16,288 research outputs found

    Verification issues for rule-based expert systems

    Get PDF
    Verification and validation of expert systems is very important for the future success of this technology. Software will never be used in non-trivial applications unless the program developers can assure both users and managers that the software is reliable and generally free from error. Therefore, verification and validation of expert systems must be done. The primary hindrance to effective verification and validation is the use of methodologies which do not produce testable requirements. An extension of the flight technique panels used in previous NASA programs should provide both documented requirements and very high levels of verification for expert systems

    Verifying performance requirements

    Get PDF
    Today, it is impossible to verify performance requirements on Ada software, except in a very approximate sense. There are several reasons for this difficulty, of which the main reason is the lack of use of information on the mapping of the program onto the target machine. An approach to a partial solution to the verification of performance requirements on Ada software is proposed, called the rule based verification approach. This approach is suitable when the target machine is well defined and when additional effort and expense are justified in order to guarantee that the performance requirements will be met by the final system

    Considerations in development of expert systems for real-time space applications

    Get PDF
    Over the years, demand on space systems has increased tremendously and this trend will continue for the near future. Enhanced capabilities of space systems, however, can only be met with increased complexity and sophistication of onboard and ground systems. Artificial Intelligence and expert system techniques have great potential in space applications. Expert systems could facilitate autonomous decision making, improve in-orbit fault diagnosis and repair, enhance performance and reduce reliance on ground support. However, real-time expert systems, unlike conventional off-line consultative systems, have to satisfy certain special stringent requirements before they could be used for onboard space applications. Challenging and interesting new environments are faced while developing expert system space applications. This paper discusses the special characteristics, requirements and typical life cycle issues for onboard expert systems. Further, it also describes considerations in design, development, and implementation which are particularly important to real-time expert systems for space applications

    Approaches to the verification of rule-based expert systems

    Get PDF
    Expert systems are a highly useful spinoff of artificial intelligence research. One major stumbling block to extended use of expert systems is the lack of well-defined verification and validation (V and V) methodologies. Since expert systems are computer programs, the definitions of verification and validation from conventional software are applicable. The primary difficulty with expert systems is the use of development methodologies which do not support effective V and V. If proper techniques are used to document requirements, V and V of rule-based expert systems is possible, and may be easier than with conventional code. For NASA applications, the flight technique panels used in previous programs should provide an excellent way to verify the rules used in expert systems. There are, however, some inherent differences in expert systems that will affect V and V considerations

    Model-Based Security Testing

    Full text link
    Security testing aims at validating software system requirements related to security properties like confidentiality, integrity, authentication, authorization, availability, and non-repudiation. Although security testing techniques are available for many years, there has been little approaches that allow for specification of test cases at a higher level of abstraction, for enabling guidance on test identification and specification as well as for automated test generation. Model-based security testing (MBST) is a relatively new field and especially dedicated to the systematic and efficient specification and documentation of security test objectives, security test cases and test suites, as well as to their automated or semi-automated generation. In particular, the combination of security modelling and test generation approaches is still a challenge in research and of high interest for industrial applications. MBST includes e.g. security functional testing, model-based fuzzing, risk- and threat-oriented testing, and the usage of security test patterns. This paper provides a survey on MBST techniques and the related models as well as samples of new methods and tools that are under development in the European ITEA2-project DIAMONDS.Comment: In Proceedings MBT 2012, arXiv:1202.582

    Transitioning Applications to Semantic Web Services: An Automated Formal Approach

    No full text
    Semantic Web Services have been recognized as a promising technology that exhibits huge commercial potential, and attract significant attention from both industry and the research community. Despite expectations being high, the industrial take-up of Semantic Web Service technologies has been slower than expected. One of the main reasons is that many systems have been developed without considering the potential of the web in integrating services and sharing resources. Without a systematic methodology and proper tool support, the migration from legacy systems to Semantic Web Service-based systems can be a very tedious and expensive process, which carries a definite risk of failure. There is an urgent need to provide strategies which allow the migration of legacy systems to Semantic Web Services platforms, and also tools to support such a strategy. In this paper we propose a methodology for transitioning these applications to Semantic Web Services by taking the advantage of rigorous mathematical methods. Our methodology allows users to migrate their applications to Semantic Web Services platform automatically or semi-automatically

    Methodology for testing and validating knowledge bases

    Get PDF
    A test and validation toolset developed for artificial intelligence programs is described. The basic premises of this method are: (1) knowledge bases have a strongly declarative character and represent mostly structural information about different domains, (2) the conditions for integrity, consistency, and correctness can be transformed into structural properties of knowledge bases, and (3) structural information and structural properties can be uniformly represented by graphs and checked by graph algorithms. The interactive test and validation environment have been implemented on a SUN workstation
    • ā€¦
    corecore