree into 𝑛 states�𝑣 for each observation 𝑣 possible by revealing

the cards at positions from the set 𝑇 ⊆ {1, . . . , |D|}, as in Figure 4.3. Therein, �𝑣

contains the sequences from � which are compatible with the observation 𝑣. For

each sequence 𝑠 compatible with 𝑣, we have�𝑣(𝑠) ≔ �(𝑠)/Pr[𝑣], where Pr[𝑣] ∈ (0, 1]
is the probability of observing 𝑣. As motivated above, we omit the implicit turn

that puts the cards back face-down.

3. (perm,𝜋) permutes the sequences of � according to 𝜋.

4. (result, 𝑝1 , 𝑝2) stops the computation and returns the cards at 𝑝1 , 𝑝2 as output.

We say that a protocol computes a Boolean function 𝑓 : {0, 1}2 → {0, 1} if and only if the

following two conditions (Correctness) hold:

52

4.2. Computational Model and Security Notions

𝑠1 �(𝑠1)
...

...

𝑠ℓ �(𝑠ℓ)

𝑠1,1 1/Pr[𝑣1] · �(𝑠1,1)
...

...

𝑠1,ℓ1
1/Pr[𝑣1] · �(𝑠1,ℓ1)

𝑠𝑛,1 1/Pr[𝑣𝑛] · �(𝑠𝑛,1)
...

...

𝑠𝑛,ℓ𝑛
1/Pr[𝑣𝑛] · �(𝑠𝑛,ℓ𝑛)

(turn, 𝑇)
𝑣1 𝑣𝑛

. . .

Figure 4.3: A turn operation on the cards at positions in 𝑇 with the possible observation

𝑣1 , . . . , 𝑣𝑛 . For each 𝑖 ∈ {1, . . . , 𝑛}, 𝑠𝑖 ,1 , . . . , 𝑠𝑖 ,ℓ𝑖 are the sequences from 𝑠1 , . . . , 𝑠ℓ which

are compatible with 𝑣𝑖 . In secure protocols, the probability of observing 𝑣𝑖 , i.e., Pr[𝑣𝑖], is

constant.

1. the start state (the tree root) encodes each 𝑏 ∈ {0, 1}2 in the first four cards (the

remaining cards are at fixed positions), and

2. in the leaf nodes, the cards at the positions given by the result operation encode a

value 𝑜 ∈ {0, 1} if 𝑓 (𝑖) = 𝑜 holds for all 𝑋𝑖 occurring in �(𝑠) for sequence 𝑠.

We say that a protocol has a finite runtime if its tree is finite. It is a Las Vegas protocol, if

it is not finite-runtime, but the expected length of any path in its tree, i.e., the expected

value of the length of an arbitrary descending path in the tree starting from the root (as

a random variable, where the randomness is in the choice of the path), is finite. While

we consider looping protocols, we do not consider the case which requires a complete

restart. We simplify self-similar infinite trees by drawing edges to earlier states.

4.2.2 Security of Card-Based Protocols

We slightly adjust the security notion from the literature to standard decks. For more

details, we refer to Koch (2019). Since different encodings for the same bit are possible,

we want the encoding basis of the output bit to not give away anything about the inputs.

We say that a protocol is secure if both at any turn operation the probability of each

observation 𝑣 is a constant 𝜌 ∈ [0, 1] and at any result operation the probability of each

output basis is constant in the same sense (using

∑
𝑖∈{0,1}2 𝑋𝑖 = 1).

Moreover, we also consider a weaker form of security that is a necessary criterion for the

above security notion, but still of use for the devised formal method later on. Similar to

the work by Kastner et al. (2017), we define the following: A protocol is possibilistically

output-secure, if at any state of the protocol, every output is still possible. This weakens the

previous security notion, as the probability for a given input sequence could originally

53

Chapter 4. Generation of Secure Card-Based Communication Schemes

have a greater value, and we could, e.g., exclude a specific input sequence in case the

corresponding output is still possible through another input sequence. Together with

the similar possibilistic input-security, we obtain the following definitions:

Definition 4.2 (Possibilistic security) A protocol P = (D, 𝑈, 𝑄, 𝐴) that computes a
function 𝑓 : {0, 1}2 → {0, 1} is possibilistically input-secure (possibilistically output-

secure) if it is correct, i.e., the probability of the output being 𝑂 = 𝑓 (𝐼) is 1, and we have
Pr[𝑣 | 𝐼 = 𝑖] > 0 (Pr[𝑣 | 𝑓 (𝐼) = 𝑜] > 0) for uniformly1random input 𝐼, any visible sequence
trace 𝑣 with Pr[𝑣] > 0, and any input 𝑖 ∈ {0, 1}2 (any output 𝑜 ∈ {0, 1}).

Given such a (weaker) possibilistic security notion above, we may reduce the complexity

of our state tree representation and hence of our computational model. Let us begin by

defining the equivalence relation similarity on the states by identifying those that are

only a permuted version of each other:

Definition 4.3 (Similarity) We call two states � and �′ similar if and only if there is a
permutation 𝜋 such that applying (perm,𝜋) to � yields �′. The equivalence class of � up
to similarity, i.e., the set of all states that are permuted versions of �, is called ⟨�⟩∼.

In other words, a state � is similar to a state �′ if � is equal to �′ up to permutation of the

columns on the sequence part of the state.

We may now define reduced states as in the work by Kastner et al. (2017) by omitting

the state’s symbolic probabilities and only including the result that is specified by their

inputs, thereby greatly reducing information and state space. Any tree that contains

reduced states captures a weaker form of security, namely the corresponding form of

possibilistic security, where each output that is originally reachable is still reachable after

reducing the state(s). Consequently, whereas a protocol that is possible for the reduced

tree might not be possible for the (original) non-reduced tree, showing impossibility of a

protocol for the reduced tree implies its general impossibility for the non-reduced tree.

In order to obtain a reduced state tree, we project all the symbolic probabilities of the

states’ sequences in a state tree to a type 𝑜 ∈ {0, 1}, which represents the possible future

output that is associated with the sequence in a correct protocol. Let in the following P be

a protocol that computes a function 𝑓 : {0, 1}2 → {0, 1} and � a state in the state tree. In

the first step, we set �̂(𝑠) ≔ 𝑜 ∈ {0, 1} for any sequence 𝑠 where �(𝑠) is a polynomial with

positive coefficients for the variables 𝑋𝑏1 , . . . , 𝑋𝑏𝑖 (𝑖 ≥ 1), if 𝑜 = 𝑓 (𝑏1) = 𝑓 (𝑏2) = · · · = 𝑓 (𝑏𝑖)
holds. We refer to sequences in �̂ by their type 𝑜-sequences. Moreover, for sequences 𝑠

where �(𝑠) has positive coefficients for variables which represent input that would map

1Actually, the distribution does not matter as long as Pr[𝐼 = 𝑖] > 0 holds for all 𝑖 ∈ {0, 1}2.

54

4.2. Computational Model and Security Notions

to different output, e.g., 𝑋00 + 𝑋11 for 𝑓 (0, 0) ≠ 𝑓 (1, 1),1 we introduce the additional type

⊥. Therefore, we can define a reduced state as follows.

Definition 4.4 (Reduced state) Let P be a protocol that computes a Boolean function
𝑓 : {0, 1}2 → {0, 1} with the deck D. Then a reduced state �̂ of P is a map �̂ : SeqD →
{0, 1,⊥} which maps a sequence 𝑠 ∈ SeqD to its type 𝑜-sequences.

If � is a (non-reduced) state of P, we can map it to its reduced state as follows: We define
the reduced state �̂ of P based on � as �̂(𝑠) ≔ 𝑡𝑠 , where 𝑡𝑠 is �(𝑠)’s type. Note that it is
always possible to map a state to its reduced version.

As an example, let us look at the following tree excerpt in Section 4.2.2 on the left of

Figure 4.2, and its reduced version (here, shown on the right), where we assume it to be

part of a protocol that computes the AND function:

1234 𝑋00 + 𝑋01

1243 𝑋10

2134 𝑋11

1234 1/2(𝑋00 + 𝑋01 + 𝑋10)
1243 1/2(𝑋00 + 𝑋01 + 𝑋10)
2134 1/2𝑋11

2143 1/2𝑋11

(shuffle, {id, (3 4)})

1234 0
1243 0
2134 1

1234 0
1243 0
2134 1
2143 1

(shuffle, {id, (3 4)})

Figure 4.4: Excerpt of reduced shuffle, given byexample (left), and general action (right).

Here, the annotation of 1234 in the first state, 𝑋00 +𝑋01, is mapped to its type 0, as it only

contains variables that represent inputs (namely (0, 0) and (0, 1)) for the output 0. Note

that by using reduced states, we bring the state space from the countably infinite to the

finite, which greatly reduces proof complexity.

Finally, what remains to be defined are the situations for which the turn operation can

be applied in a reduced state. A reduced state is turnable at position 𝑖 ∈ {1, . . . , |D|}, if

for each symbol 𝑐 ∈ Σ, there exists, among the sequences 𝑠 with 𝑐 at position 𝑖, an 𝑟-

sequence for each 𝑟 ∈ {0, 1} in the image of the computed function, and/or a⊥-sequence.

Consequently, all outputs are still possible after a turn at position 𝑖, which captures the

notion of output-possibilistic security. The reduced state is hence turnable if it is turnable

at a position 𝑖 ∈ {1, . . . , |D|}.

1It is clear that for a state with a ⊥ sequence, the protocol must abort later, as – if this sequence would

actually lie on the table – it is no longer clear whether an input sequence for (0, 0), or an input sequence for

(1, 1)was on the table at the start.

55

Chapter 4. Generation of Secure Card-Based Communication Schemes

4.2.3 Two-Color Deck Protocols

As we motivated in Section 4.1 and the introduction of this chapter, the more natural (and

more general) setting for card-based protocols is that of two-color decks, e.g., the two

symbols ♣ and ♡. For the two-color deck setting, a card-minimal Las Vegas AND protocol

using only four cards was given by Koch, Walzer, and Härtel (2015). While they use only

closed shuffles, some shuffles are non-uniform and hence, the protocol is rather difficult

to implement. However, it is still insightful to analyze whether the protocol features a

shortest run. For this, let us note that there are two possible versions of this protocol: by

contracting two subsequent closed shuffles, we can generate a protocol with fewer but

non-closed shuffles. Both protocols are given in Figure 4.5 and Algorithm 4.2, where

Π1 ,F1 ,Π2 ,F2 are permutation groups and probability distributions as follows:

Π1 ≔ ⟨(1 2)(3 4)⟩, F1 : id ↦→ 1/3, (1 2)(3 4) ↦→ 2/3,
Π2 ≔ ⟨(1 3)(2 4)⟩, F2 : id ↦→ 1/3, (1 3)(2 4) ↦→ 2/3,

(4.1)

and 𝛼1 , 𝛼2 , 𝛼3 are placeholders actions as follows for the full protocol:

𝛼1 ≔ (shuffle, ⟨(1 3)(2 4)⟩); (shuffle, ⟨(2 3)⟩),
𝛼2 ≔ (shuffle, ⟨(1 3)⟩); (shuffle,Π1 ,F1),
𝛼3 ≔ (shuffle, ⟨(3 4)⟩); (shuffle,Π2 ,F2),

(4.2)

and for the protocol using contracted shuffles as below:

𝛼1 ≔ (shuffle, {id, (1 3)(2 4), (2 3), (1 2 4 3)}),
𝛼2 ≔ (shuffle, {id, (1 3), (1 3)(2 4), (1 4 3 2)},F3),
F3 : id ↦→ 1/6, (1 3) ↦→ 1/6, (1 3)(2 4) ↦→ 1/3, (1 4 3 2) ↦→ 1/3,
𝛼3 ≔ (shuffle, {id, (3 4), (1 3)(2 4), (1 3 2 4)},F4),
F4 : id ↦→ 1/6, (3 4) ↦→ 1/6, (1 3)(2 4) ↦→ 1/3, (1 3 2 4) ↦→ 1/3.

(4.3)

4.3 Trace-Based Formal Security Verification

Based on the KWH trees (Koch, Walzer, and Härtel, 2015) introduced in the previous

section, we can formalize a standardized program representation to be instrumented by

our formal method.

56

4.3. Trace-Based Formal Security Verification

♡♣♡♣ 𝑋11

♡♣♣♡ 𝑋10

♣♡♡♣ 𝑋01

♣♡♣♡ 𝑋00

♡♡♣♣ 1/2𝑋11

♡♣♡♣ 1/2𝑋11

♣♡♡♣ 1/2𝑋10 + 1/2𝑋01

♡♣♣♡ 1/2𝑋10 + 1/2𝑋01

♣♡♣♡ 1/2𝑋00

♣♣♡♡ 1/2𝑋00

𝛼1

♡♡♣♣ 𝑋11

♣♡♡♣ 𝑋10 + 𝑋01

♣♡♣♡ 𝑋00

♡♡♣♣ 1/3𝑋1

♣♣♡♡ 2/3𝑋1

♣♡♡♣ 1/6𝑋0

♡♣♣♡ 1/3𝑋0

♣♡♣♡ 1/2𝑋0

𝛼3

♡♡♣♣ 𝑋1

♡♣♣♡ 𝑋0

(result, 2, 4)
✓

♣♣♡♡ 𝑋1

♣♡♡♣ 1/4𝑋0

♣♡♣♡ 3/4𝑋0

(turn, {1})
Pr[♣???]= 2/3 Pr[♡???]= 1/3

♡♣♡♣ 𝑋1

♡♣♣♡ 1/2𝑋0

♣♣♡♡ 1/2𝑋0

(shuffle, ⟨(3 4)⟩)
(perm, (1 2 4 3))

♡♣♡♣ 𝑋11

♡♣♣♡ 𝑋10 + 𝑋01

♣♣♡♡ 𝑋00

♡♣♡♣ 1/3𝑋1

♣♡♣♡ 2/3𝑋1

♡♣♣♡ 1/6𝑋0

♣♡♡♣ 1/3𝑋0

♣♣♡♡ 1/2𝑋0

𝛼2

♡♣♡♣ 𝑋1

♣♡♡♣ 𝑋0

(result, 1, 2)
✓

♣♡♣♡ 𝑋1

♡♣♣♡ 1/4𝑋0

♣♣♡♡ 3/4𝑋0

(turn, {4})
Pr[???♣]= 1/3 Pr[???♡]= 2/3

♡♡♣♣ 𝑋1

♣♡♡♣ 1/2𝑋0

♣♡♣♡ 1/2𝑋0

(shuffle, ⟨(1 3)⟩)
(perm, (1 3 4 2))

(turn, {2})

?♣?? ?♡??

(shuffle,Π2 ,F2)(shuffle,Π1 ,F1)

Figure 4.5: The four-card protocol by Koch, Walzer, and Härtel (2015), with placeholders as

specified in the text, to define two similar variants of the same protocol. The contracted,

non-closed variant has a shortest run of length 4, while the closed variant has a shortest run

of length 6.

57

Chapter 4. Generation of Secure Card-Based Communication Schemes

Algorithm 4.2 Two protocols to compute AND using four cards, cf. also Figure 4.5. The

placeholders Π𝑖 , F𝑖 are given in Equation (4.1) and the 𝛼𝑖 are defined in Equations (4.2)

and (4.3).

1: 𝛼1
2: (turn, {2})
3: if 𝑣 = (?, ♣, ?, ?) then
4: (turn, {2}) // turn back

5: 𝛼2
6: (turn, {4})
7: if 𝑣 = (?, ?, ?, ♣) then
8: (result, 1, 2)
9: else if 𝑣 = (?, ?, ?,♡) then

10: (turn, {4}) // turn back

11: (shuffle, {id, (1 3)})
12: (perm, (1 3 4 2))
13: (shuffle,Π2 ,F2)
14: goto 6

15: end if
16: else if 𝑣 = (?,♡, ?, ?) then
17: (turn, {2}) // turn back

18: 𝛼3
19: (turn, {1})
20: if 𝑣 = (♡, ?, ?, ?) then
21: (result, 2, 4)
22: else if 𝑣 = (♣, ?, ?, ?) then
23: (turn, {1}) // turn back

24: (shuffle, {id, (3 4)})
25: (perm, (1 2 4 3))
26: (shuffle,Π1 ,F1)
27: goto 19

28: end if
29: end if

4.3.1 Standardized Program Representation

A standardized program representation allows a general programmatic encoding of both

the shuffle and the turn operation, as well as of the fixed input state (indicated by the

input card sequences from the table in Figure 4.1), the nondeterministic reachable states,

and the logical function to be computed securely. The input state is trivially derived

from the specified amounts of cards as the size and order of the players’ commitments

is fixed and the (without loss of generality) consecutively ordered card sequence of

(distinguishable) helper cards is simply prepended to the input card sequence, annotated

with their respective input probabilities. Any input state for Boolean functions thus

consists of exactly four distinguishable card sequences.

58

4.3. Trace-Based Formal Security Verification

Based on this input state, the program performs the loop that is illustrated in Algo-

rithm 4.3, which successively performs turn or shuffle operations based on the input

state and computes the resulting states from which it continues performing turn or

shuffle operations. The loop ends when the specified bound L (representing the length

of the protocol to be found) is reached, checks whether the final state is indeed a valid

computation of the secure function, and (if and only if the check is successful) the found

protocol – represented by a program trace that lists the traversed program states – is then

presented to the user.

Algorithm 4.3 Overall program loop that models the nondeterministic choice of a suc-

cession of actions in the protocol up to L steps.

Input:
reachableStates: list that collects the reachable states, initialized with the start state.

L: maximum length of the protocol.

LAS_VEGAS: parameter that is true only for Las Vegas protocols.

MAX_TURN_OBSERVATIONS: maximum distinguishable observations for one card.

Output:
A Boolean value that is TRUE if and only if a valid protocol exists within the bounds.

1: function performProtocol

2: for 𝑖 ← 0 to L − 1 do
3: action← nondet_choice (TURN, SHUFFLE)

4: if action = TURN then
5: possiblePostStates← applyTurn(reachableStates[𝑖])

6: turnPosition← nondet_choice (0, . . . , MAX_TURN_OBSERVATIONS − 1)

7: if not isObservable(possiblePostStates[turnPosition]) then
8: return FALSE

9: reachableStates[𝑖 + 1]← possiblePostStates[turnPosition]

10: if (LAS_VEGAS and isFinalState(reachableStates[𝑖 + 1])) or
11: (not LAS_VEGAS and isFinalTurn(possiblePostStates)) then
12: return TRUE

13: else if action = SHUFFLE then
14: reachableStates[𝑖 + 1]← applyShuffle(reachableStates[𝑖])

15: if isFinalState(reachableStates[𝑖 + 1]) then
16: return TRUE

17: end if
18: end for
19: return FALSE

20: end function

59

Chapter 4. Generation of Secure Card-Based Communication Schemes

This task involves multiple computational complexities, most notably both the amount

of (possibly) reachable states, and the choice of the next operation, i.e., either choosing

the card(s) to be turned or which shuffle to perform. We partially overcome the first

computational complexity by not considering Las Vegas protocols, as this relieves us

from checking every reachable sequence of states to be finite. In fact, we compute all

reachable states after every protocol operation, but only check each of them to be valid,

and then proceed our operations on only one of them, which is nondeterministically

(denoted by nondet_choice) chosen among them. The second computational complexity

consists in first nondeterministically choosing whether to shuffle or to turn, and then to

perform the respective operation.

The turn!operation consists of a mostly obvious implementation for updating the com-

puted state and its probabilities using mostly standard imperative program operations.

Note that the turn observations are again nondeterministically chosen, hence considering

any of them to be possible. Moreover, the shuffle operation must randomly draw a set

of permutations on which the reachable states are computed. We implement this by

nondeterministically choosing a set of permutations from a precomputed set of all per-

mutations that are generally possible. Both the amount and the choices of the respective

permutations are chosen nondeterministically.

4.3.2 Verification Methodology

The above generic program representation of KWH trees together with implementations

for the start state and further operations, such as the methods that are used therein

including the turn and the shuffle action, can now be instrumented by a software bounded

model checker (SBMC) (Section 2.2).

For this matter, after iterating the aforementioned loop for the specified bound with

the described operations and restricting that the final state indeed computes the secure

function, we specify the software property 𝐶cons
to be checked such that performProtocol

must return the Boolean value false. This property implies that the verification task always

fails once there exists input and nondeterministic parameters such that the respective

program run reaches the statement in the program which checks this property, if the

protocol generated by Algorithm 4.3 is valid (i.e., returns the value true). The SBMC tool

exhaustively searches for a run of the specified length through the program which leads

from the starting state to a correct and secure state which satisfies the given security

notion, i.e., reaches the above-mentioned statement. Hence, if there exists any protocol

of the specified length which computes the secure function and for which the specified

operations and valid intermediate states (representing KWH-trees) exist, such a protocol

is presented by our method. If no such protocol can be found, we know there is no

card-based protocol of the specified length satisfying all our restrictions on permitted

60

4.4. Generation of Provenly Run-Minimal Schemes

turn and shuffle operations, as well as intermediate and final states. In this case, there

exists no model for the SAT formula which encodes the set of all permitted program runs

given our specified requirements.

Hence, assuming our translation of KWH trees and respective protocol operations into

a simple imperative program are correct, this method can then be used iteratively to

generate (possibilistically-)secure card-based protocols of the given length or prove

that none exists within the specified bounds. That mechanism can be useful either for

finding new protocols or tighten the bounds for run-minimal protocols from the literature.

Software bounded model checking draws its purpose largely from the so-called small-

scope hypothesis, i.e., that a large amount of bugs is already exposed for small program

runs. We apply this hypothesis to the setting of card-based security protocols, as all

protocols in the literature only use a few turn and shuffle operations and the length of

any found protocol is below ten operations.

This approach can be generalized to search for card-based protocols using a predefined

amount of actions and adhering to a given formal security notion. We have written a

general program1 to search for such situations parameterized in the desired restrictions

on actions and security notions. Note that, in order to cope with the still considerable

state space size, we use the refined security notion of output-possibilistic security.

Moreover, we have the ability to restrict our experiments to only closed shuffles, and can

also bound the shuffle set size to keep the complexity manageable for the verification, if

needed (albeit possibly reducing the strength of the results, cf. Section 4.5).

For example, in our analysis of the run-minimality of Algorithm A.1, we bound the

permitted size of the permutation sets by the – rather reasonable – number 8, in order to

keep the running times still manageable for our experiments. Note that the technique

described in Section 4.5 shows that only a bound of 12 would be really safe to assume,

leaving a (small) gap in the argumentation as we superficially exclude exactly the possible

12-element alternating groups 𝐴4 as shuffle steps from the possible protocol candidates.

4.4 Generation of Provenly Run-Minimal Schemes

In the following, we exemplify our translation of card-based cryptographic AND protocols

using standard decks to the bounded model checker CBMC, which takes programs in

the C language. For our experiments, we used CBMC 5.11 with the built-in solver, based

on the SAT solver MiniSat 2.2.0 (Clarke, Kroening, and Lerda, 2004; Eén and Sörensson,

2003). All experiments are performed on an AMD Opteron(tm) 6172 CPU at 2.10 GHz

with 48 cores and 256 GB of RAM.

1The source code is available under https://github.com/mi-ki/cardCryptoVerification.

61

https://github.com/mi-ki/cardCryptoVerification

Chapter 4. Generation of Secure Card-Based Communication Schemes

1 struct sequence {

2 uint val[numberOfCards];

3 struct fractions probs;

4 };

Listing 4.1: C struct holding the state trees.

We translate KWH trees in the C language using a simple encoding into a bounded

C program with only static structures and no pointers, e.g., we employ C structs (see

Listing 4.1) holding an array of card sequences for the sequence 𝑠, attached with their

respective values for each probability (for the probabilistic security notion) or dependency

(for output-possibilistic security) 𝑋𝑖 occurring in �(𝑠), which is encoded by another

C struct fractions. The sequences are constructed using nondeterministic values restricted

by respective software conditions to enforce a lexicographic ordering. Moreover, we assign

the starting values in �(𝑠) with fixed (i.e., deterministic) values based on the constructed

sequences. Subsequently, an array of (consecutively) reachable states is constructed

nondeterministically using simple implementations of the turn and the shuffle operation

as explained in Section 4.1. We then repeatedly (after each turn/shuffle) check whether all

possible resulting (nondeterministic) states correctly and securely compute the specified

function, e.g., within this thesis a secure AND function.

An exemplary shuffle operation is shown in Listing 4.2 for the case of output-possibilistic

security. Therein, the keyword __CPROVER_assume is used by the bounded model checker to

restrict all program runs passing this statement to satisfy the specified (Boolean) condition.

By assigning values using the special function nondet_uint(), we assign a nondeterministic

non-negative integer number, which is restricted to values greater than zero and at most

of the value NUM_POSS_SEQ (which is a variable computed by the preprocessor and is the

maximum amount of sequences possible with the given deck) in the following program

statement. In the shown example, the nondeterminism is used to construct a set of

permitted permutation sets (to be used by the shuffle operation), which makes the

SBMC tool inspect the following program code for all possible assignments of this value.

If necessary, this may result in a fully exhaustive search, however, the prover is often able

to restrict the domain based on further program statements and dependencies seen in the

rest of the program. A similar trick is used when computing the concrete permutations

using the nondeterministic value of permIndex, in order to check all possible permutations

which possibly move the values, but preserve all existing numbers in the sequence itself.

This is done using the int-array takenPermutations, which is first initialized to zero and,

when choosing a concrete permutation, assumed to be zero at position permIndex, however

set to the number one right afterward (such that it is not permitted to be chosen again).

In the subsequent inner loop, the permutations are assigned by choosing the according

cards from the sequences in the start state using the nondeterministic value permIndex.

62

4.4. Generation of Provenly Run-Minimal Schemes

Finally, the shuffle is applied, resulting in the state variable result, which is then checked

using a further method isBottomFree to not contain any sequences with impermissible

values for 𝑋𝑖 , which would result in incorrect computations of the AND function.

1 uint permSetSize = nondet_uint();

2
__CPROVER_assume (0 < permSetSize);

3
__CPROVER_assume (permSetSize <= NUM_POSS_SEQ);

4 uint permutationSet[permSetSize][numberOfCards];

5 uint takenPermutations[NUM_POSS_SEQ] = { 0 };

6

7 for (uint i = 0; i < permSetSize; i++) {

8 uint permIndex = nondet_uint();

9
__CPROVER_assume (permIndex < NUM_POSS_SEQ);

10
__CPROVER_assume (!takenPermutations[permIndex]);

11

12 takenPermutations[permIndex] = 1;

13 for (uint j = 0; j < numberOfCards; j++) {

14 permutationSet[i][j] =

15 startState.seq[permIndex][j] - 1;

16 }

17 }

18 struct state result =

19 doShuffle(startState, permutationSet, permSetSize);

20
__CPROVER_assume (isBottomFree(result));

Listing 4.2: Simplified shuffle operation for CBMC.

4.4.1 Adaptations for Two-Color Decks

As the program by Koch, Schrempp, and Kirsten (2019) is already very general, the

adaptions for covering the two-color deck settings require only little changes. In the

following, we describe the changes for our verification method. The programs mainly

differ in the assignment of the start state, in the following code snippets identified by start,

for the protocol. In the following, the variable NUM_SYM specifies the amount of distinct

card symbols, which is not needed in the standard deck setting, as there it is identical

to the total amount of cards. In Listing 4.3, the variable N specifies this total amount of

cards.

In the standard deck setting, each player gets distinct symbols 1 and 2, or 3 and 4,

respectively (as shown in the first two lines in Listing 4.3). For the two-color deck setting,

it suffices to require that the individual cards for each player are pairwise distinct, as

shown in the first two lines in Listing 4.4. Moreover, we simply number the helper cards

consecutively for the standard deck setting (see the loop in Listing 4.3), but allow an

63

Chapter 4. Generation of Secure Card-Based Communication Schemes

1
__CPROVER_assume ((i != 0 && i != 1) || start[i] == 1 || start[i] == 2);

2
__CPROVER_assume ((i != 2 && i != 3) || start[i] == 3 || start[i] == 4);

3 for (uint i = 4; i < N; i++) {

4 start[i] = i + 1;

5 }

Listing 4.3: Simplified start sequence assignment in the standard deck for CBMC.

1
__CPROVER_assume (start[1] != start[0]);

2
__CPROVER_assume (start[3] != start[2]);

3 for (uint i = 4; i < N; i++) {

4 start[i] = nondet_uint();

5
__CPROVER_assume (0 < start[i]);

6
__CPROVER_assume (start[i] <= NUM_SYM);

7 }

Listing 4.4: Simplified start sequence assignment in the two-color deck for CBMC.

arbitrary assignment of valid card symbols in the two-color deck setting (see the loop in

Listing 4.4).

Besides the introduction of the variable NUM_SYM, these are the main changes that are

needed in order to cover the two-color deck setting. Note that we moreover adapt the

script that calls the SBMC tool together with our C program to compute the new amount

of possible sequences. For the standard deck setting, the amount is simply the factorial

of the total amount of cards. In the two-color deck setting, this is the binomial coefficient

of the two different amounts of cards with distinct symbols.

4.4.2 Verification Results

For standard decks, we apply our approach to the computation of a secure AND protocol

using four cards in order to, firstly, substantiate our proof that no protocol of a length

below six can be found, and, secondly, automatically find a permitted protocol using six

operations.

For the two-color deck setting, we show by formal verification that the closed AND protocol

variant has a shortest run of 6 steps, relative to all closed four-card AND protocols. This is

because our method excludes the possibility of an input-possibilistic1 closed four-card

AND protocol with a run of length 5. Moreover, our contracted AND protocol is run-

1Because it found a possible output-possibilistic (but not input-possibilistic) protocol run, we had to

strengthen the search criteria to protocols which are at least input-probabilistic.

64

4.5. Verification of Shuffle Set Maximality

minimal in the sense that no (output-possibilistic) four-card AND protocol with a run of

length 3 exists.

For both kinds of decks, the running times and formula sizes (i.e., amounts of variables

and clauses) generated by our method, we refer to Table 4.1 below.

Table 4.1: Running times for showing/disproving protocol existence for standard and two-

color decks. While all rows having “✓” in the column “Protocol” indicate that a protocol

run is output by our method with the CBMC running time as indicated in the table, these

do not automatically feature probabilistic security. Hence, we add references to protocols

in Chapter A with the given parameters, which should not (generally) be understood as

having been discovered using our method.

#Cards Shuffles #Steps Protocol #Var. #Clauses Time

Standard Decks

4 closed 5 ✗a 67.3 M 266.4 M 114.1 h

4 closed 6 ✓, also Figure A.1 68.2 M 269.7 M 45.3 h

Two-color Decks

4 – 3 ✗ 5.2 M 20.3 M 46 min

4 – 4 ✓, also Figure 4.5 with Equation (4.3) 6.9 M 27.0 M 50 min

4 closed 5 ✗b 12.3 M 47.2 M 7.9 h

4 closed 6 ✓, also Figure 4.5 with Equation (4.2) 9.3 M 34.4 M 45 min

5 closed 4 ✓, also Figure A.2 22.3 M 87.2 M 45 min

a
This holds only with respect to protocols with shuffle size of at most 8, excluding subgroups of size 12.

b
For this, we had to strengthen the security to input-possibilistic security.

4.5 Verification of Shuffle Set Maximality

In the following, we explore the fact that the amount of possible sequences in a protocol

state may be significantly smaller than the amount of possible permutations on the deck,

especially for the case of two-color decks. In order to reduce the complexity of our method

for finding run-minimal protocols, we adapt our formal method to additionally establish

a formal guarantee that it suffices to search protocols with a smaller permutation set

size, i.e., the shuffle set size. Hence, the amount of possible shuffles gets significantly

smaller, which reduces the work for the SBMC tool and thus leads to significantly smaller

running times.

We can write a simple program – by some simple adaptions from the program in Sec-

tion 4.4 – that serves as an input for the SBMC tool to verify the maximality of a given

shuffle set size. The shuffle operation from Listing 4.2 is adapted such that we can specify

a lower bound for the nondeterministic variable permSetSize. We search for a single shuffle

operation such that a valid output state is reached from a minimal state, i.e., a state that

65

Chapter 4. Generation of Secure Card-Based Communication Schemes

1 uint seqIdx1 = nondet_uint();

2 uint seqIdx2 = nondet_uint();

3
__CPROVER_assume (seqIdx1 < seqIdx2);

4 minState.sequence[seqIdx1].probs = {1, 0}; // set probability to X0
5 minState.sequence[seqIdx2].probs = {0, 1}; // set probability to X1
6

7 struct state nextState = performShuffle(minState);

8 uint foundValidState = isValid(nextState);

9 assert (foundValidState);

Listing 4.5: Simplified maximality verification for CBMC.

has at most one 1-sequence and one 0-sequence (that should not be mixed together in

the shuffle). The main procedure of this program is shown in Listing 4.5. Therein, we

set the probabilities of two arbitrary distinct sequences in that state to be the inverse

of each other, i.e., (1 0) and (0 1). We then check whether, after performing a shuffle

operation on this state, we can still reach a valid state. Note that, since we are looking for

worst-case maximality bounds, it suffices to employ the output-possibilistic setting (see

Definition 4.2) which again reduces the search complexity.

For the verification of a maximal shuffle set size, we can run the SBMC tool on this

program for various lower bounds for permSetSize until we find the smallest value such

that no valid state is reachable anymore. This gives us a guarantee that larger shuffle

set sizes cannot produce smaller protocol runs, and we can hence use this value for an

upper bound on the shuffle set size in the approach from Section 4.2.3.

The described functionality in the C program is shown in Listing 4.5. Therein, seqIdx1

and seqIdx2 are the nondeterministically chosen indices for the zero- and one-sequence,

which are assumed to be distinct. The minimal start state is given by the variable minState

(which contains an array of sequences). We perform a nondeterministic shuffle operation

on minState by calling the method performShuffle. Finally, we ask the SBMC tool to check

whether the produced nextState is a valid state using the final assert statement.

Note that the results of this section in determining the maximal useful shuffle set size

hold not only for AND but also for any Boolean function that has at least two possible

outputs. The results are summarized in Table 4.2.

As an example, see Figure 4.6 (left) for the maximal shuffle set size (of 12) that is useful

in four-card two-color protocols in general. Here, the shuffle starts from a minimal 2-

sequence state that was chosen arbitrarily and nondeterministically by our SAT solver,

but is likely to have maximal Hamming distance among their sequences. For protocols

1See https://groupprops.subwiki.org/wiki/Subgroup structure of symmetric group:S4 or https://groupprops.subwiki.
org/wiki/Subgroup structure of symmetric group:S5, respectively, for reference.

66

https://groupprops.subwiki.org/wiki/ Subgroup_structure_of_symmetric_group:S4
https://groupprops.subwiki.org/ wiki/Subgroup_structure_of_symmetric_group:S5
https://groupprops.subwiki.org/ wiki/Subgroup_structure_of_symmetric_group:S5

4.5. Verification of Shuffle Set Maximality

Table 4.2: Running times for proving shuffle set size maximality. For some settings with

closedness requirement, we specify ranges, which should indicate that the larger range is

already impossible due to the size restrictions of subgroups.1

#Cards Shuffles Shuffle Size Valid Shuffle #Var. #Clauses Time

Standard Decks

4 – 12 ✓, cf. Figure 4.7 5.2 M 12.9 M 51.9 min

4 – 13 ✗ 13.8 M 55.9 M 2.4 h

4 closed 12 ✓, cf. Figure 4.7 13.5 M 54.0 M 16.9 min

4 closed 13 – 24 ✗a
– – –

Two-color Decks

4 – 12 ✓, cf. Figure 4.6 1.5 M 6.1 M 54 sec

4 – 13 ✗ 1.6 M 6.5 M 70 sec

4 closed 8 ✓, cf. Figure 4.6 1.4 M 5.0 M 69 sec

4 closed (9 –) 12 ✗ 2.2 M 8.2 M 3.2 min

5 – 48 ✓ 13.9 M 57.0 M 3.4 h

5 – 49 ✗ 14.2 M 58.1 M 11.4 h

5 closed 12 ✓ 4.9 M 18.9 M 26.1 min

5 closed 20 ?
b 9.1 M 35.4 M –

5 closed 24 ?
b 11.8 M 46.4 M –

5 closed 25 – 120 ✗c
– – –

a
As the largest proper subgroup is of size 12, there is nothing to show (𝑆4 creates ⊥-sequences).

b
This run did not finish in time, or ran into the self-set timeout bound of 5 days.

c >48 permutations is impossible even non-closed, and 60 is the only proper subgroup size >24.

using only closed shuffles, our method showed that this bound is 8 permutations, as there

is no larger closed permutation set that can result in a valid state, cf. Figure 4.6 (right).

These bounds are fully tight.

In the five-card two-color deck setting, closed protocols can make use of shuffle groups

of at most 24 permutations. It is an open question whether this is a tight bound, but we

know that there is a 12-element shuffle that is valid. However, it still allows us to restrict

the maximal shuffle group size to 24 when searching protocols. For this five-card case

and arbitrary non-closed shuffle sets, the maximal shuffle set size that does not introduce

⊥-sequences on a minimal state is 48. This is a tight bound.

Additionally, we have adapted this method to the standard deck setting as well and

determined that the largest permutation set permissible in a protocol on four cards is 12.

This also holds for the closed case, i.e., there is a group with 12 elements, namely the

alternating group 𝐴4, that, if performed on a minimal state, can result in a state that does

not contain any ⊥-sequences.

67

Chapter 4. Generation of Secure Card-Based Communication Schemes

♣♣♡♡ 𝑋0

♡♡♣♣ 𝑋1

♣♣♡♡ 1/3𝑋0

♡♡♣♣ 1/3𝑋1

♡♣♣♡ 1/3𝑋0

♣♡♡♣ 1/3𝑋1

♡♣♡♣ 1/3𝑋0

♣♡♣♡ 1/3𝑋1

(shuffle, {id, (3 4), (1 2), (1 2)(3 4),
(1 2 3), (1 2 3 4), (1 2 4 3), (1 2 4),
(1 3), (1 3 4), (1 4 3), (1 4)})

♣♣♡♡ 𝑋0

♡♡♣♣ 𝑋1

♣♣♡♡ 1/3𝑋0

♡♡♣♣ 1/3𝑋1

♡♣♣♡ 1/3𝑋0

♣♡♡♣ 1/3𝑋1

♡♣♡♣ 1/3𝑋0

♣♡♣♡ 1/3𝑋1

(shuffle, 𝐷conj

8 ≔ ⟨(1 3 2 4), (1 2)⟩ =
{id, (1 2), (3 4), (1 2)(3 4), (1 3)(2 4),
(1 3 2 4), (1 4 2 3), (1 4)(2 3)})

Figure 4.6: Situation discovered by our formal method to find a minimal state and a maximal

permutation set (of size 12 (left) and 8 (right), respectively), such that applying this shuffle

to the minimal state does not generate an invalid state (with ⊥-sequences). Our method

showed that larger shuffle sets (left) or groups (right) cannot result in valid states, allowing

us to reduce the shuffle set size in verification steps without losing generality. Here, 𝐷
conj

8
denotes a dihedral group of order 8.

3241 𝑋0

4312 𝑋1

1234 1/12𝑋0

1342 1/12𝑋0

1423 1/12𝑋0

2143 1/12𝑋0

2314 1/12𝑋0

2431 1/12𝑋0

3124 1/12𝑋0

3241 1/12𝑋0

3412 1/12𝑋0

4132 1/12𝑋0

4213 1/12𝑋0

4321 1/12𝑋0

1243 1/12𝑋1

1324 1/12𝑋1

1432 1/12𝑋1

2134 1/12𝑋1

2341 1/12𝑋1

2413 1/12𝑋1

3142 1/12𝑋1

3214 1/12𝑋1

3421 1/12𝑋1

4123 1/12𝑋1

4231 1/12𝑋1

4312 1/12𝑋1

(shuffle, 𝐴4 ≔ ⟨(1 2 3), (1 2)(3 4)⟩)

Figure 4.7: Situation discovered by our formal method to find a minimal state and a maximal

permutation set (of size 12, namely the alternating group 𝐴4), such that applying this shuffle

to the minimal state does not generate an invalid state (with ⊥-sequences), in the standard

deck setting.

4.6 Summary

In this chapter, we proposed a new method to search card-based protocols for any secure

computation, by giving a general formal translation applicable to be used by the formal

technique of software bounded model checking (SBMC). This method allows us to find

new protocols automatically, and prove lower bounds on required shuffle and turn

operations for any protocol, and provide an example for the computation of a minimal

AND protocol. We also found a new protocol that only uses the theoretical minimum

of four distinguishable cards for an AND computation. Moreover, we supported this

finding by our automatic method in showing the impossibility of any protocol using less

shuffle and turn operations using only practicable shuffles (random cuts). The protocol

is hence optimal with respect to the running-time restriction restart-free Las-Vegas. For

68

4.6. Summary

the four-card standard deck setting, we showed that there is no finite-runtime protocol,

regardless of the shuffle operations used. This result completes the picture of tight lower

bounds for the four-card setting.

Finally, we extended our verification method to the case of decks using only two colors,

which is more common in the field of card-based cryptography. In this setting, we

were able to show two variants of a card-minimal Las Vegas AND protocol to be also

run-minimal, i.e., the protocol has a run of minimal length. Moreover, for the case of 4
cards, we derived tight upper bounds on the size of the maximal usable permutation

set, of 12 and 8 for general and closed protocols, respectively. As this is not restricted to

AND protocols, but applies more generally, we believe this to be of independent interest

for researchers in the field of card-based cryptography.

Outlook. Let us point out some open challenges in the card-based security area that

could be approached based on the findings in this chapter: (1) For finite-runtime protocols,

there exist no proven tight lower bounds on the required amount of cards (five to eight

cards). We recommend more research applying computer-aided formal methods at

this point, as the state space for five or more cards is very large. (2) The two most

common settings in card-based cryptography are the standard deck setting with only

distinguishable cards and the two-color decks using ♣ and ♡. However, it may be possible

that by mixing these settings (e.g., only distinguishable cards with one pair of identical

cards), we might find more efficient protocols (especially in the finite-runtime setting).

For such a mixed setting, Shinagawa and Mizuki (2019) provide nice results to use in

further research.

69

[. . .] they began running when they liked, and

left off when they liked, so that it was not easy to

know when the race was over. However, when

they had been running half an hour or so, and

were quite dry again, the Dodo suddenly called

out “The race is over!” and they all crowded

round it, panting, and asking, “But who has

won?”

Lewis Carroll, Alice’s Adventures in

Wonderland, 1865

Part III

Reliable Election Methods

5
Synthesis of Reliable Tallying Procedures

Simplicity is prerequisite for reliability.

Edsger Wybe Dĳkstra, How Do We Tell Truths that

Might Hurt?, 1975

T
his chapter presents a formal systematic approach for the flexible and verified syn-

thesis of tallying procedures from compact composable modules with guaranteed

formal properties. The formal properties for this matter are social choice properties as

introduced in Section 3.2 and can be understood as the characteristics required by the

election method, e.g., legal regulations. By tallying procedures, we understand the notion

of voting rules from social choice theory (Definition 3.1 in Section 3.2).

Indeed, there is no general rule which caters for every requirement, and any voting

rule shows paradoxical behavior for some voting situation (Arrow, 1950). Therefore, an

approach to analyze voting rules for their behavior by clear-cut formal properties, the

so-called axiomatic method, has emerged. The axiomatic method advocates the use of rules

that provide rigorous guarantees (which we call properties), and compares them based

on guarantees that they do, or do not, satisfy. These properties capture very different

requirements of fairness or reliability, e.g., principles that each vote is counted equally,

that the electees proportionally reflect the voters’ preferences, or that they are preferred

by a majority of the voters. Devising voting rules towards such properties is generally

cumbersome, as their tradeoff is inherently difficult and error-prone. Attempting to prove

properties for specific voting rules often exhibits design errors, but is cumbersome as

well (Beckert, Goré, and Schürmann, 2013). As of yet, there exists no general formal

73

Chapter 5. Synthesis of Reliable Tallying Procedures

approach to systematically devise voting rules towards formal properties without being

either error-prone or extremely cumbersome.

When taking an abstract view, many voting rules share similar structures, e.g., aggregating

the individual votes by calculating the sum or some other aggregator function. Based

on this observation, our approach enables flexible, intuitive and verified synthesis of

interesting voting rules from a few compositional structures. These structures exhibit

precise and general interfaces, such that their scope may easily be extended with further

modules. We devise a general component type inspired by Grilli di Cortona et al. (1999)

as well as special types, e.g., for aggregation functions, and compositional structures,

e.g., for sequential, parallel and loop composition, together forming our construction

framework. The resulting properties, e.g., common social choice properties from the

literature, are guaranteed from composing modules with given individual properties by

rigorous composition rules.

We demonstrate the logic-based application with proofs for a selected set of compo-

sition structures and rules, and composable modules within the theorem prover Is-

abelle/HOL (Nipkow, Paulson, and Wenzel, 2002). Thereby, the approach is amenable

both for external scrutiny as compositions are rigorously and compactly defined, and for

an integration in larger automatic voting rule design or verification frameworks. As a case

study, we define composition rules for the common social choice property monotonicity,

and demonstrate a formal correct-by-construction synthesis of the rule sequential majority

comparison (SMC). The synthesis produces a proof that SMC fulfills the monotonicity

property using a set of basic modules. We further extend our framework with an abstract

module for constructing various practical Condorcet rules from literature and proving

that they are indeed Condorcet consistent. We finally built an automatic synthesis tool

that instruments our framework and, given the desired social choice properties, auto-

matically synthesizes a suitable voting rule together with an automatic generation of the

Isabelle proof and translation of the voting rule into executable software.

The content of this chapter has been previously published by Diekhoff, Kirsten, and

Krämer (2020) and Diekhoff, Kirsten, and Krämer (2019), extended with Condorcet rules

from the bachelor’s thesis by Bohr (2020), and an automated synthesis from the master’s

thesis by Richter (2021).

5.1 Composition of Voting Rules

The construction framework consists of two structural and two semantic concepts, namely

(i) component types that specify structural interfaces wherein components can be imple-

mented, and (ii) compositional structures that specify structural contracts which combine

components to create new components that are again composable. Moreover, semantic

74

5.1. Composition of Voting Rules

aspects for constructing concrete voting rules are addressed by (iii) composition rules that

define semantic rules which compositions can contractually depend on, i.e., if components

fulfill a rule’s requirements, the composition guarantees the rule’s semantics, as well as

(iv) composable modules that define concrete semantics of either directly implemented or

constructed modules from which other modules can be composed using the composition

rules. In the following, we give details on component types and compositional structures

for composing voting rules based on the ideas by Diekhoff, Kirsten, and Krämer (2019).

5.1.1 Electoral Modules

The structural foundation of our approach are electoral modules, a generalization of voting

rules as in Section 3.2. We define electoral modules (see Definition 5.1) so that they act as

the principal component type (cf. (i)) within our framework. In contrast to a voting rule,

an electoral module does not need to make final decisions for all the alternatives, i.e.,

partition1 them (only) into winning and losing alternatives, but can instead defer the

decision for some or all of them to other modules. Hence, electoral modules partition

the received (possibly empty) set of alternatives 𝐴 ⊆ A into elected, rejected and deferred

alternatives. In particular, any of those sets, e.g., the set of winning (elected) alternatives,

may also be left empty, as long as they collectively still hold all the received alternatives.

Just like a voting rule, an electoral module also receives a profile which holds the voters’

preferences, which, unlike a voting rule, consider only the (sub-)set of alternatives that

the module receives. We take this into account by the following definition of our input

domain DA
mod:

DA
mod := {(𝐴,≿) | 𝐴 ⊆ A,≿ ∈ L(𝐴)+}

DA
mod contains all subsets of A paired with matching profiles. We can hence define

electoral modules as follows:

Definition 5.1 (Electoral module) For eligible alternatives A and a (sub-)set 𝐴 ⊆ A, we
define an electoral module as a function 𝑚 with

𝑚 : DA
mod → P(A)3.

The function 𝑚 maps a set of alternatives with a matching profile to the set-triple (𝑒 , 𝑟, 𝑑)
of sets of elected (𝑒), rejected (𝑟), and deferred (𝑑) alternatives such that

(𝐴,≿) ∈ DA
mod ⇒ (𝑚(𝐴,≿) = (𝑒 , 𝑟, 𝑑) partitions 𝐴).

1We say that a sequence of sets 𝑠1 , . . . , 𝑠𝑛 partitions a set 𝑆 if and only if 𝑆 equals the union

⋃
𝑖∈[1,𝑛] 𝑠𝑖 over

all sets 𝑠𝑖 for 𝑖 ∈ [1, 𝑛] and all their pairwise intersections are empty, i.e., ∀𝑖 ≠ 𝑗 ∈ [1, 𝑛] : 𝑠𝑖 ∩ 𝑠 𝑗 = ∅.

75

Chapter 5. Synthesis of Reliable Tallying Procedures

In the following, we denote the set of electoral modules by MA, as well as 𝑚𝑒(𝐴,≿),
𝑚𝑟(𝐴,≿), and 𝑚𝑑(𝐴,≿) for the elected, rejected and deferred alternatives, respectively, of

an electoral module 𝑚 for (𝐴,≿).

Moreover, we can easily translate voting rules to electoral modules by returning a triple

of empty sets in case the module receives an empty set. Otherwise, we return an empty

deferred set, an elected set with exactly the winning alternatives, and a rejected set with

the complement of the winning alternatives (we remove the alternatives which are not

contained in the received set of alternatives). Note that, as a consequence, social choice

properties can also be easily translated in order to conform to electoral modules.

5.1.2 Sequential Composition

Sequential composition (see Definition 5.2) is a compositional structure (cf. (ii)) for

composing two electoral modules 𝑚, 𝑛 into a new electoral module (𝑚 ⊲ 𝑛) such that the

second module 𝑛 only decides on alternatives, which 𝑚 defers and cannot reduce the set

of alternatives that are already elected or rejected by 𝑚. In this composition, 𝑛 receives

only 𝑚’s deferred alternatives 𝑚𝑑(𝐴,≿) and a profile ≿|(𝑚𝑑(𝐴,≿)) which only addresses

alternatives contained in 𝑚𝑑(𝐴,≿).

Definition 5.2 (Sequential composition) For any set of alternatives A and a (sub-)set
𝐴 ⊆ A, electoral modules 𝑚, 𝑛 ∈ MA and input (𝐴,≿) ∈ DA

mod, we define the sequential
composition function (⊲) : M2

A
→MA as

(𝑚 ⊲ 𝑛)(𝐴,≿) := (𝑚𝑒(𝐴,≿) ∪ 𝑛𝑒(𝑚𝑑(𝐴,≿),≿|(𝑚𝑑(𝐴,≿))),
𝑚𝑟(𝐴,≿) ∪ 𝑛𝑟(𝑚𝑑(𝐴,≿),≿|(𝑚𝑑(𝐴,≿))),

𝑛𝑑(𝑚𝑑(𝐴,≿),≿|(𝑚𝑑(𝐴,≿))))

5.1.3 Revision Composition

Mostly for convenience, we define a revision composition (see Definition 5.3) for situ-

ations in which we want to revise the alternatives already elected by a prior module,

e.g., for enabling sequential composition with a tiebreaking module. For an electoral

module 𝑚, the revision composition removes 𝑚’s elected alternatives and attaches them

to the previous deferred alternatives, while the rejected alternatives are kept unchanged.

Whereas this composition can also be achieved by parallel composition, this dedicated

structure turns out to be beneficial in our implementation due to its frequent uses.

76

5.1. Composition of Voting Rules

Definition 5.3 (Revision composition) For any set of alternatives A and a (sub-)set 𝐴 ⊆
A, electoral module𝑚 ∈ MA, and input (𝐴,≿) ∈ DA

mod, we define the revision composition
(↓) : MA →MA as

(𝑚↓)(𝐴,≿) := (∅, 𝑚𝑟(𝐴,≿), 𝑚𝑒(𝐴,≿) ∪ 𝑚𝑑(𝐴,≿)).

5.1.4 Parallel Composition

The parallel composition (see Definition 5.6) lets two electoral modules make two indepen-

dent decisions for the given set of alternatives. Their two decisions are then aggregated

by an aggregator (see Definition 5.4), which is another component type that combines two

set-triples of elected, rejected and deferred alternatives (as well as the set of alternatives)

into a single such triple (we define the input domain DA
agg accordingly).

Definition 5.4 (Aggregator) For a set of alternatives A, a (sub-)set 𝐴 ⊆ A and input
(𝐴, 𝑝1 , 𝑝2) ∈ DA

agg, an aggregator is a function

agg : DA
agg → P(A)3 such that agg(𝐴, 𝑝1 , 𝑝2) partitions 𝐴.

A useful instance of such an aggregator is the maximum aggregator aggmax:

Definition 5.5 (Maximum aggregator) Given two set-triples (𝑒1 , 𝑟1 , 𝑑1) and (𝑒2 , 𝑟2 , 𝑑2) of
elected (𝑒), rejected (𝑟) and deferred (𝑑) alternatives, a maximum aggregator aggmax picks,
for each alternative 𝑎 and the sets containing 𝑎, the superior one of the two sets with
respect to the order 𝑒 > 𝑑 > 𝑟.

aggmax((𝑒1 , 𝑟1 , 𝑑1), (𝑒2 , 𝑟2 , 𝑑2)) =
(𝑒1 ∪ 𝑒2 , (𝑟1 ∪ 𝑟2) \ (𝑒1 ∪ 𝑒2 ∪ 𝑑1 ∪ 𝑑2), (𝑑1 ∪ 𝑑2) \ (𝑒1 ∪ 𝑒2))

Based on the notion of aggregators, we can now define the parallel composition as a

function mapping two electoral modules 𝑚, 𝑛 and an aggregator agg ∈ GA (the set of all

aggregators) to a new electoral module (𝑚 | |agg 𝑛):

Definition 5.6 (Parallel composition) For a set of alternatives 𝐴 and a (sub-)set 𝐴 ⊆ A,
electoral modules 𝑚, 𝑛, and an aggregator agg, we define the parallel composition (| |) :
(MA × GA ×MA) →MA as

(𝑚 | |agg 𝑛)(𝐴,≿) := agg(𝐴, 𝑚(𝐴,≿), 𝑛(𝐴,≿)).

77

Chapter 5. Synthesis of Reliable Tallying Procedures

5.1.5 Loop Composition

Based on sequential composition (Section 5.1.2) for electoral modules, we define the more

general loop composition for sequential compositions of dynamic length. A loop compo-

sition (𝑚⟲𝑡) repeatedly composes an electoral module 𝑚 sequentially with itself until

either a fixed point is reached or a termination condition 𝑡 is satisfied. Within our framework,

termination conditions, technically another component type, are Boolean predicates on

set-triples such that they are suitable for electoral modules. The full definition can be

found within the Isabelle/HOL theories provided with this chapter.

5.1.6 A Simple Example

As a simple example, we illustrate the construction of a voting rule using structures

from above. Consider the well-known Baldwin’s rule, which is a voting rule based on

sequential elimination (Baldwin, 1926). The rule repeatedly eliminates the alternative

with the lowest Borda score (see Section 3.2) until only one alternative remains.

As basic modules (cf. (iv)), we use (a) a module that computes the Borda scores, rejects

the alternative with the lowest such score, and defers the rest, as well as (b) a module

that attaches all deferred alternatives to the elected set.

Moreover, we choose a termination condition such that the loop of interest stops when

the set of (deferred) alternatives has reached size one.

Therefore, Baldwin’s rule can be obtained by

1. composing (a) by a loop structure with above-mentioned termination condition,

and

2. sequentially composing the loop composition with (b).

Moreover, loop composition can be directly used for many voting rules of a category

called tournament solutions. Tournament solutions typically consist of multiple rounds, in

each comparing a pair of alternatives based on their profile rankings, and the winner of

a comparison advances to the next round.

5.2 Compositional Framework

In the following, we describe how we model the concepts defined in Section 5.1 within a

modular proof framework for the verified construction of voting rules.

78

5.2. Compositional Framework

type-synonym ′
a Preference-Relation = ′a rel1

fun is-less-preferred-than ::2
′
a⇒ ′

a Preference-Relation⇒ ′
a⇒ bool (- ⪯- - [50, 1000, 51] 50) where3

x ⪯𝑟 y = ((x, y) ∈ r)4

type-synonym ′
a Profile = (′a Preference-Relation) list5

definition profile :: ′a set⇒ ′
a Profile⇒ bool where6

profile A p ≡ ∀ i::nat. i < length p −→ linear-order-on A (p!i)7

fun prefer-count :: ′a Profile⇒ ′
a⇒ ′

a⇒ nat where8

prefer-count p x y =9

card {i::nat. i < length p ∧ (let r = (p!i) in (y ⪯𝑟 x))}10

fun wins :: ′a⇒ ′
a Profile⇒ ′

a⇒ bool where11

wins x p y =12

(prefer-count p x y > prefer-count p y x)13

type-synonym ′
a Result = ′a set ∗ ′a set ∗ ′a set14

fun disjoint3 :: ′a Result⇒ bool where15

disjoint3 (e, r, d) =16

((e ∩ r = {}) ∧17

(e ∩ d = {}) ∧18

(r ∩ d = {}))19

fun set-equals-partition :: ′a set⇒ ′a Result⇒ bool where20

set-equals-partition A (e, r, d) = (e ∪ r ∪ d = A)21

fun well-formed :: ′a set⇒ ′
a Result⇒ bool where22

well-formed A result = (disjoint3 result ∧ set-equals-partition A result)23

type-synonym ′
a Electoral-Module = ′a set⇒ ′

a Profile⇒ ′
a Result24

definition electoral-module :: ′a Electoral-Module⇒ bool where25

electoral-module m ≡ ∀ A p. finite-profile A p −→ well-formed A (m A p)26

Figure 5.1: Central semantics of electoral modules in Isabelle/HOL.

5.2.1 Verified Construction Framework

We implemented and proved our logical concepts within the interactive theorem prover

Isabelle/HOL (Section 2.4), which provides a generic infrastructure for our deductive

system that is both human-readable and machine-checked, showing that the deductive

conclusions are indeed correct. Thereby, we can define very general theorems to be

reused for the construction of various voting rules and sorts of composition. Moreover,

the framework allows for easy application and extension within a larger framework for

the automatic discovery (Section 5.3) and construction of voting rules, provided that

the voting rule of interest can be composed with the given compositional rules and

composable modules using the given composition structures and component types.

79

Chapter 5. Synthesis of Reliable Tallying Procedures

The definitions and theorems within our framework are mostly self-contained, i.e., for

the most part they only rely on basic set theory as well as the theories of finite lists,

relations, and order relations for defining the profiles and linear orders used within our

notion of profiles and modules as seen in Figure 5.1. Therein, we capture preference

relations in a type abbreviation (Line 1), which we use for defining the (within social

choice theory) ubiquitous preference semantics in the HOL function is-less-preferred-

than (Lines 2 to 4). From that basis, we introduce a handy type abbreviation (Line 5)

for profiles as lists of preference relations, and we therefrom define profiles (Lines 6

to 7) on alternatives from the theory of order relations, which we use in a number of

structures and concepts. Having established a preference semantics and profiles, we

can now capture the preference semantics within profiles, e.g., by counting the ballots

for which some alternative 𝑥 is preferred to some other alternative 𝑦, as shown in the

function in Lines 8 to 10 and the function that makes the comparison in Lines 11 to 13.

Moreover, type abbreviations for results of electoral modules (Line 14), i.e., set triples, are

introduced, and electoral modules as defined in Section 5.1. We capture the partitioning

with the three functions to express the disjointedness of the three sets in an electoral

module result (Lines 15 to 19), that their union yields the set of alternatives of the input

(Lines 20 to 21), and the conjunction in Lines 22 to 23. Finally, at the end of Figure 5.1,

we can essentially define electoral modules on finite profiles and the partitioning of the

alternatives (Lines 25 to 26, with finite-profile defined appropriately), based on their type

abbreviation (Line 24). Besides the theories provided off-the-shelf with the Isabellemain

system, our framework does not require any additional theories.

The implementation1 of our verified construction framework comprises concepts and

proofs for 15 composition rules with numerous reusable auxiliary properties and the

well-known social choice properties Condorcet consistency (Definition 3.6), monotonicity

(Definition 3.8), and homogeneity from the literature, as shown in Figure 5.2.2

5.2.2 Verified Construction based on Composition Rules

From devising composition rules and properties as described in the beginning of this

section together with the component types and structures as described in Section 5.1,

our framework now only requires a small set of basic components in order to construct

interesting voting rules for the desired social choice properties which have been defined

as properties and included in the rules for composing electoral modules. The power

of our approach lies both in the generality of the composition rules and compositional

structures such that various voting rules may be constructed for various properties, and in

1The full framework is available under https://github.com/VeriVote/verifiedVotingRuleConstruction together with

an extensive documentation.

2Therein, times denotes 𝑛-fold concatenation, elect the elected set from the Result triple, and lifted the social

choice concept from Definition 3.7.

80

https://github.com/VeriVote/verifiedVotingRuleConstruction

5.2. Compositional Framework

fun condorcet-winner :: ′a set⇒ ′
a Profile⇒ ′

a⇒ bool where1

condorcet-winner A p w =2

(finite-profile A p ∧ w ∈ A ∧ (∀ x ∈ A − {w} . wins w p x))3

definition condorcet-consistency :: ′a Electoral-Module⇒ bool where4

condorcet-consistency m ≡5

electoral-module m ∧6

(∀ A p w. condorcet-winner A p w −→7

(m A p =8

({e ∈ A. condorcet-winner A p e},9

A − (elect m A p),10

{})))11

definition monotonicity :: ′a Electoral-Module⇒ bool where12

monotonicity m ≡13

electoral-module m ∧14

(∀ A p q w.15

(finite A ∧ w ∈ elect m A p ∧ lifted A p q w) −→ w ∈ elect m A q)16

definition homogeneity :: ′a Electoral-Module⇒ bool where17

homogeneity m ≡18

electoral-module m ∧19

(∀ A p n.20

(finite-profile A p ∧ n > 0 −→21

(m A p = m A (times n p))))22

Figure 5.2: Sample social choice properties for our framework in Isabelle/HOL.

the reduction of complexity such that compositions for complex social choice properties

can be defined by predominantly local composition rules step by step.

In general, the verified construction using composition rules works as follows: When

we want to obtain a voting rule with a set of properties 𝑝 from some basic components

𝑐 and 𝑑 which satisfy sets of properties 𝑝𝑐 and 𝑝𝑑 respectively, we might make use of a

compositional structure𝑋 which guarantees that a composed module𝑚𝑐𝑋𝑚𝑑 satisfies the

properties 𝑝. Hence, we can get a desired voting rule by instantiating 𝑚𝑐 and 𝑚𝑑 by 𝑐 and

𝑑 respectively, which gives us the induced voting rule 𝑓𝑐𝑋𝑑. Note that, when we specify a

set of target properties 𝑝, any voting rule induced by our framework (if a suitable one can

be induced) from a set of basic components and compositional structures, necessarily

comes with an Isabelle proof which establishes the validity of 𝑝 for the induced voting

rule. By design, these proofs are short and can in most cases be automatically inferred.

Hence, given the soundness of the Isabelle/HOL theorem prover, we obtain a formal

proof that the resulting voting rule indeed satisfies the required properties without the

need to re-check the obtained rule.

81

Chapter 5. Synthesis of Reliable Tallying Procedures

Example. One such example using structures from Section 5.1 and properties defined

in this section is that 𝑝 consists of the property Condorcet consistency, 𝑋 is the sequential

composition, 𝑝𝑐 also consists of Condorcet consistency, and 𝑝𝑑 is empty. Thus, we have

no requirements for properties of any component 𝑑, since sequential composition cannot

revoke any alternatives that are already elected. If a Condorcet winner exists, this alter-

native is already elected by the first module, and if not, Condorcet consistency trivially

holds. On its own, this composition rule might not be very useful, but may be used in

combination with other rules to preserve Condorcet consistency of composed voting

rules. A voting rule from the literature which is constructed in such a manner is Black’s

rule. Black’s rule is a sequential composition of (a component which induces) a rule that

elects the Condorcet winner if there is one, and (a component which induces) the Borda

rule.

5.3 Verified Synthesis of Voting Rules

We described our composition framework above with the objective to design flexible

composition structures where the major proof load sits within the general composition

structures and the modules themselves, such that the specific compositions can be directly

inferred from the theorems.

This design decision allows expressing the specific compositions as simple derivations

from the properties of the specific modules, which is the answer when queried for a

desired property of the full voting rule. With reference to Section 2.1, this structure is

directly amenable to the technique of logic programming, when representing the module

properties as facts, the composition rules as rule set, and the desired property as the

given query. Therefore, this lightweight part of finding compositions for a desired voting

rule that has the desired property can be automated with logic programming in order

to obtain the desired composition tree – if one exists – automatically, and send these

synthesized compositions steps back to Isabelle for doing the full composition proof. We

have implemented this with Prolog, where we replaced the default search procedure

by iterative deepening to avoid getting lost in infinite branches. This is necessary as

the composition of an electoral module may again yield an electoral module, e.g., for

sequential composition, but can be easily detected within the new search procedure.

Given the simplicity of the compositions, it then suffices to implement a brute-force

procedure that tries complementing each composition step in the proof successively

with the most common “general-purpose” Isabelle proof tactics (in our case, this was

simp, blast, metis, and fastforce) and the proof succeeds within seconds. From this, the

Isabelle code generation feature can be used to automatically give us – in addition to the

composition proof – a runnable program which we have just verified. With the further

82

5.4. Evaluation

integration of a simple parser for our Isabelle theories, this can be fully automated by

producing an intermediate Prolog interpretation of our facts and rules, which can be

directly queried in Prolog.

The implementation is based on work by Richter (2021) and is runnable and available for

download.1

5.4 Evaluation

As a case study for demonstrating the applicability of our approach to existing voting

rules and the merits of composition, we constructed the voting rule sequential majority

comparison (SMC) from the literature (e.g., from Brandt, Conitzer, et al. (2016)), thereby

producing a compositional proof that the rule is monotone.

Sequential Majority Comparison (SMC). The voting rule of sequential majority com-

parison, also known as sequential pairwise majority, is simple enough for understanding,

but still complex enough such that it demonstrates interesting properties such as mono-

tonicity. Essentially, SMC fixes some (potentially arbitrary) order on all alternatives and

then consecutively performs pairwise majority elections. We start by doing pairwise

comparisons of the first and the second alternative, then compare the winner of this

pairwise comparison to the third alternative, whose winner is then compared to the

fourth alternative, and so on. SMC belongs to a category of voting rules called tournament

solutions, for which we outline a possible construction pattern in the following.

Verified Construction of Tournament Solution. As indicated in Section 5.1, loop

composition appears sensible for tournament solutions, as a list of alternatives is processed

by multiple rounds, whereof in each, the previously chosen alternative is compared to

the next alternative on the list regarding their rankings in the profile, and the winner of

a comparison advances to the next round. For the comparison of alternatives, we use

any electoral module 𝑚 which elects one alternative and rejects the rest (for example via

plurality voting). In order to limit comparisons to two alternatives, we use the electoral

module 𝑝𝑎𝑠𝑠2
>, which defers the two alternatives ranked highest in some fixed order >

and rejects the rest. Similarly, 𝑑𝑟𝑜𝑝2
> rejects these two alternatives and defers the rest. We

can now describe a single comparison in our tournament as

𝑐 = (𝑝𝑎𝑠𝑠2
> ⊲ 𝑚) | |aggmax

𝑑𝑟𝑜𝑝2
>

1The source code is available under https://github.com/VeriVote/ViRAGe, the tool name stands for “VVVVVVVVVVVVVVVVVoting RRRRRRRRRRRRRRRRRule

AAAAAAAAAAAAAAAAAnalysis and GeGeGeGeGeGeGeGeGeGeGeGeGeGeGeGeGeneration.”

83

https://github.com/VeriVote/ViRAGe

Chapter 5. Synthesis of Reliable Tallying Procedures

Figure 5.3: Tree representation of the construction for sequential majority comparison

The first part of the parallel composition elects the winner of the current comparison and

rejects all other alternatives. The second part defers all alternatives which are not currently

being compared and therefore stay in the tournament. The termination condition 𝑡 |𝑑 |=0

is satisfied if and only if the set of deferred alternatives passed to it is empty. Then we

describe a single round of our tournament as

𝑟 = (𝑐⟲𝑡 |𝑑 |=0)↓

Now, for the case of sequential majority comparison (SMC), we proceed as follows.

Verified Construction of SMC. Every single comparison elects a single alternative

to advance to the next round and rejects the other. As long as alternatives are left, the

next 𝑐 compares the next two alternatives. If there ever is only a single alternative left, it

advances to the next round automatically. At the end of the round, we need to revise so

that we defer all winners to the next round instead of electing them.

Let 𝑚elect be the electoral module which elects all alternatives passed to it and 𝑡 |𝑑 |=1 the

termination condition that is satisfied when exactly one alternative is deferred. We can

now define the whole tournament as

𝑡 = (𝑟⟲𝑡 |𝑑 |=1) ⊲ 𝑚elect.

84

5.4. Evaluation

...
𝑚elim is non-electing

𝑚elim eliminates 1 alternative

𝑚elim⟲|𝑑 |=1 defers 1 alternative

...
𝑚elect is electing

𝑚elim⟲|𝑑 |=1 is non-electing

𝑚elim⟲|𝑑 |=1 is defer-lift-invariant

𝑚elim⟲|𝑑 |=1 ⊲ 𝑚elect is monotone

Figure 5.4: A simplified excerpt of the top-level monotonicity proof for SMC.

𝑡 repeats single rounds as long as there is more than one alternative left, and then elects

the single survivor.

Implementing the Construction of SMC in Isabelle/HOL. After having described

a general pattern for the verified construction of tournament solutions and sequential

majority comparison, we give only structural information on the implemented construc-

tion proofs for SMC as the details are rather lengthy, but instead refer the reader to the

Isabelle/HOL proofs.

We can construct SMC by combining six different basic components by using all of our

composition structures, i.e., the sequential, parallel, loop, and revision structure, and

thereby produce a proof that SMC is a monotone voting rule. The composition structure

is depicted in Figure 5.3 represented as a tree, where ≿ denotes the given profile and the

composition structures are represented by their respective icons.

The high-level modular construction can be seen in Figure 5.5, where SMC stands for

sequential majority comparison composed of a number of simple components. Each

component, the largest of which is an electoral module inducing plurality voting (see

Section 3.2), consists of not more than three lines of higher-order logic, and we provided

proofs within our Isabelle/HOL framework for easy reuse and modification for similar

voting rules.

In Figure 5.4, we illustrate the final deduction rules on the top-level within the monotonic-

ity proof. Therein, 𝑚elim stands for the composition before the loop composition, where

effectively the loser of the pairwise match is dropped from the original defer-set. Herein,

the compositional nature of our framework is visible as the monotonicity property is

induced by the properties of the lower tiers.

Moreover, Figure 5.5 shows the simplicity of the abstract proof obligations both that

SMC is again an electoral module and satisfies the monotonicity property. Both tasks

are proven fully modularly and are hence a direct result of SMC’s composition, and

is apt for an automated integration within a logic-based synthesis tool. We omit the

85

Chapter 5. Synthesis of Reliable Tallying Procedures

fun smc :: ′a Preference-Relation⇒ ′
a Electoral-Module where1

smc x A p =2

((((((pass-module 2 x) ⊲ ((plurality↓) ⊲ (pass-module 1 x))) ‖↑3

(drop-module 2 x))⟲∃ !𝑑) ⊲ elect-module) A p)4

theorem smc-sound:5

assumes order: linear-order x6

shows electoral-module (smc x)7

theorem smc-monotone:8

assumes linear-order x9

shows monotonicity (smc x)10

Figure 5.5: The modular construction of SMC in Isabelle/HOL.

proofs at this point, but they are available for download and can be inspected and re-

played for inspection and automatically checked using Isabelle/HOL. The full proof

comprises 26 compositions using a set of six basic components within the theorem prover

Isabelle/HOL. Besides the proof composition, we made also use of Isabelle’s capability

to produce a verified program (written in Scala) of the composed SMC rule to directly

obtain a runnable program. Using the ViRAGe tool described in Section 5.3, we replayed

the full process, which makes the presented case study a fully automated synthesis upon

the query of an electing monotone voting rule.

5.5 Summary

Within this chapter, we introduced an approach to systematically and automatically

synthesize voting rules from compact composable modules to satisfy formal social

choice properties. We devised composition rules for a selection of common social choice

properties, such as monotonicity or Condorcet consistency, as well as for reusable auxiliary

properties. By design, these composition rules give formal guarantees, in the form of

an Isabelle proof based on the properties satisfied by the component properties, that

a synthesized voting rule fulfills the social choice property of interest as long as its

components satisfy specific properties, which we have proved within Isabelle/HOL for

the scope of our case study. The described synthesis tool then instruments our formal

framework and provides, given the desired properties, a suitable voting rule as a verified

and directly runnable Scala program together with the checkable Isabelle proof.

Our approach is applicable to the construction of a wide range of voting rules which

use sequential or parallel modular structures, notably voting rules with tiebreakers,

86

5.5. Summary

elimination procedures, or tournament structures. This includes well-known rules such

as instant-runoff voting, Nanson’s method, or sequential majority comparison (SMC).

We synthesized SMC from simple components, which we presume to be reusable for

the construction of further rules, and automatically generated a proof that SMC satisfies

monotonicity from basic formal proofs for the structures, compositions, and components

which we constructed step by step. This case study and all required definitions were

implemented and verified with the theorem prover Isabelle/HOL. Finally, our approach

can be safely extended with additional modules, compositional structures, and rules, for

integration into voting rule design or verification frameworks.

Outlook. So far, composition is realized mostly by transferring sets of deferred alterna-

tives between modules. We also intend to inspect the more involved modular structures

already incorporated in some more complicated voting rules in order to achieve a more

flexible notion of composition. This, however, also involves making more detailed as-

sumptions on how exactly information is passed between modules, which might come

with a loss of generality. Nonetheless, this extension seems to be necessary for voting

rules such as Single-Transferable Vote (STV), which are not composable for sensible

social choice properties with our strong notion of locality in composition rules. Another

sensible extension is the composition of voting rules based on distance rationalization that

is very flexible, as almost every voting rule can be constructed this way with the caveat

that the composition structures would be less imperative than the structures described

in this chapter (Elkind, Faliszewski, and Slinko, 2015; Steinriede, 2021).

87

6
Efficient Verification of Reliable Tallying

Procedures

The real value of tests is not that they detect bugs in

the code, but that they detect inadequacy in the

methods, concentration and skills of those who

design and produce the code.

Charles Antony Richard Hoare, How Did Software Get

So Reliable Without Proof?, 1996

H
aving seen how to construct and synthesize voting rules from given requirements

in the previous chapter, this chapter considers the case where we already have a

designed or even implemented version of a voting rule or multiple thereof. However, it is

not always easy to decide right away on the desired requirements for a voting rule, or the

environment of the envisioned application might change, given that the tradeoff between

any such required properties is inherently difficult and error-prone. The experiences

presented in this chapter document that errors in voting rules are easy to make, and

formal methods greatly enhance the chances of finding such errors. Furthermore, we

document that there are formal techniques which provide proof that a voting rule – and

its algorithmic implementation – meets a given property.

Within this chapter, we are particularly interested in means to justify, compare, or adapt

an already existing voting rule in a comprehensible and efficient manner. Concretely, we

investigate the power of SBMC techniques (Section 2.2) for verifying properties of voting

rules, demonstrated on simple examples, and for arguing for or against a given voting

rule when compared to another voting rule.

89

Chapter 6. Efficient Verification of Reliable Tallying Procedures

We start by giving insights into the logical models and formalizations that we used, and

also present formalization techniques specially tailored to axiomatic properties of voting

rules. Then, we describe and compare techniques used for an efficient application of

formal program verification on voting rules.

The content of this chapter has been previously published by Kirsten and Cailloux (2018),

Beckert, Bormer, Goré, et al. (2017), and Beckert, Bormer, Kirsten, et al. (2016).

6.1 Functional and Relational Properties

We consider voting rules as instances of preference aggregation problems, where the

individual preferences of voters are combined to produce an election result. The input

for the voting rule is modeled as a finite sequence of ballots, with one ballot for each

voter. For this section and the next one, we give general classifications of social choice

properties, which we formalize based on a notion of voting rules in Definition 6.1 that is

more general than the ranking-based notion in Definition 3.1. Thereby, the classifications

are applicable to a wider range of voting rules and profiles, e.g., in settings where voters

assign scores to each alternative.

Definition 6.1 (General voting rule, profile) Given a set B of possible ballots and a set
W of possible election results, a voting rule is a total function f : B∗ →W, assigning an
election result to each profile, where a profile 𝐵 ∈ B∗ is a finite sequence of ballots.

The special election result ⊥ may be included in W to denote that there is no “valid”
result (e.g., in case of a tie).

An individual pair (𝐵,𝑊) ∈ (B∗ ×W) consisting of a profile and an election result will
be called an evaluation. The set of all evaluations is E = B∗ ×W.

The concrete structure of ballots 𝑏 ∈ B, how ballots encode voters’ preferences, and the

structure of possible election results in W depend on the investigated voting rule. In

examples throughout this chapter and in the case study in Section 6.4, we use preferential

voting rules with single winners:1

Definition 6.2 (Preferential voting rule) Let A be a finite set of alternatives. A voting
rule is called preferential if the possible ballots ≿𝑏 ∈ B are linear orders on A and the
possible results are single alternatives or a tie, i.e., W = A ∪ {⊥}.

We distinguish between functional and relational properties. Functional properties, such

as the majority criterion, refer to single election results while relational properties, such

1Definition 6.2 is very similar to Definition 3.1, except that the result is either a single alternative or otherwise

considered invalid, i.e., we do not distinguish different tie-situations, but abstract them under the value ⊥.

90

6.1. Functional and Relational Properties

as anonymity, compare two (or more) results. In the literature, functional and relational

properties are also called intra- and interprofile properties, as defined by Fishburn (1973).

Definition 6.3 (Functional property) Given a set B of possible ballots and a set W of
possible results, a functional property 𝐹 for voting rules is a set of evaluations, i.e.,
𝐹 ⊆ E = (B∗ ×W) is a relation between profiles and results.

A voting rule f : B∗ → W satisfies a functional property 𝐹 if and only if f ⊆ 𝐹, i.e., all
evaluations of f are elements of 𝐹. Intuitively, a functional property 𝐹 is the set of those
evaluations that a voting rule may contain if it is to have that property.

Example 6.4 (Majority criterion, majority winner) Given a profile 𝑝 ∈ B∗, a majority
winner for 𝑝 = ⟨≿1 , . . . ,≿n⟩ is an alternative 𝑎 ∈ A that is preferred over all other
alternatives in more than half of the ballots:

|{≿𝑖 ∈ 𝑝 | 𝑎 ≿𝑖 𝑎′ for all 𝑎′ ∈ A, 𝑎′ ≠ 𝑎}| > n

2 .

A voting rule satisfies the majority criterion if and only if, for all profiles 𝑝, either the
majority winner for 𝑝 is elected or there is no majority winner for 𝑝. This criterion is
formalized by the functional property

Maj = {(𝑝, 𝑎) | if 𝑎′ is a majority winner for 𝑝, then 𝑎′ = 𝑎} .

Definition 6.5 (Relational property) Given a set B of possible ballots and a set W of
possible results, a relational property 𝑅 for voting rules is a set of pairs of evaluations,
i.e.,

𝑅 ⊆ E × E = (B∗ ×W) × (B∗ ×W) .

A voting rule f : B∗ →W satisfies a relational property 𝑅 if and only if, for all evaluations
𝑒 , 𝑒′ ∈ f, the pair (𝑒 , 𝑒′) is in 𝑅.

Intuitively, a relational property𝑅 consists of those pairs of evaluations that – by definition

of that property – are allowed to “coexist” in a voting rule.

Example 6.6 (Monotonicity criterion) For the monotonicity criterion, we need to com-
pare profiles that are identical up to one ballot. By 𝑏↑𝑎 ⊂ B, we denote the set of all ballots
that are identical to 𝑏, except that now 𝑎 ∈ A is given a higher rank, i.e., 𝑎 is lifted.

The relational property Mono of monotonicity is as follows:

Mono = (E×E) \ {((𝑝, 𝑤), (𝑝′, 𝑤′)) | there is an alternative with 𝑎 ∈ 𝑤, 𝑎 ∉ 𝑤′,
and 𝑝′ results from 𝑝 by replacing
a single ballot 𝑏 ∈ 𝑝 by a ballot 𝑏′ ∈ 𝑏↑𝑎}

91

Chapter 6. Efficient Verification of Reliable Tallying Procedures

That is, Mono contains all pairs of evaluations except those where a winning alternative
is given higher preference in one of the ballots (denoted by 𝑏′) which results in the
alternative 𝑎 no longer being elected.

A functional property consists of single evaluations, namely those evaluations that are

considered “good” by the property. A voting rule is judged against the functional property

for every evaluation separately. In contrast, a relational property is a relation between

two evaluations of the voting rule. Satisfaction is hence judged by considering each of

its evaluations in the context of the other evaluations. Thus, the concept of relational

properties is stronger and more expressive. In fact, every functional property can also be

represented as a relational property.

The classes of functional and relational properties do not cover all interesting properties

of voting rules, but only those that can be checked by looking at one (functional) or two

(relational) evaluations at a time. However, there are properties that require a comparison

of three or more evaluations.

Example 6.7 (Consistency criterion) A voting rule satisfies the consistency criterion if,
for any three profiles 𝑝, 𝑝1 , 𝑝2 such that 𝑝 is the concatenation of 𝑝1 and 𝑝2:

if f(𝑝1) = f(𝑝2), then f(𝑝) = f(𝑝1) = f(𝑝2).

Properties such as consistency,1 which can (only) be defined by comparing three evalua-

tions are called 3-properties. This concept can be extended to generalized 𝑘-properties for

𝑘 ∈ ℕ, which does – however – still not cover all properties. For example, the surjectivity2

property, which requires that for each possible election result there is a profile leading to

that result, is a rather simple property that is not a 𝑘-property for any 𝑘. Surjectivity is an

existential property, requiring the existence of (combinations of) certain evaluations, while

𝑘-properties are universal in nature, requiring all 𝑘-tuples of evaluations are “good” in

some sense.

6.2 Exploitation of Symmetry Properties

An important kind of relational properties are those expressing that, if two profiles are

symmetric (or in some way similar) to each other, then they lead to symmetric (similar)

election results. Many fairness criteria are of this type.

In practice, the amount of possible ballots is very large and the amount of possible profiles

even larger. Correspondingly, there is a huge amount of possible execution paths through

1Consistency is sometimes also referred to as reinforcement or convexity.

2Sometimes, surjectivity is also referred to as (strict) non-imposition property.

92

6.2. Exploitation of Symmetry Properties

implementations of voting rules. Exploiting symmetries is an important technique so

that testing or formal verification attempts gain in feasibility.

The idea is to only prove that a voting rule f satisfies a functional property 𝐹 for a small

subset 𝑋 ⊆ B∗ of the possible profiles, i.e., (𝑥, f(𝑥)) ∈ 𝐹 for all 𝑥 ∈ 𝑋, and to then make

use of the symmetry property in order to conclude that the same holds for all profiles

𝑝 ∈ B∗, i.e., f has the property 𝐹 in general. This, of course, is only useful if either both the

subset 𝑋 is much smaller than B∗ and if it is easy to prove that f is symmetric with respect

to a symmetry relation 𝑆 for which 𝑋 are the representatives, or if we can assume an

existing proof since the symmetry is an interesting property in its own right (anonymity,

neutrality, monotonicity, etc.). In the specification used for verification, the restriction

to the set 𝑋 is achieved by a first-order logic predicate 𝜓, called a symmetry-breaking

predicate (SBP), a term originating from the field of constraint satisfaction (Crawford

et al., 1996). The formula 𝜓(𝑃) has a free variable 𝑃, and 𝑋𝜓 ⊆ B is the set of profiles that

satisfy 𝜓(𝑃).

6.2.1 Symmetry Properties

An important kind of relational properties includes those expressing that, if two profiles

are symmetric (or in some other way similar) to each other, then they lead to symmetric

(similar) election results. Many criteria for voting rules are of this type.

Definition 6.8 (Symmetry property) A symmetry property is a relational property

𝑆∼,≈ = {((𝐵, 𝑎), (𝐵′, 𝑎′)) | 𝐵 ∼ 𝐵′ implies 𝑎 ≈ 𝑎′},

where ∼ ⊆ B∗ ×B∗ and ≈ ⊆ W ×W are binary relations on profiles respectively election
results.

A voting rule satisfying 𝑆∼,≈ (Definition 6.5) is called symmetric with respect to 𝑆∼,≈.

Thus, a voting rule f is called symmetric with respect to 𝑆∼,≈ if two ∼-related profiles

yield ≈-related results. Note that, according to our definition of symmetry, it is not a

requirement for ∼ or ≈ to be symmetric relations themselves.

Example 6.9 (Anonymity criterion (Fishburn, 1973)) One elementary symmetry prop-
erty, which most voting rules satisfy, is anonymity, where ∼anon is defined by

𝐵 ∼anon 𝐵′ iff 𝐵′ is a permutation of 𝐵

and ≈anon is the equality relation on W. The symmetry property 𝑆∼anon ,≈anon expresses
that changing the order of the ballots – corresponding to changing which voter casts
which vote – does not affect the election result. In this example, both ∼anon and ≈anon are
symmetric.

93

Chapter 6. Efficient Verification of Reliable Tallying Procedures

It is often useful to consider families of symmetries that are parameterized by elements

of some set 𝑃 (which may, for example, contain permutations):

Definition 6.10 (Family of symmetry properties) Given a parameter set 𝑃, a family of

symmetry properties is a set {𝑆∼𝑝 ,≈𝑝 | 𝑝 ∈ 𝑃} of symmetry properties that are induced
by relational properties ∼𝑝 ,≈𝑝 for each 𝑝 ∈ 𝑃.

Example 6.11 (Neutrality criterion (Fishburn, 1973)) Again, we consider preferential
voting rules (Definition 6.2). The neutrality criterion expresses that, if the alternatives
are permuted in a profile, then the voting rule permutes the alternatives in the same way
in the election result.

Neutrality can be formalized as a family of symmetry properties using the parameter set
𝑃 = {𝜋 | 𝜋 is a permutation on A} and defining:

𝐵 ∼𝜋 𝐵′ iff 𝐵′ = 𝜋(𝐵) and 𝑎 ≈𝜋 𝑎′ iff 𝑎′ = 𝜋(𝑎) ,

(where the application of 𝜋 is extended to ballots and profiles in the obvious way). Thus,

𝑆∼𝜋 ,≈𝜋 = {((𝐵, 𝑎), (𝐵′, 𝑎′)) | 𝐵′ = 𝜋(𝐵) implies 𝑎′ = 𝜋(𝑎)} .

A voting rule satisfies the neutrality criterion if and only if it satisfies 𝑆∼𝜋 ,≈𝜋 for all 𝜋 ∈ 𝑃.

Example 6.12 (Monotonicity symmetry property) The monotonicity property Mono in
Example 6.6 also corresponds to a family of symmetry properties, using the parameter
set 𝑃 = A (the alternatives are the parameters) and defining ∼↑𝑝 ,≈↑𝑝 by:

𝐵 ∼↑𝑝 𝐵′ iff 𝐵′ results from 𝐵 by replacing a single ballot 𝑏 ∈ 𝐵 by a ballot 𝑏′ ∈ 𝑏↑𝑝

𝑎 ≈↑𝑝 𝑎′ iff 𝑎 = 𝑝 implies 𝑎′ = 𝑝.

A voting rule satisfies property Mono if and only if it satisfies 𝑆∼↑𝑝 ,≈↑𝑝 for all 𝑝 ∈ A, i.e.,
Mono =

⋂
𝑝∈A 𝑆∼↑𝑝 ,≈↑𝑝 .

Note that the relation ∼↑𝑝 is not an equivalence relation for monotonicity.

This formalization using a parametric property family is necessary for Mono, since it

cannot be described as a single symmetry property. In fact, every relational property can

be phrased as a family of symmetry predicates for some parameter set.

94

6.2. Exploitation of Symmetry Properties

6.2.2 Symmetry Exploitation

In addition to establishing (𝑥, f(𝑥)) ∈ 𝐹 for all 𝑥 ∈ 𝑋, we also have to establish (1) that

f has symmetry property 𝑆, i.e., it produces symmetric outputs for symmetric inputs,

(2) all elements in B∗ are represented by (i.e., are symmetric to) at least one element in B∗

which satisfies 𝜓, and (3) for any evaluation (𝑝, 𝑤) satisfying property 𝐹, all evaluations

(𝑝′, 𝑤′) symmetric to (𝑝, 𝑤) also satisfy 𝐹. Note, that only (1) needs to be proven for the

specific voting rule f, while (2) and (3) only depend on 𝐹, 𝑆, and 𝑋. Propositions (2)

and (3) can hence be verified either via a manual proof, or using an automated theorem

prover that can deal with first-order logic and set theory (including transitive closure).

The proof for (𝑥, f(𝑥)) ∈ 𝐹 can be done using program verification techniques, using 𝜓 as

an assumption in the proof.

Definition 6.13 (Spanning set) Let ∼ ⊆ B∗ × B∗ be a binary relation on profiles. A set
𝑋 ⊂ B∗ of profiles is a spanning set with respect to ∼ if and only if, for every profile
𝐵 ∈ B∗, there is a profile 𝑥 ∈ 𝑋 with 𝑥 ∼∗ 𝐵, where ∼∗ is the transitive, reflexive closure
of ∼.

Definition 6.14 (Symmetry resilience) Let 𝐹 ∈ F be a functional property, and let 𝑆∼,≈ ⊆
R be a symmetry property. Then, 𝐹 is called symmetry-resilient with respect to 𝑆∼,≈ if
and only if, for all 𝐵, 𝐵′ ∈ B∗ and 𝑊,𝑊 ′ ∈ W, then

(𝐵,𝑊) ∈ 𝐹, 𝐵 ∼ 𝐵′,𝑊 ≈𝑊 ′ implies (𝐵′,𝑊 ′) ∈ 𝐹.

The following theorem formalizes the approach of exploiting symmetry properties to

help with proving functional properties.

Theorem 6.15 (Symmetry breaking) Let 𝐹 ∈ F be a functional property and {𝑆∼𝑝 ,≈𝑝 }
a family of symmetry properties with parameter set 𝑃; further, let 𝑋 ⊂ B∗ be a set of
profiles.

Then, every voting rule f : B∗ →W such that

f is symmetrysymmetric (Definition 6.8) with respect to 𝑆∼𝑝 ,≈𝑝 for all 𝑝 ∈ 𝑃
(𝑥, f(𝑥)) ∈ 𝐹 for all 𝑥 ∈ 𝑋
𝑋 is spanning (Definition 6.13) with respect to the relation’s union

⋃
𝑝∈𝑃
∼𝑝

𝐹 is symmetry-resilient (Definition 6.14) with respect to 𝑆∼𝑝 ,≈𝑝 for all 𝑝 ∈ 𝑃

(6.1)

(6.2)

(6.3)

(6.4)

satisfies the property 𝐹, i.e., f ⊆ 𝐹.

Proof Let 𝐵 ∈ B∗ be an arbitrary profile; we have to show that (𝐵, f(𝐵)) ∈ 𝐹. Because of

(6.3), there exist 𝐵0 ∼𝑝0 𝐵1 ∼𝑝1 · · · ∼𝑝𝑛−1 𝐵𝑛 = 𝐵 with 𝐵0 ∈ 𝑋. It is, thus, sufficient to show

95

Chapter 6. Efficient Verification of Reliable Tallying Procedures

that (𝐵𝑘 , f(𝐵𝑘)) ∈ 𝐹 for all 𝑘, which we do by induction on 𝑘. The base case (𝐵0 , f(𝐵0)) ∈ 𝐹
follows from (6.2) as 𝐵0 ∈ 𝑋. For the step case, the induction hypothesis is (𝐵𝑘 , f(𝐵𝑘)) ∈ 𝐹.

As 𝐵𝑘 ∼𝑝𝑘 𝐵𝑘+1, we have also f(𝐵𝑘) ≈𝑝𝑘 f(𝐵𝑘+1) by (6.1). From that and the hypothesis, we

can derive (𝐵𝑘+1 , f(𝐵𝑘+1)) ∈ 𝐹 using (6.4). ■

The following corollary is a version of Theorem 6.15, in which all definitions are expanded.

We include it to show in one place the four proof obligations that arise for verifying that

the voting rule f satisfies the functional property 𝐹 using the symmetry property 𝑆.

Corollary 6.16 (Symmetry breaking (expanded)) Let 𝐹 ∈ F be a functional property
and {𝑆∼𝑝 ,≈𝑝 } a family of symmetry properties with parameter set 𝑃; further, let 𝑋 ⊆ B∗

be a set of profiles.

Then, every voting rule f : B∗ →W such that

∀𝐵, 𝐵′ ∈ B∗ , 𝑝 ∈ 𝑃 : 𝐵 ∼𝑝 𝐵′ =⇒ f(𝐵) ≈𝑝 f(𝐵′)
∀𝑥 ∈ 𝑋 : (𝑥, f(𝑥)) ∈ 𝐹

∀𝐵 ∈ B∗ : ∃𝑥 ∈ 𝑋 : 𝑥 ∼∗ 𝐵
∀(𝐵,𝑊), (𝐵′,𝑊 ′) ∈ E, 𝑝 ∈ 𝑃 : (𝐵,𝑊) ∈ 𝐹 ∧ 𝐵 ∼𝑝 𝐵′ ∧𝑊 ≈𝑝 𝑊 ′⇒ (𝐵′,𝑊 ′) ∈ 𝐹

(6.1’)

(6.2’)

(6.3’)

(6.4’)

satisfies the property 𝐹, i.e., f ⊆ 𝐹.

In (6.3’), ∼∗ denotes the transitive, reflexive closure of
⋃

𝑝∈𝑃 ∼𝑝 .

6.3 Efficient Relational Verification via Program Weaving

Relational properties (Definition 6.5) relate the behavior of a voting rule for two indepen-

dent input (profiles). For verification, two runs of the same program 𝛼, implementing

the voting rule, need to be analyzed and their results compared. A common technique,

called self-composition (Darvas, Hähnle, and Sands, 2005; Barthe, Crespo, and Kunz, 2011),

for proving a relational property for a program 𝛼 is to show a functional property for

the concatenation “𝛼1 ; 𝛼2”, combining the behavior of two variants 𝛼1 and 𝛼2 of 𝛼 that

are identical up to variable names, hence operating on disjoint variable sets, and storing

the outputs in disjoint variable sets as well. Based on Hoare logic (Hoare, 1969), we then

verify a relational property 𝑅 by running “𝛼1 ; 𝛼2” with (symbolic) inputs 𝑝1 , 𝑝2 with the

results 𝑤1 , 𝑤2, and proving ((𝑝1 , 𝑤1), (𝑝2 , 𝑤2)) ∈ 𝑅.

Formal verification of relational properties using self-composition is challenging in gen-

eral, since it requires static analysis of two independent program runs; the exploration

space that needs to be analyzed is potentially exponentially larger than the exploration

96

6.4. Relational Verification of Voting Rules

space for analyzing a single program run. Moreover, for this type of relational veri-

fication, sufficiently strong program specifications (in particular, loop invariants and

postconditions) are required to prove non-trivial properties.

Another way to handle relational verification, which improves on self-composition, is to

weave the two variants into a single combined program. Since 𝛼1 and 𝛼2 have disjoint

variable sets, reordering statements cannot have an effect on the result as long as the

execution order of statements is preserved. Details about the possibilities of flexibly

weaving programs can be found in the work by Felsing et al. (2014) and Barthe, Crespo,

and Kunz (2011). Consider for instance the program “while (cond) { body }” consisting

of a single while-loop. It is easy to see that, instead of concatenating two variants of

this code (one with cond1 / body1 and one with cond2 / body2), one can use the following

single-loop program:

while (cond1 || cond2) { if (cond1) {body1} if (cond2) {body2} }

This weaved program does not require separate loop invariants for the looploops in 𝛼1

and 𝛼2 but only a single so-called coupling invariant for the weaved loop that sets variables

�̄�1 and �̄�2 into relation. In many cases, the coupling invariant is significantly simpler than

the (functional) loop invariants. As long as the two loop executions behave similarly, it is

easier to express how the two states are related after each step than to specify what it is

that the loops actually compute.

6.4 Relational Verification of Voting Rules

Below, we report on experiences with relational verification and symmetry breaking

techniques (see Sections 2.2 and 6.3). For our case study, we used the automated software

(bounded) model checker CBMC (Clarke, Kroening, and Lerda, 2004), which takes

C/C++ programs as input that are annotated with specifications in the form of assertions

and assumptions. We performed our computations using CBMC’s SAT backend based on

MiniSat (Eén and Sörensson, 2003) in combination with an efficient bit-vector refinement

procedure (Bryant et al., 2007).

Relational Verification Using CBMC. As explained in Section 6.3, relational verification

with weaved programs and coupling invariants is often more efficient than just composing

two variants of the (same) program. We evaluate the impact of coupling invariants on

performance and feasibility, using as an example the verification of simple first-past-

the-post plurality voting with respect to the anonymity property. For plurality voting,

anonymity can be written as follows:

97

Chapter 6. Efficient Verification of Reliable Tallying Procedures

1 void anonymity(int p1[N], int p2[N]) {

2 for (int i = 1; i <= N; i++) {

3 assume (0 < p1[i] ≤ M ∧ 0 <p2[i] ≤ M) }

4 int b1, int b2; assume (0 < b1 ≤ N ∧ 0 < b2 ≤ N ∧ b1 < b2);

5 assume (p1[b1] == p2[b2] ∧ p2[b1] == p1[b2]);

6 for (int i = 1; i <= N; i++) {

7 if (i != b1 && i != b2) assume (p1[i] == p2[i]); }

8 int w1 = plurality(p1);

9 int w2 = plurality(p2);

10 assert (w1 == w2);

11 }

Listing 6.1: Anonymity property as a C program

𝜙Anon(𝑃1 ,𝑊1 , 𝑃2 ,𝑊2) = ∀𝑏1 , 𝑏2((∀𝑖(0 < 𝑖 ≤ 𝑛 → (0 < 𝑃1[𝑖] ≤ 𝑚 ∧ 0 < 𝑃2[𝑖] ≤ 𝑚))
∧ 0 < 𝑏1 < 𝑏2 ≤ 𝑛

∧ 𝑃1[𝑏1] = 𝑃2[𝑏2] ∧ 𝑃2[𝑏1] = 𝑃1[𝑏2] ∧
∀𝑖((0 < 𝑖 ≤ 𝑛 ∧ 𝑖 ≠ 𝑏1 ∧ 𝑖 ≠ 𝑏2) → 𝑃1[𝑖] = 𝑃2[𝑖])

) →𝑊1 = 𝑊2)

Anonymity is a relational property (see Section 6.1). It is formalized as a first-order logic

formula 𝜙Anon(𝑃1 ,𝑊1 , 𝑃2 ,𝑊2), using four free variables denoting two profiles and two

election results, respectively. Since plurality voting is a single-choice voting rule (it is not

preferential), we assume the profiles to be one-dimensional arrays, i.e., the 𝑖th ballot 𝑝[𝑖]
of profile 𝑝 equals the 𝑖th voter’s single choice and is not itself an array. Moreover, we

assume that, in case of a tie, no alternative is elected and that this is indicated by the

election result of 𝑤 = 0.

Listing 6.1 shows the corresponding CBMC specification, expressing that the voting rule

implemented in the C function plurality satisfies the anonymity property. Lines 2 and 3

express the assumption that the profiles are well-formed. The universal quantification of

variable i is expressed using a for-loop. The variables 𝑏1 , 𝑏2 introduced by the assumption

in Line 4 are implicitly universally quantified, as CBMC carries out the proof for all

values satisfying the assumptions. The profiles 𝑝1 , 𝑝2 are assumed to only differ in ballots

of voters 𝑏1 , 𝑏2, in that the ballots of these two voters are exchanged. This is expressed in

Lines 5 to 7. The function plurality is invoked in Lines 8 and 9 to compute the election

result for the two profiles 𝑝1 , 𝑝2. Finally, Line 10 makes the assertion that the two election

results are identical. CBMC will prove that this assertion holds for all inputs (a) whose

size is within a given bound and that (b) satisfy the assumptions from Lines 2 to 7.

98

6.4. Relational Verification of Voting Rules

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

500

1,000

1,500

3

6

9

1
2

Ballots

R
u

n
n

i
n

g
t
i
m

e
[
s
]

Running times for 3, 6, 9 and 12 alternatives in seconds

(a) Without coupling invariants

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

500

1,000

1,500

3

6

9

1
2

Ballots

R
u

n
n

i
n

g
t
i
m

e
[
s
]

Running times for 3, 6, 9 and 12 alternatives in seconds

(b) Weaved program with coupling invariants

Figure 6.1: Verification of the anonymity property for plurality voting

We used CBMC to verify the anonymity property for plurality voting using (a) simple

composition of two variants without coupling invariants and (b) weaved programs with

coupling invariants for the loops (the implementation of plurality voting has two loops,

one counting the ballots for each alternative and one for finding the alternative with the

maximum amount of votes).

Figure 6.1 shows the running times (in seconds) for between 1 and 12 alternatives and

1 to 15 ballots. For the missing data points, the running times exceed our predefined

timeout of 30 minutes. The results show that the verification without weaving and cou-

pling invariants becomes infeasible for rather small bounds. Verification with coupling

invariants fares considerably better; the timeout, here, is finally reached for about 10 alter-

natives and 25 ballots (in contrast to only 10 alternatives and 7 ballots without coupling

invariants).

Symmetry Breaking. We continue the case study, now with the goal to verify the

majority criterion (Example 6.4) for plurality voting.

Using CBMC in a straightforward manner, verification is possible for small bounds on

the amounts of voters and alternatives, but becomes infeasible for higher amounts. For

example, a timeout of 30 minutes is reached with 5 alternatives and 45 voters, respectively

with 10 alternatives and 20 ballots. Considering the small-scope hypothesis and the simple

structure of plurality voting, we deem these bounds high enough. The running times (in

seconds) for 10 alternatives are shown in the second column of Table 6.1 (‘t/o’ indicates

timeout). The full data can be seen in the work by Beckert, Bormer, Kirsten, et al. (2016).

99

Chapter 6. Efficient Verification of Reliable Tallying Procedures

Ballots Without Symm. Red. With Symm. Red.

5 1,2 0,2

10 41,7 0,9

15 84,3 3,8

20 t/o 6,9

50 t/o 194,2

80 t/o 747,9

85 t/o 855,4

90 t/o 1 369,6

95 t/o t/o

Table 6.1: Verification of the majority property for plurality voting for 10 alternatives (running

times in seconds)

Using symmetry breaking, however, the efficiency of the verification can be considerably

increased – and, thus also, the reachable bounds. Assuming anonymity, which is a

symmetry property, by applying the symmetry-breaking predicate

∀𝑖(0 < 𝑖 < 𝑛) → 𝑃[𝑖 − 1] ≤ 𝑃[𝑖],

the situation improves dramatically. This predicate requires the ballots to be sorted

according to which alternatives they prefer. Intuitively, this is a valid assumption, as

anonymity allows to re-order the ballots.

The much lower running times are shown in the right column of Table 6.1. Experiments

show that handling more than 100 ballots for 10 alternatives becomes feasible, when

adding predicates for further symmetry properties.

6.5 Efficient Generation of Counterexamples

In this section, we further investigate on using SBMC – which we already applied above –

for determining whether a rule satisfies an axiom within the specified bounds. Our first

interest was and still is to detect automatically which axioms a voting rule satisfies among

a given set of axioms.

It is, moreover, especially interesting to obtain short and readable proofs that a rule

does not satisfy some axiom, which is our main objective in this section: our automatic

prover outputs profiles, preferably small or satisfying some other property representing

“simplicity” for a human eye, that exhibit a failure of a rule to satisfy an axiom. Such a

short proof is interesting even if it is already known in the literature that the rule does not

100

6.5. Efficient Generation of Counterexamples

satisfy the axiom, as short proofs permit to help get an intuitive understanding of voting

rules. Furthermore, it can be used to talk about voting rules with non-expert users.

We illustrate it by applying the approach to the case of Borda: we consider a set of four

axioms that characterize the Borda rule, and given some rules different from the Borda

rule, we find automatically which axioms from that set each rule fails to satisfy. Our illus-

tration in this case permits to obtain a tool that “argues in favor” of Borda (Cailloux and

Endriss, 2016) (assuming the axioms characterizing Borda of our choice are considered

desirable properties of any voting rule): given any rule that is not the Borda rule, the

prover finds a concrete profile which illustrates that the rule fails to comply with some

of those axioms.

We start by two further properties, of which we know that they are satisfied by Borda,

Pareto dominance (or simply Pareto) and reinforcement.

The property Pareto dominance Dom is an example of a functional property.

Definition 6.17 (Pareto dominance) Pareto dominance (Dom) forbids alternatives that
are Pareto-dominated from winning. An alternative 𝑎 ∈ A is Pareto-dominated in a profile
(≿𝑖)𝑖∈𝑁 if and only if some alternative 𝑎′ ∈ A is unanimously preferred to 𝑎 in (≿𝑖)𝑖∈𝑁 :
∀𝑖 ∈ 𝑁, 𝑎′ ≿𝑖 𝑎. The property mandates that the rule selects winning alternatives among
𝑈𝑅, denoting the alternatives that are not Pareto-dominated in 𝑅: ∀𝑅 ∈ ⋃𝑁⊆N L(A)𝑁 ,
𝑆Dom(𝑅) = P∗(𝑈𝑅).

The property reinforcement Reinf exemplifies a 3-relational property.

Definition 6.18 (Reinforcement) Reinforcement (Reinf) requires that elections which
unite disjoint groups of voters elect the alternatives chosen by both groups, if some such
alternatives exist: for each (≿𝑖)𝑖∈𝑁1 , (≿𝑖)𝑖∈𝑁2 with 𝑁1 ∩ 𝑁2 = ∅ and 𝐴 ≠ ∅, defining 𝐴 as
f((≿𝑖)𝑖∈𝑁1) ∩ f((≿𝑖)𝑖∈𝑁2), reinforcement imposes that f((≿𝑖)𝑖∈𝑁1∪𝑁2) = 𝐴.

For the following experiments, we use CBMC 5.8 (Clarke, Kroening, and Lerda, 2004),

an implementation of the SBMC approach for the C language, with the built-in solver

based on the SAT solver MiniSat 2.2.0 (Eén and Sörensson, 2003). All experiments1 are

performed on an Intel® Core™ i5-6500 CPU at 3.20 GHz with 4 cores and 16 GB of RAM.

A Simple Example

Listing 6.2 illustrates how we specify Dom, the functional property Pareto dominance. The

function is annotated with specifications in the form of assumptions (expressed by the

1The implementations within this section and many more together with a convenient bash script that presents

readable counterexamples are available under github.com/mi-ki/voting-rule-argumentation/.

101

github.com/mi-ki/voting-rule-argumentation/

Chapter 6. Efficient Verification of Reliable Tallying Procedures

1 void dominance(uint prof[N][M], uint win[M]) {

2 uint bad = nondet_uint(), good = nondet_uint();

3
__CPROVER_assume (0 ≤ bad < M);

4
__CPROVER_assume (0 ≤ good < M);

5
__CPROVER_assume (bad ≠ good);

6 uint prefergtob[N];

7 for (uint i = 0; i < N; i++) {

8 uint rankg = M, rankb = M;

9 for (uint r = 0; r < M; r++) {

10 if (prof[i][r] == good) rankg = r;

11 if (prof[i][r] == bad) rankb = r;

12 }

13 prefergtob[i] = (rankg < rankb) ? 1 : 0;

14 }

15 for (uint i = 0; i < N; i++)

16
__CPROVER_assume (prefergtob[i]);

17
__CPROVER_assume (win[bad]);

18 }

Listing 6.2: Pareto-dominance specification for CBMC.

function __CPROVER_assume), that represent the statements composing 𝐶ant
, as well as oper-

ations to model nondeterministic choice (indicated by the prefix nondet_) that represent

what we called nondeterministic parameters in Section 2.2. These nondeterministic-choice

operators can be used anywhere inside the analyzed program and are also translated to

the formula which is passed to the solver. The solver then searches for instantiations of

these variables which lead to a violation of 𝐶cons
.

In the displayed function, the constants N and M denote the amounts of voters and al-

ternatives, respectively. The voters and alternatives are represented by integers from

0 to N − 1 and from 0 to M − 1. The function accepts as input a profile prof, modeled as

a two-dimensional array: prof[i][r] is the alternative that voter i associates to rank r,

where 0 is the best, and M − 1 the worst rank. The function also accepts as input a set

of winning alternatives, modeled as an array win with one entry per alternative: win[a]

equals 1 if the alternative a belongs to the set of winning alternatives, 0 otherwise. The

nondeterministic parameters are prof (whose declaration is not shown here) and the

two alternatives bad and good (Line 2). Lines 6 to 14 initialize the array prefergtob so that

prefergtob[i] holds the value 1 if voter i prefers good to bad, 0 otherwise.

The function thus indicates to the solver that it must find two alternatives bad and good,

thus integers in the suitable range (Lines 3 and 4) and different from each other (Line 5),

such that every voter prefers good to bad (Lines 15 and 16), and yet the alternative bad is a

winner of the election (Line 17). Any run which satisfies these specified statements is a

102

6.6. Definitions for the Experiments

1 int main(int argc, char *argv[]) {

2 uint prof[N][M], uint win[M];

3 for (uint i = 0; i < N; i++) {

4 uint used[M];

5 for (uint a = 0; a < M; a++) used[a] = 0;

6 for (uint r = 0; r < M; r++) {

7 a = nondet_uint();

8
__CPROVER_assume (0 ≤ a < M);

9
__CPROVER_assume (!used[a]);

10 prof[i][r] = a;

11 used[a] = 1;

12 }

13 }

14 win = f(prof, N);

15 dominance(prof, win);

16 assert (0);

17 return 0;

18 }

Listing 6.3: Setup for CBMC.

valid counterexample which would prove that the profile and winners given as input

violate Pareto dominance.

We pursue the example with the setup given in Listing 6.3. Therein, we initialize a profile

with symbolic nondeterministic values (Line 7) and restrict their ranges such that they

are valid alternatives (Line 8). Furthermore, we use a helper array used with one entry per

alternative, which is used to ensure that every ballot holds every alternative only once

(Lines 5, 9 and 11). We assume a voting rule is given as a function f (Line 14) which gets

a profile prof and the amount of voters N as parameters, and returns the set of winning

alternatives as output. For the experiments within this section, the implementations of f

will follow directly from their definitions.

After calling the test methods for the properties to be checked (in this case only Pareto

dominance), we set a Boolean statement that is always false (Line 16) as content of 𝐶cons

(recognized by the solver by the keyword assert), which indicate to the solver that any

program run that reaches this point is a counterexample of interest to us.

6.6 Definitions for the Experiments

We propose here to consider the axioms that characterize the Borda voting rule (Defini-

tion 3.2), as defined in a variant of Young’s axiomatization (Cailloux and Endriss, 2016).

103

Chapter 6. Efficient Verification of Reliable Tallying Procedures

We also define a few axioms that are not satisfied by the Borda rule, and finally define

two supplementary rules. All these concepts will be used in the experiments.

We repeat here the definition of the Borda rule from Section 3.2 for convenience:

Definition 6.19 (Borda rule) The Borda rule, given a profile (≿𝑖)𝑖∈𝑁 , associates to each
alternative 𝑎 and voter 𝑖 the score 𝑠(𝑎, 𝑖) equal to the amount of alternatives that 𝑎 beats
in ≿𝑖 , and associates to each alternative 𝑎 the score 𝑠′(𝑎) = ∑

𝑖∈𝑁 𝑠(𝑎, 𝑖). The winners are
the alternatives that have the maximal score: 𝑓Borda((≿𝑖)𝑖∈𝑁) = arg max𝑎∈A 𝑠′(𝑎).

6.6.1 An Axiomatization of the Borda Rule

We now require a few further definitions.

A profile (≿𝑖)𝑖∈𝑁 is elementary if and only if it has exactly two voters, and if the set

of alternatives can be partitioned into disjoint subsets 𝐴top , 𝐴bottom ⊆ A with 𝐴top ∪
𝐴bottom = A and 𝐴top ≠ ∅ such that both voters have all alternatives in 𝐴top

preferred to

all alternatives in 𝐴bottom
, and the voters have inverse preferences over 𝐴top

, and inverse

preferences over 𝐴bottom
. Thus, denoting the voters by 1 and 2, and denoting by ≿ |𝐴 the

restriction of ≿ to 𝐴, ∀𝐴 ∈ {𝐴top , 𝐴bottom} : ≿1 |𝐴 = (≿2 |𝐴)−1
. Let 𝑇(𝑅) denote the “top

alternatives” of an elementary profile, meaning, the set of alternatives corresponding to

𝐴top
(this is legal as it is unique).

Example 6.20 (Elementary profile) The profile 𝑅 shown below, composed of the linear
orders (𝑎, 𝑏, 𝑐, 𝑑) and (𝑏, 𝑎, 𝑑, 𝑐), is an elementary profile corresponding to 𝐴top = { 𝑎, 𝑏 },
with A equal to { 𝑎, 𝑏, 𝑐, 𝑑 }.

𝑅 =

𝑎 𝑏

𝑏 𝑎

𝑐 𝑑

𝑑 𝑐

. (6.5)

Given a linear order ≿ ∈ L(𝐴), with A of size 𝑚, define the cycle corresponding to ≿ as

the set of 𝑚 pairs consisting of the pairs of alternatives (𝑎, 𝑏) such that 𝑏 immediately

succeeds to 𝑎 in ≿ (the rank of 𝑏 is by one greater than the rank of 𝑎), union the pair of

alternatives (𝑧, 𝑎)where 𝑧 and 𝑎 are respectively the minimal and maximal elements of ≿.

For example, the cycle corresponding to the linear order (𝑎, 𝑏, 𝑐) is {(𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑎)}.
Observe that, given any ≿ ∈ L(𝐴), the cycle corresponding to ≿ corresponds to exactly

𝑚 linear orders in L(𝐴). For example, the cycle {(𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑎)} also corresponds to

(𝑏, 𝑐, 𝑎) and (𝑐, 𝑎, 𝑏).

104

6.6. Definitions for the Experiments

We say that a profile (≿𝑖)𝑖∈𝑁 is cyclic if and only if it has exactly 𝑚 voters and 𝑚 different

linear orders, and some cycle corresponds to all its linear orders (equivalently, the linear

orders in (≿𝑖)𝑖∈𝑁 are all those that correspond to a given cycle).

Example 6.21 (Cyclic profile) The profile 𝑅 shown below is a cyclic profile correspond-
ing to the cycle {(𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑑), (𝑑, 𝑎)} with A = { 𝑎, 𝑏, 𝑐, 𝑑 }.

𝑅 =

𝑎 𝑏 𝑐 𝑑

𝑏 𝑐 𝑑 𝑎

𝑐 𝑑 𝑎 𝑏

𝑑 𝑎 𝑏 𝑐

. (6.6)

Below is the axiomatization that we use for the Borda rule, composed of the axioms Elem,

Cycl, Canc and Reinf. It is very similar, but not identical, to the axiomatization given by

Hobart Peyton Young (1974). The proof that these four axioms characterize the Borda

rule is given in Cailloux and Endriss (2016).

Definition 6.22 (Elementary axiom) The elementary axiom (Elem) mandates that the
rule, when given any elementary profile, selects its top alternatives: 𝑆Elem(𝑅) = {𝑇(𝑅)} if
𝑅 is an elementary profile and 𝑆Elem(𝑅) = P∗(A) otherwise.

Definition 6.23 (Cyclic axiom) The cyclic axiom (Cycl) requires the rule to select all
alternatives as tied winners when given any cyclic profile: 𝑆Cycl(𝑅) = {A} if 𝑅 is a cyclic
profile and 𝑆Cycl(𝑅) = P∗(A) otherwise.

Definition 6.24 (Cancellation axiom) The cancellation axiom (Canc) constrains the set
of winners to be A when all pairs of alternatives (𝑎, 𝑏) are such that 𝑎 is preferred to 𝑏 for
as many voters as 𝑏 is to 𝑎 in (≿𝑖)𝑖∈𝑁 .

Definition 6.25 (Reinforcement axiom) As defined above in Reinf (Definition 6.18).

6.6.2 Two Axioms Not Satisfied by Borda

Borda notoriously fails (when |A| ≥ 3) to satisfy the following two functional properties

Cond and Maj, as well as the derived property Wmaj.

Given a profile 𝑅 = (≿𝑖)𝑖∈𝑁 , we say that an alternative 𝑎 obtains a strict majority against

𝑎′, denoted by 𝑎 𝑀𝑅 𝑎′, if and only if more than half of the voters prefer 𝑎 to 𝑎′ in (≿𝑖)𝑖∈𝑁 :

𝑎 𝑀𝑅 𝑎′ ⇔ |{ 𝑖 | 𝑎 ≿𝑖 𝑎′ }| > |{ 𝑖 | 𝑎′ ≿𝑖 𝑎 }|. An alternative is a Condorcet winner if

and only if it obtains a strict majority against all other alternatives. Any Condorcet winner

is unique.

105

Chapter 6. Efficient Verification of Reliable Tallying Procedures

Definition 6.26 (Condorcet property) The Condorcet property (Cond) mandates that if
there is a Condorcet winner, it becomes the sole winner.

Definition 6.27 (Majority property) The majority property (Maj) requires that, when-
ever some alternative is placed first by more than half of the voters in (≿𝑖)𝑖∈𝑁 , it becomes
the sole winner.

The Condorcet property is stronger than the majority property, i.e., 𝑆Cond ⊆ 𝑆Maj. Based

on Maj, we define a weaker property, the weak majority property Wmaj, for which

𝑆Maj ⊆ 𝑆Wmaj.

Definition 6.28 (Weak majority property) The weak majority property (Wmaj) requires
that, whenever some alternative is placed first by more than half of the voters in (≿𝑖)𝑖∈𝑁 ,
it becomes a (not necessarily unique) winner.

6.6.3 Two Condorcet Compatible Voting Rules

To end this section, we define two famous voting rules that satisfy the Condorcet property

from Section 3.2.

Definition 6.29 (Black’s rule) The Black (1958, p. 66) rule selects the Condorcet winner
if there is one, otherwise, the Borda winners.

Given a profile 𝑅 = (≿𝑖)𝑖∈𝑁 , let 𝑀𝑅(𝑎) denote the set of alternatives against which 𝑎

obtains a strict majority, and 𝑀𝑅
−1(𝑎) the set of alternatives that obtain a strict majority

against 𝑎.

Definition 6.30 (Copeland rule) The Copeland (1951) rule (actually a close variant of a
rule proposed by Ramon Llull in the 13th century (Colomer, 2013)), given a profile 𝑅,
gives to each alternative the score 𝑠(𝑎) = |𝑀𝑅(𝑎)| − |𝑀𝑅

−1(𝑎)|, and lets the alternatives
with maximal score win.

6.7 Experiments

In this section, we first experiment with the Borda rule itself. In Section 6.7.1, we look

at whether the solver is able to find out that the Borda rule satisfies Pareto dominance,

depending on the bounds we set on the amounts of alternatives and voters. We then check

how long it takes to find an example that illustrates Pareto dominance (one where some

106

6.7. Experiments

5 10 15 20 25 30
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2

34
5

Voters

R
u

n
n

i
n

g
t
i
m

e
[
s
]

Running times for 2, 3, 4 and 5 alternatives in seconds.

Figure 6.2: Running times for the automatic verification of Pareto dominance for the Borda

voting rule.

alternative is dominated and indeed not included among the winners). In Section 6.7.2,

we search for counterexamples that illustrate that the Borda rule fails to satisfy the

properties defined in Section 6.6.2.

Second, we experiment with the Borda axiomatization. We suppose we are given a rule

f , different from Borda (Definition 3.2), as a C function: in our experiments we consider

the Black’s rule and the Copeland rule. In this simple experimental setup, we thus know

that f fails to satisfy at least one of the Borda axioms from Section 6.6.1. For each of these

rules, we illustrate that we can find out automatically which axioms f fails to satisfy,

and output a short proof of this, easy for a human to inspect. We also analyze in which

situations we can prove that axioms are satisfied by f , for those that f satisfies.

107

Chapter 6. Efficient Verification of Reliable Tallying Procedures

1 2 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

2

3

4

5

Voters

R
u

n
n

i
n

g
t
i
m

e
[
s
]

Running times for 2, 3, 4 and 5 alternatives in seconds.

Figure 6.3: Running times for finding an illustration of Pareto dominance for the Borda rule.

6.7.1 Borda and Pareto Dominance

In Figures 6.2 and 6.3, we illustrate the sizes of situations, i.e., amounts of voters (on

the x-axis) and alternatives (each having a different plot), that we are able to analyze. In

this example, as well as in the following experiments, we only consider running times

below 30 minutes to be reasonable, and stop computations which require more time

than 30 minutes. Running times are given in seconds (on the y-axis) for up to 30 voters

and 5 alternatives. Figure 6.2 shows the running times for the verification that Pareto

dominance (Listing 6.2) holds for the Borda rule (the line for 2 alternatives is almost

superposed to the x-axis). Experiments for 5 alternatives and more than 26 voters took

more than 30 minutes and are thus not plotted.

Figure 6.3 shows the running times for finding an example situation that illustrates that

Borda satisfies Dom. We used the program code from Listing 6.2 with the only difference

that we negated the statement in Line 17. The function now indicates to the solver that it

must find two different alternatives bad and good, such that every voter prefers good to bad,

and the alternative bad is not a winner of the election.

In the first experiment, the solver proves that no profiles satisfy the provided conditions.

We can see that the verification is feasible for small sizes of profiles within 15 minutes.

Expectedly, in situations where some profile exists that satisfies the provided conditions,

the running times are significantly smaller. They stay well below 10 seconds for this

108

6.7. Experiments

example. Both experiments indicate that our method yields reasonable running times

for at least up to five alternatives and 25 voters.

6.7.2 Counterexamples to Borda

We illustrate here our approach by finding counterexamples which show that the Borda

rule does not satisfy the properties defined in Section 6.6.2 (those properties are satisfied

by both Black’s and the Copeland voting rule, however).

We start with the stronger Condorcet property Cond. The smallest example proving

that Borda fails Cond can be found in less than one second for three voters and three

alternatives:

𝑅 =

𝑐 𝑐 𝑏

𝑏 𝑏 𝑎

𝑎 𝑎 𝑐

(6.7)

For the profile 𝑅, the Borda rule elects the alternatives {𝑎, 𝑐} instead of the Condorcet

winner 𝑐.

Whereas an isomorphic counterexample is found in less than one second for the failure

of Maj, we find two smallest examples (one regarding the amount of alternatives, and

another one regarding the amount of voters) proving the failure of Wmaj.

For a minimal amount of alternatives, we find the smallest proof for three alternatives

and five voters in less than one second:

𝑅 =

𝑎 𝑎 𝑎 𝑏 𝑏

𝑏 𝑏 𝑏 𝑐 𝑐

𝑐 𝑐 𝑐 𝑎 𝑎

(6.8)

For the profile 𝑅, the Borda Borda!rulerule elects the alternative 𝑏 instead of the majority

winner 𝑎.

When searching a proof with a minimal amount of voters, we find the smallest proof for

four alternatives and three voters in less than one second:

𝑅 =

𝑑 𝑑 𝑐

𝑐 𝑐 𝑎

𝑎 𝑏 𝑏

𝑏 𝑎 𝑑

(6.9)

For the profile 𝑅, the Borda rule elects the alternative 𝑐 instead of the majority winner 𝑑.

All given examples can be easily inspected manually.

109

Chapter 6. Efficient Verification of Reliable Tallying Procedures

2 3 4 5 6 7 8 9 10
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2

3

4

5

Voters

R
u

n
n

i
n

g
t
i
m

e
[
s
]

Running times for 2, 3, 4 and 5 alternatives in seconds.

Figure 6.4: Running times for the verification of Reinf for the Copeland voting rule.

6.7.3 Automatic Comparison of Borda with Other Voting Rules

We here want to compare Black’s rule and the Copeland rule with the axiomatization

of the Borda rule shown before. We first encode all four axioms in a way similar to the

Pareto property shown in Listing 6.2. The axioms Elem, Cycl and Canc are functional

properties and can thus be encoded in the very same manner. As the axiom Reinf is a

3-relational property, it needs further statements relating the profiles. The three profiles

are initialized with symbolic nondeterministic values as seen in Listing 6.3. We consider

the bound 𝑁 as the amount of voters of the joined profile prof, and fix the sizes of the

two sub-profiles prof1 and prof2 using a nondeterministic value s to define prof1’s size

as s, and the size of prof2 as N - s. We furthermore fix the profiles prof1 and prof2 with

respect to prof using an array with nondeterministic values to model a mapping between

the joined profile and its two sub-profiles.

Having encoded all four axioms as either functional or 𝑘-relational properties in C func-

tions, we can now compare Black’s rule and the Copeland rule with this axiomatization.

We hereby rely on the small-scope hypothesis and focus on small profiles with up to five

alternatives and eight voters.

Our method successfully verifies that both Black’s rule and the Copeland rule satisfy the

axiom Elem in less than 17 seconds (for “small profiles,” as defined above). As this axiom

must only be verified for two voters, only the amount of alternatives must be bounded.

110

6.7. Experiments

2 3 4 5 6 7 8 9 10
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2

3

4

5

Voters

R
u

n
n

i
n

g
t
i
m

e
[
s
]

Running times for 2, 3, 4 and 5 alternatives in seconds.

Figure 6.5: Running times for the verification of Reinf for Black’s voting rule.

For the axiom Cycl, the verification for both voting rules can be done within 10 minutes

(also addressing only “small profiles” as defined above). Here, the amount of voters is

fully determined by the amount of alternatives (Cycl only addresses profiles with an

equal amount of alternatives and voters).

When checking the axiom Canc, for both rules, verification is achieved within a few

minutes for the cases of eight voters or fewer when the amount of alternatives is bounded

to three; five voters or fewer when the amount of alternatives is bounded to four; and

three voters or fewer when the amount of alternatives is bounded to five. As running

times for both rules are very similar, both are depicted in Table 6.2. Note that Canc

trivially holds for odd numbers of 𝑛, and accordingly verification within the depicted

range is achieved in less than 30 seconds.

For the axiom Reinf, the running times can be seen in Figures 6.4 and 6.5 for the Copeland

rule and Black’s rule, respectively. Round dots indicate that violating voting situations

have been found for the respective amounts of voters and alternatives. Missing parts (for

the case of 5 alternatives) indicate a timeout as defined in Section 6.7.1. Nonetheless, the

time for finding counterexamples of up to ten voters and five alternatives is significantly

lower than for verifying that none exist (see, e.g., the running times for four and five

alternatives in Figure 6.5, comparing running times for four and five voters). The smallest

counterexamples can be found for both voting rules within less than one minute. These

simultaneously serve as proofs, which are both short and easy for a human to inspect.

111

Chapter 6. Efficient Verification of Reliable Tallying Procedures

Table 6.2: Running times for the verification that Black’s and Copeland rule each satisfy

Canc.

𝑚 𝑛 verification time

≤ 3 ≤ 8 < 3 minutes

4 ≤ 5 and 7 < 2 minutes

4 6 and 8 > 30 minutes

5 ≤ 3 and 5 and 7 < 1 minute

5 4 and 6 and 8 > 30 minutes

The smallest example (in the amount of alternatives) proving that Black’s voting rule

fails Reinf has been found in 48 seconds for three alternatives and five voters:

𝑅1 =

𝑎 𝑐

𝑐 𝑎

𝑏 𝑏

, 𝑅2 =

𝑐 𝑏 𝑎

𝑏 𝑎 𝑐

𝑎 𝑐 𝑏

. (6.10)

The elected alternatives for the profiles 𝑅1 and 𝑅2 are {𝑎, 𝑐} and {𝑎, 𝑏, 𝑐}, respectively.

For the joined profile 𝑅1 ∪ 𝑅2, Black’s voting rule elects the Condorcet winner 𝑎 instead

of the set {𝑎, 𝑐} mandated by Reinf.

The smallest example, both in the amount of alternatives and in the amount of vot-

ers, proving that the Copeland rule fails Reinf has been found in 32 seconds for three

alternatives and four voters:

𝑅1 =

𝑏 𝑎

𝑎 𝑐

𝑐 𝑏

, 𝑅2 =

𝑎 𝑏

𝑏 𝑎

𝑐 𝑐

. (6.11)

The elected alternatives for the profiles 𝑅1 and 𝑅2 are 𝑎 and {𝑎, 𝑏} respectively. For the

joined profile 𝑅1 ∪ 𝑅2, the Copeland rule elects the set {𝑎, 𝑏} instead of only alternative

𝑎, which would be required by the Reinf property.

Both examples can be easily inspected manually.

6.8 Efficient Verification via Program Transformations

In the previous sections, we have presented various examples for the verification of

voting rules with respect to social choice properties using software bounded model

checking. For a more convenient instrumentation of the SBMC tool, we have written the

112

6.8. Efficient Verification via Program Transformations

prototypical tool BEAST1 that translates the given parameters automatically so that the

SBMC tool can process it, thereby avoiding repetitive user tasks.

Figure 6.6: Implementation of Borda within BEAST.

In the following, we briefly report on the verification process for the example of the

Borda rule and the reinforcement property Reinf from Section 6.5. In Figure 6.6, we

see the implementation of the Borda rule as a simplified C program as defined by

Definition 3.2 in the election editor tab. Since we do not require the full generality possible

in the C language, it suffices to provide 10 lines of code for the Borda rule, as well as the

selection of appropriate input and output types (which are shown in the status bar below

the implementation). Note that the constants C and V are constants for the amounts of

alternatives and voters, respectively, that are afterward in the verification process filled

in with the bounds that are chosen by the user. Within BEAST, we implemented a simple

C parser that automatically detects loops, for each of which the respective bounds can

be either directly inferred or specified by the user. On the right-hand side, we see that

BEAST is able to automatically infer the loop bounds for this kind of loop. BEAST knows

about the constants for alternatives and voters and hence presents the detected bounds as

“necessary alternatives” and “necessary voters” for the according loops. Upon selection

of the individual loop entries, we can also overwrite the computed values.

1The runnable source code, documentation of the property language, and the example below, are available

under https://github.com/VeriVote/BEAST.

113

https://github.com/VeriVote/BEAST

Chapter 6. Efficient Verification of Reliable Tallying Procedures

Note that the method signature as well as the return statement at the end are shaded in

gray, as these are fixed based on the previous selection of input and output types. In this

case, these are preference profile and list of alternatives (which contains all – possibly

tied – winners), but other types can be selected as well. In case we require auxiliary

functions, these can be added by the menu below the computation of the loop bounds

on the right-hand side. When starting the verification, BEAST generates the rest of the

necessary methods, including a main method, that are necessary for the verification

process.

Figure 6.7: Implementation of reinforcement property within BEAST.

Besides the implementation, we need to specify the property which we want to verify. This

can be done in the property editor, which we see in Figure 6.7 for the reinforcement property

as defined in Definition 6.18. For a convenient way to specify properties, we defined a

simple language with patterns that denote common parts of social choice properties.

Moreover, the upper variables’ menu allows defining the required nondeterministic values

when we want to address, e.g., a specific voter or alternative; in this case none are necessary.

Below the variables’ menu, there is both the precondition menu and the postcondition menu.

Therein, we have access to the keywords VOTES and ELECT which are templates for the input

and the output of the voting rule, in our case a preference profile and a list of alternatives,

respectively. For expressing properties between multiple executions of the voting rule,

i.e., relational properties, we complement the keywords with a natural number that

refers to the execution to which they belong. For example, VOTES1 and ELECT1 suffice when

114

6.9. Summary

specifying functional properties, and we can use VOTES2 and ELECT2 to address input and

output of the second execution, and so on. In the background, BEAST generates the

required method calls, instructions, and C structures accordingly.

For the reinforcement property, we use the precondition to specify for the three different

profiles VOTES1, VOTES2, and VOTES3, that the concatenation of VOTES2 and VOTES3 is a permu-

tation of the profile VOTES1. Note that PERM is a pattern provided by BEAST that, in the

background, translates to a nondeterministic array and an assumption that specifies the

permutation relation to the array constructed on the left. By means of using numbers up

to 3, BEAST already knows that it must generate three calls to the voting rule.

Finally, the postcondition specifies an implication, that whenever the intersection (spec-

ified by CUT) of the election results ELECT2 and ELECT3 is not empty (! denotes negation

and EMPTY a predicate that evaluates to true for an empty profile), then the election result

ELECT1 of the first execution contains exactly this intersection. BEAST performs the whole

translation in the background and generates a “raw” C program including assertions

and assumptions that can then be analyzed by CBMC.

We do not elaborate on the remaining parts of BEAST for performing the verification

and presenting counterexamples at this point, as the essential parts thereof have already

been covered in Section 6.5.

6.9 Summary

In this chapter, we have presented and formally defined an automatic approach to argue

for and against voting rules based on axiomatic social choice properties. The approach is

fully automated and based on the software analysis technique bounded model checking.

Our case study on the Borda, Copeland, and Black’s voting rule shows that illustrative

proofs are obtained automatically in reasonable time for small amounts of voters and

alternatives. This might appear surprising given the combinatorial structure of preference

profiles and set-valued outcomes.

Based on the small-scope hypothesis, we argue that our approach can be used for arguing

about voting rules, especially because it provides short and human-readable proofs when

it detects that a voting rule fails to satisfy some axiom.

Ideas for future work include extensions to reasoning about rules that have only incom-

plete specification. For example, we could automatically conceive an argument (in the

form of an example profile and a set of winners, as illustrated in the experiments) that

would attack any rule that does not satisfy a given axiom. In this way, it would be possible

to also argue against classes of rules, in addition to concrete rules as illustrated in this

chapter. Our approach could also be extended to automatically illustrate differences

115

Chapter 6. Efficient Verification of Reliable Tallying Procedures

between two sets of axiomatic properties without the need for any explicit voting rule. A

more ambitious extension would consist in automatically deriving proofs that a winner

is a “right” winner by using several example profiles, as Cailloux and Endriss (2016)

have illustrated by means of a non-automatic procedure.

A longer-term objective is to mix the ideas proposed in this work and further optimization

techniques (Beckert, Bormer, Kirsten, et al., 2016) with elicitation procedures in order

to obtain a system that would permit to recommend a voting rule, possibly based on

work in elicitation of scoring rules (Cailloux and Endriss, 2014) and on work that defines

justified recommendations as those that resist counterarguments (Cailloux and Meinard,

2020).

116

7
Computation of Dependable Election

Margins for Reliable Audits

Beware of bugs in the above code; I have only proved

it correct, not tried it.

Donald Ervin Knuth, Notes on the van Emde Boas

construction of priority deques: An instructive use of

recursion, 1977

C
ommonly for high-stakes elections in which some stakeholder suspects some ir-

regularity or any kind of problem within the processing of the ballots and the

computation of the tally, the regulations often allow them to demand a reliable auditing

procedure that scrutinizes the election result.

One reliable method to create confidence in the outcome of an election among the

electorate is to audit the election result against the physical evidence, i.e., the ballots.

Different methods for auditing elections exist, some of them require the computation of

a margin, that is the minimal amount of ballots to be changed, misfiled, etc. to affect the

election outcome. For those methods, the precise definition of the margin is often hidden

inside the theory, as it depends on the election function – or social choice function – and

the particular auditing methodology. This means, that (1) for many election functions,

including ranked-choice voting (RCV) and Single-Transferable Vote (STV), or election

functions that combine different electoral systems, for example on state and federal

level, it is difficult if not impossible to give closed forms for how to compute a margin,

and (2) even if one manages to find a closed form for how to compute the margin, the

implementations of election function and margin computation differ, for example in

117

Chapter 7. Computation of Dependable Election Margins for Reliable Audits

the way ambiguities are resolved, when and how to which precision to round, how

tiebreaking rules are implemented, etc.

In this chapter, we focus on auditing methods that require the margins to be known

before they can be applied. Examples of these methods are, e.g., risk-limiting audits that

draw a random sample of paper ballots (Section 3.3) whose size is computed from (a) a

risk limit, i.e., how confident we wish to be in the election result, and (b) the margin. For

a comparison audit, the margin of a risk-limiting audit is defined as the minimal amount of

votes that would need to be misfiled in order to change the election outcome. The margin

is identical to the amount of votes that would have had to be miscounted or tampered

with during tabulation. If the election margin is large, only a small sample needs to be

drawn and audited. The smaller the margin, the larger the sample. In the worst case, the

audit will trigger a full manual recount.

We describe a way to compute the margins that does not presuppose the existence of

a closed form for the margin and works directly on the source code (e.g., written in

C/C++). Our technique can be applied to any election function, but it will perform best

on those that are conceptually simple, such as D’Hondt and Saint-Laguë. The technique

can in principle also be applied to more complex election functions, such as instant-runoff

voting (IRV), but only for small elections with a small amount of seats and alternatives.

In the following, we introduce our method that, based on SBMC (Section 2.2), allows to

automatically compute election margins for arbitrary election functions, and apply it to

the well-known D’Hondt method for elections on German state level in Section 7.1. An

extension that leads to increased efficiency is described in Section 7.3. In Section 7.4, we

present a case study where we apply our method to compute the election margin for the

main part of the 2015 Danish national parliamentary elections.

The content of this chapter has been previously published by Beckert, Kirsten, Klebanov,

et al. (2017) and Beckert, Bormer, Goré, et al. (2017).

7.1 Efficient Computation of Election Margins

We assume that an election function is given as an imperative program (a C function

called election_function in our case) as well as a concrete input (denoted as vote_table)

for that election function. The vote_table is the result of vote counting and tabulation.

We model vote_table as an integer array of size PARTIES, where PARTIES is the amount of

different stacks into which identical votes are accumulated during counting.

The idea of our approach is to use an SBMC tool to check an assertion claiming that,

when vote_table is changed by putting at most a certain amount 𝑚 of votes on other

stacks than they were on, the outcome of the election is not changed. If that assertion is

118

7.1. Efficient Computation of Election Margins

1 void verify() {

2 int new_votes[PARTIES], diff[PARTIES], total_diff, pos_diff;

3 for (int i = 0; i < PARTIES; i++) {

4 diff[i] = nondet_int();

5
__CPROVER_assume (-1 * MARGIN ≤ diff[i] ≤ MARGIN);

6
__CPROVER_assume (0 ≤ ORIG_VOTES[i] + diff[i]);

7 }

8

9 for (int i = 0, total_diff = 0, pos_diff = 0; i < PARTIES; i++) {

10 new_votes[i] = ORIG_VOTES[i] + diff[i];

11 if (0 < diff[i]) pos_diff += diff[i];

12 total_diff += diff[i];

13 }

14
__CPROVER_assume (pos_diff ≤ MARGIN);

15
__CPROVER_assume (total_diff == 0);

16

17 int *result = election_function(new_votes);

18 assert (equals(result, ORIG_RESULT));

19 }

Listing 7.1: Implementation of the margin computation for CBMC.

provable, we know that the actual election margin is greater than 𝑚. If the assertion is not

provable, we know that the actual election margin is less than or equal to 𝑚. In the latter

case, the SBMC tool generates a counterexample to the assertion demonstrating that

the electionoutcome can be changed by changing 𝑚 votes. Having this proof obligation

as a basis, we can use binary search to find a value for 𝑚 such that the assertion holds

for 𝑚 − 1 but fails for 𝑚, i.e., 𝑚 is exactly the election margin.

The check for a particular prospective margin 𝑚 can be executed by running the SBMC

tool CBMC on the program shown in Listing 7.1, where the variables written in capital

letters are given as concrete input values, and the method nondet_int() is a CBMC feature

in order to denote nondeterministic, i.e., potentially different for each function call,

and symbolic, i.e., unknown, integer values. The changes in the sizes of the vote stacks

are nondeterministically chosen (Line 4) in such a way that the total difference is zero

(assumption in Line 15), i.e., votes can be moved from one stack to the other but not

removed or created, and such that the amount of votes in each stack cannot become

negative (Line 6). Other types of margins for other kinds of changes to the vote table

can be computed using different assumptions on the chosen values for diff. The changes

are added to the original vote table for computing the new table (Line 10). Then, the

election result for the new vote table is computed by calling the method election_function

(Line 17).

119

Chapter 7. Computation of Dependable Election Margins for Reliable Audits

Algorithm 7.1 Binary search for election margin using SBMC.

Input:
election_function: implementation of the election function

ORIG_VOTES: array with the size of each of the stacks of identical votes,

i.e., the input for the election function

PARTIES: size of the vote table array

Output:
MARGIN: computed election margin

1 function searchMargin

2 ORIG_RESULT← election_function(ORIG_VOTES) // initialization

3 MARGIN← 0
4 left← 0
5 right← ∑

𝑖=1,...,PARTIES ORIG_VOTES[𝑖] // total amount of votes

6 while left < right do // search for margin

7 MARGIN← left +
[

right−left
2

]
8 𝑟𝑒𝑠𝑢𝑙𝑡 ← cbmc(verify(), MARGIN, PARTIES, ORIG_VOTES, ORIG_RESULT)

9 if 𝑟𝑒𝑠𝑢𝑙𝑡 = SUCCESS then
10 left← MARGIN + 1, MARGIN← MARGIN + 1
11 else
12 right← MARGIN

13 end if
14 end while
15 return MARGIN

16 end function

Finally, the program contains the assertion to be checked by CBMC (Line 18), expressing

that the new election result is equal to the original one. Intuitively, we have encoded any

difference between the original election outcome and the new one as a bug to be found by

the model checker. This also means that our approach gives us a concrete redistribution

of votes for the computed margin, as CBMC encodes detected bugs as concrete paths

through the program, which lead to the assertion violation, i.e., the changed outcome.

The algorithm performing a binary search for the exact election margin is shown in

Algorithm 7.1 (for our experiments we use a shell script implementation of this algorithm).

The algorithm takes as input the implementation of an election function and a concrete

vote table. Its output is the exact election margin. The algorithm first calls election_function

to obtain the original election result (Algorithm 7.1). The left and right bounds of the

binary search are initialized to zero, respectively the total amount of votes (Algorithms 7.1

120

7.2. Margin Computation for the D’Hondt Method

to 7.1). Then, a while-loop (Algorithms 7.1 to 7.1) performs the binary search and calls

CBMC on the program from Listing 7.1 with different values for MARGIN, i.e., different

alternatives’ margins, until the solution is found. If the result of CBMC indicates that

MARGIN is too low, the left bound is increased (Algorithm 7.1), and if CBMC indicates

that MARGIN is either the correct margin or is too high, then the right bound is decreased

(Algorithm 7.1). To be more precise, if the result of calling CBMC reads SUCCESS, we know

that the assertion in the program in Listing 7.1 holds, i.e., the election outcome cannot

be affected, and the speculative margin MARGIN is too low; otherwise MARGIN either is the

correct election margin or it is too high.

Note that neither the algorithm in Algorithm 7.1 nor the program in Listing 7.1 make

any further assumptions regarding the election function. Our method can be applied

to arbitrary implementations of election_function without making any changes, only

influencing the computation time needed by the satisfiability solver used as a backend,

e.g., for more complex mathematical operations. The approach can also be adapted to

more complex ballot structures. And, as said above, margins for different notions of vote

changes can be computed by using different assumptions on the array diff in Listing 7.1,

and margins for different notions of changes in the election outcome can be computed

by using different versions of the function equal called in Line 18 from Listing 7.1.

7.2 Margin Computation for the D’Hondt Method

Margin computation also plays a central role for risk-limiting audits regarding the results

after performing seat apportionment methods such as the D’Hondt or Saint-Laguë

method (Stark and Teague, 2014). In this section, we exemplarily apply our technique

to the D’Hondt method, which allocates mandates to a number of parties based on the

votes cast for these parties. Before the D’Hondt election function is applied, vote counting

and tabulation sorts the votes into stacks, where each stack contains votes for a single

party. The input for the election function then is the amount of votes for each party (i.e.,

the amount of votes in the corresponding stack).

The D’Hondt method proportionally allocates mandates to parties in such a way that the

amount of votes represented by mandates is maximized, i.e., the votes-per-seats ratio

– intuitively the price in the amount of votes to be paid by a party to get one seat – is made

as high as possible while still allocating all seats in parliament. By this means, D’Hondt

achieves an – as far as possible – proportional representation in parliament (Gallagher,

1991).

D’Hondt can be implemented as a highest-averages method: the amount of votes for each

party is divided successively by a series of divisors, which produces a table of quotients

(or averages). In that table, there is a row for each divisor and a column for each party.

121

Chapter 7. Computation of Dependable Election Margins for Reliable Audits

1 int *election_function(int vote_table[PARTIES]) {

2 int *mandates = malloc(PARTIES * sizeof(int));

3 int divisor[PARTIES];

4

5 for (int i = 0; i < PARTIES; i++) mandates[i] = 0;

6 for (int i = 0; i < PARTIES; i++) divisor[i] = 1;

7

8 int elected = 0;

9 for (int j = 0, j < MANDATES; j++) {

10 for (int i = 0; i < PARTIES; i++)

11 if (divisor[i] * vote_table[elected]

12 < divisor[elected] * vote_table[i]) elected = i;

13 mandates[elected]++;

14 divisor[elected]++;

15 }

16 return mandates;

17 }

Listing 7.2: Implementation of the D’Hondt method as a C program.

For the D’Hondt method, these divisors are the natural numbers 1, 2, . . . , MANDATES, where

MANDATES is the total amount of mandates to be distributed. Then, the greatest numbers in

the quotient table – respectively the parties in whose columns these numbers are – are

each allocated one seat. The “final” seat goes to the MANDATES’th greatest number. Hence,

the threshold level of the votes-per-seats ratio lies in the interval between the MANDATES’th

greatest number and the (MANDATES + 1)’st greatest number of all computed averages in

the quotient table.

An efficient C implementation of D’Hondt is shown in Listing 7.2. There, the constants

PARTIES and MANDATES encode the amounts of parties and the amount of mandates to

be allocated, respectively. The input is given in the array vote_table, which holds the

amounts of votes cast for each individual party. This implementation avoids constructing

the complete quotient table. Instead, the program stops as soon as the MANDATES’th greatest

quotient has been found. For this purpose, the divisors currently under consideration

for finding the next highest value are stored in the array divisor for each party. Note that

in case of a tie, the order in vote_table is the tiebreaker, i.e., the first party in vote_table

which is tied with the current maximum divisor takes the seat.

After initializing the arrays mandates and divisor (Lines 5 and 6), we execute the outer loop

(Lines 9 to 15) MANDATES times. Each time, the program iterates the inner loop (Lines 10

to 12) to find the maximum

elected = max
𝑖=1,...PARTIES

vote_table[𝑖]
divisor[𝑖]

122

7.2. Margin Computation for the D’Hondt Method

Table 7.1: Preliminary official results for the 2005 Schleswig-Holstein elections.

Party Votes % Mandates %

Christian Democratic Union (CDU) 576 100 42.1 30 43.4

Social Democratic Party (SPD) 554 844 40.6 29 42.0

Free Democratic Party (FDP) 94 920 6.9 4 5.8

Alliance ’90/The Greens 89 330 6,5 4 5.8

South Schleswig Voter Federation (SSW) 51 901 3.7 2 2.9

Totals 1 367 095 69

and then assigns one seat to the elected’th party (Line 13), and increases the divisor for

that party (Line 14). To find the maximum, the comparison

vote_table[elected]/divisor[elected] < vote_table[i]/divisor[i]

is replaced by

divisor[i] ∗ vote_table[elected] < divisor[elected] ∗ vote_table[i],

which is equivalent as the divisors are positive numbers. The advantage of using the

latter form for the comparison is to avoid dealing with fractional numbers and rounding

effects in C. This is a sensible choice for any implementation of D’Hondt as, depending

on the programming language and hardware, rounding may both show unexpected

behavior and potentially lead to faulty election results.

In order to test our margin computation for D’Hondt, we use the preliminary official

results of the Schleswig-Holstein state elections in 2005.1 In that election, 1, 367, 095 votes

were cast and 69 mandates were to be allocated. Out of the 13 parties running, four

parties received the necessary quota of 5% to be eligible for the mandate allocation. The

fifth party to receive seats, the South Schleswig Voter Federation, represents the Danish

minority and is exempted from the quota rule for reasons of minority protection. The

mandates (seats in parliament) were allocated using the D’Hondt method. The parties,

their votes, and the allocated mandates are shown in Table 7.1.

We apply our approach to the vote numbers (i.e., the vote_table) of the Schleswig-Holstein

election for various values of MANDATES. In doing so, we are able to compute the margin of

the election with the running time increasing for higher values of MANDATES as shown in

Section 7.2 and Section 7.2. The running time for the final check is shown in Section 7.2.

This check requires showing that the election result can be changed by changing 𝑚 votes

(counterexample generation) but cannot be changed by changing 𝑚 − 1 votes (margin

1The results of that election are also used as an example in the German Wikipedia article on the D’Hondt

method (http://de.wikipedia.org/wiki/D’Hondt-Verfahren).

123

http://de.wikipedia.org/wiki/D'Hondt-Verfahren

Chapter 7. Computation of Dependable Election Margins for Reliable Audits

5 10 15 20 25 30 35 40 45
0

100

200

300

400

500

600

700

800

Mandates

R
u

n
n

i
n

g
t
i
m

e
[
s
]

Margin Verification

Counterexample Generation

(a) Time for last step in computation.

5 10 15 20 25 30 35 40 45
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

Mandates

R
u

n
n

i
n

g
t
i
m

e
[
s
]

(b) Accumulated time for whole computation.

Figure 7.1: Running times of automatic margin computation for the D’Hondt method with

various values for MANDATES.

verification), implying that 𝑚 is the true margin. Section 7.2 shows the accumulated

time for the complete binary search that computes 𝑚. For values of MANDATES between 2
and 45, the computed margins range from only 433 (for MANDATES = 23) to 177, 863 (for

MANDATES = 2). Note that, with only two mandates, the CDU and the SPD each get a seat;

the margin of 177, 863 then is the amount of votes that have to be moved from the SPD

to the CDU so that the CDU gets both mandates instead of only one, which is smaller

than the amount of votes that would have to be moved from the SPD to the FDP so that

the FDP gets a seat instead of the SPD.

The running times shown in the figure do not form a smooth curve because they depend

on the margin that is computed, which is, e.g., smaller for 40 mandates than for 35. Yet,

the numbers increase with the value of MANDATES. Moreover, as can be seen from the figure,

they get prohibitively large for more than about 45 mandates.

Thus, our approach can be applied to real implementations of real election functions,

but only if the number of loop iterations does not go beyond a few hundred (about

5 parties times 45 mandates in this case). For elections with a larger amount of parties

and mandates or election functions with more complex loop nestings, improvements are

required. One such improvement is discussed in the following section.

7.3 Automated Finding of Election Parameters

The election function defined by the D’Hondt method can also, equivalently, be described

without a quotient table. Instead, a quota is chosen, i.e., an amount of votes needed to

124

7.3. Automated Finding of Election Parameters

1 int *election_function(int votes[PARTIES]) {

2 int *mandates = malloc(PARTIES*sizeof(int));

3 for (int i = 0; i < PARTIES; i++) mandates[i] = 0;

4

5 int quotaNumerator = nondet_int();

6 int quotaDenominator = nondet_int();

7

8
__CPROVER_assume (0 < quotaNumerator ≤ INT_MAX);

9
__CPROVER_assume (0 < quotaDenominator ≤ MANDATES);

10
__CPROVER_assume (quotaDenominator < quotaNumerator);

11

12 for (int i = 0; i < PARTIES; i++) {

13
__CPROVER_assume (0 ≤ quotaDenominator * votes[i] ≤ INT_MAX);

14 mandates[i] = ((quotaDenominator * votes[i]) / quotaNumerator);

15
__CPROVER_assume (0 ≤ mandates[i] ≤ MANDATES);

16 }

17

18 int total_mand = 0;

19 for (int i = 0, total_mand = 0; i < PARTIES; i++)

20 total_mand += mandates[i];

21
__CPROVER_assume (total_mand == MANDATES);

22

23 return mandates;

24 }

Listing 7.3: Implementation of the Jefferson method as a symbolic C program.

“buy” one mandate, such that the resulting mandates per party, when rounded down

to the next natural number, sum up to the required total amount of mandates. This

is known as Jefferson’s method and is similar to largest-remainder methods such as the

Hare-Niemeyer method. The quota corresponds to the lowest quotient in the D’Hondt

table for which a mandate is allocated.

If the implementation of an election function is based on choosing or searching for some

parameter (here the quota), then the margin computation can be made much more

efficient by replacing the search for the parameter by a nondeterministic choice to be

resolved by the SBMC tool.

An implementation of the Jefferson method in C is shown in Listing 7.3. The program

uses a nondeterministic choice of quota = quotaNumerator/quotaDenominator (Lines 5 to 6).

Assumptions are made to limit the range of the quota (Lines 8 to 10 and Line 13). The

amount of mandates for each party is computed (Line 14), as well as the total amount

of mandates (Lines 18 to 20). Then, the assumption is checked that the total amount

of mandates for the chosen quota is the correct one (Line 21). This final check is an

125

Chapter 7. Computation of Dependable Election Margins for Reliable Audits

5 10 15 20 25 30 35 40 45 50 55 60 65 70

0.5

1

1.5

2

2.5

3

3.5

4

Mandates

R
u

n
n

i
n

g
t
i
m

e
[
s
]

Margin Verification

Counterexample Generation

(a) Time for last step in computation.

5 10 15 20 25 30 35 40 45 50 55 60 65 70
0

5

10

15

20

25

30

Mandates

R
u

n
n

i
n

g
t
i
m

e
[
s
]

(b) Accumulated time for whole computation.

Figure 7.2: Running times of automatic margin computation for the Jefferson method with

various values for MANDATES.

assumption and not an assertion, i.e., we want to consider only the case(s) where the total

amount of mandates is correct; other cases are irrelevant. An assertion, on the other hand,

would have to be true for all cases where the (other) assumptions are fulfilled. Note that

this implementation does not deal with tiebreaking, as in this case no such quota can be

found, and no program execution path can satisfy the assumption in Line 21. However,

tiebreaking mechanisms can easily be integrated in the program.

The running times of the automatic margin computation for the 2005 Schleswig-Holstein

state elections with various values for MANDATES, i.e., the total amount of mandates to be

allocated, are shown in Section 7.3 and Section 7.3. Note that these running times are

much lower than those for the D’Hondt method in Section 7.2 and Section 7.2. Now,

all computations stay well below the timeout of 9, 000 seconds (i.e., 2.5 hours), even

below 30 seconds. Moreover, the computation of the election margin for the original

amount of mandates in the election, which is 69, is now easily possible; that margin

is 634. The computed margins range from only 42 (for MANDATES = 62) to 177, 863 (for

MANDATES = 2). Performing our method for various values for MANDATES scales well on the

Jefferson method, as we got rid of the loop depending on the value of MANDATES. However,

further experiments also indicate a non-exponential dependency on the value for PARTIES.

For example, an allocation of 69 mandates to 10 parties takes about 55 seconds, whereas

for 20 parties, the analysis runs in ca. 300 seconds.

Naturally, the implementation in Listing 7.3 cannot be compiled and executed to produce

a binary file using standard C compilers, because it contains constructs only understood

by the model checker CBMC. However, it can nevertheless be compiled and executed

using CBMC, which also allows for performing tests and similar measures in order to

126

7.4. Evaluation for the National Danish Elections

Table 7.2: Official results for the 2015 national Danish elections (Danmarks Statistik, 2015).

Party Votes % Mandates %

Socialdemokratiet 924 940 26.3 43 31.9

Radikale Venstre 161 009 4.6 2 1.5

Det Konservative Folkeparti 118 003 3.4 0 0.0

SF – Socialistisk Folkeparti 147 578 4.2 2 1.5

Liberal Alliance 265 129 7.5 9 6.7

Kristendemokraterne 29 077 0.8 0 0.0

Dansk Folkeparti 741 746 21.1 33 24.4

Venstre, Danmarks Liberale Parti 685 188 19.5 33 24.4

Enhedslisten – De Rød-Grønne 274 463 7.8 10 7.4

Alternativet 168 788 4.8 3 2.2

Totals1 3 515 921 135

generate confidence in the implementation. Furthermore, when any C implementation

of the Jefferson method is given, it is easy to construct a CBMC version uniformly by

replacing the search for quota by a nondeterministic choice. The same principle for making

margin computations more efficient can uniformly be applied to any election function

where parameters such as quotas are chosen or computed within the election function.

7.4 Evaluation for the National Danish Elections

In this section, we demonstrate the applicability of our approach to a further, more

complex real-world election, namely the Danish parliamentary elections in 2015. The

Danish elections use a two-tier system, further classified as an adjustment-seat system,

where the main part of the seats (135 mandates) is allocated using the D’Hondt method

for each of the lower-tier electoral districts (so-called constituencies) separately (Elklit,

Pade, and Nyholm Miller, 2011). The remaining seats (40 mandates) are used for adjusting

the proportionality with respect to the three higher-tier districts using the Saint-Laguë

method (which is also a highest-averages method, bounded by the Hare quota).

The aggregated results for the 2015 election are shown in Table 7.2. For the sake of

readability, the table only contains the total amounts of votes, not the amounts for each

constituency. In the following, we perform our analysis on the first tier, i.e., the distribution

of the 135 mandates which are allocated separately within each constituency.

1Excluding non-party votes.

127

Chapter 7. Computation of Dependable Election Margins for Reliable Audits

Table 7.3: Results for Danish constituency Sjællands Storkreds (Danmarks Statistik, 2015).

Party Votes % Mandates %

Socialdemokratiet 146 464 27.9 7 35.0

Radikale Venstre 16 906 3.2 0 0.0

Det Konservative Folkeparti 15 083 2.9 0 0.0

SF - Socialistisk Folkeparti 20 575 3.9 1 5.0

Liberal Alliance 32 598 6.2 1 5.0

Kristendemokraterne 1 996 0.4 0 0.0

Dansk Folkeparti 134 195 25.6 6 30.0

Venstre, Danmarks Liberale Parti 102 818 19.6 4 20.0

Enhedslisten - De Rød-Grønne 35 374 6.7 1 5.0

Alternativet 18 202 3.5 0 0.0

Totals1 524 211 20

Using the Jefferson-version of D’Hondt, we compute a margin of 10 votes within 7, 815
seconds, i.e., around 2 hours and 10 minutes. The final verification (proving that a change

in 9 votes cannot change the election outcome) takes 53 seconds and a counterexample for

10 votes (i.e., an example ballot box that does change the election outcome) can be found

within 27 seconds. The generated counterexample shows that shifting – only – 10 votes

from SF – Socialistisk Folkeparti to Venstre, Danmarks Liberale Parti in the constituency of

Sjællands Storkreds results in a different election outcome where one mandate goes the

same way as the 10 votes. That is, SF loses its single seat, and Venstre then has five seats.

The vote table and election results for the constituency of Sjællands Storkreds are shown

in Table 7.3.

With the table-based D’Hondt method as a basis (Listing 7.2), the margin computation

takes 16, 860 seconds (around 4 hours and 40 minutes). The final verification takes 659
seconds and a counterexample can be found within 652 seconds. Using the table-based

D’Hondt implementation, for which margin computation is less efficient, is possible

in this case because the amount of mandates for each constituency is sufficiently low

(around 20).

1Excluding non-party votes.

128

7.5. Summary

7.5 Summary

In this chapter, we have presented a method that computes election margins fully auto-

matically. It can be applied to arbitrary implementations of election functions without

understanding or even knowing how the election result is computed. Our approach can

be applied to real implementations of real election functions if the amount of loop itera-

tions in the election function does not go beyond a few hundred. With the improvement

from Section 7.3 for guessing parameters needed in the computation, the method scales

up to larger and more complex elections.

Future work includes the computation of different types of election margins and an inte-

gration with software for supporting real-world risk-limiting audits. Further, we plan to

apply our method to election functions for which margin computation is notoriously hard

(such as instant-runoff voting). First experiments indicate that such functions are hard for

our method as well. However, it will be possible to adapt our method to computing lower

bounds for margins in IRV elections using techniques described in the literature (Cary,

2011; Sarwate, Checkoway, and Shacham, 2013).

129

Technically, the city of Ankh-Morpork is a

Tyranny, which is not always the same thing as

a monarchy, and in fact even the post of Tyrant

has been somewhat redefined by the incumbent,

Lord Vetinari, as the only form of democracy

that works. Everyone is entitled to vote, unless

disqualified by reason of age or not being Lord

Vetinari.

Terry Pratchett, Unseen Academicals, 2009

Part IV

Secure Election Management
Systems

8
Security Verification of the GI

Voter-Anonymization Software

RIGGED 2020 ELECTION: MILLIONS OF MAIL-IN

BALLOTS WILL BE PRINTED BY FOREIGN

COUNTRIES, AND OTHERS. IT WILL BE THE

SCANDAL OF OUR TIMES!

Donald John Trump, Twitter Communication, 2020

W
hile the previous parts of this thesis are in principle applicable to both analog and

electronic voting systems, real-world voting systems are oftentimes at least to

a certain extent realized as electronic systems. As described in Section 3.4, there are

some desirable requirements such as end-to-end verifiability that cannot be realistically

realized in purely analog voting systems reliably. This chapter, for this matter, deals

with the election management part of the Polyas 3.0 E-Voting System that has been used

in the annual elections by the GI in the years 2019 and 2020. The Polyas 3.0 E-Voting

System provides universally verifiable tallying, a form of participation privacy, as well

as protection against ballot stuffing. We specifically analyze the part of the system that

anonymizes voter identities by the generation of secure voter credentials, which is to be

carried out by an independent entity such as the election council.

Within this chapter, we report on how we formally verify that the voter credentials are

generated and processed securely and attacks such as the unauthorized injection of

additional ballots to the ballot box, i.e., ballot stuffing, is banned, given the software is

executed as specified. We describe the provided guarantees in Section 8.1, the e-voting

133

Chapter 8. Security Verification of the GI Voter-Anonymization Software

system in Section 8.2, the voter credential generation tool in Section 8.2, the verified

property, its specification and formal verification in Section 8.3.

The content of this chapter has not been previously published, while the idea is described

in a short paper by Beckert, Brelle, et al. (2019) and the results have been presented at

the 2019 annual meeting by the GI working group on formal methods and software

engineering for secure systems (FoMSESS).

8.1 Electronic Voting and Secure Voter Credentials

From the general requirements that are concerned with end-to-end verifiability described

in Section 3.4, we start by describing the specific properties that the Polyas 3.0 E-Voting

System is specified to provide. These are namely, universally verifiable tallying, ballot

and participation privacy, as well as protection against ballot stuffing.

Universally Verifiable Tallying. This property denotes that the voting system provides

means to guarantee that the complete tallying process, i.e., the process starting from the

content of the ballot box and the content of the registration board until the publication of

the election results, has been done correctly, and the election result correctly reflects the

given content of the ballot box.

Universal verifiability is guaranteed by zero-knowledge proofs that are produced during

the tallying phase. In the tallying phase, the collected votes are first mixed in a secure

shuffle on the basis of Wikström’s verifiable mix net (Haines, 2019), and then, once we

cannot learn anything from the order of the votes anymore, securely decrypted by the

election provider Polyas with the public voter credentials, before the decrypted ballots are

finally tallied. The shuffle and the decryption step both produce zero-knowledge proofs

which prove that the initial votes correspond to the shuffled ones, and that the shuffled

votes correspond to the decrypted ones. The position paper by Beckert, Brelle, et al. (2019)

describes that for the secure shuffle and decryption, independent parties developed

verification tools to check the zero-knowledge proofs provided during those steps. The

verification tools have been employed by the independent parties under close supervision

of the GI election council during the ceremony when the results were computed.

Ballot Privacy. Ballot privacy denotes the property that the content of the ballots is

kept secret, i.e., that it cannot be observed who any given voter actually voted for. For

the current configuration, Polyas may learn the identifiers of voters who actually voted,

but given that these identifiers cannot be linked to actual voter identities, ballot privacy

is preserved.

134

8.2. Elections of the German Society for Computer Scientists

The ballots are already encrypted on the voter-side based on the voters’ secure credentials.

Originally, the secure voter credentials are generated by the central registrar – in our

setting the GI election council – who passes the credential passwords in an encrypted

form together with the voters’ addresses, but not their public identifiers, to the printing

facility for their dissemination. Subsequently, the printing facility sends these secure

credentials to the voters via mail, guaranteeing ballot privacy throughout this process.

Since only encrypted ballots are cast, Polyas is also not able to link individual voters

to their cast votes during the tallying phase. The registrar also sends the public voter

credentials to Polyas, and makes sure not to put them together with the passwords, which

is a crucial privacy requirement.

Protection Against Ballot Stuffing. This property denotes that, even though Polyas is

in control of the ballot box in order to publish the correctly authorized encrypted ballots,

Polyas cannot misuse this control for injecting additional illegitimate ballots without the

risk of getting detected during by the procedure for universal verification. However, this

protection cannot prevent Polyas from (hypothetically) throwing away some votes.

As described above, the registrar makes sure not to give the private voter credentials,

i.e., the passwords, to the registry (Polyas). From this assumption, Polyas is not able to

generate any additional votes, since votes that were not generated by any of the secret

credentials are thrown out later during the tallying phase, since the zero-knowledge

proofs only consider votes that were generated legitimately.

8.2 Elections of the German Society for Computer Scientists

The Polyas 3.0 E-Voting System (Truderung, 2019; Truderung, 2021), as used in the GI

2019 elections, consists on the top-level of three phases, registration phase, voting phase,

and tallying phase. In the following, we briefly describe the election process, before

zooming in on the registration phase for our case study in the remaining sections of this

chapter. The process is visualized in Figure 8.1.

Registration Phase. The registration phase involves the registrar (the GI election coun-

cil), the registry (Polyas), and the printing facility. In this phase, the election council

first uses the software for credential generation in order to translate a list of all eligible

voters and their addresses into a generated list of the voters’ private credentials (their

passwords) and the corresponding public credentials (roughly, the verification keys

which are signed by the private credentials). The public credentials are then uploaded to

the voting system and published on the registry board, and the private credentials are

135

Chapter 8. Security Verification of the GI Voter-Anonymization Software

Voting

server

(Polyas)

Ballot

Box

(Polyas)

Shuffling

(Polyas)

Result

Decrypting

(Polyas)

1

2

2

2

3

3

registration phase

voting phase

tallying phase

3

3

Registrar

(GI)
public voters’

credentials

Registry

(Polyas)

password

1

1

u
n
iv

e
rs

a
lly

 v
e
ri
fi
a
b
le

(z
e
ro

-k
n

o
w

le
d
g
e

 p
ro

o
fs

)

voter

encrypted

ballot

Printing

Facility

1
encrypted

passwords

Figure 8.1: All phases in the Polyas 3.0 E-Voting system.

encrypted and sent to the printing facility, which decrypts them and sends them to the

voters’ addresses.

Voting Phase. In the voting phase, the voters, the voting server, and the ballot box

are involved. The voting server and the ballot box are provided by Polyas. Here, the

voters use their credentials to authenticate themselves on the voting platform via the

election web page, and fill out their ballot in their browser. Once the voter has finished

filling out their ballot, the voting client creates an encrypted and signed ballot from the

voter’s inputs and sends the ballot to the voting server, who adds it to the ballot box. It

is important that the encryption and signing happens on the client side, such that no

unencrypted private information is transferred to the server.

Tallying Phase. Finally, the tallying phase involves only the registrar (Polyas) and the

ballot box. Here, the encrypted ballots are mixed and decrypted in a secure and verifiable

way by producing zero-knowledge proofs for the correct shuffle and a correct decryption

136

8.2. Elections of the German Society for Computer Scientists

(see Section 8.1). Finally, the decrypted votes are tallied and the computed election results

then published. As described above, the registration phase provides crucial security

guarantees that are required for ensuring the properties described in Section 8.1 in the

other two phases. The detailed process is visualized in Figure 8.2.

Password

GenerationTool

Registry

(Polyas)

1

Printing Facility

passwords

+ addresses

POLYAS

Election Council

list of eligible voters

(with addresses)

registration data (input)

public registry

2

3

password

4

voter

Figure 8.2: Voter registration phase in the Polyas 3.0 E-Voting system.

For this matter, the e-voting system employs a tool that generates the secure credentials

and separates the data that will be sent to the voter from the data sent to Polyas. This is

actually the property which we want to formally verify, i.e, that the data sent to Polyas is

processed independently of the secret credentials for the voters. The original software

is written in Kotlin, but for the verification using the KeY system, we translated the

Kotlin code to Java code. The full Java program consists of roughly seven classes with

30 program methods in 780 lines of code.1 The simplified functionality which we are

interested to verify is shown in Listing 8.1.

1The source code together with the specifications and proofs is available under https://github.com/VeriVote/
polyas-core3-open-cred.

137

https://github.com/VeriVote/polyas-core3-open-cred
https://github.com/VeriVote/polyas-core3-open-cred

Chapter 8. Security Verification of the GI Voter-Anonymization Software

1 public class CredentialTool {

2 ...

3 File generate(RegistrationData input) {

4 List polyas = new List();

5 List printingFacility = new List();

6 for (VoterRecord it : input) {

7 String password = Crypto.randomCredential80();

8 VoterData generatedData =

9 CredentialGenerator.generateDataForVoter(it.voterId,

10 password);

11 printingFacility.add(generatedData.password);

12 polyas.add(generatedData.voterID,

13 generatedData.hashedPassword,

14 generatedData.publicSigningKey);

15 }

16 return new File(printingFacility, polyas);

17 }

18 ...

19 }

Listing 8.1: Simplified Password Generation Software

Therein, the method generate receives the registration data as input and outputs a file

that consists of two separate data sets, one for the printing facility and one for Polyas.

The method starts by initializing the two respective lists for the data sets, and then

iterates over each voter record. For each record, a new random password is generated

and further processed to generate public and private credentials from the voter data.

Then, the password is added to the data set for the printing facility, and the voter ID, the

hashed password and the public signing key are added to the data set for Polyas. Finally,

the two data sets are returned as method output.

8.3 Verification in the KeY System

Having described our target functionality, we use the information-flow contracts de-

scribed in Section 2.3 to fully specify the noninterference property of interest, requiring

about 420 lines of specification.1 This corresponds to a ratio of lines of specification per

lines of code of roughly 0.54. Using information-flow contracts, we provide contracts for

all involved methods as well as the methods called from libraries, such as the method

randomCredential80() for the generation of a random password seen in Listing 8.1.

1The fully specified source code and the proofs are available for inspection under https://github.com/VeriVote/
polyas-core3-open-cred/-/tree/key-hash-oracle.

138

https://github.com/VeriVote/polyas-core3-open-cred/-/tree/key-hash-oracle
https://github.com/VeriVote/polyas-core3-open-cred/-/tree/key-hash-oracle

8.4. Summary

1 public final class Hashes {

2 ...

3 private static int currentIndex;

4 private static BigInteger[] VALUES;

5

6 /** Computes the uniform hash of the provided data. */

7 /*@ requires 0 <= currentIndex && currentIndex < VALUES.length;

8 @ ...

9 @ assignable currentIndex;

10 @ determines \result.value

11 @ \by currentIndex,

12 @ (\seq_def int i; 0; VALUES.length; VALUES[i].value);

13 @*/

14 public static BigInteger uniformHash(BigInteger upperBound,

15 String s1, String s2,

16 String s3) {

17 return VALUES[currentIndex++];

18 }

19 }

Listing 8.2: Ideal Hash Functionality in Java

Note that, as can also been seen in the method generate, Polyas receives a hashed password.

Since the hashed password obviously depends on the password, we can only establish

real noninterference if we replace the method that hashes the password by a so-called

ideal functionality. The reasoning that this ideal functionality is safe to assume must

happen outside KeY, similarly as has been done for the noninterference verification of

the sElect system by Küsters, Truderung, Beckert, et al. (2015).

The implemented ideal functionality for computing the hashed value is shown in List-

ing 8.2. Therein, the method uniformHash simply ignores the input parameters and instead

fills up a static array with incremental values. The method contract specifies that, pro-

vided the incremented index is within the bounds of the array, the method guarantees

that the result value only depends on the index and the array itself. In a nutshell, this

means that the hash function is only one-way.

8.4 Summary

Provided this simpler ideal functionality, the full proof required about 980000 rule

applications which were mostly applied automatically, except for 0.06 percent of rule

applications that had to be done interactively. The entire specification and verification

process took around two to three person weeks. Besides the ideal functionality, the proof

139

Chapter 8. Security Verification of the GI Voter-Anonymization Software

holds under the assumptions that the employed Java classes cannot be overridden, the

attacker cannot observe the heap size or amount of created objects during program

execution, and the provided input is well-formed and actually contains the public key

from Polyas.

Future work includes a seamless reasoning on the ideal functionality, to increase the

trust in our justification that it is indeed a trustworthy implementation for our setting.

140

I rarely end up where I was intending to go, but

often I end up somewhere I needed to be.

Terry Pratchett, The Long Dark Tea-Time of

the Soul, 1988

Part V

Related Work and Conclusion

9
Related Work

It is time to unmask the computing community as a

Secret Society for the Creation and Preservation of

Artificial Complexity.

Edsger Wybe Dĳkstra, The next fifty years, 1996

H
aving described formal methods targeted at trustworthy voting systems for three

principal components between the election layer and the computational layer, this

chapter now reviews some work by others that relates to the methodological approaches

used in this thesis.

We start by reviewing formal methods within the field of secure multi-party computation

aimed at the verification of protocols and the construction of secure circuits in Section 9.1.

Then, Section 9.2 looks at other works that target social choice properties for voting

rules by modular verification or some kind of reliable construction or synthesis. More

broadly, Section 9.3 reviews work that has been done on the static analysis of voting

rules targeting relational properties for verification, or exploiting symmetry structures

for finding counterexamples. Further work on the task of computing election margins is

reviewed in Section 9.4. Finally, Section 9.5 gives a brief review on related work regarding

the verification of secure information flow on software level.

143

Chapter 9. Related Work

9.1 Protocol Verification and Construction of Secure Circuits

Our work on the generation of secure card-based cryptographic protocols is the first

work which applies formal methods to the field of card-based cryptography. However, a

large range of research has been done using formal methods in the more general field

of secure two-party and multi-party computations. This can be clustered into either

analyzing security protocols given as high-level, abstract (and usually idealized) models,

or program-based approaches targeting real(istic) protocol (software) implementations.

Avalle, Pironti, and Sisto further structure this into the two main approaches of automated

model extraction and automated code generation. We refer the interested reader to

overviews as given by Blanchet (2012) or Avalle, Pironti, and Sisto (2014), and only go

into a few selected works for which we identified closer links to our approach, e.g.,

using software bounded model checking (SBMC), SAT solvers on real(istic) protocol

implementations, or relating to the analyzed security model. Standard cryptographic

assumptions using lower-level computational models are – albeit more realistic – usually

harder to formalize and automate. One notable line of research is CBMC-GC (Franz et al.,

2014) which builds on top of the tool CBMC (Clarke, Kroening, and Lerda, 2004). CBMC-

GC uses SBMC in a compiler framework translating secure computations of ANSI C

programs into an optimized Boolean circuit which can subsequently be implemented

securely utilizing the garbled circuit approach. Another similar setting to ours is analyzed

by Rastogi, Swamy, and Hicks (2019), who also assume an honest-but-curious attacker

model. Therein, a domain-specific language is built on top of the F
★

language, a full-

featured, verification-oriented, effectful programming language by Swamy et al. (2016).

Swamy et al. then implement MPC programs with enabled formal verification provided

by the semantics of the language.

9.2 Modular Verification and Program Synthesis

We base the core component type in our verified construction framework on the electoral

modules from the unified description of electoral systems by Grilli di Cortona et al. (1999).

Therein, Grilli di Cortona et al. devise a complex component structure for describing

hierarchical electoral systems with a focus on proportional voting rules including notions

of electoral districts and concepts of proportionality. Note, however, that the component

type within this work is already quite different from the structures by Grilli di Cortona

et al. (1999). In the current state, essentially, both concepts only share the concept of

reducing and partitioning the set of alternatives.

General informal advice on voting rule design is given by Taagepera (2002). Moreover, a

first approach for composing voting rules in a limited setting is given by Narodytska,

Walsh, and Xia (2012) that is readily expressible by our structures. Other work designs

144

9.3. Relational Verification, Symmetries, and Counterexamples

voting rules less modularly for statistically guaranteeing social choice properties by

machine learning (Xia, 2013). Prior modular approaches also target verification (Ghale et

al., 2018; Verity and Pattinson, 2017) or declarative combinations of voting rules (Charwat

and Pfandler, 2015), but ignore the social choice or fairness properties targeted by our

work.

We have defined our compositional approach within Isabelle/HOL (Nipkow, Paulson,

and Wenzel, 2002), a theorem prover for higher-order logic. Isabelle/HOL provides

interactive theorem proving for rigorous systems design. Further work on computer-aided

verification of social choice properties for voting rules using the theorem prover HOL4

has been done by Dawson, Goré, and Meumann (2015). More lightweight approaches

with some loss of generality, but the merit of generating counterexamples for failing

properties has been devised by Beckert, Bormer, Kirsten, et al. (2016) and Kirsten and

Cailloux (2018). Therein, techniques for relational verification of more involved social

choice properties have been applied. Another interesting approach has been followed

by Pattinson and Schürmann (2015), where voting rules are directly encoded into HOL

rules within tactical theorem provers.

9.3 Relational Verification, Symmetries, and Counterexamples

While we use program verification technology based on first-order logic for the automated

verification of voting rules, there are other approaches using tactical theorem provers

and higher-order logic. Examples are proofs carried out by Dawson, Goré, and Meumann

(2015), Goré and Meumann (2014), and Pattinson and Schürmann (2015). Verification

using tactical theorem provers may lead to even higher confidence levels, but the task

is inherently difficult and time-consuming, resulting in huge and laborious interactive

proofs.

Moreover, we translated first-order logic proof obligations for verification and counterex-

ample generation using software bounded model checking for proving that is targeted for

social choice properties. There are further approaches to translate proof obligations with

first-order expressions in a more general setting, i.e., verification of method contracts for

general Java programs by Beckert, Kirsten, Klamroth, et al. (2020), where the achieved

bounds were significantly smaller than those obtained in our experiments.

There exists extensive research analyzing theoretical voting rules on a more intuitive

or experimental level, involving empirical experiments or comparisons of previous

elections (Gallagher, 2013; Brams and Fishburn, 1988; Regenwetter and Grofman, 1998). In

addition, there is research on the verification of concrete voting systems, i.e., considering

a concrete voting software (Dennis, Yessenov, and Jackson, 2008).

145

Chapter 9. Related Work

Furthermore, a multitude of theoretical work on proving and finding new incompatibili-

ties of voting rule properties has been done using SAT solvers (Tang and Lin, 2009; Geist

and Endriss, 2011; Brandt, Geist, and Peters, 2017; Chatterjee and Sen, 2014; Brandt and

Geist, 2016). Another application of computer-aided techniques to social choice theory

is the use of machine learning for designing new social choice mechanisms satisfying

desired axiomatic properties (Xia, 2013).

We use weaved programs to reduce the required effort for relational verification to that

of “standard” program verification. A general notion of product programs that supports

such a reduction is provided by Barthe, Crespo, and Kunz (2011).

There is also related work on breaking symmetries regarding the problem specifica-

tion (Mancini and Cadoli, 2005; Cadoli and Mancini, 2007) and on methods for auto-

matically generating symmetry-breaking predicates for classes of combinatorial objects

for search problems (Shlyakhter, 2007). More applied work on this task provides tools

which detect symmetries in structured graphs generated from CNF formulae (Darga

et al., 2004).

9.4 Margin Computation

Our work on the computation of dependable election margins is a generic method that

infers election margins for any election function, for which an implementation is available.

In contrast to our work which is a generic method as long as an implementation of the

tallying procedure is available, there has been a lot of research on how to compute

margins for specific tallying procedures, for which that problem is particularly hard. The

most prominent example is instant-runoff voting (IRV) where margin computation is

NP-hard (Bartholdi and Orlin, 1991). Methods for computing lower bounds on margins

for IRV have been developed by Cary (2011) and Sarwate, Checkoway, and Shacham

(2013); and methods for computing the exact margin have been presented by Magrino

et al. (2011) and, more recently, by Blom et al. (2016).

The computation of the margin for an election is an instance of the general problem of

inverting a function for which an implementation is given, i.e., to ask for an input to the

implementation that leads to a particular kind of output. The idea of using model checkers

for solving such problems has also been applied in the field of test-case generation, where

one is interested in input values leading to some specific program behavior (Vorobyov

and Krishnan, 2012). For example, the software bounded model checker CBMC has been

integrated into the extensive test-suite FShell (Holzer et al., 2008). Similar techniques

have been used for generating high-quality game content, such as well-designed puzzles

that are hard to solve (A. Smith, Butler, and Popovic, 2013).

146

9.5. Implementation-Level Information-Flow Verification

In the context of elections, SBMC with SAT or SMT solvers can furthermore be used for

analyzing, whether the given tallying procedure does indeed compute the correct result

with respect to some given formal criteria (Beckert, Goré, Schürmann, et al., 2014).

9.5 Implementation-Level Information-Flow Verification

We did our noninterference verification case study with the KeY verification system.

Verification of information-flow control has typically been done using type systems, which

are sound, but generally capture only properties that are more lightweight compared

to noninterference (Banerjee and Naumann, 2005; Barthe, Pichardie, and Rezk, 2013).

Further tools for analyzing information-flow control translate the program to program

dependency graphs and apply efficient slicing techniques (Hammer and Snelting, 2009;

Jürgen Graf, Hecker, and Mohr, 2013). They are sound, but produce many false alarms

as they do not provide full precision.

Moreover, there are other information-flow verification approaches that are based on

KeY in combination with more efficient techniques (Beckert, Bischof, et al., 2018; Küsters,

Truderung, Beckert, et al., 2015; Beckert, Herda, et al., 2020). For our case study, however,

their whole-program approach would not work due to the many library calls for the

cryptographic functionalities within the Polyas system. Further verification approaches

for cryptographic functionalities of Java-like programs haven been done by Fournet,

Kohlweiss, and Strub (2011) and Küsters, Truderung, and Juergen Graf (2012). Finally,

the symbolic execution engine within KeY has also been used for the automatic detection

of information-flow leaks by Do, Bubel, and Hähnle (2017).

147

10
Conclusion

There is no real ending. It’s just the place where you

stop the story.

Franklin Patrick Herbert Jr., Interview at California

State College, Fullerton, 1969

W
ithin this dissertation, we have devised and evaluated targeted formal methods for

voting systems, with contributions within each principal voting system component.

The devised methods enable a systematic development of trustworthy voting systems

which can be provenly verified. The application target of a development using our

methods is a reliable voting software with formal guarantees that the given requirements

are met, in a way that is comprehensible to informed users and domain experts.

The three considered principal components are the voter-ballot box communication, the

election method, and the election management system. The formal methods are based on

a variety of formal techniques with different degrees of expressiveness and automation.

The devised formal methods provide a reliable bridge over traditional bounds between

the election layer – containing understandable requirements – and the computational

layer – which contains the runnable procedures – such that trust can be reliably obtained

without the need to inspect the layers separately. The contributions of this thesis hence

advance the development of trustworthy voting systems using reliable and explainable

formal requirements such that (1) a domain expert may afterward reliably comprehend

that the requirements are met, (2) selections of the given requirements may be reliably

justified or compared to other requirements, and (3) the trust obtained in objectives (1)

and (2) may be reliably scrutinized by other domain experts.

149

Chapter 10. Conclusion

10.1 Summary

For this matter, we developed targeted formal methods from the design of abstract

components that can be trusted towards executable and reliable software that can be

audited dependably.

The distinct contributions of this dissertation are:

(I) a method for the generation of secure card-based communication schemes,

(II) a method for the synthesis of reliable tallying procedures,

(III) a method for the efficient verification of reliable tallying procedures,

(IV) a method for the computation of dependable election margins for reliable audits,

(V) a case study about the security verification of the GI voter-anonymization software.

The first component, the voter-ballot box communication channel, is addressed by contri-

bution (I), for which we built a bridge from the communication channel to the cryptogra-

phy scheme by automatically generating secure card-based schemes from a small formal

model with a parameterization of the desired security requirements. We devised a new

method to search card-based protocols for any secure computation, by giving a general

formal translation applicable to be used by the formal technique of software bounded

model checking (SBMC). This method allows finding new protocols automatically, and

prove lower bounds on required shuffle and turn operations for any protocol, and provide

an example for the computation of a minimal AND protocol. We extended our verification

method to the case of decks using only two colors, which is more common in the field of

card-based cryptography.

The second component, the election method, is addressed by contributions (II) to (IV).

Within contribution (II), we built a bridge from the election method to the tallying

procedure by a formal composition framework, which we instrumented to automatically

synthesize a runnable tallying procedure from the desired requirements given as social

choice properties. We evaluated our method on sequential majority comparison, which

is used in many practical knock-out tournament settings. We devised a new method

to systematically and automatically synthesize voting rules from compact composable

modules to satisfy formal social choice properties. We devised composition rules for

a selection of common social choice properties, such as monotonicity or Condorcet

consistency, as well as for reusable auxiliary properties. By design, these composition

rules give formal guarantees, in the form of an Isabelle proof based on the properties

satisfied by the component properties, that a synthesized voting rule fulfills the social

choice property of interest as long as its components satisfy specific properties, which

we have proved within Isabelle/HOL for the scope of our case study. We extended

150

10.1. Summary

this approach by a synthesis tool which automatically synthesizes, given the desired

properties, a suitable voting rule as a verified and directly runnable Scala program

together with the checkable Isabelle proof. Our approach is applicable to the construction

of a wide range of voting rules which use sequential or parallel modular structures,

notably voting rules with tiebreakers, elimination procedures, or tournament structures.

This includes well-known rules such as instant-runoff voting, Nanson’s method, or

sequential majority comparison (SMC). The approach can be flexibly extended with

additional modules, compositional structures, and rules, for integration into voting rule

design or verification frameworks.

For contribution (III), we devised a formal method that assists in automatically analyzing,

evaluating, and comparing tallying procedures readily to allow re-adjusting the proce-

dures and requirements, which we evaluated on various tallying procedures from the

literature. We have presented and formally defined an automated approach to argue for

and against voting rules based on axiomatic social choice properties. The approach is fully

automatic and based on the software analysis technique bounded model checking. Our case

study on the Borda, Copeland, and Black’s voting rule shows that illustrative proofs are

obtained automatically in reasonable time for small amounts of voters and alternatives.

This might appear surprising given the combinatorial structure of preference profiles

and set-valued outcomes.

By contribution (IV), we built a general formal method that computes election margins

for a user-provided tallying procedure, which we evaluated for the Danish national

parliament elections 2015. We have presented a method that computes election margins

fully automatically. The method can be applied to arbitrary implementations of the

tallying procedures without understanding or even knowing how the election result

is computed. Our approach can be applied to real implementations of real tallying

procedures if the amount of loop iterations in the tallying procedure does not go beyond

a few hundred. With improvement for guessing parameters that are needed in the

computation, the method scales up to larger and more complex elections.

Finally, the third and final component, the election management system, is addressed by

contribution (V), for which we performed a case study on an anonymization strategy

within a real-world e-voting system for the generation of secure voter credentials. The

e-voting system has been employed in this form for the annual elections of the German

Informatics Society (GI – “Gesellschaft für Informatik”) in 2019 and 2020. We obtained a

precise proof requiring only 0.06 percent of interactive rule applications. The proof holds

under the assumptions that the employed Java classes cannot be overridden, the attacker

cannot observe the heap size or the amount of created objects during program execution,

and the provided input is well-formed and actually contains the public key from Polyas.

151

Chapter 10. Conclusion

10.2 Outlook

Regarding the method for secure card-based protocols, it would be interesting and

worthwhile to exploit symmetries within our model to further scale, e.g., to finite-runtime

protocols for five or more cards. Moreover, it may be worthwhile to explore the mixing of

different card settings (e.g., only distinguishable cards with one pair of identical cards),

in order to find more efficient protocols.

For the construction and synthesis of voting rules that meet desired fairness properties, the

current framework could be extended by modules and compositions for more complicated

voting rules, in order to achieve a more flexible notion of composition, e.g., to support

run-off voting rules where, e.g., surplus votes are transferred. Another sensible extension

is the composition of voting rules based on distance rationalization that is very flexible, since

almost all voting rules can be constructed this way with the caveat that the composition

structures would be less imperative than the structures described herein.

Regarding efficient verification techniques and counterexample generation for voting

rules, it might be interesting to reason about voting rules that are incompletely specified.

For example, we could automatically conceive an argument (in the form of an example

profile and a set of winners, as illustrated in the experiments) that would attack any

rule which does not satisfy a given axiom. In this way, it would be possible to also

argue against classes of rules, additionally to concrete rules as illustrated in this work.

Moreover, it would be interesting to further tweak the counterexample generation in

order to yield particularly illustrative voting situations, e.g., minimal ones or scenarios

of some interesting structure. A more ambitious endeavor would be to implement our

contribution with an argumentation framework, where a user could agree or disagree

with particular counterexamples, in order to automatically adjust the desired voting rule

in order to recommend some kind of optimum.

For our method for automatic margin computation, it would be interesting to integrate

further desired constraints and queries, in order to obtain margins leading to a particularly

interesting election outcome. Moreover, it would be worthwhile to adapt our approach to

more complex constraints in order to compute, e.g., some kind of quantitative distances

for quantitative fairness properties.

Finally, for our case study on the credential generation software, it remains to close the

formal gap in the justification of the employed ideal functionality.

152

References

Abe, Yuta, Yu-ichi Hayashi, Takaaki Mizuki, and Hideaki Sone (2018). “Five-Card AND

Protocol in Committed Format Using Only Practical Shuffles.” In: 5th Workshop on ASIA

Public-Key Cryptography (APKC@AsiaCCS) (Incheon, Republic of Korea, June 4, 2018).

Ed. by Keita Emura, Jae Hong Seo, and Yohei Watanabe. Association for Computing

Machinery, pp. 3–8. doi: 10.1145/3197507.3197510.

Adida, Ben (2008). “Helios: Web-based Open-Audit Voting.” In: 17th USENIX Security

Symposium (San Jose, CA, USA, July 28–Aug. 1, 2008). Ed. by Paul C. van Oorschot.

USENIX Association, pp. 335–348. url: http://www.usenix.org/events/sec08/tech/full pape
rs/adida/adida.pdf.

Ahrendt, Wolfgang, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H. Schmitt,

and Mattias Ulbrich (2016). Deductive Software Verification - The KeY Book: From Theory

to Practice. Vol. 10001. Lecture Notes in Computer Science. Springer. doi: 10.1007/978-3
-319-49812-6.

Apt, Krzysztof R. (1997). From Logic Programming to Prolog. Prentice Hall International

Series in Computer Science. Upper Saddle River, NJ, United States: Prentice Hall.

Arrow, Kenneth Joseph (1950). “A Difficulty in the Concept of Social Welfare.” Trans.

by University of Chicago Press. Journal of Political Economy 58.4, pp. 328–346. doi:

10.2307/1828886.

– (1951). Social Choice and Individual Values. Monographs / Cowles Commission for

Research in Economics 12. New York, USA: Wiley.

Ashur, Tomer, Orr Dunkelman, and Nimrod Talmon (2016). “Breaching the Privacy of

Israel’s Paper Ballot Voting System.” In: First International Joint Conference on Electronic

Voting (E-Vote-ID 2016) (Bregenz, Austria, Oct. 18–21, 2016). Ed. by Robert Krimmer,

Melanie Volkamer, Jordi Barrat, Josh Benaloh, Nicole J. Goodman, Peter Y. A. Ryan, and

Vanessa Teague. Vol. 10141. Lecture Notes in Computer Science. Springer, pp. 108–124.

doi: 10.1007/978-3-319-52240-1 7.

153

https://doi.org/10.1145/3197507.3197510
http://www.usenix.org/events/sec08/tech/full_papers/adida/adida.pdf
http://www.usenix.org/events/sec08/tech/full_papers/adida/adida.pdf
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.2307/1828886
https://doi.org/10.1007/978-3-319-52240-1_7

References

Avalle, Matteo, Alfredo Pironti, and Riccardo Sisto (2014). “Formal verification of security

protocol implementations: a survey.” Formal Aspects of Computing 26.1, pp. 99–123. doi:

10.1007/s00165-012-0269-9.

Baldwin, Joseph M. (1926). “The Technique of the Nanson Preferential Majority System

of Election.” Proceedings of the Royal Society of Victoria 39, pp. 42–52.

Balinski, Michel L. and H. Peyton Young (2010). Fair Representation: Meeting the Ideal of

One Man, One Vote. Brookings Institution Press. url: http://www.jstor.org/stable/10.7864/j
.ctvcb59f6.

Banerjee, Anindya and David A. Naumann (2005). “Stack-based access control and

secure information flow.” The Journal of Functional Programming 15.2, pp. 131–177. doi:

10.1017/S0956796804005453.

Barrett, Clark W. and Cesare Tinelli (2018). “Satisfiability Modulo Theories.” In: Handbook

of Model Checking. Ed. by Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith,

and Roderick Bloem. Springer, pp. 305–343. doi: 10.1007/978-3-319-10575-8 11.

Barthe, Gilles, Juan Manuel Crespo, and César Kunz (2011). “Relational Verification

Using Product Programs.” In: 17th International Symposium on Formal Methods (FM

2011) (Limerick, Ireland, June 20–24, 2011). Ed. by Michael Butler and Wolfram Schulte.

Vol. 6664. Lecture Notes in Computer Science. Springer, pp. 200–214. doi: 10.1007/978-
3-642-21437-0 17.

Barthe, Gilles, Pedro R. D’Argenio, and Tamara Rezk (2004). “Secure Information Flow

by Self-Composition.” In: 17th Computer Security Foundations Workshop (CSFW-17 2004).

IEEE Computer Society, pp. 100–114. doi: 10.1109/CSFW.2004.17.

Barthe, Gilles, David Pichardie, and Tamara Rezk (2013). “A certified lightweight non-

interference Java bytecode verifier.” Mathematical Structures in Computer Science 23.5,

pp. 1032–1081. doi: 10.1017/S0960129512000850.

Bartholdi, John J. and James B. Orlin (1991). “Single Transferable Vote Resists Strategic

Voting.” Social Choice and Welfare 8, pp. 341–354. doi: 10.1007/BF00183045.

Beckert, Bernhard, Simon Bischof, Mihai Herda, Michael Kirsten, and Marko Kleine

Büning (2018). “Using Theorem Provers to Increase the Precision of Dependence

Analysis for Information Flow Control.” In: 20th International Conference on Formal

Engineering Methods - Formal Methods and Software Engineering (ICFEM 2018) (Gold

Coast, Australia, Nov. 12–16, 2018). Ed. by Jing Sun and Meng Sun. Vol. 11232. Lecture

Notes in Computer Science. Springer, pp. 284–300. doi: 10.1007/978-3-030-02450-5 17.

Beckert, Bernhard, Thorsten Bormer, Rajeev Goré, Michael Kirsten, and Carsten Schür-

mann (2017). “An Introduction to Voting Rule Verification.” In: Trends in Computational

Social Choice. Ed. by Ulle Endriss. .II: Techniques. AI Access. Chap. 14, pp. 269–287.

url: http://research.illc.uva.nl/COST-IC1205/Book/.
Beckert, Bernhard, Thorsten Bormer, Michael Kirsten, Till Neuber, and Mattias Ulbrich

(2016). “Automated Verification for Functional and Relational Properties of Voting

Rules.” In: Sixth International Workshop on Computational Social Choice (COMSOC 2016)

154

https://doi.org/10.1007/s00165-012-0269-9
http://www.jstor.org/stable/10.7864/j.ctvcb59f6
http://www.jstor.org/stable/10.7864/j.ctvcb59f6
https://doi.org/10.1017/S0956796804005453
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-642-21437-0_17
https://doi.org/10.1007/978-3-642-21437-0_17
https://doi.org/10.1109/CSFW.2004.17
https://doi.org/10.1017/S0960129512000850
https://doi.org/10.1007/BF00183045
https://doi.org/10.1007/978-3-030-02450-5_17
http://research.illc.uva.nl/COST-IC1205/Book/

References

(Toulouse, France, June 22–24, 2016). Ed. by Umberto Grandi and Jeffrey S. Rosenschein.

url: https://irit.fr/COMSOC-2016/proceedings/BeckertEtAlCOMSOC2016.pdf.
Beckert, Bernhard, Thorsten Bormer, Florian Merz, and Carsten Sinz (2012). “Integration

of Bounded Model Checking and Deductive Verification.” In: International Conference

on Formal Verification of Object-Oriented Software (FoVeOOS 2011), Revised Selected Papers

(Turin, Italy, Oct. 5–7, 2011). Ed. by Bernhard Beckert, Ferruccio Damiani, and Dilian

Gurov. Vol. 7421. Lecture Notes in Computer Science. Springer, pp. 86–104. doi: 10.10
07/978-3-642-31762-0 7.

Beckert, Bernhard, Achim Brelle, Rüdiger Grimm, Nicolas Huber, Michael Kirsten, Ralf

Küsters, Jörn Müller-Quade, Maximilian Noppel, Kai Reinhard, Jonas Schwab, Rebecca

Schwerdt, Tomasz Truderung, Melanie Volkamer, and Cornelia Winter (2019). “GI Elec-

tions with POLYAS: a Road to End-to-End Verifiable Elections.” In: Fourth International

Joint Conference on Electronic Voting (E-Vote-ID 2019) (Lochau / Bregenz, Austria, Oct. 1–

4, 2019). Ed. by Robert Krimmer, Melanie Volkamer, Bernhard Beckert, Véronique

Cortier, Ardita Driza-Maurer, David Duenas-Cid, Jörg Helbach, Reto Koenig, Iuliia

Krivonosova, Ralf Küsters, Peter Rønne, Uwe Serdült, and Oliver Spycher. Proceedings

E-Vote-ID 2019. TalTech Press, pp. 293–294. url: https://digi.lib.ttu.ee/i/?13563.

Beckert, Bernhard, Daniel Bruns, Vladimir Klebanov, Christoph Scheben, Peter H. Schmitt,

and Mattias Ulbrich (2013). “Information Flow in Object-Oriented Software.” In: 23rd

International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR

2013), Revised Selected Papers (Madrid, Spain, Sept. 18–19, 2013). Ed. by Gopal Gupta

and Ricardo Peña. Vol. 8901. Lecture Notes in Computer Science. Springer, pp. 19–37.

doi: 10.1007/978-3-319-14125-1 2.

Beckert, Bernhard, Rajeev Goré, and Carsten Schürmann (2013). “Analysing Vote Count-

ing Algorithms via Logic - And its Application to the CADE Election System.” In:

24th International Conference on Automated Deduction (CADE-24) (Lake Placid, NY, USA,

June 9–14, 2013). Ed. by Maria Paola Bonacina. Vol. 7898. Lecture Notes in Computer

Science. Springer, pp. 135–144. doi: 10.1007/978-3-642-38574-2 9.

Beckert, Bernhard, Rajeev Goré, Carsten Schürmann, Thorsten Bormer, and Jian Wang

(2014). “Verifying Voting Schemes.” Journal of Information Security and Applications 19.2,

pp. 115–129. doi: 10.1016/j.jisa.2014.04.005.

Beckert, Bernhard, Mihai Herda, Michael Kirsten, and Shmuel Tyszberowicz (2020).

“Integration of Static and Dynamic Analysis Techniques for Checking Noninterference.”

In: Deductive Software Verification: Future Perspectives - Reflections on the Occasion of 20 Years

of KeY. Ed. by Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, and

Mattias Ulbrich. Vol. 12345.V: Integration of Verification Techniques. Lecture Notes in

Computer Science. Springer. Chap. 12, pp. 287–312. doi: 10.1007/978-3-030-64354-6 12.

Beckert, Bernhard, Michael Kirsten, Jonas Klamroth, and Mattias Ulbrich (2020). “Modu-

lar Verification of JML Contracts Using Bounded Model Checking.” In: 9th International

Symposium on Leveraging Applications of Formal Methods, Verification and Validation (ISoLA

2020) (Rhodes, Greece, Oct. 26–30, 2020). Ed. by Tiziana Margaria and Bernhard Stef-

155

https://irit.fr/COMSOC-2016/proceedings/BeckertEtAlCOMSOC2016.pdf
https://doi.org/10.1007/978-3-642-31762-0_7
https://doi.org/10.1007/978-3-642-31762-0_7
https://digi.lib.ttu.ee/i/?13563
https://doi.org/10.1007/978-3-319-14125-1_2
https://doi.org/10.1007/978-3-642-38574-2_9
https://doi.org/10.1016/j.jisa.2014.04.005
https://doi.org/10.1007/978-3-030-64354-6_12

References

fen. Vol. 12476.I: Verification Principles. Lecture Notes in Computer Science. Springer,

pp. 60–80. doi: 10.1007/978-3-030-61362-4 4.

Beckert, Bernhard, Michael Kirsten, Vladimir Klebanov, and Carsten Schürmann (2017).

“Automatic Margin Computation for Risk-Limiting Audits.” In: First International

Joint Conference on Electronic Voting – formerly known as EVOTE and VoteID (E-Vote-ID

2016) (Lochau / Bregenz, Austria, Oct. 18–21, 2017). Ed. by Robert Krimmer, Melanie

Volkamer, Jordi Barrat, Josh Benaloh, Nicole J. Goodman, Peter Y. A. Ryan, and Vanessa

Teague. Vol. 10141. Lecture Notes in Computer Science. Springer, pp. 18–35. doi: 10.10
07/978-3-319-52240-1 2.

Beckert, Bernhard, Vladimir Klebanov, and Benjamin Weiß (2016). “Dynamic Logic for

Java.” In: Deductive Software Verification - The KeY Book: From Theory to Practice. Ed. by

Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H. Schmitt,

and Mattias Ulbrich. Vol. 10001.I: Foundations. Lecture Notes in Computer Science.

Springer. Chap. 3, pp. 49–106. doi: 10.1007/978-3-319-49812-6 3.

Bernhard, David and Bogdan Warinschi (2014). “Cryptographic Voting — A Gentle

Introduction.” In: Foundations of Security Analysis and Design VII - FOSAD 2012/2013

Tutorial Lectures. Ed. by Alessandro Aldini, Javier López, and Fabio Martinelli. Vol. 8604.

Lecture Notes in Computer Science. Springer, pp. 167–211. doi: 10.1007/978-3-319-100
82-1 7.

Bernhard, Matthew, Josh Benaloh, John Alex Halderman, Ronald L. Rivest, Peter Y. A.

Ryan, Philip B. Stark, Vanessa Teague, Poorvi L. Vora, and Dan S. Wallach (2017). “Public

Evidence from Secret Ballots.” In: Second International Joint Conference on Electronic

Voting (E-Vote-ID 2017) (Bregenz, Austria, Oct. 24–27, 2017). Ed. by Robert Krimmer,

Melanie Volkamer, Nadja Braun Binder, Norbert Kersting, Olivier Pereira, and Carsten

Schürmann. Vol. 10615. Lecture Notes in Computer Science. Springer, pp. 84–109. doi:

10.1007/978-3-319-68687-5 6.

Biere, Armin and Daniel Kröning (2018). “SAT-Based Model Checking.” In: Handbook of

Model Checking. Ed. by Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and

Roderick Bloem. Springer, pp. 277–303. doi: 10.1007/978-3-319-10575-8 10.

Black, Duncan (1958). The Theory of Committees and Elections. Vol. 36. 137. Cambridge

University Press. doi: 10.1017/S0031819100058204.

Blanchet, Bruno (2012). “Security Protocol Verification: Symbolic and Computational

Models.” In: First International Conference on Principles of Security and Trust (POST

2012), held as Part of ETAPS 2012: the European Joint Conferences on Theory and Practice of

Software (Tallinn, Estonia, Mar. 24–Apr. 1, 2012). Ed. by Pierpaolo Degano and Joshua

D. Guttman. Vol. 7215. Lecture Notes in Computer Science. Springer, pp. 3–29. doi:

10.1007/978-3-642-28641-4 2.

Blom, Michelle L., Vanessa Teague, Peter J. Stuckey, and Ron Tidhar (2016). “Efficient

Computation of Exact IRV Margins.” In: 22nd European Conference on Artificial Intelligence

(ECAI 2016) Including Prestigious Applications of Artificial Intelligence (PAIS 2016) (The

Hague, The Netherlands, Aug. 29–Sept. 2, 2016). Ed. by Gal A. Kaminka, Maria Fox,

156

https://doi.org/10.1007/978-3-030-61362-4_4
https://doi.org/10.1007/978-3-319-52240-1_2
https://doi.org/10.1007/978-3-319-52240-1_2
https://doi.org/10.1007/978-3-319-49812-6_3
https://doi.org/10.1007/978-3-319-10082-1_7
https://doi.org/10.1007/978-3-319-10082-1_7
https://doi.org/10.1007/978-3-319-68687-5_6
https://doi.org/10.1007/978-3-319-10575-8_10
https://doi.org/10.1017/S0031819100058204
https://doi.org/10.1007/978-3-642-28641-4_2

References

Paolo Bouquet, Eyke Hüllermeier, Virginia Dignum, Frank Dignum, and Frank van

Harmelen. Vol. 285. Frontiers in Artificial Intelligence and Applications. IOS Press,

pp. 480–488. doi: 10.3233/978-1-61499-672-9-480.

Bohr, Stephan (2020). “Formal Verification of Condorcet Voting Rules Using Composable

Modules.” Bachelor’s Thesis. ITI Beckert, Karlsruhe Institute of Technology (KIT).

Brams, Steven J. and Peter C. Fishburn (1988). “Does Approval Voting Elect the Lowest

Common Denominator?” PS: Political Science & Politics 21.02, pp. 277–284.

Brandt, Felix, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia (2016).

Handbook of Computational Social Choice. Cambridge University Press. doi: 10.1017/
CBO9781107446984.

Brandt, Felix and Christian Geist (2016). “Finding Strategyproof Social Choice Functions

via SAT Solving.” Journal of Artificial Intelligence Research 55, pp. 565–602. doi: 10.1613/j
air.4959.

Brandt, Felix, Christian Geist, and Dominik Peters (2017). “Optimal bounds for the no-

show paradox via SAT solving.” Math. Soc. Sci. 90, pp. 18–27. doi: 10.1016/j.mathsocsci
.2016.09.003.

Bryant, Randal E., Daniel Kroening, Joël Ouaknine, Sanjit A. Seshia, Ofer Strichman, and

Bryan A. Brady (2007). “Deciding Bit-Vector Arithmetic with Abstraction.” In: 13th

International Conference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS 2007) held as part of ETAPS 2007: the Joint European Conferences on Theory and

Practice of Software (Braga, Portugal, Mar. 24–Apr. 1, 2007). Ed. by Orna Grumberg and

Michael Huth. Vol. 4424. Lecture Notes in Computer Science. Springer, pp. 358–372.

doi: 10.1007/978-3-540-71209-1 28.

Bundestagsdrucksache 17/11819 (2012). Entwurf eines Zweiundzwanzigsten Gesetzes zur

Änderung des Bundeswahlgesetzes. Bundesanzeiger Verlagsgesellschaft mbH. url: http://d
ipbt.bundestag.de/dip21/btd/17/118/1711819.pdf.

Cadoli, Marco and Toni Mancini (2007). “Using a Theorem Prover for Reasoning on

Constraint Problems.” Applied Artificial Intelligence 21.4&5, pp. 383–404. doi: 10.1080/0
8839510701252650.

Cailloux, Olivier and Ulle Endriss (2014). “Eliciting a Suitable Voting Rule via Examples.”

In: 21st European Conference on Artificial Intelligence (ECAI 2014), Including Prestigious

Applications of Intelligent Systems (PAIS 2014) (Prague, Czech Republic, Aug. 18–22, 2014).

Ed. by Torsten Schaub, Gerhard Friedrich, and Barry O’Sullivan. Vol. 263. Frontiers in

Artificial Intelligence and Applications. IOS Press, pp. 183–188. doi: 10.3233/978-1-614
99-419-0-183.

– (2016). “Arguing about Voting Rules.” In: International Conference on Autonomous Agents

& Multiagent Systems (AAMAS ’16) (Singapore, Singapore, May 9–13, 2016). Ed. by

Catholĳn M. Jonker, Stacy Marsella, John Thangarajah, and Karl Tuyls. International

Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS), pp. 287–295.

url: http://dl.acm.org/citation.cfm?id=2936968.

157

https://doi.org/10.3233/978-1-61499-672-9-480
https://doi.org/10.1017/CBO9781107446984
https://doi.org/10.1017/CBO9781107446984
https://doi.org/10.1613/jair.4959
https://doi.org/10.1613/jair.4959
https://doi.org/10.1016/j.mathsocsci.2016.09.003
https://doi.org/10.1016/j.mathsocsci.2016.09.003
https://doi.org/10.1007/978-3-540-71209-1_28
http://dipbt.bundestag.de/dip21/btd/17/118/1711819.pdf
http://dipbt.bundestag.de/dip21/btd/17/118/1711819.pdf
https://doi.org/10.1080/08839510701252650
https://doi.org/10.1080/08839510701252650
https://doi.org/10.3233/978-1-61499-419-0-183
https://doi.org/10.3233/978-1-61499-419-0-183
http://dl.acm.org/citation.cfm?id=2936968

References

Cailloux, Olivier and Yves Meinard (2020). “A formal framework for deliberated judg-

ment.” Theory and Decision 88, pp. 269–295. doi: 10.1007/s11238-019-09722-7.

Cary, David (2011). “Estimating the Margin of Victory for Instant-Runoff Voting.” In:

Conference on Electronic Voting Technology/Workshop on Trustworthy Elections (EVT/WOTE

’11) (San Francisco, CA, USA, Aug. 8–9, 2011). Ed. by Hovav Shacham and Vanessa

Teague. USENIX Association. url: https://www.usenix.org/conference/evtwote-11/estimati
ng-margin-victory-instant-runoff-voting.

Charwat, Günther and Andreas Pfandler (2015). “Democratix: A Declarative Approach

to Winner Determination.” In: 4th International Conference on Algorithmic Decision Theory

(ADT 2015) (Lexington, KY, USA, Sept. 27–30, 2015). Ed. by Toby Walsh. Vol. 9346.

Lecture Notes in Computer Science. Springer, pp. 253–269. doi: 10.1007/978-3-319-231
14-3 16.

Chatterjee, Siddharth and Arunava Sen (2014). “Automated Reasoning in Social Choice

Theory: Some Remarks.” Mathematics in Computer Science 8.1, pp. 5–10. doi: 10.1007/s1
1786-014-0177-x.

Clarke, Edmund M., Daniel Kroening, and Flavio Lerda (2004). “A Tool for Checking

ANSI-C Programs.” In: 10th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS 2004), held as part of ETAPS 2004: the Joint

European Conferences on Theory and Practice of Software (Barcelona, Spain, Mar. 29–Apr. 2,

2004). Ed. by Kurt Jensen and Andreas Podelski. Vol. 2988. Lecture Notes in Computer

Science. Springer, pp. 168–176. doi: 10.1007/978-3-540-24730-2 15.

Clarke, Edmund M., Daniel Kroening, and Karen Yorav (2003). “Behavioral Consistency

of C and Verilog Programs Using Bounded Model Checking.” In: The 40th Design

Automation Conference (DAC 2003) (Anaheim, CA, USA, June 2–6, 2003). Association

for Computing Machinery, pp. 368–371. doi: 10.1145/775832.775928.

Clarkson, Michael E., Stephen Chong, and Andrew C. Myers (2007). “Civitas: A Secure

Remote Voting System.” In: Frontiers of Electronic Voting (Wadern, Germany, July 29–

Aug. 3, 2007). Ed. by David Chaum, Miroslaw Kutylowski, Ronald L. Rivest, and Peter

Y. A. Ryan. Vol. 07311. Dagstuhl Seminar Proceedings. Internationales Begegnungs-

und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany. url:

http://drops.dagstuhl.de/opus/volltexte/2008/1296.

Colmerauer, Alain and Philippe Roussel (1993). “The Birth of Prolog.” In: The Second

Conference on History of Programming Languages (HOPL-II) (Cambridge, Massachusetts,

USA, Apr. 20–23, 1993). Ed. by John A. N. Lee and Jean E. Sammet. Association for

Computing Machinery, pp. 37–52. doi: 10.1145/154766.155362.

Colomer, Josep M. (2013). “Ramon Llull: from ‘Ars electionis’ to social choice theory.”

Social Choice and Welfare 40.2, pp. 317–328. doi: 10.1007/s00355-011-0598-2.

Conitzer, Vincent and Tuomas Sandholm (2012). “Common Voting Rules as Maximum

Likelihood Estimators.” Computing Research Repository (CoRR). id: abs/1207.1368.

158

https://doi.org/10.1007/s11238-019-09722-7
https://www.usenix.org/conference/evtwote-11/estimating-margin-victory-instant-runoff-voting
https://www.usenix.org/conference/evtwote-11/estimating-margin-victory-instant-runoff-voting
https://doi.org/10.1007/978-3-319-23114-3_16
https://doi.org/10.1007/978-3-319-23114-3_16
https://doi.org/10.1007/s11786-014-0177-x
https://doi.org/10.1007/s11786-014-0177-x
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1145/775832.775928
http://drops.dagstuhl.de/opus/volltexte/2008/1296
https://doi.org/10.1145/154766.155362
https://doi.org/10.1007/s00355-011-0598-2
http://arxiv.org/abs/abs/1207.1368

References

Copeland, Arthur H. (1951). “A ‘reasonable’ social welfare function. Notes from a semi-

nar on applications of mathematics to the social sciences.” In: University of Michigan.

Mimeographed Notes. Ann Arbor, MI, US.

Cornelio, Cristina, Michele Donini, Andrea Loreggia, Maria Silvia Pini, and Francesca

Rossi (2021). “Voting with random classifiers (VORACE): theoretical and experimental

analysis.” Autonomous Agents and Multi-Agent Systems 35.22. doi: 10.1007/s10458-021-0
9504-y.

Crawford, James M., Matthew L. Ginsberg, Eugene M. Luks, and Amitabha Roy (1996).

“Symmetry-Breaking Predicates for Search Problems.” In: Fifth International Confer-

ence on Principles of Knowledge Representation and Reasoning (KR’96) (Cambridge, Mas-

sachusetts, USA, Nov. 5–8, 1996). Ed. by Luigia Carlucci Aiello, Jon Doyle, and Stuart

C. Shapiro. Morgan Kaufmann Publishers Inc., pp. 148–159. url: https://dl.acm.org/doi/a
bs/10.5555/3087368.3087386.

Crépeau, Claude and Joe Kilian (1993). “Discreet Solitary Games.” In: 13th Annual Inter-

national Cryptology Conference on Advances in Cryptology (CRYPTO ’93) (Santa Barbara,

California, USA, Aug. 22–26, 1993). Ed. by Douglas R. Stinson. Vol. 773. Lecture Notes

in Computer Science. Springer, pp. 319–330. doi: 10.1007/3-540-48329-2 27.

Danmarks Statistik (2015). Befolkning og Valg. Online, accessed 13-December-2021. url:

http://www.dst.dk/valg/Valg1487635/other/2015-Folketingsvalg.pdf.
Darga, Paul T., Mark H. Liffiton, Karem A. Sakallah, and Igor L. Markov (2004). “Ex-

ploiting Structure in Symmetry Detection for CNF.” In: 41st Annual Design Automation

Conference (DAC 2004) (San Diego, CA, USA, June 7–11, 2004). Ed. by Sharad Malik,

Limor Fix, and Andrew B. Kahng. Association for Computing Machinery, pp. 530–534.

doi: 10.1145/996566.996712.

Darvas, Ádám, Reiner Hähnle, and David Sands (2005). “A Theorem Proving Approach

to Analysis of Secure Information Flow.” In: Second International Conference on Security

in Pervasive Computing (SPC 2005) (Boppard, Germany, Apr. 6, 2005–Apr. 8, 2004).

Ed. by Dieter Hutter and Markus Ullmann. Vol. 3450. Lecture Notes in Computer

Science. Springer, pp. 193–209. doi: 10.1007/978-3-540-32004-3 20.

Dawson, Jeremy E., Rajeev Goré, and Thomas Meumann (2015). “Machine-Checked

Reasoning About Complex Voting Schemes Using Higher-Order Logic.” In: 5th Inter-

national Conference on E-Voting and Identity (VoteID 2015) (Bern, Switzerland, Sept. 2–4,

2015). Ed. by Rolf Haenni, Reto E. Koenig, and Douglas Wikström. Vol. 9269. Lecture

Notes in Computer Science. Springer, pp. 142–158. doi: 10.1007/978-3-319-22270-7 9.

den Boer, Bert (1989). “More Efficient Match-Making and Satisfiability: The Five Card

Trick.” In: Workshop on the Theory and Application of Cryptographic Techniques (Advances

in Cryptology — EUROCRYPT ’89) (Houthalen, Belgium, Apr. 10–13, 1989). Ed. by

Jean-Jacques Quisquater and Joos Vandewalle. Vol. 434. Lecture Notes in Computer

Science. Springer, pp. 208–217. doi: 10.1007/3-540-46885-4 23.

Denning, Dorothy E. (1976). “A Lattice Model of Secure Information Flow.” Communication

of the ACM 19.5, pp. 236–243. doi: 10.1145/360051.360056.

159

https://doi.org/10.1007/s10458-021-09504-y
https://doi.org/10.1007/s10458-021-09504-y
https://dl.acm.org/doi/abs/10.5555/3087368.3087386
https://dl.acm.org/doi/abs/10.5555/3087368.3087386
https://doi.org/10.1007/3-540-48329-2_27
http://www.dst.dk/valg/Valg1487635/other/2015-Folketingsvalg.pdf
https://doi.org/10.1145/996566.996712
https://doi.org/10.1007/978-3-540-32004-3_20
https://doi.org/10.1007/978-3-319-22270-7_9
https://doi.org/10.1007/3-540-46885-4_23
https://doi.org/10.1145/360051.360056

References

Denning, Dorothy E. and Peter J. Denning (1977). “Certification of Programs for Secure

Information Flow.” Communication of the ACM 20.7, pp. 504–513. doi: 10.1145/359636.3
59712.

Dennis, Greg, Kuat Yessenov, and Daniel Jackson (2008). “Bounded Verification of

Voting Software.” In: Second International Conference on Verified Software: Theories, Tools,

Experiments (VSTTE 2008) (Toronto, Canada, Oct. 6–9, 2008). Ed. by Natarajan Shankar

and Jim Woodcock. Vol. 5295. Lecture Notes in Computer Science. Springer, pp. 130–

145. doi: 10.1007/978-3-540-87873-5 13.

Diekhoff, Karsten, Michael Kirsten, and Jonas Krämer (2019). “Formal Property-Oriented

Design of Voting Rules Using Composable Modules.” In: 6th International Conference

on Algorithmic Decision Theory (ADT 2019) (Durham, NC, USA, Oct. 10–27, 2019). Ed.

by Saša Pekeč and Kristen Brent Venable. Vol. 11834.Short Papers. Lecture Notes in

Artificial Intelligence. Springer, pp. 164–166. doi: 10.1007/978-3-030-31489-7.

– (2020). “Verified Construction of Fair Voting Rules.” In: 29th International Symposium on

Logic-Based Program Synthesis and Transformation (LOPSTR 2019), Revised Selected Papers

(Porto, Portugal, Oct. 8–10, 2019). Ed. by Maurizio Gabbrielli. Vol. 12042. Lecture Notes

in Computer Science. Springer, pp. 90–104. doi: 10.1007/978-3-030-45260-5 6.

Dĳkstra, Edsger W. (1975). “Guarded Commands, Nondeterminacy and Formal Deriva-

tion of Programs.” Communications of the ACM 18.8, pp. 453–457. doi: 10.1145/360933
.360975.

Do, Quoc Huy, Richard Bubel, and Reiner Hähnle (2017). “Automatic detection and

demonstrator generation for information flow leaks in object-oriented programs.”

Computers & Security 67, pp. 335–349. doi: 10.1016/j.cose.2016.12.002.

Eén, Niklas and Niklas Sörensson (2003). “An Extensible SAT-Solver.” In: 6th International

Conference on Theory and Applications of Satisfiability Testing (SAT 2003), Selected Revised

Papers (Santa Margherita Ligure, Italy, May 5–8, 2003). Ed. by Enrico Giunchiglia and

Armando Tacchella. Vol. 2919. Lecture Notes in Computer Science. Springer, pp. 502–

518. doi: 10.1007/978-3-540-24605-3 37.

Elkind, Edith, Piotr Faliszewski, and Arkadii Slinko (2015). “Distance rationalization of

voting rules.” Social Choice and Welfare 45.2, pp. 345–377. doi: 10.1007/s00355-015-0892
-5.

Elklit, Jørgen, Anne Birte Pade, and Nicoline Nyholm Miller (2011). The Parliamentary

Electoral System in Denmark. Online, accessed 13-December-2021. Ministry of the Interior,

Health, and The Danish Parliament. url: https://www.thedanishparliament.dk/-/media/pdf/
publikationer/english/the-parliamentary-system-of-denmark 2011.ashx.

Endriss, Ulle (2017). Trends in Computational Social Choice. AI Access. url: https://research.il
lc.uva.nl/COST-IC1205/BookDocs/TrendsCOMSOC.pdf.

European Commission for Democracy through Law (Venice Commission) (Oct. 25, 2018).

Code of Good Practice in Electoral Matters. Guidelines and Explanatory Report. Opinion

190/2002. Version 52. Strasbourg, France: Council of Europe. url: https://www.venice.co
e.int/webforms/documents/default.aspx?pdffile=CDL-AD(2002)023rev2-cor-e.

160

https://doi.org/10.1145/359636.359712
https://doi.org/10.1145/359636.359712
https://doi.org/10.1007/978-3-540-87873-5_13
https://doi.org/10.1007/978-3-030-31489-7
https://doi.org/10.1007/978-3-030-45260-5_6
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/360933.360975
https://doi.org/10.1016/j.cose.2016.12.002
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/s00355-015-0892-5
https://doi.org/10.1007/s00355-015-0892-5
https://www.thedanishparliament.dk/-/media/pdf/publikationer/english/the-parliamentary-system-of-denmark_2011.ashx
https://www.thedanishparliament.dk/-/media/pdf/publikationer/english/the-parliamentary-system-of-denmark_2011.ashx
https://research.illc.uva.nl/COST-IC1205/BookDocs/TrendsCOMSOC.pdf
https://research.illc.uva.nl/COST-IC1205/BookDocs/TrendsCOMSOC.pdf
https://www.venice.coe.int/webforms/documents/default.aspx?pdffile=CDL-AD(2002)023rev2-cor-e
https://www.venice.coe.int/webforms/documents/default.aspx?pdffile=CDL-AD(2002)023rev2-cor-e

References

Felsing, Dennis, Sarah Grebing, Vladimir Klebanov, Philipp Rümmer, and Mattias Ulbrich

(2014). “Automating regression verification.” In: International Conference on Automa-

ted Software Engineering (ASE ’14) (Vasteras, Sweden, Sept. 15–19, 2014). Ed. by Ivica

Crnkovic, Marsha Chechik, and Paul Grünbacher. Association for Computing Machin-

ery / IEEE Computer Society, pp. 349–360. doi: 10.1145/2642937.2642987.

Filliâtre, Jean-Christophe (2011). “Deductive software verification.” International Journal on

Software Tools for Technology Transfer 13.5, pp. 397–403. doi: 10.1007/s10009-011-0211-0.

Fishburn, Peter C. (1973). The Theory of Social Choice. Vol. 1757. Princeton Legacy Library.

Princeton University Press. doi: 10.1515/9781400868339.

Fournet, Cédric, Markulf Kohlweiss, and Pierre-Yves Strub (2011). “Modular code-based

cryptographic verification.” In: 18th Conference on Computer and Communications Security

(CCS 2011) (Chicago, Illinois, USA, Oct. 17–21, 2011). Ed. by Yan Chen, George Danezis,

and Vitaly Shmatikov. Association for Computing Machinery, pp. 341–350. doi: 10.11
45/2046707.2046746.

Franz, Martin, Andreas Holzer, Stefan Katzenbeisser, Christian Schallhart, and Helmut

Veith (2014). “CBMC-GC: An ANSI C Compiler for Secure Two-Party Computations.”

In: 23rd International Conference on Compiler Construction (CC 2014), held as Part of ETAPS

2014: the European Joint Conferences on Theory and Practice of Software (Grenoble, France,

Apr. 5–13, 2014). Ed. by Albert Cohen. Vol. 8409. Lecture Notes in Computer Science.

Springer, pp. 244–249. doi: 10.1007/978-3-642-54807-9 15.

Gallagher, Michael (1991). “Proportionality, Disproportionality and Electoral Systems.”

Electoral Studies 10.1, pp. 33–51. doi: 10.1016/0261-3794(91)90004-C.

– (2013). “Monotonicity and Non-Monotonicity at PR-STV Elections.” In: Annual Confer-

ence on Elections, Public Opinion and Parties (EPOP 2013) (Lancaster, UK, Sept. 13–15,

2013). Lancaster University.

Geist, Christian and Ulle Endriss (2011). “Automated Search for Impossibility Theorems

in Social Choice Theory: Ranking Sets of Objects.” Journal of Artificial Intelligence Research

40, pp. 143–174. doi: 10.1613/jair.3126.

Ghale, Milad K., Rajeev Goré, Dirk Pattinson, and Mukesh Tiwari (2018). “Modular

Formalisation and Verification of STV Algorithms.” In: Third International Joint Con-

ference on Electronic Voting (E-Vote-ID 2018) (Bregenz, Austria, Oct. 2–5, 2018). Ed. by

Robert Krimmer, Melanie Volkamer, Véronique Cortier, Rajeev Goré, Manik Hapsara,

Uwe Serdült, and David Duenas-Cid. Vol. 11143. Lecture Notes in Computer Science.

Springer, pp. 51–66. doi: 10.1007/978-3-030-00419-4 4.

Gibbard, Allan (1973). “Manipulation of Voting Schemes: A General Result.” Econometrica

41.4, pp. 587–601. doi: 10.2307/1914083.

Goguen, Joseph A. and José Meseguer (1982). “Security Policies and Security Models.”

In: Symposium on Security and Privacy (SP) (Oakland, CA, USA, Apr. 26–28, 1982). IEEE

Computer Society, pp. 11–20. doi: 10.1109/SP.1982.10014.

Gomes, Carla P., Henry A. Kautz, Ashish Sabharwal, and Bart Selman (2008). “Satisfia-

bility Solvers.” In: Handbook of Knowledge Representation. Ed. by Frank van Harmelen,

161

https://doi.org/10.1145/2642937.2642987
https://doi.org/10.1007/s10009-011-0211-0
https://doi.org/10.1515/9781400868339
https://doi.org/10.1145/2046707.2046746
https://doi.org/10.1145/2046707.2046746
https://doi.org/10.1007/978-3-642-54807-9_15
https://doi.org/10.1016/0261-3794(91)90004-C
https://doi.org/10.1613/jair.3126
https://doi.org/10.1007/978-3-030-00419-4_4
https://doi.org/10.2307/1914083
https://doi.org/10.1109/SP.1982.10014

References

Vladimir Lifschitz, and Bruce W. Porter. Vol. 3. Foundations of Artificial Intelligence.

Elsevier, pp. 89–134. doi: 10.1016/S1574-6526(07)03002-7.

Goré, Rajeev and Thomas Meumann (2014). “Proving the Monotonicity Criterion for a

Plurality Vote-Counting Program as a Step Towards Verified Vote-Counting.” In: 6th

International Conference on Electronic Voting: Verifying the Vote (EVOTE 2014) (Lochau /

Bregenz, Austria, Oct. 29–31, 2014). Ed. by Robert Krimmer and Melanie Volkamer.

IEEE Computer Society, pp. 1–7. doi: 10.1109/EVOTE.2014.7001138.

Graf, Jürgen, Martin Hecker, and Martin Mohr (2013). “Using JOANA for Information

Flow Control in Java Programs - A Practical Guide.” In: Software Engineering 2013 -

Workshopband (inkl. Doktorandensymposium), Fachtagung des GI-Fachbereichs Softwaretech-

nik (Aachen, Germany, Feb. 26–Mar. 1, 2013). Ed. by Stefan Wagner and Horst Lichter.

Vol. 215. Lecture Notes in Informatics. Gesellschaft für Informatik (GI), pp. 123–138.

url: https://dl.gi.de/20.500.12116/17361.

Grilli di Cortona, Pietro, Cecilia Manzi, Aline Pennisi, Federica Ricca, and Bruno Simeone

(1999). Evaluation and optimization of electoral systems. Society for Industrial and Applied

Mathematics. doi: 10.1137/1.9780898719819.

Haines, Thomas (2019). “A Description and Proof of a Generalised and Optimised Variant

of Wikström’s Mixnet.” Computing Research Repository (CoRR). id: abs/1901.08371.

Hammer, Christian and Gregor Snelting (2009). “Flow-sensitive, context-sensitive, and

object-sensitive information flow control based on program dependence graphs.”

International Journal of Information Security 8.6, pp. 399–422. doi: 10.1007/s10207-009-0
086-1.

Hoare, Charles Antony Richard (1969). “An Axiomatic Basis for Computer Program-

ming.” Communications of the ACM 12.10, pp. 576–580. doi: 10.1145/363235.363259.

Holzer, Andreas, Christian Schallhart, Michael Tautschnig, and Helmut Veith (2008).

“FShell: Systematic Test Case Generation for Dynamic Analysis and Measurement.” In:

20th International Conference on Computer Aided Verification (CAV 2008) (Princeton, NJ,

USA, July 7–14, 2008). Ed. by Aarti Gupta and Sharad Malik. Vol. 5123. Lecture Notes

in Computer Science. Springer, pp. 209–213. doi: 10.1007/978-3-540-70545-1 20.

Kastner, Julia, Alexander Koch, Stefan Walzer, Daiki Miyahara, Yu-ichi Hayashi, Takaaki

Mizuki, and Hideaki Sone (2017). “The Minimum Number of Cards in Practical Card-

Based Protocols.” In: Advances in Cryptology - 23rd International Conference on the Theory

and Applications of Cryptology and Information Security (ASIACRYPT 2017) (Hong Kong,

China, Dec. 3–7, 2017). Ed. by Tsuyoshi Takagi and Thomas Peyrin. Vol. 10626.III.

Lecture Notes in Computer Science. Springer, pp. 126–155. doi: 10.1007/978-3-319-707
00-6 5.

Kirsten, Michael and Olivier Cailloux (2018). “Towards automatic argumentation about

voting rules.” In: 4ème Conférence Nationale sur les Applications Pratiques de l’Intelligence

Artificielle (APIA 2018) (Nancy, France, July 2–6, 2018). Ed. by Sandra Bringay and

Juliette Mattioli. url: https://hal.archives-ouvertes.fr/hal-01830911.

162

https://doi.org/10.1016/S1574-6526(07)03002-7
https://doi.org/10.1109/EVOTE.2014.7001138
https://dl.gi.de/20.500.12116/17361
https://doi.org/10.1137/1.9780898719819
http://arxiv.org/abs/abs/1901.08371
https://doi.org/10.1007/s10207-009-0086-1
https://doi.org/10.1007/s10207-009-0086-1
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/978-3-540-70545-1_20
https://doi.org/10.1007/978-3-319-70700-6_5
https://doi.org/10.1007/978-3-319-70700-6_5
https://hal.archives-ouvertes.fr/hal-01830911

References

Koch, Alexander (2018). “The Landscape of Optimal Card-based Protocols.” IACR Cryp-

tology ePrint Archive, p. 951. url: https://eprint.iacr.org/2018/951.

– (2019). “Cryptographic Protocols from Physical Assumptions.” PhD thesis. Karlsruhe:

Karlsruhe Institute of Technology (KIT). doi: 10.5445/IR/1000097756.

Koch, Alexander, Michael Schrempp, and Michael Kirsten (2019). “Card-Based Cryp-

tography Meets Formal Verification.” In: 25th International Conference on the Theory

and Application of Cryptology and Information Security (ASIACRYPT 2019) (Kobe, Japan,

Dec. 8–12, 2019). Ed. by Steven D. Galbraith and Shiho Moriai. Vol. 11921.I. Lecture

Notes in Computer Science. Springer, pp. 488–517. doi: 10.1007/978-3-030-34578-5 18.

– (2021). “Card-Based Cryptography Meets Formal Verification.” Trans. by Takaaki

Mizuki. New Generation Computing 39.1: Special Issue on Card-Based Cryptography, pp. 115–

158. doi: 10.1007/s00354-020-00120-0.

Koch, Alexander, Stefan Walzer, and Kevin Härtel (2015). “Card-based Cryptographic

Protocols Using a Minimal Number of Cards.” In: 21st International Conference on

the Theory and Application of Cryptology and Information Security (ASIACRYPT 2015)

(Auckland, New Zealand, Nov. 29–Dec. 3, 2015). Ed. by Tetsu Iwata and Jung Hee

Cheon. Vol. 9452.I. Lecture Notes in Computer Science. Springer, pp. 783–807. doi:

10.1007/978-3-662-48797-6 32.

Koitmäe, Arne, Jan Willemson, and Priit Vinkel (2021). “Vote Secrecy and Voter Feedback

in Remote Voting - Can We Have Both?” In: 6th International Joint Conference on Electronic

Voting (E-Vote-ID 2021) (Virtual Event, Oct. 5–8, 2021). Ed. by Robert Krimmer, Melanie

Volkamer, David Duenas-Cid, Oksana Kulyk, Peter B. Rønne, Mihkel Solvak, and

Micha Germann. Vol. 12900. Lecture Notes in Computer Science. Springer, pp. 140–154.

doi: 10.1007/978-3-030-86942-7 10.

Küsters, Ralf and Johannes Müller (2017). “Cryptographic Security Analysis of E-voting

Systems: Achievements, Misconceptions, and Limitations.” In: Second International Joint

Conference on Electronic Voting (E-Vote-ID 2017) (Bregenz, Austria, Oct. 24–27, 2017).

Ed. by Robert Krimmer, Melanie Volkamer, Nadja Braun Binder, Norbert Kersting,

Olivier Pereira, and Carsten Schürmann. Vol. 10615. Lecture Notes in Computer Science.

Springer, pp. 21–41. doi: 10.1007/978-3-319-68687-5 2.

Küsters, Ralf, Tomasz Truderung, Bernhard Beckert, Daniel Bruns, Michael Kirsten,

and Martin Mohr (2015). “A Hybrid Approach for Proving Noninterference of Java

Programs.” In: 28th Computer Security Foundations Symposium (CSF 2015) (Verona, Italy,

July 13–17, 2015). Ed. by Cédric Fournet and Michael Hicks. IEEE Computer Society,

pp. 305–319. doi: 10.1109/CSF.2015.28.

Küsters, Ralf, Tomasz Truderung, and Juergen Graf (2012). “A Framework for the Cryp-

tographic Verification of Java-Like Programs.” In: 25th Computer Security Foundations

Symposium (CSF 2012) (Cambridge, MA, USA, June 25–27, 2012). Ed. by Stephen Chong.

IEEE Computer Society, pp. 198–212. doi: 10.1109/CSF.2012.9.

163

https://eprint.iacr.org/2018/951
https://doi.org/10.5445/IR/1000097756
https://doi.org/10.1007/978-3-030-34578-5_18
https://doi.org/10.1007/s00354-020-00120-0
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-030-86942-7_10
https://doi.org/10.1007/978-3-319-68687-5_2
https://doi.org/10.1109/CSF.2015.28
https://doi.org/10.1109/CSF.2012.9

References

Leavens, Gary T., Albert L. Baker, and Clyde Ruby (2006). “Preliminary Design of JML:

A Behavioral Interface Specification Language for Java.” ACM SIGSOFT Software Engi-

neering Notes 31.3, pp. 1–38. doi: 10.1145/1127878.1127884.

Lindeman, Mark and Philip B. Stark (2012). “A Gentle Introduction to Risk-Limiting

Audits.” IEEE Security & Privacy 10.5, pp. 42–49. doi: 10.1109/MSP.2012.56.

Lundin, David (2010). “Component Based Electronic Voting Systems.” In: Towards Trust-

worthy Elections, New Directions in Electronic Voting. Ed. by David Chaum, Markus

Jakobsson, Ronald L. Rivest, Peter Y. A. Ryan, Josh Benaloh, Miroslaw Kutylowski, and

Ben Adida. Vol. 6000. Lecture Notes in Computer Science. Springer, pp. 260–273. doi:

10.1007/978-3-642-12980-3 16.

Maggs, Bruce M. and Ramesh K. Sitaraman (2015). “Algorithmic Nuggets in Content

Delivery.” ACM SIGCOMM Computer Communication Review 45.3, pp. 52–66. doi: 10.1
145/2805789.2805800.

Magrino, Thomas R., Ronald L. Rivest, Emily Shen, and David Wagner (2011). “Computing

the Margin of Victory in IRV Elections.” In: Workshop on Electronic Voting Technology /

Workshop on Trustworthy Elections (EVT/WOTE ’11) (San Francisco, CA, USA, Aug. 8–9,

2011). Ed. by Hovav Shacham and Vanessa Teague. USENIX Association. url: https://w
ww.usenix.org/conference/evtwote-11/computing-margin-victory-irv-elections.

Mancini, Toni and Marco Cadoli (2005). “Detecting and Breaking Symmetries by Rea-

soning on Problem Specifications.” In: 6th International Symposium on Abstraction, Refor-

mulation and Approximation (SARA 2005) (Airth Castle, Scotland, UK, July 26–29, 2005).

Ed. by Jean-Daniel Zucker and Lorenza Saitta. Vol. 3607. Lecture Notes in Computer

Science. Springer, pp. 165–181. doi: 10.1007/11527862 12.

Meyer, Bertrand (1992). “Applying “Design by Contract”.” IEEE Computer 25.10, pp. 40–51.

doi: 10.1109/2.161279.

Mizuki, Takaaki (2016). “Card-based protocols for securely computing the conjunction

of multiple variables.” Theoretical Computer Science 622, pp. 34–44. doi: 10.1016/j.tcs.20
16.01.039.

Mizuki, Takaaki, Isaac Kobina Asiedu, and Hideaki Sone (2013). “Voting with a Logarith-

mic Number of Cards.” In: 12th International Conference on Unconventional Computation

and Natural Computation (UCNC 2013) (Milan, Italy, July 1–3, 2013). Ed. by Giancarlo

Mauri, Alberto Dennunzio, Luca Manzoni, and Antonio E. Porreca. Vol. 7956. Lecture

Notes in Computer Science. Springer, pp. 162–173. doi: 10.1007/978-3-642-39074-6 16.

Mizuki, Takaaki and Hiroki Shizuya (2014). “A formalization of card-based cryptographic

protocols via abstract machine.” International Journal of Information Security 13.1, pp. 15–

23. doi: 10.1007/s10207-013-0219-4.

– (2017). “Computational Model of Card-Based Cryptographic Protocols and Its Applica-

tions.” IEICE Transactions on Fundamentals of Electronics, Communications and Computer

Sciences 100-A.1, pp. 3–11. doi: 10.1587/transfun.E100.A.3.

Mizuki, Takaaki and Hideaki Sone (2009). “Six-Card Secure AND and Four-Card Secure

XOR.” In: Third International Workshop on Frontiers in Algorithmics (FAW 2009) (Hefei,

164

https://doi.org/10.1145/1127878.1127884
https://doi.org/10.1109/MSP.2012.56
https://doi.org/10.1007/978-3-642-12980-3_16
https://doi.org/10.1145/2805789.2805800
https://doi.org/10.1145/2805789.2805800
https://www.usenix.org/conference/evtwote-11/computing-margin-victory-irv-elections
https://www.usenix.org/conference/evtwote-11/computing-margin-victory-irv-elections
https://doi.org/10.1007/11527862_12
https://doi.org/10.1109/2.161279
https://doi.org/10.1016/j.tcs.2016.01.039
https://doi.org/10.1016/j.tcs.2016.01.039
https://doi.org/10.1007/978-3-642-39074-6_16
https://doi.org/10.1007/s10207-013-0219-4
https://doi.org/10.1587/transfun.E100.A.3

References

China, June 20–23, 2009). Ed. by Xiaotie Deng, John E. Hopcroft, and Jinyun Xue.

Vol. 5598. Lecture Notes in Computer Science. Springer, pp. 358–369. doi: 10.1007/978-
3-642-02270-8 36.

Narodytska, Nina, Toby Walsh, and Lirong Xia (2012). “Combining Voting Rules To-

gether.” In: 20th European Conference on Artificial Intelligence (ECAI 2012), including

Prestigious Applications of Artificial Intelligence (PAIS-2012), System Demonstrations Track

(Montpellier, France, Aug. 27–31, 2012). Ed. by Luc De Raedt, Christian Bessiere, Di-

dier Dubois, Patrick Doherty, Paolo Frasconi, Fredrik Heintz, and Peter J. F. Lucas.

Vol. 242. Frontiers in Artificial Intelligence and Applications. IOS Press, pp. 612–617.

doi: 10.3233/978-1-61499-098-7-612.

Niemi, Valtteri and Ari Renvall (1998). “Secure Multiparty Computations Without Com-

puters.” Theoretical Computer Science 191.1-2, pp. 173–183. doi: 10.1016/S0304-3975(97
)00107-2.

– (1999). “Solitaire Zero-knowledge.” Fundamenta Informaticae 38.1-2, pp. 181–188. doi:

10.3233/FI-1999-381214.

Nipkow, Tobias, Lawrence C. Paulson, and Markus Wenzel (2002). Isabelle/HOL - A Proof

Assistant for Higher-Order Logic. Vol. 2283. Lecture Notes in Computer Science. Springer.

doi: 10.1007/3-540-45949-9.

Pattinson, Dirk and Carsten Schürmann (2015). “Vote Counting as Mathematical Proof.”

In: 28th Australasian Joint Conference on Advances in Artificial Intelligence (AI 2015) (Can-

berra, ACT, Australia, Nov. 30–Dec. 4, 2015). Ed. by Bernhard Pfahringer and Jochen

Renz. Vol. 9457. Lecture Notes in Computer Science. Springer, pp. 464–475. doi: 10.10
07/978-3-319-26350-2 41.

Paulson, Lawrence C. (1989). “The Foundation of a Generic Theorem Prover.” Journal of

Automated Reasoning 5.3, pp. 363–397. doi: 10.1007/BF00248324.

Pukelsheim, Friedrich (2017). Proportional Representation – Apportionment Methods and

Their Applications. Springer. doi: 10.1007/978-3-319-64707-4.

Rastogi, Asem, Nikhil Swamy, and Michael Hicks (2019). “Wys
★
: A DSL for Verified Secure

Multi-party Computations.” In: 8th International Conference on Principles of Security and

Trust (POST 2019), held as Part of ETAPS 2019: the European Joint Conferences on Theory and

Practice of Software (Prague, Czech Republic, Apr. 6–11, 2019). Ed. by Flemming Nielson

and Dave Sands. Vol. 11426. Lecture Notes in Computer Science. Springer, pp. 99–122.

doi: 10.1007/978-3-030-17138-4 5.

Regenwetter, Michel and Bernard Grofman (1998). “Approval Voting, Borda Winners,

and Condorcet Winners: Evidence from Seven Elections.” Management Science 44.4,

pp. 520–533.

Richter, Fabian (2021). “Automated Verification and Generation of Voting Rules Us-

ing Composable Modules.” Master’s Thesis. KASTEL Beckert, Karlsruhe Institute of

Technology (KIT).

165

https://doi.org/10.1007/978-3-642-02270-8_36
https://doi.org/10.1007/978-3-642-02270-8_36
https://doi.org/10.3233/978-1-61499-098-7-612
https://doi.org/10.1016/S0304-3975(97)00107-2
https://doi.org/10.1016/S0304-3975(97)00107-2
https://doi.org/10.3233/FI-1999-381214
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-319-26350-2_41
https://doi.org/10.1007/978-3-319-26350-2_41
https://doi.org/10.1007/BF00248324
https://doi.org/10.1007/978-3-319-64707-4
https://doi.org/10.1007/978-3-030-17138-4_5

References

Rivest, Ronald L. (2008). “On the notion of ‘software independence’ in voting systems.”

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering

Sciences 366 (1881), pp. 3759–3767. doi: 10.1098/rsta.2008.0149.

Rivest, Ronald L. and Warren D. Smith (2007). “Three Voting Protocols: ThreeBallot,

VAV, and Twin.” In: 2007 USENIX/ACCURATE Electronic Voting Technology Workshop

(EVT’07) (Boston, MA, USA, Aug. 6, 2007). Ed. by Ray Martinez and David A. Wagner.

USENIX Association. url: https://www.usenix.org/conference/evt-07/three-voting-protocol
s-threeballot-vav-and-twin.

Ryan, Peter Y. A., David Bismark, James Heather, Steve A. Schneider, and Zhe Xia (2009).

“Prêt à voter: a voter-verifiable voting system.” IEEE Transactions on Information Forensics

and Security 4.4, pp. 662–673. doi: 10.1109/TIFS.2009.2033233.

Ryan, Peter Y. A., Peter B. Rønne, and Vincenzo Iovino (2016). “Selene: Voting with

Transparent Verifiability and Coercion-Mitigation.” In: Financial Cryptography and Data

Security - FC 2016 International Workshops, BITCOIN, VOTING, and WAHC, Revised

Selected Papers (Christ Church, Barbados, Feb. 26, 2016). Ed. by Jeremy Clark, Sarah

Meiklejohn, Peter Y. A. Ryan, Dan S. Wallach, Michael Brenner, and Kurt Rohloff.

Vol. 9604. Lecture Notes in Computer Science. Springer, pp. 176–192. doi: 10.1007/978-
3-662-53357-4 12.

Sarwate, Anand D., Stephen Checkoway, and Hovav Shacham (2013). “Risk-Limiting

Audits and the Margin of Victory in Nonplurality Elections.” Statistics, Politics, and

Policy 4.1, pp. 29–64. doi: 10.1515/spp-2012-0003.

Satterthwaite, Mark Allen (1975). “Strategy-proofness and Arrow’s conditions: Existence

and correspondence theorems for voting procedures and social welfare functions.”

Journal of Economic Theory 10.2, pp. 187–217. doi: 10.1016/0022-0531(75)90050-2.

Scheben, Christoph and Peter H. Schmitt (2011). “Verification of Information Flow Prop-

erties of Java Programs without Approximations.” In: International Conference on Formal

Verification of Object-Oriented Software (FoVeOOS 2011), Revised Selected Papers (Turin,

Italy, Oct. 5–7, 2011). Ed. by Bernhard Beckert, Ferruccio Damiani, and Dilian Gurov.

Vol. 7421. Lecture Notes in Computer Science. Springer, pp. 232–249. doi: 10.1007/978-
3-642-31762-0 15.

Shankar, Natarajan (2009). “Automated Deduction for Verification.” ACM Computing

Surveys 41.4, 20:1–20:56. doi: 10.1145/1592434.1592437.

Shinagawa, Kazumasa and Takaaki Mizuki (2019). “Secure Computation of Any Boolean

Function Based on Any Deck of Cards.” In: 13th International Workshop on Frontiers

in Algorithmics (FAW 2019) (Sanya, China, Apr. 29–May 3, 2019). Ed. by Yĳia Chen,

Xiaotie Deng, and Mei Lu. Vol. 11458. Lecture Notes in Computer Science. Springer,

pp. 63–75. doi: 10.1007/978-3-030-18126-0 6.

Shlyakhter, Ilya (2007). “Generating Effective Symmetry-Breaking Predicates for Search

Problems.” Discrete Applied Mathematics 155.12, pp. 1539–1548. doi: 10.1016/j.dam.2005
.10.018.

166

https://doi.org/10.1098/rsta.2008.0149
https://www.usenix.org/conference/evt-07/three-voting-protocols-threeballot-vav-and-twin
https://www.usenix.org/conference/evt-07/three-voting-protocols-threeballot-vav-and-twin
https://doi.org/10.1109/TIFS.2009.2033233
https://doi.org/10.1007/978-3-662-53357-4_12
https://doi.org/10.1007/978-3-662-53357-4_12
https://doi.org/10.1515/spp-2012-0003
https://doi.org/10.1016/0022-0531(75)90050-2
https://doi.org/10.1007/978-3-642-31762-0_15
https://doi.org/10.1007/978-3-642-31762-0_15
https://doi.org/10.1145/1592434.1592437
https://doi.org/10.1007/978-3-030-18126-0_6
https://doi.org/10.1016/j.dam.2005.10.018
https://doi.org/10.1016/j.dam.2005.10.018

References

Smith, Adam M., Eric Butler, and Zoran Popovic (2013). “Quantifying over Play: Con-

straining Undesirable Solutions in Puzzle Design.” In: International Conference on the

Foundations of Digital Games (FDG 2013) (Chania, Crete, Greece, May 14–17, 2013).

Ed. by Georgios N. Yannakakis, Espen Aarseth, Kristine Jørgensen, and James C.

Lester. Society for the Advancement of the Science of Digital Games, pp. 221–228. url:

http://www.fdg2013.org/program/papers/paper29 smith etal.pdf.
Smith, Warren D. (2004). Cryptography meets voting. Tech. rep. The Pennsylvania State

University. url: https://www.rangevoting.org/WarrenSmithPages/homepage/cryptovot.pdf.
Sompolinsky, Yonatan, Shai Wyborski, and Aviv Zohar (2018). “PHANTOM and GHOST-

DAG: A Scalable Generalization of Nakamoto Consensus.” IACR Cryptology ePrint

Archive. Report 2018/104.

Stark, Philip B. (2010). “Super-Simple Simultaneous Single-Ballot Risk-Limiting Au-

dits.” In: Workshop on Electronic Voting Technology / Workshop on Trustworthy Elections

(EVT/WOTE ’10) (Washington, D.C., USA, Aug. 9–10, 2010). Ed. by Douglas W. Jones,

Jean-Jacques Quisquater, and Eric Rescorla. USENIX Association, pp. 1–16. url: https://
www.usenix.org/conference/evtwote-10/super-simple-simultaneous-single-ballot-risk-limi
ting-audits.

Stark, Philip B. and Vanessa Teague (2014). “Verifiable European Elections: Risk-limiting

Audits for D’Hondt and Its Relatives.” USENIX Journal of Election Technology and Systems

(JETS) 1.3, pp. 18–39. url: https://www.usenix.org/jets/issues/0301/stark.

Steinriede, Marion Rabea (2021). “Distance Rationalization for Modular Construction

of Verified Voting Rules.” Bachelor’s Thesis. KASTEL Beckert, Karlsruhe Institute of

Technology (KIT).

Swamy, Nikhil, Catalin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud,

Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub, Markulf

Kohlweiss, Jean Karim Zinzindohoue, and Santiago Zanella Béguelin (2016). “De-

pendent types and multi-monadic effects in F.” In: 43rd Annual SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL 2016) (St. Petersburg, FL,

USA, Jan. 20–22, 2016). Ed. by Rastislav Bodík and Rupak Majumdar. Association for

Computing Machinery, pp. 256–270. doi: 10.1145/2837614.2837655.

Taagepera, Rein (2002). “Designing Electoral Rules and Waiting for an Electoral System

to Evolve.” In: The Architecture of Democracy: Constitutional Design, Conflict Management,

and Democracy. Ed. by Andrew Reynolds. .II: Presidentialism, Federalism and Decen-

tralization, and Electoral Systems. Oxford University Press. Chap. 10. doi: 10.1093/019
9246467.003.0010.

Tang, Pingzhong and Fangzhen Lin (2009). “Computer-aided proofs of Arrow’s and

other impossibility theorems.” Artificial Intelligence 173.11, pp. 1041–1053. doi: 10.1016/j
.artint.2009.02.005.

Truderung, Tomasz (Feb. 28, 2019). Polyas 3.0 E-Voting System Variant for the GI 2019

Election. Tech. rep. Version 0.9. Polyas GmbH.

– (July 2, 2021). Polyas 3.0 Verifiable E-Voting System. Tech. rep. Version 1.2.0. Polyas GmbH.

167

http://www.fdg2013.org/program/papers/paper29_smith_etal.pdf
https://www.rangevoting.org/WarrenSmithPages/homepage/cryptovot.pdf
https://eprint.iacr.org/2018/104
https://www.usenix.org/conference/evtwote-10/super-simple-simultaneous-single-ballot-risk-limiting-audits
https://www.usenix.org/conference/evtwote-10/super-simple-simultaneous-single-ballot-risk-limiting-audits
https://www.usenix.org/conference/evtwote-10/super-simple-simultaneous-single-ballot-risk-limiting-audits
https://www.usenix.org/jets/issues/0301/stark
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1093/0199246467.003.0010
https://doi.org/10.1093/0199246467.003.0010
https://doi.org/10.1016/j.artint.2009.02.005
https://doi.org/10.1016/j.artint.2009.02.005

References

Verity, Florrie and Dirk Pattinson (2017). “Formally Verified Invariants of Vote Counting

Schemes.” In: Australasian Computer Science Week Multiconference (ACSW 2017) (Geelong,

Australia, Jan. 31–Feb. 3, 2017). Association for Computing Machinery, 31:1–31:10. doi:

10.1145/3014812.3014845.

Vorobyov, Kostyantyn and Padmanabhan Krishnan (2012). “Combining Static Analysis

and Constraint Solving for Automatic Test Case Generation.” In: Fifth International

Conference on Software Testing, Verification and Validation (ICST 2012) (Montreal, QC,

Canada, Apr. 17–21, 2012). Ed. by Giuliano Antoniol, Antonia Bertolino, and Yvan

Labiche. IEEE Computer Society, pp. 915–920. doi: 10.1109/ICST.2012.196.

Xia, Lirong (2013). “Designing Social Choice Mechanisms Using Machine Learning.” In:

International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS ’13)

(Saint Paul, MN, USA, May 6–10, 2013). Ed. by Maria L. Gini, Onn Shehory, Takayuki

Ito, and Catholĳn M. Jonker. International Foundation for Autonomous Agents and

Multiagent Systems (IFAAMAS), pp. 471–474. url: https://dl.acm.org/doi/10.5555/24849
20.2484995.

Young, Hobart Peyton (1974). “An Axiomatization of Borda’s Rule.” Journal of Economic

Theory 9.1, pp. 43–52. doi: 10.1016/0022-0531(74)90073-8.

168

https://doi.org/10.1145/3014812.3014845
https://doi.org/10.1109/ICST.2012.196
https://dl.acm.org/doi/10.5555/2484920.2484995
https://dl.acm.org/doi/10.5555/2484920.2484995
https://doi.org/10.1016/0022-0531(74)90073-8

Appendix

A
Card Protocols and KWH Trees

T
his appendix prints the protocols and KWH trees that the formal method in Chap-

ter 4 found or that we devised based on the evidence from its findings, namely in

Algorithm A.1 a standard-deck four-card protocol with its KWH tree in Figure A.1, and

a shorter version of a two-color deck five-card protocol in Figure A.2.

Algorithm A.1 Our four-card AND protocol. The first bit is in basis {1, 2}, the second

in {3, 4}, and the output in {1, 2, 3, 4} \ {𝑣2 , 𝑣3}, where 𝑣2 , 𝑣3 are the last two revealed

symbols. See Figure A.1 for a KWH tree representation.

1 (shuffle, ⟨(1 2 3 4)⟩)
2 𝑣1 := (turn, {1})
3 if 𝑣1 = 1 then (perm, (3 4))
4 else if 𝑣1 = 2 then (perm, (2 3 4))
5 else if 𝑣1 = 3 then (perm, (2 4 3))
6 else if 𝑣1 = 4 then (perm, (2 3))
7 Let 𝜋 := (1 3)(2 4)
8 repeat
9 (shuffle, ⟨(1 2 3 4)⟩)

10 𝑣2 := (turn, {1})
11 until 𝑣2 = 𝜋(𝑣1)
12 (shuffle, ⟨(2 3 4)⟩)
13 𝑣3 := (turn, {2})
14 Let 𝜎 := (1 4)(2 3)
15 if 𝑣3 = 𝜎(𝑣2) then (result, 4, 3)
16 else (result, 3, 4)

171

Appendix A. Card Protocols and KWH Trees

1234 𝑋00

1243 𝑋01

2134 𝑋10

2143 𝑋11

1234 1/4𝑋00

1243 1/4𝑋01

2134 1/4𝑋10

2143 1/4𝑋11

4123 1/4𝑋00

3124 1/4𝑋01

4213 1/4𝑋10

3214 1/4𝑋11

3412 1/4𝑋00

4312 1/4𝑋01

3421 1/4𝑋10

4321 1/4𝑋11

2341 1/4𝑋00

2431 1/4𝑋01

1342 1/4𝑋10

1432 1/4𝑋11

(shuffle, ⟨(1 2 3 4)⟩)

1234 𝑋00

1243 𝑋01

1342 𝑋10

1432 𝑋11

2341 𝑋00

2431 𝑋01

2134 𝑋10

2143 𝑋11

2134 𝑋00

2143 𝑋01

2413 𝑋10

2314 𝑋11

(perm, (2 3 4))

3412 𝑋00

3124 𝑋01

3421 𝑋10

3214 𝑋11

3124 𝑋00

3241 𝑋01

3214 𝑋10

3142 𝑋11

(perm, (2 4 3))

4123 𝑋00

4312 𝑋01

4213 𝑋10

4321 𝑋11

1243 𝑋00

1234 𝑋01

1324 𝑋10

1423 𝑋11

(perm, (3 4))

4213 𝑋00

4132 𝑋01

4123 𝑋10

4231 𝑋11

(perm, (2 3))

(turn, {1})
1???

2??? 3???

4???

relabel : (1 2)(3 4) relabel : (1 2)(3 4)

1243 1/4𝑋00

1234 1/4𝑋01

1324 1/4𝑋10

1423 1/4𝑋11

3124 1/4𝑋00

4123 1/4𝑋01

4132 1/4𝑋10

3142 1/4𝑋11

4312 1/4𝑋00

3412 1/4𝑋01

2413 1/4𝑋10

2314 1/4𝑋11

2431 1/4𝑋00

2341 1/4𝑋01

3241 1/4𝑋10

4231 1/4𝑋11

(shuffle, ⟨(1 2 3 4)⟩)

2431 𝑋00

2341 𝑋01

2413 𝑋10

2314 𝑋11

4312 𝑋00

4123 𝑋01

4132 𝑋10

4231 𝑋11

3124 𝑋00

3412 𝑋01

3241 𝑋10

3142 𝑋11

(turn, {1})

1???

2??? 3???
4???

(shuffle, ⟨(1 2 3 4)⟩)(shuffle, ⟨(1 2 3 4)⟩)

3124 1/3𝑋0

3412 1/3𝑋0

3241 1/3𝑋0

3142 1/3𝑋1

3214 1/3𝑋1

3421 1/3𝑋1

(shuffle, ⟨(2 3 4)⟩)

3124 𝑋0

3142 𝑋1

3241 𝑋0

3214 𝑋1

3412 𝑋0

3421 𝑋1

(turn, {2})
?1??

?2??
?4??

(result, 3, 4)
✓

(result, 4, 3)
✓

(result, 3, 4)
✓

4213 1/4𝑋00

4132 1/4𝑋01

4123 1/4𝑋10

4231 1/4𝑋11

3421 1/4𝑋00

2413 1/4𝑋01

3412 1/4𝑋10

1423 1/4𝑋11

1342 1/4𝑋00

3241 1/4𝑋01

2341 1/4𝑋10

3142 1/4𝑋11

2134 1/4𝑋00

1324 1/4𝑋01

1234 1/4𝑋10

2314 1/4𝑋11

(shuffle, ⟨(1 2 3 4)⟩)

2134 𝑋00

2413 𝑋01

2341 𝑋10

2314 𝑋11

1342 𝑋00

1324 𝑋01

1234 𝑋10

1423 𝑋11

3421 𝑋00

3241 𝑋01

3412 𝑋10

3142 𝑋11

(turn, {1})
1???

2???

3???

4???

(shuffle, ⟨(1 2 3 4)⟩)(shuffle, ⟨(1 2 3 4)⟩)

2134 1/3𝑋0

2413 1/3𝑋0

2341 1/3𝑋0

2314 1/3𝑋1

2431 1/3𝑋1

2143 1/3𝑋1

(shuffle, ⟨(2 3 4)⟩)

2134 𝑋0

2143 𝑋1

2341 𝑋0

2314 𝑋1

2413 𝑋0

2431 𝑋1

(turn, {2})
?1?? ?3??

?4??

(result, 3, 4)
✓

(result, 4, 3)
✓

(result, 3, 4)
✓

Figure A.1: Four-card Las Vegas AND protocol using random cuts, cf. Algorithm A.1. Here,

𝑋0 ≔ 𝑋00 + 𝑋01 + 𝑋10 and 𝑋1 ≔ 𝑋11. The relabeling operations are not actual actions to be

performed but help abbreviate the write-up of the protocol.

172

♡♣♡♣♡ 𝑋11

♡♣♣♡♡ 𝑋10

♣♡♡♣♡ 𝑋01

♣♡♣♡♡ 𝑋00

♡♣♡♣♡ 1/5𝑋1

♡♡♣♣♡ 1/5𝑋1

♡♡♣♡♣ 1/5𝑋1

♣♡♡♡♣ 1/5𝑋1

♣♣♡♡♡ 1/5𝑋1

♡♣♣♡♡ 1/5𝑋0

♣♡♡♣♡ 1/5𝑋0

♣♡♣♡♡ 1/5𝑋0

♡♡♡♣♣ 1/5𝑋0

♡♣♡♡♣ 1/5𝑋0

(shuffle,𝚷1 ≔ ⟨(1 2 4 3 5)⟩)

♡♡♣♡♣ 1/3𝑋1

♣♡♡♡♣ 1/3𝑋1

♣♣♡♡♡ 1/3𝑋1

♡♣♣♡♡ 1/3𝑋0

♣♡♣♡♡ 1/3𝑋0

♡♣♡♡♣ 1/3𝑋0

(shuffle,𝚷1)

♡♣♡♣♡ 1/2𝑋1

♡♡♣♣♡ 1/2𝑋1

♣♡♡♣♡ 1/2𝑋0

♡♡♡♣♣ 1/2𝑋0

(turn, {4})
Pr[???♡?]= 3/5 Pr[???♣?]= 2/5

♡♣♡♣♡ 1/4𝑋1

♡♡♣♣♡ 1/2𝑋1

♣♡♣♡♡ 1/4𝑋1

♣♡♡♣♡ 1/4𝑋0

♡♡♡♣♣ 1/4𝑋0

♡♣♣♡♡ 1/4𝑋0

♡♡♣♡♣ 1/4𝑋0

(shuffle, ⟨(1 2)(3 4)⟩)

♣♡♣♡♡ 𝑋1

♣♡♡♣♡ 𝑋0

♡♣♡♣♡ 𝑋1

♡♣♣♡♡ 𝑋0

♡♡♣♣♡ 𝑋1

♡♡♡♣♣ 1/2𝑋0

♡♡♣♡♣ 1/2𝑋0

(turn, {1, 2})
Pr[♣♡???]= 1/4

Pr[♡♣???]= 1/4 Pr[♡♡???]= 1/2

(result, 4, 3)
✓

(result, 3, 4)
✓

(perm, (2 3))
(shuffle,𝚷1)

Figure A.2: A shorter version of the five-card two-color Las Vegas AND protocol with

uniform closed shuffles given by Abe et al. (2018), which we found when trying to prove the

run-minimality w. r. t. closed five-card two-color AND protocols. Here, we save one initial

permutation step at the cost of using the slightly more complex shuffle Π1 that is not as easy

to perform as just cutting the cards (albeit still a random cut, i.e., a cyclic group generated by

a cycle). As we assumed single-card turns, the two-card turn step in the end can be split

into two single-card turns, where turning the first card can already result in the final state

on the left, and hence the shortest run has only four steps.

173

B
Rule Construction Graph

T
his appendix consists of the Isabelle session graph for the framework for the verified

construction of voting rules described in Chapter 5 that we then instrument for

automatic synthesis. The graph sticks to the names for voting rules that are well-known

from literature and denotes the composition structures in a (mostly) self-explanatory

manner. The upper three nodes of the graph are the logical core in the Isabelle/HOL

system.

175

Appendix B. Rule Construction Graph

Ag
gr

eg
at

or

Bl
ac

ks
_R

ul
e

Bo
rd

a_
M

od
ul

e

Bo
rd

a_
Ru

le

Cl
as

si
c_

N
an

so
n_

Ru
le

Co
nd

or
ce

t_
M

od
ul

e
Co

pe
la

nd
_M

od
ul

e

Co
pe

la
nd

_R
ul

e

D
ef

er
_E

qu
al

_C
on

di
tio

n

D
ef

er
_M

od
ul

e

D
ef

er
_O

ne
_L

oo
p_

Co
m

po
si

tio
n

D
ro

p_
An

d_
Pa

ss
_C

om
pa

tib
ili

ty

D
ro

p_
M

od
ul

e

El
ec

t_
Co

m
po

si
tio

n

El
ec

t_
M

od
ul

e

El
ec

to
ra

l_
M

od
ul

e

El
im

in
at

io
n_

M
od

ul
e

Ev
al

ua
tio

n_
Fu

nc
tio

n

Lo
op

_C
om

po
si

tio
n

M
ax

im
um

_A
gg

re
ga

to
r

M
ax

im
um

_P
ar

al
le

l_
Co

m
po

si
tio

n
M

in
im

ax
_M

od
ul

e

M
in

im
ax

_R
ul

e

N
an

so
n_

Ba
ld

w
in

_R
ul

e
Pa

irw
is

e_
M

aj
or

ity
_R

ul
e

Pa
ra

lle
l_

Co
m

po
si

tio
n

Pa
ss

_M
od

ul
e

Pl
ur

al
ity

_M
od

ul
e

Pr
ef

er
en

ce
_R

el
at

io
n

Pr
of

ile

Re
su

lt

Re
vi

si
on

_C
om

po
si

tio
n

Sc
hw

ar
tz

_R
ul

e

Se
qu

en
tia

l_
Co

m
po

si
tio

n

Se
qu

en
tia

l_
M

aj
or

ity
_C

om
pa

ris
on

Te
rm

in
at

io
n_

Co
nd

iti
on

[H
O

L]

[P
ur

e]

[T
oo

ls
]

Figure B.1: The Isabelle session graph for the construction framework.

176

Index

Symbols
Σ (symbol set) 49

A (set of eligible alternatives) 33

L(A) (set of linear orders on A) 33

K (set of alternatives) 33

𝛼 (risk limit) 39

? (back symbol) 49

B (set of possible ballots) 90, 91

⊥ (invalid sequence type) 55

↓ (revision composition) 77

E (set of evaluations) 90

𝛾 (error inflation factor) 39

� (tolerance factor) 40

⟲𝑡 (loop composition for termination 𝑡)

78

� (diluted margin) 39

C(A) (domain of winner sets) 34

| |agg (parallel composition for

aggregator agg) 77

≿ (preference profile) 33

W (set of possible election results)

90

𝜌 (sample-size multiplier) 39

⊲ (sequential composition) 76

⊥ (invalid election result) 90

♣ (club suit) 46, 47, 49, 56, 69

♡ (heart suit) 46, 47, 49, 56, 69

A
abstention 6

accountability 41

adjustment-seat system 127

aggregation see also decision,

election result, 3, 8, 74, 77, 90

aggregator 77

AI see artificial intelligence

alternatives 4, 5, 8–10, 33–35, 46, 75,

76, 78, 83, 84, 90–92, 94, 98–115,

118, 121, 144, 151

AND function 46, 47, 55, 56, 61–66,

68, 69, 150

anonymity property 38, 91, 93,

97–100

anonymization strategy 5, 10, 12, 151

approval voting 39

artificial intelligence 3, 4

assert statement 23, 66, 97, 98, 103,

115, 118–121, 126

assume statement 23, 97, 98, 101, 102,

115, 119, 121, 125, 126

asymmetric key pair 11

attacker 7, 140, 144, 151

auditing

mechanism 41, 117, 118, 150

parameter 39

177

Index

technique 38, 39, 117, 118

authority-close 5

automated

argumentation 89, 108, 115, 151,

152

formal method 21, 68, 95, 115,

126, 145, 151

synthesis 19, 74, 79, 81–83, 86,

87, 150, 151

technique 29, 85, 100, 101, 107,

115, 116, 151

availability 6, 41

average see quotient

axiomatic method 35, 73

B
backtracking 22

Baldwin’s rule 78

ballot see also vote, 5–7, 32, 33, 38, 39,

90–94, 98–100, 103, 117, 121,

133–136

box 5, 6, 128, 133–136

format 33

interpretation 38

manifest 38

paper 9, 14, 38, 118

sample 38–40, 118

secrecy 134, 135

stuffing 10, 40, 133–135

ballot-box stuffing see ballot stuffing

ballot-form configuration 11

ballot-polling audit 38

basic module 78, 80–82, 85–87, 151,

152

bit commitment 47, 49–53, 58

Black’s rule 82, 106, 107, 109–112,

115, 151

blockchain see distributed ledger

Boolean

circuit 32, 143, 144

condition 62

function 46, 50–52, 55, 58, 66

predicate 78

statement 24, 103

value 24, 60

Borda

rule 9, 34, 82, 101, 103–110, 113,

115, 151

score 78, 104

winner(s) 34, 106

bounded model checking see

software bounded model

checking

bridge to reality 46

bulletin board 33

C
cancellation property 105, 110, 111

candidates see alternatives

card

configuration 47, 48

cutting 48, 50

deck see deck of cards

encoding 47–51, 53

game 49

minimality 47, 56, 69

observation 52, 53

operation 46, 52, 61

order 47–49

pile see pile of cards

protocol 11, 13, 20, 46, 47, 49–51,

56, 60, 61, 68, 69, 144, 150, 152

sequence 46–51, 58, 62

situation 51

symbol 46, 47, 49, 63, 64

card-based

communication see card

protocol

cryptography see card protocol

multi-party computation see

card protocol

protocol see card protocol

scheme see card protocol

cast-as-intended 6, 40

178

Index

CBMC 61, 63–66, 97–99, 101, 103,

115, 119–121, 126, 127, 144, 146

choices see also preferences, 3, 4, 7, 8,

13, 14, 45, 46

closed world assumption 22

code

generation see verified

executable program

level 25, 89, 118, 137, 138, 143

coercer 41

coercion resistance 6, 41

collected-as-cast 6, 40, 41

collection accountability 6, 41

combinatorial state space see also

state space, 13, 54, 115, 146, 151

commitment see bit commitment

committee voting 8

communication channel 5, 6, 9, 11,

150

comparison audit 38, 118

component 4–6, 10, 11, 14, 73–77,

143, 144, 149–151

composable module 73–75, 77, 79,

81, 82, 85–87, 144, 150, 152

composition 75, 97, 99, 152

framework see verification

framework

proof 82, 83, 85, 86

rule 14, 74, 75, 79–82, 85–87,

150, 151

structure 74–76, 78–83, 85–87,

144, 151, 152

tree 82, 84, 85

computational

complexity 46, 60

model 18, 50, 51, 54, 144

resources 7, 108

social choice theory see also

social choice theory, 8

computer-assisted theorem proving

29, 145, 146

computer-checkable proof 14, 151

COMSOC see computational social

choice

Condorcet

consistency 35, 74, 80, 82, 86,

105, 106, 109, 150

property see Condorcet

consistency

rules 9, 74

winner 34, 35, 82, 105, 106, 109,

112

confidentiality 6, 7, 25, 41

consistency property see also

reinforcement property, 92

constituency 127, 128, 144

construction framework see

verification framework

control flow graph 23

convexity property see consistency

property, reinforcement

property

Copeland rule 34, 106, 107, 109–112,

115, 151

COPY function 46

correct-by-construction 74

counted-as-collected 6

counterexample generation 14, 19,

23, 101, 103, 106–109, 111, 115,

119, 123, 128, 143, 145, 151, 152

counting process see vote counting

coupling invariant 97, 99

cryptographic

game 7

primitive 7, 147

property 13, 147

protocol 19, 143

cryptography scheme 5, 7, 8, 10, 11,

150

cycle 104, 105

cyclic

permutation 50

179

Index

profile 105

property 105, 110, 111

C language 23, 61, 62, 97, 98, 101,

103, 107, 110, 113, 115, 118,

121–123, 125–127, 144

D
D’Hondt method 9, 36, 37, 118,

121–128

dating problem 45

decidable logic 23, 46

decision see also aggregation,

election result, 3, 4, 8, 75, 77

deck of cards 13, 46, 49, 51, 55, 152

declarative programming 22

declassification 28

deductive

program verification 15, 18, 24,

27, 28, 147

system see verification

framework

theorem prover 26, 27

derivation tree 21, 22

design by contract 24, 138

deterministic

permutation see also

permutation operation

program 26

value 62

digital

receipt see also digital signature,

7, 10, 11

signature see also digital receipt,

7

dihedral group 67

diluted margin 39, 40

dispute-freeness 6

distance rationalization 87, 152

distributed ledger technology 4

distribution facility 9

divisor method 36, 121–123

DLT see distributed ledger

technology

dynamic

length 78

logic 26

E
e-voting see electronic voting

E2E-V see end-to-end verifiability

economic theory 8

efficient verification 19, 89, 90, 100,

118, 125, 127, 128, 147, 150, 152

election 9, 33, 38, 108, 118, 145, 146,

151

administrator 9

authority 41

council 9, 10, 133–136

function see social choice

function, voting rule

management system 5, 9, 10, 12,

19, 133, 137, 149, 151

margin 12, 14, 18, 19, 31, 38–40,

117–121, 124, 126, 129, 143, 146,

150–152

method 5, 8, 9, 11, 19, 73, 150

outcome 3, 38, 39, 41, 117–121,

128, 151, 152

provider 9, 134

registration see election

management system

result see also aggregation,

decision, 8, 9, 14, 33, 38, 39,

90–94, 96, 98, 115, 117–121, 123,

127–129, 134, 137, 147, 151

electoral

district see constituency

module 75–80, 82–85, 144

register 9, 135

electronic voting system 10, 15, 19,

32, 33, 133–135, 137, 151

elementary

profile 104, 105

180

Index

property 105, 110

elicitation procedure 116

eligibility 10, 75, 135

verifiability 6, 41

elimination procedure 78, 87, 151

encoding basis 53

encrypted receipt see digital receipt

end-to-end verifiability 6, 18, 31, 40,

133, 134

equal vote 73

error inflation factor 39

evaluation 90–92, 95

everlasting privacy 6

evidence 3, 14, 38, 40, 41

exhaustive search 23, 24, 60, 62

explainability 12, 46, 47

exploration space see state space

F
face-down orientation 47, 49, 52

face-up orientation 49

fairness 8, 11, 73, 92, 93, 145, 152

final state 59–61

finite list theory 80

finite-runtime protocol 53, 69, 152

five-card trick 47

fixed point 78

formal

axiom see also social choice

property, 8, 73, 74, 90, 100, 101,

103–105, 107, 110, 111, 115, 116,

146, 147, 151, 152

deck 49

language 29

method 3, 4, 13, 21, 46, 53, 56,

61, 65, 67–69, 89, 90, 118, 121,

129, 134, 143, 144, 146, 149–151

model 11, 29, 47, 90, 115, 144,

150, 152

notion 61

proof 4, 7, 11, 28

property see formal axiom

specification 19, 24, 27, 28, 90,

93, 97, 101, 113, 115, 134,

137–139, 146

technique see formal method

verification 4, 64, 90, 93, 96, 99,

108–115, 133, 134, 137, 139, 144,

145, 147, 150

forward-flow circuit 32

full hand-count 40, 118

functional property 26, 35, 90–93,

95, 96, 101, 105, 110, 115

G
game theory 8

general(-purpose) proof assistant see

interactive theorem proving

generic proof assistant see

interactive theorem proving

German Informatics Society 12, 15,

133–135, 150, 151

GI see German Informatics Society

guarantee 3–5, 7, 10, 13, 25, 28, 33,

41, 65, 66, 73, 75, 86, 133, 134,

137, 139, 149, 150

H
Hamming distance 66

Hare quota see also quota, 127

Hare-Niemeyer method 37, 125

heavyweight formal method 21

helper card 47, 58, 63

high-security variables 25

higher-order logic 29, 85, 145

highest-averages method 37, 121,

127

HOL see higher-order logic

homogeneity property 80

homomorphic encryption 7

honest-but-curious model 13, 144

Horn clause 22

181

Index

human-readable proof artifact 18,

29, 79, 89, 100, 101, 107, 109, 111,

112, 115, 151, 152

I
i-voting see internet voting

ideal functionality 139, 140, 152

imperative program 23, 118, 152

implementation-level security 12,

150

in-place voting 7

independent party see third party

indistinguishability 7, 25, 46, 47, 58,

69

individual verifiability 6, 7, 41

induction 24

input distribution 51

input-possibilistic security 54, 64, 65

instant-runoff voting 87, 118, 129,

146, 151

integrity 6, 7, 40

interactive

formal method 21

theorem proving 14, 18, 29, 79,

145

internet voting 7

interprofile property see relational

property

intraprofile property see functional

property

invariant 24

IRV see instant-runoff voting

Isabelle/HOL 19, 29, 74, 78–83,

85–87, 145, 150, 151

Isar language 29

Italian attack 33

iterative deepening 82

J
Java

dynamic logic 28

Modeling Language 27, 28

program 27, 28, 137, 139, 140,

145, 147, 151

JavaDL see Java dynamic logic

Jefferson’s method 37, 125–128

JML see Java Modeling Lanugage

joint computation see secure

multi-party computation

K
KeY 27, 28, 137, 139, 147

Kemeny-Young rule 9

KWH tree see also reachability tree,

state tree, 51, 56, 60–62

L
largest-remainder method 37, 125

Las Vegas protocol 53, 56, 59, 60, 68,

69

layer 5, 6, 149

computational 5, 6, 10, 12, 143,

149

election 5, 6, 12, 143, 149

human 5, 6, 11, 41

physical 5, 6, 11

lifting an alternative 36, 91, 92, 94

lightweight formal method 13, 14,

21, 145, 147

linear

order 9, 33, 49, 80, 104, 105

resolution 21, 22

logic

gate 32

programming 14, 18, 19, 21, 22,

82

logic-based program analysis 25

logical

calculus 24, 26

function 58

loop 97–99, 113, 121, 122, 124, 126

bound 113, 114

composition 74, 78, 83, 85

invariant 97

182

Index

iteration 23, 97, 122, 124, 129,

151

low-equivalence 25, 27

low-security variables 25, 28

lower bound 47, 65, 66, 68, 69, 129,

146, 150

M
machine learning 4, 145, 146

machine-checked proof 29, 79, 86

majority property 8, 73, 90, 91, 99,

105, 106, 109

mandates 37, 39, 121–128

manipulation 6, 9

margin computation 31, 39, 40,

117–121, 123–129, 143, 146,

150–152

mathematical theory 29

maximality bound 66, 67, 69

maximum aggregator 77

mechanism design 8, 146

method contract 24, 138, 139, 145

minimal state 65

MiniSat 61, 97, 101

mix network 10, 32, 33, 134

modular

construction 78–83, 85–87, 143

verification 19, 24, 78, 81, 82,

85–87, 143, 145

monitoring mechanism 41

monotonicity property 35, 36, 74, 80,

83, 85–87, 91, 93, 94, 150

MPC see secure multi-party

computation

multi-agent system 3

multiwinner voting 8

mutuality 45

N
Nanson’s method 87, 151

neutrality property 93, 94

non-coercibility see coercion

resistance

nondeterministic

array 115

assignment 23

choice 59, 60, 66, 102, 119, 125,

127

parameter 23, 24, 60, 102, 113,

151

reachable state 58

value 62, 65, 103, 110, 114, 119

nonimposition property see

surjectivity property

noninterference see also secure

information flow, 24–28, 138,

139, 147

NOT function 46

O
object

isomorphism 27, 28

orientation 27

observer 41

one-vote overstatement 39

order relation 80, 83

output basis 48, 53

output-possibilistic security 53–55,

61, 62, 64–66

P
pairwise majority comparison 35

paper trail 41

paradoxical behavior 73

parallel composition 74, 76, 77,

84–86, 151

Pareto

dominance see Pareto property

property 101, 103, 106, 108, 110

parliament 36, 37, 118, 121, 127, 151

partial correctness 26

participation secrecy 6, 133, 134

permutation 50, 93, 94, 115

183

Index

group 56

operation 33, 50

relation 115

set 46, 50, 52, 60–62, 65, 67, 69

physical

evidence 117

objects 33, 46

pile of cards 47, 50

plurality voting 9, 34, 83, 85, 97–99

political party 38

poll-site voting 8

polling station 11

possibilistic security 54, 61

postal voting 7

postcondition 24, 26–28, 97, 114, 115

precondition 24, 26–28, 114, 115

preference

aggregation see aggregation

profile see profile

preferences see also choices, 4, 8, 9,

33, 36, 45, 73, 75, 83, 90, 98, 101,

102, 104, 105, 108

preferential voting see preferences

privacy see also secrecy, 7, 135

probabilistic security 53, 62, 65

probability 7, 48, 51, 53, 56, 58

product program see program

weaving

profile 33–35, 75, 78, 80, 83, 85,

90–96, 98, 100–106, 108–112,

114–116, 151, 152

program

code 62, 108, 137, 138

dependency 62, 139, 147

location 25

representation 56, 58

run 23, 60–62, 96, 97, 102, 103,

114, 115, 126, 140, 146, 151

state 25, 59

statement 26, 60, 62, 97, 115

termination 25

trace 59, 120, 126

translation 113, 115

variable 25, 96–98, 102, 119

verification 23, 89, 90, 95,

144–147, 150

weaving 97, 99, 146

programmatic encoding 58, 120, 122,

150

Prolog 22, 82, 83

proof

assistant see interactive theorem

proving

complexity 29, 55

construction 24, 74, 89, 109, 115,

116, 139, 151

framework see verification

framework

interaction 24, 29, 145

obligation 28, 119, 145

tactics 82, 145

proportional representation see

proportionality

proportionality 8, 36, 37, 73, 121,

127, 144

protocol

generation 65, 68, 143, 150

length 59

run 49, 64, 66

public output 25

public-key

encryption 7

infrastructure 11, 151

public-key encryption 140

Q
quota 37, 123–127

quotient 37, 122, 125

table 37, 121, 122, 124

R
random

audit 41

184

Index

bisection cut see random cut

cut 48, 50, 68

sample see ballot sample

ranking see preferences

RCV see ranked-choice voting, see

ranked-choice voting

reachability

problem 23, 51, 54, 66

tree see also state tree, 51

reachable

sequence 60

state 59, 60, 62, 65

real-world election 40, 127, 133, 151

receipt-freeness 6

recursive method call 23

reduced

state 54, 55

tree 54

registrar see election council

registration board 134

regulation 4–6, 117

reinforcement property see also

consistency property, 101, 105,

109–115

relation 80, 93–95, 97

relational

property 35, 90–94, 96, 98, 110,

114, 143

verification 19, 97, 143, 145, 146

reliability 12, 41, 45, 73, 133, 149, 150

remote voting 8, 10

requirement 3–6, 8, 9, 11, 12, 14, 41,

61, 89, 133–135, 149–151

restart 53, 68

result

operation 53

partition 75, 76

revision composition 76, 77, 84, 85

risk limit 39, 118

risk-limiting audit 14, 18, 31, 38, 39,

118, 121, 129

rotation 48

rounding 36, 118, 123, 125

run-minimality 46, 56, 61, 64, 65, 68,

69

running time 48, 61, 65, 66, 68, 99,

100, 108–111, 123, 124, 126

runtime monitoring 28

S
Saint-Laguë method 9, 36, 118, 121,

127

sample size 38–40, 118

sample-size multiplier 39

satisfiability see SAT

modulo theories see SMT

SAT solver 23, 24, 46, 61, 66, 97, 101,

102, 121, 144, 146, 147

SBMC see software bounded model

checking

SBP see symmetry-breaking

predicate

scoring rule 8, 34, 90, 116

search

procedure 82, 119–121, 124, 125,

127, 146, 150

space 21

seat 37, 118, 121–124, 127

apportionment method 36, 37,

121

secrecy see also privacy, 6, 7

secret input 25

secure

computation see secure

multi-party computation

election 13, 40

function 59, 60, 62

information flow see also

noninterference, 15, 18, 19, 24,

138, 143, 147

multi-party computation 13, 18,

31, 32, 46, 47, 58, 62, 68, 143,

144, 150

185

Index

shuffle see verifiable shuffle

state 60

security 6, 7, 10, 11, 18, 28, 45, 50, 51,

53, 60, 69, 137, 150

self-composition 26, 96, 97

semi-interactive verification 27, 139,

151

sequence trace 49, 51, 54

sequent calculus 28

sequential

composition 74, 76, 78, 82, 85,

86, 151

majority comparison 74, 83–87,

150, 151

pairwise majority see sequential

majority comparison

set theory 80, 95, 115, 151

shared secret 32

shuffle

operation 46, 48, 50, 52, 55,

58–63, 65–69, 134, 136, 150

set size 15, 18, 61, 65–67

similarity 54, 92, 93, 97

simplicity 100

single-choice voting 98

Single-Transferable Vote 9, 87, 117

single-winner voting 36, 90

small-scope hypothesis 61, 99, 108,

110, 115

SMC see sequential majority

comparison

SMT solver 23, 24, 29, 46, 147

social choice

function see also voting rule, 8,

14, 31, 38, 39, 117–121, 124, 125,

127, 129, 146, 149

property see also formal axiom,

8, 9, 11, 35, 73, 74, 76, 80–83,

85–87, 89, 90, 103, 105, 107, 109,

110, 112, 114–116, 143, 145, 146,

150, 151

theory see also computational

social choice theory, 8, 9, 18, 73,

80, 146

software

bounded model checking 13, 14,

18, 23, 24, 46, 60–62, 64–66, 68,

89, 97, 100, 101, 112, 113, 115,

118–120, 125, 126, 144–147, 150,

151

condition 62

independence 6, 14, 32, 41

property 23, 24, 60, 97, 114, 134,

135, 137

spanning set 95

SSA form see static single

assignment form

stable market decision 8

standard deck 46, 47, 49, 52, 53, 61,

63–65, 67, 69

standardized program representation

see program representation

start sequence 50, 53, 58, 60, 62–64,

66

state

space see also combinatorial

state space, 54, 61, 69, 96, 97

tree 52, 54, 61

update 26

static

analysis 28, 96, 115, 143

single assignment form 23

statistical method 38

strategic

manipulation 36

voting 8, 9

structural contract 74

STV see Single-Transferable Vote

surjectivity property 92

symbol sequence 49, 51

symbolic

execution 23, 26, 28, 125, 147

186

Index

probability 51, 52, 54

value 26, 51, 96, 103, 110, 119

symmetric group 50, 66, 67

symmetry 92–96, 100, 143, 146

resilience 95

symmetry-breaking predicate 93,

95–97, 100, 146, 152

T
tabulated votes see tally, vote tally

tallied-as-collected 40

tally see tallying procedure, vote

tally

tallying procedure 5, 9, 11, 12, 14, 19,

73, 146, 147, 150, 151

termination condition 78, 84

theorem proving 22, 74, 81, 86, 87,

145

third party 10, 41, 133, 134

threshold technique 7

tiebreaking 76, 86, 118, 126, 151

tolerance factor 40

tournament solution 78, 83–85, 87,

150, 151

trace game 7

tradeoff 3, 7, 9, 13, 39, 41, 73, 89

transaction see distributed ledger

trust 4, 5, 33, 140, 149, 150

trustworthiness 3–5, 9, 10, 13, 140,

149

trustworthy 143

turn

observation 60

operation 46, 49, 50, 52, 53, 55,

58–62, 68, 150

two-color deck 46, 47, 49, 56, 63–67,

69, 150

two-tier system 127

two-vote overstatement 39

type abbreviation 80

U
unanimity 45, 101

unification 21

uniform

closed shuffle see also shuffle

operation, 47, 56, 61, 67, 69

shuffle see shuffle operation

uniformly at random 50, 54

universal verifiability 6, 41, 133–135

usability 6, 11, 41

user interaction 28

V
verifiability 41

front-end 11, 134

mechanism see also verification

result, 41

notion 41

verifiable shuffle 7, 33, 134, 136

verification

framework 74, 78–83, 85–87,

144, 145, 150–152

result see also verifiability

mechanism, 41

verified

executable program 29, 74, 82,

86, 144, 150, 151

synthesis 74, 81, 82, 85, 86, 143,

150, 152

visible sequence 49, 54

vote see also ballot, 5–7, 10, 32, 33,

36–41, 74, 99, 118–124, 127, 134,

135, 137

cast assurance 6

casting 5–7, 15, 41, 93, 135, 136

change 35, 38, 39, 41, 98,

117–121, 123, 124, 128

counting 33, 36, 38, 118, 121

interpretation 8

processing 6, 137

recording 8

stack 37–39, 118–121

187

Index

table 38, 39, 119, 120, 127, 128

tabulation see tallying

procedure, vote tally

tally 7, 8, 14, 36–40, 117, 118, 121,

133–137

voter 4–6, 10, 32, 46, 90, 93, 98, 99,

101–106, 108–115, 134–137, 151

authentication 136

credentials 15, 133–138, 151, 152

identity 10, 33, 133–135, 138

registration see election

management system

voter-anonymization software 12,

133–135, 137, 150–152

voter-ballot box communication 11,

149, 150

voter-close 5

votes-per-seats ratio 37, 121, 122

voting 4

client 136

machine 7

profile see profile

rule see also social choice

function, 8, 11, 19, 33, 34, 73–76,

78–83, 85–87, 89–96, 98, 100,

101, 103, 105–107, 111, 112,

114–116, 143–146, 150–152

server 136

situation 14, 73, 111, 152

software 4–6, 41, 137, 145, 149

system 3–5, 9, 41, 117, 133–135,

143–145, 149

W
winning

alternative(s) 34, 35, 75, 76, 102,

103, 115, 152

condition 7

Y
yes/no-decision 13, 45, 47

Z
zero-knowledge proof 7, 13, 32, 33,

134–136

188

	Formal Methods for Trustworthy Voting Systems
	Title
	Acknowledgements
	Abstract
	Zusammenfassung
	Contents
	List of Definitions and Theorems
	List of Figures
	List of Tables
	List of Algorithms
	List of Listings

	I Introduction and Foundations
	1 Introduction
	1.1 Objective
	1.2 State of the Art and Challenges
	1.2.1 Voter-Ballot Box Communication Channel
	1.2.2 Election Method
	1.2.3 Election Management System
	1.2.4 Human Layer and Physical Layer

	1.3 Contributions
	1.3.1 Voter-Ballot Box Communication Channel
	1.3.2 Election Method
	1.3.3 Election Management System

	1.4 Previously Published Material
	1.4.1 Journal, Conference, and Workshop Publications
	1.4.2 Software and Formal Proofs
	1.4.3 Publications

	1.5 Structure of this Thesis
	1.5.1 Part I—Introduction and Foundations
	1.5.2 Part II—Secure Voter-Ballot Box Communication Channels
	1.5.3 Part III—Reliable Election Methods
	1.5.4 Part IV—Secure Election Management Systems
	1.5.5 Part V—Related Work and Conclusion
	1.5.6 Appendix

	2 Formal Methods and Techniques
	2.1 Logic Programming
	2.2 Software Bounded Model Checking
	2.3 Deductive Program Verification
	2.3.1 Verification of Program Noninterference
	2.3.2 The KeY Verification System

	2.4 Interactive Theorem Proving

	3 Preliminary Notions and Procedures
	3.1 Secure Multi-Party Computation
	3.2 Social Choice Functions
	3.2.1 Voting Rules
	3.2.2 Social Choice Properties
	3.2.3 Seat Apportionment Methods

	3.3 Risk-Limiting Audits and Dependable Evidence
	3.4 End-To-End Verifiability and Software Independence

	II Secure Voter-Ballot Box Communication Channels
	4 Generation of Secure Card-Based Communication Schemes
	4.1 Card-Based Cryptographic Schemes
	4.1.1 A Simple Protocol with Five Cards
	4.1.2 General Card-Based Protocols

	4.2 Computational Model and Security Notions
	4.2.1 Computational Model and Protocol State Tree Representation
	4.2.2 Security of Card-Based Protocols
	4.2.3 Two-Color Deck Protocols

	4.3 Trace-Based Formal Security Verification
	4.3.1 Standardized Program Representation
	4.3.2 Verification Methodology

	4.4 Generation of Provenly Run-Minimal Schemes
	4.4.1 Adaptations for Two-Color Decks
	4.4.2 Verification Results

	4.5 Verification of Shuffle Set Maximality
	4.6 Summary

	III Reliable Election Methods
	5 Synthesis of Reliable Tallying Procedures
	5.1 Composition of Voting Rules
	5.1.1 Electoral Modules
	5.1.2 Sequential Composition
	5.1.3 Revision Composition
	5.1.4 Parallel Composition
	5.1.5 Loop Composition
	5.1.6 A Simple Example

	5.2 Compositional Framework
	5.2.1 Verified Construction Framework
	5.2.2 Verified Construction based on Composition Rules

	5.3 Verified Synthesis of Voting Rules
	5.4 Evaluation
	5.5 Summary

	6 Efficient Verification of Reliable Tallying Procedures
	6.1 Functional and Relational Properties
	6.2 Exploitation of Symmetry Properties
	6.2.1 Symmetry Properties
	6.2.2 Symmetry Exploitation

	6.3 Efficient Relational Verification via Program Weaving
	6.4 Relational Verification of Voting Rules
	6.5 Efficient Generation of Counterexamples
	6.6 Definitions for the Experiments
	6.6.1 An Axiomatization of the Borda Rule
	6.6.2 Two Axioms Not Satisfied by Borda
	6.6.3 Two Condorcet Compatible Voting Rules

	6.7 Experiments
	6.7.1 Borda and Pareto Dominance
	6.7.2 Counterexamples to Borda
	6.7.3 Automatic Comparison of Borda with Other Voting Rules

	6.8 Efficient Verification via Program Transformations
	6.9 Summary

	7 Computation of Dependable Election Margins for Reliable Audits
	7.1 Efficient Computation of Election Margins
	7.2 Margin Computation for the D'Hondt Method
	7.3 Automated Finding of Election Parameters
	7.4 Evaluation for the National Danish Elections
	7.5 Summary

	IV Secure Election Management Systems
	8 Security Verification of the GI Voter-Anonymization Software
	8.1 Electronic Voting and Secure Voter Credentials
	8.2 Elections of the German Society for Computer Scientists
	8.3 Verification in the KeY System
	8.4 Summary

	V Related Work and Conclusion
	9 Related Work
	9.1 Protocol Verification and Construction of Secure Circuits
	9.2 Modular Verification and Program Synthesis
	9.3 Relational Verification, Symmetries, and Counterexamples
	9.4 Margin Computation
	9.5 Implementation-Level Information-Flow Verification

	10 Conclusion
	10.1 Summary
	10.2 Outlook

	References
	Appendix
	A Card Protocols and KWH Trees
	B Rule Construction Graph

	Index

