12,871 research outputs found

    Formal approaches to modelling and verifying resource-bounded agents-state of the art and future prospects

    Get PDF
    This paper reviews formal approaches to modelling and verifying resource-bounded agents focusing on state of the Art and future prospects

    Mechanisms for Outsourcing Computation via a Decentralized Market

    Full text link
    As the number of personal computing and IoT devices grows rapidly, so does the amount of computational power that is available at the edge. Since many of these devices are often idle, there is a vast amount of computational power that is currently untapped, and which could be used for outsourcing computation. Existing solutions for harnessing this power, such as volunteer computing (e.g., BOINC), are centralized platforms in which a single organization or company can control participation and pricing. By contrast, an open market of computational resources, where resource owners and resource users trade directly with each other, could lead to greater participation and more competitive pricing. To provide an open market, we introduce MODiCuM, a decentralized system for outsourcing computation. MODiCuM deters participants from misbehaving-which is a key problem in decentralized systems-by resolving disputes via dedicated mediators and by imposing enforceable fines. However, unlike other decentralized outsourcing solutions, MODiCuM minimizes computational overhead since it does not require global trust in mediation results. We provide analytical results proving that MODiCuM can deter misbehavior, and we evaluate the overhead of MODiCuM using experimental results based on an implementation of our platform

    Nash implementation with little communication

    Get PDF
    The paper considers the communication complexity (measured in bits or real numbers) of Nash implementation of social choice rules. A key distinction is whether we restrict to the traditional one-stage mechanisms or allow multi-stage mechanisms. For one-stage mechanisms, the paper shows that for a large and important subclass of monotonic choice rules -- called "intersection monotonic" -- the total message space size needed for one-stage Nash implementation is essentially the same as that needed for "verification" (with honest agents who are privately informed about their preferences). According to Segal (2007), the latter is the size of the space of minimally informative budget equilibria verifying the choice rule. However, multi-stage mechanisms allow a drastic reduction in communication complexity. Namely, for an important subclass of intersection-monotonic choice rules (which includes rules based on coalitional blocking such as exact or approximate Pareto efficiency, stability, and envy-free allocations) we propose a two-stage Nash implementation mechanism in which each agent announces no more than two alternatives plus one bit per agent in any play. Such two-stage mechanisms bring about an exponential reduction in the communication complexity of Nash implementation for discrete communication measured in bits, or a reduction from infinite- to low-dimensional continuous communication.Monotonic social choice rules, Nash implementation, communication complexity,verification, realization, budget sets, price equilibria

    A Logical Framework for the Representation and Verification of Context-aware Agents

    Get PDF
    © 2014, Springer Science+Business Media New York. We propose a logical framework for modelling and verifying context-aware multi-agent systems. We extend CTL∗ with belief and communication modalities, and the resulting logic 𝓛OCRS allows us to describe a set of rule-based reasoning agents with bound on time, memory and communication. The set of rules which are used to model a desired systems is derived from OWL 2 RL ontologies. We provide an axiomatization of the logic and prove it is sound and complete. We show how Maude rewriting system can be used to encode and verify interesting properties of 𝓛OCRS models using existing model checking techniques

    Where are your Manners? Sharing Best Community Practices in the Web 2.0

    Get PDF
    The Web 2.0 fosters the creation of communities by offering users a wide array of social software tools. While the success of these tools is based on their ability to support different interaction patterns among users by imposing as few limitations as possible, the communities they support are not free of rules (just think about the posting rules in a community forum or the editing rules in a thematic wiki). In this paper we propose a framework for the sharing of best community practices in the form of a (potentially rule-based) annotation layer that can be integrated with existing Web 2.0 community tools (with specific focus on wikis). This solution is characterized by minimal intrusiveness and plays nicely within the open spirit of the Web 2.0 by providing users with behavioral hints rather than by enforcing the strict adherence to a set of rules.Comment: ACM symposium on Applied Computing, Honolulu : \'Etats-Unis d'Am\'erique (2009

    Verifying Computation Tree Logic of Knowledge via Knowledge-Oriented Petri Nets and Ordered Binary Decision Diagrams

    Get PDF
    Computation Tree Logic of Knowledge (CTLK) can specify many requirements of privacy and security of multi-agent systems (MAS). In our previous papers, we defined Knowledge-oriented Petri Net (KPN) to model MAS, proposed similar reachability graph to verify CTLK, gave their model checking algorithms and developed a related tool. In this paper, we use the technique of Ordered Binary Decision Diagrams (OBDD) to encode similar reachability graph in order to alleviate the state explosion problem, and verify more epistemic operators of CTLK. We design the corresponding symbolic model checking algorithms and improve our tool. We compare our model and method with MCMAS that is the state-of-the-art CTLK model checker, and experiments illustrate the advantages of our model and method. We also explain the reasons why our model and method can obtain better performances

    Research Priorities for Robust and Beneficial Artificial Intelligence

    Get PDF
    Success in the quest for artificial intelligence has the potential to bring unprecedented benefits to humanity, and it is therefore worthwhile to investigate how to maximize these benefits while avoiding potential pitfalls. This article gives numerous examples (which should by no means be construed as an exhaustive list) of such worthwhile research aimed at ensuring that AI remains robust and beneficial.Comment: This article gives examples of the type of research advocated by the open letter for robust & beneficial AI at http://futureoflife.org/ai-open-lette
    corecore