1,140 research outputs found

    Verification of Asynchronous Programs with Nested Locks

    Get PDF
    In this paper, we consider asynchronous programs consisting of multiple recursive threads running in parallel. Each of the threads is equipped with a multi-set. The threads can create tasks and post them onto the multi-sets or read a task from their own. In addition, they can synchronise through a finite set of locks. In this paper, we show that the reachability problem for such class of asynchronous programs is undecidable even under the nested locking policy. We then show that the reachability problem becomes decidable (Exp-space-complete) when the locks are not allowed to be held across tasks. Finally, we show that the problem is NP-complete when in addition to previous restrictions, threads always read tasks from the same state

    A Graph-Based Semantics Workbench for Concurrent Asynchronous Programs

    Get PDF
    A number of novel programming languages and libraries have been proposed that offer simpler-to-use models of concurrency than threads. It is challenging, however, to devise execution models that successfully realise their abstractions without forfeiting performance or introducing unintended behaviours. This is exemplified by SCOOP---a concurrent object-oriented message-passing language---which has seen multiple semantics proposed and implemented over its evolution. We propose a "semantics workbench" with fully and semi-automatic tools for SCOOP, that can be used to analyse and compare programs with respect to different execution models. We demonstrate its use in checking the consistency of semantics by applying it to a set of representative programs, and highlighting a deadlock-related discrepancy between the principal execution models of the language. Our workbench is based on a modular and parameterisable graph transformation semantics implemented in the GROOVE tool. We discuss how graph transformations are leveraged to atomically model intricate language abstractions, and how the visual yet algebraic nature of the model can be used to ascertain soundness.Comment: Accepted for publication in the proceedings of FASE 2016 (to appear

    Towards Practical Graph-Based Verification for an Object-Oriented Concurrency Model

    Get PDF
    To harness the power of multi-core and distributed platforms, and to make the development of concurrent software more accessible to software engineers, different object-oriented concurrency models such as SCOOP have been proposed. Despite the practical importance of analysing SCOOP programs, there are currently no general verification approaches that operate directly on program code without additional annotations. One reason for this is the multitude of partially conflicting semantic formalisations for SCOOP (either in theory or by-implementation). Here, we propose a simple graph transformation system (GTS) based run-time semantics for SCOOP that grasps the most common features of all known semantics of the language. This run-time model is implemented in the state-of-the-art GTS tool GROOVE, which allows us to simulate, analyse, and verify a subset of SCOOP programs with respect to deadlocks and other behavioural properties. Besides proposing the first approach to verify SCOOP programs by automatic translation to GTS, we also highlight our experiences of applying GTS (and especially GROOVE) for specifying semantics in the form of a run-time model, which should be transferable to GTS models for other concurrent languages and libraries.Comment: In Proceedings GaM 2015, arXiv:1504.0244

    A semantics comparison workbench for a concurrent, asynchronous, distributed programming language

    Get PDF
    A number of high-level languages and libraries have been proposed that offer novel and simple to use abstractions for concurrent, asynchronous, and distributed programming. The execution models that realise them, however, often change over time---whether to improve performance, or to extend them to new language features---potentially affecting behavioural and safety properties of existing programs. This is exemplified by SCOOP, a message-passing approach to concurrent object-oriented programming that has seen multiple changes proposed and implemented, with demonstrable consequences for an idiomatic usage of its core abstraction. We propose a semantics comparison workbench for SCOOP with fully and semi-automatic tools for analysing and comparing the state spaces of programs with respect to different execution models or semantics. We demonstrate its use in checking the consistency of properties across semantics by applying it to a set of representative programs, and highlighting a deadlock-related discrepancy between the principal execution models of SCOOP. Furthermore, we demonstrate the extensibility of the workbench by generalising the formalisation of an execution model to support recently proposed extensions for distributed programming. Our workbench is based on a modular and parameterisable graph transformation semantics implemented in the GROOVE tool. We discuss how graph transformations are leveraged to atomically model intricate language abstractions, how the visual yet algebraic nature of the model can be used to ascertain soundness, and highlight how the approach could be applied to similar languages.Comment: Accepted by Formal Aspects of Computin

    Actris 2.0: Asynchronous Session-Type Based Reasoning in Separation Logic

    Full text link
    Message passing is a useful abstraction for implementing concurrent programs. For real-world systems, however, it is often combined with other programming and concurrency paradigms, such as higher-order functions, mutable state, shared-memory concurrency, and locks. We present Actris: a logic for proving functional correctness of programs that use a combination of the aforementioned features. Actris combines the power of modern concurrent separation logics with a first-class protocol mechanism -- based on session types -- for reasoning about message passing in the presence of other concurrency paradigms. We show that Actris provides a suitable level of abstraction by proving functional correctness of a variety of examples, including a channel-based merge sort, a channel-based load-balancing mapper, and a variant of the map-reduce model, using concise specifications. While Actris was already presented in a conference paper (POPL'20), this paper expands the prior presentation significantly. Moreover, it extends Actris to Actris 2.0 with a notion of subprotocols -- based on session-type subtyping -- that permits additional flexibility when composing channel endpoints, and that takes full advantage of the asynchronous semantics of message passing in Actris. Soundness of Actris 2.0 is proven using a model of its protocol mechanism in the Iris framework. We have mechanised the theory of Actris, together with custom tactics, as well as all examples in the paper, in the Coq proof assistant.Comment: 60 pages, 24 figure
    corecore