
31ST INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2023 LISBON, PORTUGAL)

Contrasting the Necessary Skills of Leaders in Classical and Agile

Software Development

Daniel Staegemann

Otto-von-Guericke University Magdeburg

Magdeburg, Germany daniel.staegemann@ovgu.de

Natalie Schröder

Otto-von-Guericke University Magdeburg

Magdeburg, Germany natalie1.schroeder@ovgu.de

Christian Daase

Otto-von-Guericke University Magdeburg

Magdeburg, Germany christian.daase@ovgu.de

Christian Haertel

Otto-von-Guericke University Magdeburg

Magdeburg, Germany christian.haertel@ovgu.de

Matthias Pohl

Otto-von-Guericke University Magdeburg

Magdeburg, Germany matthias.pohl@ovgu.de

Robert Häusler

Otto-von-Guericke University Magdeburg

Magdeburg, Germany robert.haeusler@ovgu.de

Johannes Hintsch

Otto-von-Guericke University Magdeburg

Magdeburg, Germany johannes.hintsch@ovgu.de

Klaus Turowski

Otto-von-Guericke University Magdeburg

Magdeburg, Germany klaus.turowski@ovgu.de

Abstract

As a consequence of the necessities of the digital age, agility is becoming more and more

important in software development. Consequently, agile change management is

increasingly coming into focus and many projects are undergoing a transformation process

from classic software development to agile software development. Through this, managers

are confronted with new tasks and requirements. To explore the associated effects and

needs, this publication examines how managers who have worked in traditional software

development apply their skills learned there to agile software development. For this

purpose, six interviews with industry experts were conducted and the corresponding results

are presented and discussed.

Keywords: Software Development, Agile Transformation, Leadership, Management,

Interview.

STAEGEMANN ET AL. CONTRASTING THE NECESSARY SKILLS OF LEADERS...

1. Introduction

With the advance of digitization, software development is changing faster and faster.

Projects are becoming increasingly complex and less predictable. Characteristics such as

volatility, uncertainty, complexity, and ambivalence characterize the digital age, and as a

result, the importance of agility in software development rises [14], [24].

As a result, agile change management is also becoming more and more of a focus and

many projects are currently undergoing a transformation process from traditional software

development to agile software development. This not only brings uncertainties for the

development teams, but the managers are faced with new tasks and requirements as well.

Managers who work in classic software development have acquired certain skills over the

years and gained a great deal of experience in how best to lead their team members. The

classic form of leadership is based on the top-down principle. There is a hierarchical order

in which managers give instructions to employees lower in the hierarchy. Responsibility is

often delegated upwards. However, as projects become more complex, so do the demands

on managers. Reporting and decision-making paths become longer, and decisions are made

on the basis of fewer facts. In this way, decisions do not achieve what they are supposed

to or are not made quickly enough [8].

Because of this, many organizations are choosing to go down an agile or at least hybrid

path [11]. Hybrid forms represent a combination of classic and agile methods. In a study

from 2020 [12], in which a total of 642 participants were surveyed, 416 participants stated

that they work according to hybrid or selective forms. As the main reason for not using

agile approaches across the board, 74 percent said that the framework conditions do not

allow for it. The second biggest point, cited by 41 percent, was that the change overwhelms

managers. This underlines the significance of executives in the agile transformation.

In an agile organization, autonomous and self-organized teams play a major role,

making projects more plannable and adaptable. The teams act according to certain

principles. In this way, many problems that exist in classic software development are

solved. However, the path to an agile organization is not easy and brings challenges for

everyone involved. Agile values and ways of thinking must be internalized and

implemented. Above all, managers have to rethink and lead autonomous and self-organized

teams from now on. They must embrace agile principles and model them. Leaders would

have to recognize that the team with the appropriate knowledge has the power to make

decisions.

The big challenge is that leaders need to reshape their role. They need to rethink, use

their skills differently, and learn new abilities. Not only are the working methods changing,

but also the organizational culture. This causes many concerns and also fears that need to

be consciously addressed [17].

By means of expert interviews, the publication at hand explores how the skills of

managers differ in agile and traditional software development and to what extent the

managers must adapt their previous skills in the course of the agile transformation. Thus,

the following research question (RQ) will be answered:

RQ: How do managers apply their skills from traditional software development to agile

software development?

In order to answer the RQ, the publication is structured as follows. Following this

introduction, the concepts of traditional software development and agile software

development are briefly outlined in the background section. Afterwards, the methodology,

underlying the expert interviews, is described. Subsequently, the results of the interviews

and the overall findings are discussed. Finally, a conclusion of the work is provided.

2. Background

In order to discuss classic and agile leadership, it is first important to understand the basics

of classic as well as agile software development.

2.1. Traditional Software Development

The term classic software development refers to the application of phase models in

software development. The procedure models are thereby plan-driven. Characteristics are,

ISD2023 LISBON, PORTUGAL

for example, that a strict time frame is given, and the specifications are fixed at the

beginning of the development.

Classical Process Models

Classic process models find their origin in the software crisis in the 70s and 80s.

Requirements became more and more complex, and it became increasingly difficult to

deliver low-defect software. In the year 1970, Winston Royce [18] presented the first

concrete phase model, the waterfall model. He also addresses weak points of the model

and proposes improvements. In the following years, the waterfall model was used as a basis

for further models. Probably the best known is the V-model developed in 1979 by Barry

Boehm [5], which has been further extended several times. The V-model focuses on test

and quality management. In the following, the basics of the waterfall model and the V-

model will be described.

The Waterfall Model

The waterfall model was first mentioned in 1956 by Herbert Benington [4]. In 1970, it was

formally described by Winston Royce. He introduces the idea in the paper “Managing the

development of large software systems" [18]. However, the name of the model became

established only later.

The waterfall model is characterized by the fact that the phases run sequentially and

build on each other. There are various milestones and a resulting document at the end of

each phase. Royce first presents a simple form of the waterfall model and then discusses

extension possibilities of the model and its risks. The simple form of the waterfall model

consists of seven phases. First, there are two phases of requirements specification, followed

by a stage of requirements analysis. This is followed by a phase in which the design of the

program is defined. Then the program is implemented and subsequently tested. Last

follows the phase of start-up and maintenance [18].

A great advantage of the model is its simplicity, which makes it rather easy to

understand. Nevertheless, it comes with some disadvantages. Since the phases build on

each other, it tempts to define the specifications and requirements at the beginning of the

project. As a result, changes at a later stage can hardly be taken into account. In addition,

the software is only tested at a very late stage, so that problems are more difficult to rectify

and can also cause high costs. Furthermore, executable versions are not available until very

late. Therefore, the customer can only provide feedback at a late stage. Another point of

criticism is that the first phases are often only based on models and texts, and problems

only become visible during implementation. This often leads to time delays. In the

extended version, Royce presents proposed solutions for making the model less risky and

preventing failure. In doing so, he introduces an iterative idea and adds another design

phase [18]. Despite the disadvantages mentioned above, both the simple model and the

extended model form the basis for further models in the future, such as the V-model.

The V-Model

The V-Model was described in 1979 by Barry Boehm in “Guidelines for Verifying and

Validating Software Requirements and Design Specifications” [5]. It is based on the

waterfall model and supplements this with the validation and verification of each phase.

As with the waterfall model, each phase is documented.

The V-Model is initiated with a planning and requirements phase in which various

acceptance tests validate the requirements. Then, during the product design, the complete

system is drafted with a basic architecture and basic design. This results in various

acceptance tests for the system. In the subsequent detailed design, the individual

components and their interrelationships are defined. In this stage, also corresponding

integration tests take place. In the implementation phase, the components are then specified

and implemented. The components are tested regularly [5].

Leadership in Classic Process Models

Organizations in which classic software development predominates are characterized by a

pyramidal structure. There are few executives at the top, while control and forecasting are

STAEGEMANN ET AL. CONTRASTING THE NECESSARY SKILLS OF LEADERS...

in the foreground here. Classical software development is therefore characterized by the

leading role of a project manager, who coordinates the project, makes all important

decisions and is the link between the project sponsors and the team members.

2.2. Agile Software Development

Agile software development refers to software development that uses a process model

whose elements are based on the values of the so-called Agile Manifesto [3], [9]. The

manifesto was published in 2001 and it comprises four guiding values that were postulated

as follows:

• “Individuals and interactions over processes and tools”

• “Working software over comprehensive documentation”

• “Customer collaboration over contract negotiation”

• “Responding to change over following a plan”

In addition, the authors formulated twelve agile principles [3] that support the

understanding of the values:

• “Our highest priority is to satisfy the customer through early and continuous

delivery of valuable software.”

• “Welcome changing requirements, even late in development. Agile processes

harness change for the customer's competitive advantage.”

• “Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter timescale.”

• “Business people and developers must work together daily throughout the project.”

• “Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done.”

• “The most efficient and effective method of conveying information to and within

a development team is face-to-face conversation.”

• “Working software is the primary measure of progress.”

• “Agile processes promote sustainable development. The sponsors, developers, and

users should be able to maintain a constant pace indefinitely.”

• “Continuous attention to technical excellence and good design enhances agility.”

• “Simplicity--the art of maximizing the amount of work not done--is essential.”

• “The best architectures, requirements, and designs emerge from self-organizing

teams.”

• “At regular intervals, the team reflects on how to become more effective, then tunes

and adjusts its behavior accordingly.”

Agile software development is therefore characterized by an incremental and iterative

approach, self-organized teams and a close relationship with the customer. As a result, it

is possible to react quickly and flexibly to customer requirements.

Agile Process Models

There are many different process models in agile software development. They can be

combined or used individually. Scrum, Kanban and Extreme Programming (XP) are

presented below. These are among the most popular agile methods and are often combined

with each other. They are characterized by certain principles and establish clear rules for

software development. In the “15th State of Agile Report” [7], over 1000 people worldwide

are surveyed annually about which agile methods they use in their everyday work. 66

percent of the participants stated that they work according to Scrum. Nine percent combine

the methods Scrum and Kanban (ScrumBan) and six percent of the respondents combine

Scrum and XP. Six percent of the surveyed only use Kanban and one percent only XP.

Scrum

Scrum was developed by Jeff Sutherland and Ken Schwaber in the early 1990s. They were

among the authors and the first 17 signatories of the Agile Manifesto [3]. They define

Scrum as “a lightweight framework that helps people, teams and organizations generate

value through adaptive solutions for complex problems.” [21]. Scrum is currently one of

ISD2023 LISBON, PORTUGAL

the most successful process models [7], [13]. The method is focused on the tangible

progress of the project. The model describes a simple process that is characterized by

constant inspection and adaptation. There are three different roles in a Scrum team: a

Scrum master, a product owner and several developers. The Scrum master is the facilitator

of the team, helping to solve problems and continuously improve collaboration. The

product owner represents the ideas and vision of the customer. The teams work in so-called

sprints, which are development cycles. Scrum teams are self-organized and have no team

leader. There is a product backlog in which the individual components are described in so-

called user stories. At the beginning of each sprint, the goals of the respective sprint are

defined in sprint planning and the requirements for the next increment of the software are

specified. The goals are defined in the form of user stories in the sprint backlog. The team

then works on the implementation of the increment for the following weeks. Every working

day, there is a daily Scrum meeting to keep track of progress and identify problems. At the

end of a sprint, there is a sprint review in which the completed software increment is

presented. Customers and users also take part in the sprint review to validate the

functionality of the software and provide feedback. Afterwards, another sprint

retrospective takes place. Here, the Scrum team reviews how the collaboration can be made

even more efficient and effective [21].

There are also certain values that the team follows in order to be able to work together

optimally. One is that all team members should have the courage to do the right things and

work on hard problems. The other is to focus on the work in the sprint and on the goals.

Another value is that everyone is committed to achieving the set goals. The fourth value is

to respect each other and the last value is openness [21].

An important feature of Scrum is the self-organization of teams. There is no project

manager, the team is responsible for the successful achievement of goals. The team

members act on the same level, there is no hierarchy. Classic management tasks such as

coordinating and monitoring the completion of work are the responsibility of the Scrum

team [15]. By acting as an interface between all members of the project, the Scrum master

relieves the team members of small-scale administration and thus enables a self-organized

microcosm within the Scrum project. He is responsible for the successful implementation

of Scrum and supports the team members in its understanding [21]. The product owner is

responsible for maximizing the value of the product through effective product backlog

management. He represents the customer's goals and is responsible for ensuring that each

team member understands them [21].

Extreme Programming

Extreme programming was developed by Kent Beck, Ward Cunningham and Ron Jeffries.

They were among the first 17 signatories of the Agile Manifesto [3]. In 1999, Kent Beck

published the ideas in his book: “Extreme Programming explained - Embrace Change”.

There, Beck defines XP as a “lightweight methodology for small-to-medium-sized teams

developing software in the face of vague or rapidly changing requirements” [2].

In XP, the focus is on programming. The directly involved actors are the development

team, the customer and the product owner. Furthermore, projects are realized in several

iterations. Each iteration begins with the iteration planning, in which the team decides

together which stories should be implemented in the iteration. The iterations are usually

between one and three weeks long. During the iterations, there are daily stand-up meetings

to bring each team member up to speed. At the end of an iteration, the result is validated

by the customer. During development, frequent testing, pair programming and coding

standards play a big role. Beck [2] describes four values to follow in XP:

• Communication means that team members communicate with each other on a

daily basis to exchange information and questions.

• Simplicity means that the team makes the software as simple as possible. It is better

to develop simple systems first and extend them later than to develop a complicated

system that will not be used to the extent later.

• Feedback emphasizes on the one hand the need for continuous testing but also the

importance of regular feedback from the customer.

STAEGEMANN ET AL. CONTRASTING THE NECESSARY SKILLS OF LEADERS...

• Courage means being willing to try things out and to develop the software

conscientiously and sustainably.

In XP, disciplinary supervisors are less important. Beck describes two essential leadership

roles. On the one hand, there is the so-called “coach”, who acts in a similar way to the

Scrum master. He coordinates the team and the communication with the customer. The

coach helps the team solve problems but tries not to hinder the team's independence. He

works best by acting indirectly. Second, there is a “big boss”. This person is responsible

for the overall project and embodies courage and self-confidence to the team. He supports

the development teams and ensures with his assertiveness that the project runs optimally.

He gives great importance to communication and explains the necessary steps in detail [2].

Kanban

Kanban originated in 1974 as part of an optimization process in the automotive industry.

At the beginning of the 20th century, the ideas were then transferred to software

development and finally presented to the public by David Anderson in 2007 [1]. Kanban

puts the focus on continuous improvement and is very adaptable since there are only a few

guidelines. The method can therefore be integrated easily and quickly into existing

processes. Thus, the combination of Kanban with Scrum or XP is straightforward. It serves

to improve the workflow and simplify the daily work of the team. Workflows become more

flexible, and tasks are processed in small steps. Also with Kanban, similar to Scrum or

Extreme Programming, there are various meetings for regular planning and improvement

of the process [1]. Further, in Kanban, the work processes are visualized on a so-called

“task board” or “Kanban board”. The following six practices describe working with it:

• Visualize: This means to make the process visible with the help of a Kanban board.

• Limit parallel work (work in progress): Work in progress describes the number

of units that are currently being processed. A limit ensures that no new units may

be started until the work that is currently in progress is completed. This approach

is also known as the “pull method”.

• Manage the flow of work: Kaban's goal is to maximize value and minimize cycle

times. To achieve this, it is important to review and adjust the flow of work.

• Make process rules explicit: Process rules must be understandable and clearly

defined. Process rules are for instance work in progress limits or the “Definition of

Done”.

• Implement feedback loops: Feedback is an important part of any process. Regular

reviews are important for effective performance.

• Improve together, develop experimentally: Kanban has the goal of continuously

improving processes. Changes must therefore be encouraged, and the approach

must be continuously adapted.

Kanban requires leadership at all levels of the hierarchy. Therefore, it is even more

important that both managers and employees accept the process rules when Kanban is

introduced. Thus, managers are expected to lead by example and to be self-reflective. In

Kanban, there are no mandatory roles. However, it has been found in practice that it is

advantageous to employ a “service request manager” or even a product owner and a

“service delivery manager”. The "service request manager" takes on the task of

understanding and communicating the needs and expectations of the customer. He or she

selects the work units and sets certain requirements for them that the team should fulfill.

The “service delivery manager” assists the team in optimizing the approach and resolving

issues [1].

2.3. Scaled Approaches

Agile scaling means extending agile approaches to multiple teams and/or projects and/or

making the entire company agile. This includes not only pure software development, but

also extending agility to the areas of business and project management. In order to illustrate

how agile scaling can be implemented, the basics of the Nexus Framework and the Scaled

Agile Framework (SAFe) are summarized below.

ISD2023 LISBON, PORTUGAL

Nexus

Nexus represents an extension of the Scrum framework. It was primarily developed by Ken

Schwaber and published on Scrum.org in 2015. It has been repeatedly updated and further

developed in recent years [23].

In general, Nexus is structured very similarly to Scrum. Nexus extends Scrum

minimally by using an integration team to help multiple Scrum teams work on a product

simultaneously. Nexus consists of three to nine Scrum teams. There is also an integration

team, which consists of a product owner, a Scrum master and integration team members.

It coaches and coordinates the Scrum teams and makes sure that the framework is

implemented correctly. Further, there is a common backlog for the entire product and each

Scrum team has its own sprint backlog for each sprint [22].

Scaled Agile Framework

In 2007, Dean Leffingwell first introduced the concept of SAFe. He published his ideas in

the book Scaling Software Agility: Best Practices for Large Enterprises. Subsequently, the

framework has been continuously developed and improved. SAFe extends agility beyond

the team. It specifies processes, roles and structures for different levels of the organization.

In doing so, it is used to respond quickly to change, introduce products, adapt to customer

and market changes, and prioritize work [20]. In general, SAFe is a very comprehensive

framework. It includes various methods, artifacts, meetings, roles, and processes that help

scale at different levels of the organization. The framework combines various agile

approaches such as Scrum, XP and Kanban. Teams collaborate using an Agile Release

Train (ART). It is possible for projects to have multiple ARTs working in parallel.

So that the teams can work together optimally, there are so-called program increments

(PI). These consist of three iterations in which increments are programmed. Before each

PI, there is a planning session, often lasting several days, in which all members of the ART

are present and plan the next three iterations together. At the end of a PI, there is an

innovation and planning iteration. This serves the purpose of continuous improvement. On

the one hand, the teams have time for further training and problem-solving, and on the

other hand, planning for the next PI also takes place in this context. The entire process is

carried out in close contact with the customer since it is important to understand the

customer and his goals [19].

3. Methodology

To determine, which skills are important in classic and agile leadership and how the skills

of classic leaders differ from the skills of agile leaders, expert interviews were conducted.

These were focused on the topic of agile software development, how the interviewees

perceived the agile transformation, what challenges they had to overcome, and what skills

they had to learn or improve in order to make the transformation successful.

The interviews were conducted in the form of partially standardized guided interviews.

This means that there was a guideline that specified the questions that were to be answered

but there was also room for further explanations by the interviewees, facilitating more

comprehensive insights.

Each interview took place in a face-to-face setting via video telephony. Raw interview

data were summarized in simultaneous and memory transcripts. In this process, key

statements and, in some cases, verbatim statements were noted immediately during the

interviews in the form of simultaneous transcripts, and these were subsequently processed

in a memory transcript. The interviews were deliberately not transcribed, but merely

recorded. This is because the interviews dealt with very personal experiences and feelings,

and initially there was no relationship of trust between the interview partner and the person

interviewing. According to Gläser and Laudel, when interviews are recorded, there is a risk

that the interviewee is biased by the recording and possibly withholds information [10].

Furthermore, the interviews had an explorative purpose. That is, the focus was not on the

specific wording, but on the information content [6], [25].

The interviews were analyzed using the qualitative content analysis described by

Mayring and Frenzl [16].

STAEGEMANN ET AL. CONTRASTING THE NECESSARY SKILLS OF LEADERS...

3.1. Description of the Sample

Six employees of a large IT service provider were interviewed. The individuals all have

experience in traditional software development and are currently working in agile software

development as managers. Table 1 gives an overview of the people interviewed. It shows,

on the one hand, the positions they held in classic software development and how long they

worked in classic software development. On the other hand, the positions that they had or

currently have in agile software development and how long they have been working in

agile software development are described. The positions are arranged chronologically. The

interviewees were all male. Five of the six individuals had worked in traditional software

development and have experienced the agile transformation as a manager. One person

experienced the agile transformation as a software developer and assumed a leadership role

in the subsequent agile software development (IP2).

Table 1. The interviewees

Interview

Partner

Number

Time in

classical

software

development

Position(s) in classical

software development

Time in agile

software

development

Position(s) in agile software

development

IP1 9 years Software developer, group

leader, project manager

2 years Product owner

IP2 5 years Software developer 8 years Software developer

Currently: product owner and product
manager

IP3 6 years Software developer,

project manager, product
owner

7 years Software developer, Scrum master

Currently: product owner and project
manager

IP4 6 years Software developer,

project manager

1,5 years Product owner and product manager

IP5 14 years Software developer,
project manager, team

leader

7 months Product owner

IP6 12 years Project manager, group
leader

2,5 years Product owner

3.2. Interview Guide

A partially standardized guide was used to structure the interviews. The question

formulations and sequence were not binding and could be adapted or supplemented by

follow-up questions depending on the course of the interview. This was intended to ensure

that the language flowed as naturally as possible [10].

In this context, the interviews first addressed the experiences of the individuals in

classic software development (questions 1-4):

• Q1: How long did you work in classic projects and which position(s) did you hold?

• Q2: What characterized your way of working/your daily work in classic projects?

• Q3: What was your leadership style? What leadership values were important to

you?

• Q4: Which skills were particularly important in your work?

Then, the agile transformation was focused (questions 5-7):

• Q5: How did the change from classic to agile come about?

• Q6: How did you perceive the change?

• Q7: What challenges did you face when switching from classic to agile?

Finally, the work in agile software development was targeted (questions 8-12):

• Q8: How long have you been working in agile projects and in which position

were/are you working?

• Q9: How does your daily work routine differ now from your work in traditional

projects?

• Q10: How has your work style/daily work routine changed?

• Q11: How has your leadership style changed? What leadership values are

important to you now?

• Q12: Which skills are now particularly important?

ISD2023 LISBON, PORTUGAL

4. Findings of the Interviews

In order to evaluate the expert interviews, categories were formed from the interview guide.

The following categories were identified:

• K1: Leadership in traditional software development

• K2: Leadership skills in traditional software development

• K3: Challenges in agile transformation

• K4: Leadership in agile software development

• K5: Leadership skills in agile software development

The interviews were then coded based on the category system and the relevant text

passages of the interviews were assigned to the corresponding categories. Based on the

category system, the results are summarized in the following.

4.1. Leadership in Classic Software Development

The daily project routine was characterized by defined resources, a fixed time horizon, and

a fixed budget (IP1, IP2, IP6). Leadership in traditional software development was

described similarly by all interview partners. The project manager manages the projects

from start to finish (IP4). Thereby, meeting the deadline was the “be-all and end-all” (IP3).

There was a lot of micromanagement and fixed hierarchies. In this, tasks were delegated

from the top down almost daily (IP1). Project managers gave instructions to employees,

who followed them (IP1). Collaboration was managed by managers and little action was

taken as a team (IP2). As a result, employees were very dependent on managers (IP1).

Managers assigned tasks without explaining to employees why they should do which tasks

(IP1). This often caused problems because the goal and work packages were too large and

thus not understood by the employees (IP1).

4.2. Leadership Skills in Traditional Software Development

To be successful as a manager in classic software development, it is important to be close

to the product and have a lot of technical knowledge (IP1, IP3, IP4).

In dealing with the team, it is very important to have knowledge of human nature and

to respond individually to the employees. Attention was paid to the personal development

of the employees (IP1, IP2, IP5). Thus, empathy, meaning a sincere personal interest in the

employee (IP1) and friendly interaction with employees, is important (IP2, IP4). Further,

managers need to value their employees (IP2).

The manager knew the strengths of each employee and assigned tasks accordingly

(IP5), but also tried to prevent unfairness in the distribution of tasks (IP6). Accordingly, it

is also important to be pragmatic about what is significant and what was not (IP1). The

employees were focused on the manager and committed to her (IP2).

Communication is a highly relevant skill in traditional software development (IP3).

Everyone should dare to say everything. There was an open error culture and no finger

pointing (IP4, IP6). However, communication also meant making the manager's

expectations clear to employees (IP3, IP4, IP6). Managers have to be able to exert pressure

and say directly what is bothering them and what is important (IP3, IP4).

4.3. Challenges in the Agile Transformation

The individual experiences of the executives interviewed varied when dealing with the

agile transformation and the challenges. The majority of the interviewees see the agile

transformation in retrospect as a positive improvement (IP1, IP2, IP3, IP6). Interviewee 4

says that agile procedures are not necessarily always better than classic procedures. He

sees advantages in both approaches. Depending on the project, classical elements could be

advantageous. Interviewee 5 is currently in the middle of the agile transformation, which

for him currently brings more disadvantages than advantages and many challenges.

Currently, he would like to return to the classic approach, but if SAFe would work as it is

intended, there would be a lot of potential. For him, however, the advantages of the agile

approach are not yet usable. Basically, it can be said that all managers were open to the

topic of “agile transformation” at the time of the interview and got involved.

A major challenge for many was to understand what agile actually means, how Scrum

STAEGEMANN ET AL. CONTRASTING THE NECESSARY SKILLS OF LEADERS...

or SAFe work, and how to deal with the methodology (IP1, IP2). Transformation takes

time and managers need to internalize this. All employees must first understand the

methodology (IP2). Learning to describe problems but without describing how to solve

them and empowering the team to find solutions themselves is needed (IP1). It is important

to highlight not only the goal, but also the added value (IP6). Many found it difficult to let

go (IP1, IP2, IP5). They have to accept that they only have a certain sphere of influence in

which they can control things (IP2). They had to learn to accept that the team makes

decisions differently than they would have made them and that the team itself decides how

tasks are distributed (IP1). The agile leader can no longer directly instruct (IP4). The team

needs to understand this and learn to embrace the new situation (IP4, IP6). There is a need

to learn how to optimize the team. It is important to teach the team to work together,

internalize the mindset (IP2, IP3, IP4), and discuss the pros and cons of transformation

(IP6). Leaders must learn to say "no" even when the team asks for direct instructions (IP5).

The team should motivate each other (IP4). In addition, it was a challenge to keep the

team's back toward upper management and to make it clear that the team makes decisions

from now on (IP1).

4.4. Leadership in Agile Software Development

The ceremonies and procedures have made everyday life more predictable. The

responsibility of the manager decreases; instead, the team shares responsibility with the

leadership (IP1, IP6). Leaders are no longer responsible for solving all problems (IP6). In

classical software development, managers specified the “what”, the “by when” and the

“how”. Today, they are only responsible for the "what" (IP6). Above all, quality awareness

and effort estimation are currently coming to the fore (IP3). In addition, the technical depth

of leadership has changed. From now on, managers are not leading technically anymore,

but through goals and added value (IP1, IP6). Tasks are no longer assigned and fewer direct

instructions are given (IP5). When problems arise, appropriate actions are defined together

with employees (IP2). Individual attention is paid to the strengths and weaknesses of each

employee and care is taken to ensure that each employee can also perform the tasks of the

others and that weaknesses are also encouraged (IP3).

4.5. Leadership Skills in Agile Software Development

Transformation takes time and managers must internalize this. All employees must first

comprehend the methodology. Patience and understanding must be learned (IP2, IP3).

When dealing with the team, it is still necessary to have people skills and empathy. It is

important to deal with each employee individually and to make direct statements when

necessary (IP1, IP2, IP3). Managers must learn to let go and trust (IP1, IP6). They need to

relinquish responsibility and stay out of programming (IP3). Team members should be

empowered to take initiative and learn to act in a self-organized way. In the process, leaders

must learn to stand back (IP5, IP6). They must be taught to accept the loss of control and

the loss of information (IP6).

In addition, leaders must now trust employees to work within the desired quality and

solve problems. The manager must learn to stop thinking about the problems themself

(IP6). Communication also remains very relevant. Employees need to be listened to and

the manager needs to be open to questions and problems (IP2, IP3, IP4, IP6). It is important

to encourage and stimulate open communication between employees (IP3). Maintaining a

transparent relationship with employees is also considered essential (IP3, IP6). Employees

should be made to openly express their opinions (IP4).

4.6. Summarization

When summarizing the expert interviews, it becomes clear that some of the skills from

classic software development are used differently in agile software development.

To give an overview of the differences, they are presented in Table 2. Yet, there are

also skills that are directly transferable. Here, especially two shared requirements between

the approaches become apparent.

ISD2023 LISBON, PORTUGAL

Table 2. Differences in the use of skills by managers between classic and agile software development

Ability Use in classic software development Use in agile software development

Ability to apply

technical

knowledge

Technical knowledge is very important because the

manager must be close to the product in order to
manage it (IP1, IP3, IP4).

The team has the expertise. Managers must

relinquish responsibility and stay out of
programming (IP3).

Ability to

delegate tasks

Tasks are delegated from the top down (IP1). Project

managers give instructions to employees, who follow

them.

Tasks are not assigned by the manager, the

team organizes itself (IP5).

Problem solving The manager is responsible for solving all problems
(IP6).

The leader describes the problems, but
without describing how to solve them (IP1).

The team is empowered to find solutions

themselves (IP1).
When problems arise, appropriate measures

are defined together with the employees (IP2).

Ability to

improve

performance

The professional strengths of the employees are used
to achieve optimal results as quickly as possible (IP5,

IP6).

Individual attention is paid to the strengths
and weaknesses of each employee and care is

taken to ensure that weaknesses are also

encouraged (IP3).

Assertiveness Managers should be able to exert pressure and say
directly what bothers them and what is important

(IP3, IP4).

It is still important to make direct
announcements, when necessary, but to a

lesser extent than in traditional software

development (IP2).

Communication

skills

Everyone should dare to say everything, there is an

open error culture and no finger pointing (IP4, IP6).

However, communication also means making clear to
employees the expectations that the manager has

(IP3, IP4, IP6).

Communication is still very important. In

addition, open communication between

employees should also be promoted and
encouraged (IP3).

Employees should be encouraged to express

their opinions openly (IP4).

These are on the one hand empathy, including honest, personal interest in employees and

friendly interaction with each other (IP1, IP2, IP4) as well as valuing the employees (IP2).

On the other hand, knowledge of human nature is important in both classic and agile

leadership. The personal development of employees should be taken into account (IP1, IP2,

IP5) and employees should be dealt with individually (IP1, IP2, IP3, IP5). However,

overall, it is noticeable that the differences between classic software development and agile

software development outweigh the similarities.

5. Conclusion

With the increasing demand for flexibility in software development, agile approaches are

growing in importance and prevalence. Besides the related changes to the associated

workflow, this naturally also influences the skills that are necessary for leaders to

effectively steer their teams. To further explore this topic, the publication at hand focuses

on the question of how managers apply their skills from traditional software development

to agile software development. For this purpose, semi-structured interviews with industry

experts were conducted to draw from their experiences, gathering real-world insights and,

thereby, enriching the corresponding scientific discourse. Moreover, practitioners can use

the findings as complimentary input when trying to define the design of software

development leadership-related training courses or when deciding who should be promoted

to a managerial role, based on their personality and skill profile. Yet, while these insights

are already valuable, the limited number of interviewees constitutes a limitation that needs

to be kept in mind. Therefore, to further increase the significance, in the future, additional

interviews should be conducted, possibly also including a female perspective as well as

participants from different companies. Moreover, future studies could also be amended by

a comprehensive literature review, turning them into a mixed-methods study.

References

1. Anderson, D.J., Carmichael, A.: Die Essenz von Kanban kompakt. dpunkt.verlag,

Heidelberg (2017)

2. Beck, K.: eXtreme programming eXplained: Embrace change. Addison-Wesley (1999)

3. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,

Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., et al.: Manifesto for Agile Software

STAEGEMANN ET AL. CONTRASTING THE NECESSARY SKILLS OF LEADERS...

Development (2001)

4. Benington, H.D.: Production of Large Computer Programs. IEEE Annals Hist. Comput.

5, 350–361 (1983)

5. Boehm, B.W.: Verifying and Validating Software Requirements and Design

Specifications. IEEE Softw. 1, 75–88 (1984)

6. Bogner, A., Littig, B., Menz, W.: Der Zugang zu den Experten: die Vorbereitung der

Erhebung. In: Bogner, A., Littig, B., Menz, W. (eds.) Interviews mit Experten, pp. 27–47.

Springer Fachmedien Wiesbaden, Wiesbaden (2014)

7. Digital.ai: 15th State of Agile Report (2021)

8. Eissfeldt, K., Jaeger, C.: So wird Ihr Unternehmen zum wertvollen Arbeitgeber. Springer

Fachmedien Wiesbaden, Wiesbaden (2018)

9. Epping, T.: Grundlagen von Kanban. In: Epping, T. (ed.) Kanban für die

Softwareentwicklung, vol. 9, pp. 23–52. Springer Berlin Heidelberg, Berlin, Heidelberg

(2011)

10. Gläser, J., Laudel, G.: Experteninterviews und qualitative Inhaltsanalyse: als Instrumente

rekonstruierender Untersuchungen. VS Verlag für Sozialwissenschaften | Springer

Fachmedien Wiesbaden GmbH (2009)

11. Jamous, N., Garttan, G., Staegemann, D., Volk, M.: Hybrid Project Management Methods

Efficiency in IT Projects. In: Proceedings of the 27th AMCIS (2021)

12. Komus, A., Kuberg, M., Schmidt, S., Rost, L., Koch, C.-P., Bartnick, S., Graf, E., Keller,

M., Linkenbach, F., Pieper, C., et al.: Ergebnisbericht: Status Quo (Scaled) Agile

2019/20: 4. Internationale Studie zu Nutzen und Erfolgsfaktoren (skalierter) agiler

Ansätze (2020)

13. Kuhrmann, M., Linssen, O.: Welche Vorgehensmodelle nutzt Deutschland? In: PVM

(2014)

14. Lenz, U.: Coaching im Kontext der VUCA-Welt: Der Umbruch steht bevor. In: Heller, J.

(ed.) Resilienz für die VUCA-Welt, vol. 15, pp. 49–68. Springer Fachmedien Wiesbaden,

Wiesbaden (2019)

15. Maigatter, A.: Gut zu wissen: Führung und Scrum-Teams – wie passt das zusammen? In:

Wörwag, S., Cloots, A. (eds.) Zukunft der Arbeit – Perspektive Mensch, vol. 20, pp. 303–

312. Springer Fachmedien Wiesbaden, Wiesbaden (2018)

16. Mayring, P., Fenzl, T.: Qualitative Inhaltsanalyse. In: Baur, N., Blasius, J. (eds.)

Handbuch Methoden der empirischen Sozialforschung, pp. 633–648. Springer

Fachmedien Wiesbaden, Wiesbaden (2019)

17. Rosenberg, S.: Organizational Culture Aspects of an Agile Transformation. In: Lassenius,

C., Dingsøyr, T., Paasivaara, M. (eds.) Agile Processes in Software Engineering and

Extreme Programming, vol. 212, pp. 279–286. Springer International Publishing, Cham

(2015)

18. Royce, W.W.: Managing the development of large software systems (1970)

19. Scaled Agile: SAFe Lean-Agile Principles, https://www.scaledagileframework.com/safe-

lean-agile-principles/ [13.03.2023] (2021)

20. Scaled Agile: What Is SAFe?, https://scaledagile.com/what-is-safe/ [13.03.2023] (2023)

21. Schwaber, K., Sutherland, J.: The Scrum Guide: The Definitive Guide to Scrum: The

Rules of the Game (2020)

22. Scrum.org: The Nexus Guide: The Definitive Guide to Scaling Scrum with Nexus,

https://www.scrum.org/resources/nexus-guide [13.03.2023] (2021)

23. Scrum.org: Scaling Scrum with Nexus: A framework to help organizations scale Scrum,

https://www.scrum.org/resources/scaling-scrum [13.03.2023] (2023)

24. Timmermann, S., Staegemann, D., Volk, M., Pohl, M., Haertel, C., Hintsch, J., Turowski,

K.: Facilitating the Decentralisation of Software Development Projects from a Project

Management Perspective: A Literature Review. In: Proceedings of the 4th FEMIB, pp.

22–34. SCITEPRESS - Science and Technology Publications (2022)

25. Vogel, D., Funck, B.J.: Immer nur die zweitbeste Lösung? Protokolle als

Dokumentationsmethode für qualitative Interviews. Forum Qualitative Sozialforschung /

Forum: Qualitative Social Research, Vol 19, No 1 (2018) (2017)

