11,966 research outputs found

    G2C: A Generator-to-Classifier Framework Integrating Multi-Stained Visual Cues for Pathological Glomerulus Classification

    Full text link
    Pathological glomerulus classification plays a key role in the diagnosis of nephropathy. As the difference between different subcategories is subtle, doctors often refer to slides from different staining methods to make decisions. However, creating correspondence across various stains is labor-intensive, bringing major difficulties in collecting data and training a vision-based algorithm to assist nephropathy diagnosis. This paper provides an alternative solution for integrating multi-stained visual cues for glomerulus classification. Our approach, named generator-to-classifier (G2C), is a two-stage framework. Given an input image from a specified stain, several generators are first applied to estimate its appearances in other staining methods, and a classifier follows to combine visual cues from different stains for prediction (whether it is pathological, or which type of pathology it has). We optimize these two stages in a joint manner. To provide a reasonable initialization, we pre-train the generators in an unlabeled reference set under an unpaired image-to-image translation task, and then fine-tune them together with the classifier. We conduct experiments on a glomerulus type classification dataset collected by ourselves (there are no publicly available datasets for this purpose). Although joint optimization slightly harms the authenticity of the generated patches, it boosts classification performance, suggesting more effective visual cues are extracted in an automatic way. We also transfer our model to a public dataset for breast cancer classification, and outperform the state-of-the-arts significantly.Comment: Accepted by AAAI 201

    Parsing Occluded People by Flexible Compositions

    Get PDF
    This paper presents an approach to parsing humans when there is significant occlusion. We model humans using a graphical model which has a tree structure building on recent work [32, 6] and exploit the connectivity prior that, even in presence of occlusion, the visible nodes form a connected subtree of the graphical model. We call each connected subtree a flexible composition of object parts. This involves a novel method for learning occlusion cues. During inference we need to search over a mixture of different flexible models. By exploiting part sharing, we show that this inference can be done extremely efficiently requiring only twice as many computations as searching for the entire object (i.e., not modeling occlusion). We evaluate our model on the standard benchmarked "We Are Family" Stickmen dataset and obtain significant performance improvements over the best alternative algorithms.Comment: CVPR 15 Camera Read

    Directional Sensitivity of Gaze-Collinearity Features in Liveness Detection

    Get PDF
    To increase the trust in using face recognition systems, these need to be capable of differentiating between face images captured from a real person and those captured from photos or similar artifacts presented at the sensor. Methods have been published for face liveness detection by measuring the gaze of a user while the user tracks an object on the screen, which appears at pre-defined, places randomly. In this paper we explore the sensitivity of such a system to different stimulus alignments. The aim is to establish whether there is such sensitivity and if so to explore how this may be exploited for improving the design of the stimulus. The results suggest that collecting feature points along the horizontal direction is more effective than the vertical direction for liveness detection

    Eye guidance during real-world scene search:The role color plays in central and peripheral vision

    Get PDF
    The visual system utilizes environmental features to direct gaze efficiently when locating objects. While previous research has isolated various features' contributions to gaze guidance, these studies generally used sparse displays and did not investigate how features facilitated search as a function of their location on the visual field. The current study investigated how features across the visual field-particularly color-facilitate gaze guidance during real-world search. A gaze-contingent window followed participants' eye movements, restricting color information to specified regions. Scene images were presented in full color, with color in the periphery and gray in central vision or gray in the periphery and color in central vision, or in grayscale. Color conditions were crossed with a search cue manipulation, with the target cued either with a word label or an exact picture. Search times increased as color information in the scene decreased. A gaze-data based decomposition of search time revealed color-mediated effects on specific subprocesses of search. Color in peripheral vision facilitated target localization, whereas color in central vision facilitated target verification. Picture cues facilitated search, with the effects of cue specificity and scene color combining additively. When available, the visual system utilizes the environment's color information to facilitate different real-world visual search behaviors based on the location within the visual field
    corecore