
Copyright

by

Emmanouil Kapritsos

2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/211332629?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Dissertation Committee for Emmanouil Kapritsos

certifies that this is the approved version of the following dissertation:

Replicating Multithreaded Services

Committee:

Lorenzo Alvisi, Supervisor

Mike Dahlin

Rodrigo Rodrigues

Robbert van Renesse

Emmett Witchel

Replicating Multithreaded Services

by

Emmanouil Kapritsos, B.S.; M.Sc.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2014

Dedicated to my parents

for their unwavering support toward my academic path.

Acknowledgments

“As you set out for Ithaca,

pray that the road is long,

full of adventure, full of knowledge.”

Cavafy could very well be speaking of the pursuit of a Ph.D. degree, a road

as full of knowledge as it is of adventure. I was fortunate not to travel this

road alone. Several people along the way made the journey enjoyable, helped

me overcome the many challenges I met, and graced me with their knowledge,

experience and wisdom.

I consider myself lucky that my advisor, Lorenzo Alvisi, was among

those people. Lorenzo went beyond the typical role of an academic advisor, to

that of a friend, helping me whenever I needed it and offering guidance through

several important choices, both academic and personal. Lorenzo showed me,

little by little, the path to a wider world: that of scientific reasoning. His

attention to detail taught me the importance of clear and precise thinking,

which I consider the most valuable lesson I learned during my Ph.D.

My fellow graduate students were a constant source of help, comfort,

and knowledge. In particular, I want to thank Yang for being my academic

“brother”: we worked very closely during all these years and he is one of the

v

main contributors behind the work in this thesis. Yang and I started with

rather different talents on research and computer science; I think we both

gained some of the other’s perspective along the way. I also want to thank

Allen for being my academic “older brother”. Allen and I started our collabo-

ration with rather violent clashes of disagreement.1 Through our collaboration,

I got to appreciate Allen; at first as one of the smartest people I have met,

and later on as a friend. These days our clashes are less frequent, less vio-

lent and, more importantly, constructive. Finally, I want to thank Sangmin,

Ed, Prince, Mirco, Harry, Nalini, Indrajit, Sebastian, Josh, Srinath, Trinabh,

Chao, Chunzhi, Apurv, Eric, Mikie, Alan, and Mike for their companionship

and support.

My committee members helped greatly in improving the quality of this

thesis, by providing guidance and detailed feedback. I would like to thank

Mike Dahlin, in particular, with whom I collaborated closely throughout these

years. Mike’s intuition and knowledge in systems building is remarkable, and I

learned much from our collaboration. I want to also thank Peter Triantafillou

for his support and guidance, and for equipping me with the tools required to

pursue a Ph.D. degree.

Outside the immediate academic environment, however, four people are

mainly responsible for putting me in the position to finish this thesis—indeed,

to even begin writing it. My parents are the ones that first put me on the

academic path. Their example and constant encouragement has always been

the motivating force behind all my academic accomplishments; this thesis is

dedicated to them. Later, during my undergrad years, my friend and classmate

Constantinos inspired me, by his own example, to aim at nothing less than

1...made even more frustrating by the fact that he was usually right.

vi

the highest I could achieve. It is also he who first planted in my head the idea

of pursuing a Ph.D. in the United States. Last, but certainly not least, my

wife Nafsika made this long journey possible, by employing an extraordinary

amount of patience and understanding. Like Penelope waiting for Odysseus,

Nafsika endured my seven-year absence from her life with grace. She supported

me through the toughest parts of graduate school and was the primary reason

for my everyday happiness, despite the 10,000 miles that stood between us.

Emmanouil Kapritsos

The University of Texas at Austin

December 2014

vii

Replicating Multithreaded Services

Emmanouil Kapritsos, Ph.D.

The University of Texas at Austin, 2014

Supervisor: Lorenzo Alvisi

For the last 40 years, the systems community has invested a lot of effort

in designing techniques for building fault tolerant distributed systems and

services. This effort has produced a massive list of results: the literature

describes how to design replication protocols that tolerate a wide range of

failures (from simple crashes to malicious “Byzantine” failures) in a wide range

of settings (e.g. synchronous or asynchronous communication, with or without

stable storage), optimizing various metrics (e.g. number of messages, latency,

throughput).

These techniques have their roots in ideas, such as the abstraction of

State Machine Replication and the Paxos protocol, that were conceived when

computing was very different than it is today: computers had a single core;

all processing was done using a single thread of control, handling requests

sequentially; and a collection of 20 nodes was considered a large distributed

system.

In the last decade, however, computing has gone through some major

paradigm shifts, with the advent of multicore architectures and large cloud

infrastructures. This dissertation explains how these profound changes impact

the practical usefulness of traditional fault tolerant techniques and proposes

new ways to architect these solutions to fit the new paradigms.

viii

Contents

Acknowledgments v

Abstract viii

List of Tables xii

List of Figures xiii

Chapter 1 Introduction 1

Chapter 2 State Machine Replication 5

2.1 The Replicated State Machine abstraction 5

2.2 Implementation . 6

Chapter 3 Execute-Verify Replication 8

3.1 System model . 11

3.2 Protocol overview . 12

3.2.1 Execution stage . 12

3.2.2 Verification stage . 14

3.3 Execution stage . 16

3.3.1 Mixer design . 16

3.3.2 State management . 18

3.4 Verification stage . 21

3.4.1 Asynchronous BFT . 21

ix

3.4.2 Synchronous primary-backup 27

3.4.3 Tolerating concurrency bugs 28

3.5 Evaluation . 30

3.5.1 H2 Database with TPC-W 32

3.5.2 Microbenchmarks . 32

3.5.3 Failure and recovery 39

3.5.4 Concurrency faults . 40

3.5.5 Remus . 42

3.5.6 Latency and batching 45

3.6 Conclusion . 45

Chapter 4 Adam: Interacting Replicated State Machines 46

4.1 Introduction . 46

4.2 System model . 49

4.3 The Adam protocol . 49

4.3.1 Deterministic pipelining 50

4.3.2 Taming speculation . 53

4.4 Implementation . 63

4.5 Evaluation . 66

4.5.1 Deterministic pipelining 67

4.5.2 Speculative execution 71

4.6 Conclusion . 72

Chapter 5 Related work 73

5.1 Replicating multithreaded services 73

5.1.1 Deterministic Multithreading 73

5.1.2 Transactional processing systems 76

5.1.3 Semi-active replication and record-replay 76

5.1.4 Passive primary-backup 77

5.1.5 Speculative systems . 78

5.1.6 Finding concurrency bugs 79

5.1.7 Scaling State Machine Replication 80

x

5.2 Interacting Replicating State Machines 80

5.2.1 Interaction among Replicated Services 81

Chapter 6 Conclusion 82

Bibliography 85

xi

List of Tables

4.1 Events that cause a request to yield control of the execution to

the next request. 54

xii

List of Figures

3.1 Overview of Eve. 13

3.2 The keys used for the 5 most frequent transactions of the TPC-

W workload. 16

3.3 The throughput of Eve running the TPC-W browsing workload

on the H2 Database Engine. 33

3.4 The impact of CPU demand per request on Eve’s throughput

speedup. 34

3.5 The impact of application object size on Eve’s throughput speedup. 35

3.6 The impact of conflict probability and false negative rate on

Eve’s throughput. 36

3.7 The impact of conflict probability and false positive rate on

Eve’s throughput. 37

3.8 Throughput during node crash and recovery for an Eve primary-

backup configuration. 40

3.9 Effectiveness of Eve in masking concurrency bugs when various

mixers are used. 41

3.10 The latency and throughput of Remus and Eve running the H2

Database Engine on Xen. Both systems use a 2-node configu-

ration. The workload is the browsing workload of the TPC-W

benchmark. 43

3.11 The bandwidth consumption of Remus and Eve for the experi-

ment shown in Figure 3.10. 44

xiii

4.1 Components of Google’s Photon system within a single data-

center. 47

4.2 An example of how enforcing the deterministic pipeline schedule

among half-finished requests can introduce deadlocks. 53

4.3 Pseudocode for the trylock and release function calls. . . . 53

4.4 An example of four threads processing a parallelBatch. Thick

vertical lines represent the sending of nested requests. The ex-

ecution of the parallelBatch is divided by the two walls into

three parts, each colored with an increasingly dark shade of

gray. Note that the fourth thread does not execute any re-

quests during the third part, since it has already reached the

end of the parallelBatch. 56

4.5 An example of how a deadlock can arise when two requests that

belong to the same parallelBatch attempt to acquire the same

lock. 60

4.6 The throughput of Adam using deterministic pipelining. . . . 67

4.7 The throughput of Adam using deterministic pipelining when

the back-end service is optimized to use a small time interval

for batching. The execution time of each request is 0.1ms. . . 68

4.8 The throughput of Adam using deterministic pipelining when

the back-end service is optimized to use a small time interval

for batching. The execution time of each request is 1ms. . . . 69

4.9 The throughput of Adam using deterministic pipelining when

the back-end service is optimized to use a small time interval

for batching. The execution time of each request is 10ms. . . . 70

4.10 The throughput of Adam using parallel execution. The execu-

tion time of each request is 1ms. 71

xiv

5.1 An example where ordering read-only requests (depicted as shaded

rectangles) differently at different replicas can lead to state di-

vergence. The replicas are using the DMP-O algorithm. The

initial ownership status of variable x is “shared” and the quan-

tum size is 6. 74

xv

Chapter 1

Introduction

For the last 40 years, the systems community has invested a lot of effort

in designing techniques for building fault tolerant distributed systems and

services. This effort has produced a massive list of results: the literature

describes how to design replication protocols that tolerate a wide range of

failures (from simple crashes to malicious “Byzantine” failures) in a wide range

of settings (e.g. synchronous or asynchronous communication, with or without

stable storage), optimizing various metrics (e.g. number of messages, latency,

throughput) [1, 11, 14, 16, 18, 21, 43, 46–48, 65, 78].

These techniques have their roots in ideas, such as the abstraction of

State Machine Replication and the Paxos protocol, that were conceived when

computing was very different than it is today: computers had a single core;

all processing was done using a single thread of control, handling requests

sequentially; and a collection of 20 nodes was considered a large distributed

system.

In the last decade, however, computing has gone through some major

paradigm shifts, with the advent of multicore architectures and large cloud

infrastructures. This dissertation explains how these profound changes impact

the practical usefulness of traditional fault tolerant techniques and proposes

new ways to architect these solutions to fit the new paradigms.

1

Paradigm shift 1: Multicore With the abrupt halt in the increase of pro-

cessor speeds, parallel execution is the only way to achieve high performance.

The advent of multicore computers has revolutionized the way we process data;

not sequentially any more, but rather in parallel. These days multicore com-

puters and multithreaded processing are used in the overwhelming majority

of computers, making single-threaded execution something of the past.

Multithreaded execution, while ubiquitous, is unfortunately not sup-

ported by most fault tolerance techniques. A popular approach to designing

fault tolerant services is State Machine Replication (SMR). At the core of the

SMR approach is the idea of having a number of replicas deterministically

process the same sequence of requests so that correct replicas traverse the

same sequence of internal states and produce the same sequence of outputs.

Multithreaded execution poses a challenge to this approach. If different repli-

cas interleave requests’ instructions in different ways, the states and outputs

of correct replicas may diverge even if no faults occur. As a result, today’s

SMR systems require servers to process requests sequentially: a replica fin-

ishes executing one request before beginning to execute the next. Of course,

this approach cannot leverage the performance benefits of parallel execution,

which makes it unacceptably inefficient.

Paradigm shift 2: Large cloud infrastructures Traditionally, distributed

systems were conceived as standalone client-server pairs. The emergence of

large cloud infrastructures, however, has significantly changed the way dis-

tributed systems are designed and built. Many cloud applications consist of

multiple services that interact among themselves. When a client sends a re-

quest to a service A (e.g. a web server), that service may need to issue a nested

request to another service B (e.g. a database), in order to process the client’s

request.

These interactions complicate our fault tolerance techniques consider-

ably. For example, if service A is replicated using a protocol that employs

speculative execution [40, 43], where request execution may be rolled back,

2

then sending nested requests to another service B means exposing B to a

speculative state of A. If speculation fails at A, rolling back the state of A is

no longer enough; one must somehow roll back the nested request to service B ,

along with its effects. Even worse, if those effects have already been observed

by a client of B , there is no way to repair this inconsistency.

Furthermore, even when service A does not employ speculative execu-

tion, but instead uses sequential execution, things are not ideal. If service A

employs sequential execution, issuing nested requests to other services can lead

to significant performance degradation—even below the already low standards

of sequential execution—since sequential execution forces service A to remain

idle while nested requests to other services are in flight.

In this thesis we rethink the architecture and protocols of replicated ser-

vices to accommodate multithreaded execution and interaction between mul-

tiple services. In particular we make the following contributions:

Rethink the replication architecture to support multithreading. We

show that the current reliance on sequential execution arises from the

agree-execute architecture that is adopted by traditional replication sys-

tems. This architecture requires that replicas reach agreement on the

order of requests and then execute requests in that order; a requirement

that is at odds with the paradigm of multithreaded execution, where re-

quests are not executed in any particular order. To address this problem,

we submit that a radical architectural change is required. In Chapter 3

we propose a new execute-verify architecture, where replicas first specu-

latively execute requests in parallel, and without having agreed on their

order; and then proceed to reach agreement on whether enough replicas

have reached the same state and produced the same responses. Such

speculation may not always succeed, however, since different thread in-

terleavings could cause different replicas to diverge. Chapter 3 describes

how we can make this new architecture efficient in practice. In particular

we describe how to efficiently (a) minimize the probability of divergence,

(b) detect whether a divergence has occurred, and (c) repair a divergence

3

when it occurs. The resulting system, Eve, achieves two properties that

prior replica coordination protocols have treated as fundamentally at

odds with each other: nondeterministic interleaving of requests and ex-

ecution independence. Nondeterministic interleaving of requests allows

Eve to achieve high-performance replication for multi-core servers. For

example, in our experiments with the TPC-W benchmark, Eve achieves a

6.5x speedup over sequential execution that approaches the 7.5x speedup

achieved by the original unreplicated server. Execution independence

allows Eve to mask a wide range of faults, including Byzantine faults.

Notably, we find that execution independence pays dividends even when

Eve is configured to tolerate only crash or omission failures by offering

the opportunity to mask some concurrency failures.

Refine the protocols to accommodate service interactions. Sequential

execution and speculation, mechanisms widely used in replicated proto-

cols, have significant shortcomings in terms of both correctness and per-

formance when we move away from the simple client-server model to an

environment where services interact. In Chapter 4 we describe Adam,

a novel replication protocol that addresses these shortcomings. To ad-

dress the correctness violations that can be triggered by speculation, we

propose a novel technique that allows a service to employ speculative

execution without exposing it to other services. In practical terms, this

technique makes it safe to use multithreaded execution when replicated

services interact with other services. To mitigate the performance degra-

dation caused by sequential execution in such settings, we observe that

replica convergence does not require sequential execution: any determin-

istic request schedule can achieve that goal. We propose a new pipelined

execution scheme where replicas do not remain idle waiting for nested

requests, but instead rotate execution among the available requests ac-

cording to a deterministic schedule. Despite its simplicity, we show that

this approach can yield significant performance benefits.

4

Chapter 2

State Machine Replication

State Machine Replication (SMR) is a powerful technique for implementing

fault tolerant services. The main idea of SMR is to have a number of replicas

deterministically process the same requests so that correct replicas traverse the

same sequence of internal states and produce the same sequence of outputs.

In this chapter, we describe the abstraction of a replicated state machine, as

well as the way SMR has been implemented for the past 40 years.

2.1 The Replicated State Machine abstraction

A state machine consists of state variables, which encode its state, and com-

mands, which transform its state. A client of the state machine makes a request

to execute a command. The request names a state machine, names the com-

mand to be performed, and contains any information needed by the command.

Processing a client request causes the state machine to produce an output and

transition to a new state; or, in the case of read-only commands, to transition

back to the same state. In a deterministic state machine the output and state

transition caused by a command are determined only by the current state and

the command.

To implement a fault tolerant state machine, one must provide the

illusion of a state machine that retains both safety and liveness—collectively

5

called correctness—despite a (configurable) number of faults. This can be

achieved by replicating that state machine, running each replica on a separate

physical machine. The number of replicas required is, of course, a function

of the number and type of failures that the replicated state machine should

tolerate. Non-faulty replicas must start from the same initial state. The

correctness of a replicated state machine consists of the following safety and

liveness requirements:

Safety All correct state machine replicas should produce the same observable

states and outputs. These states and outputs must be consistent with

those produced by a single correct state machine.

Liveness When a client issues a request to the replicated state machine, it

eventually receives a response.

The safety requirement of a Replicated State Machine, as stated above,

is quite simple. It only requires that correct replicas should produce observable

states and outputs that could have been produced by a single correct server,

and that replicas do not diverge; convergence is crucial in maintaining the

illusion of a single correct state machine.

2.2 Implementation

To achieve convergence, SMR implementations of the past 40 years have made

a simplifying assumption: state machines process requests one at a time. This

assumption of sequential execution was in fact so tightly bound with achieving

replica convergence, that it appeared as part of the specification of replicated

state machines, as it was described in Schneider’s tutorial [65]. In this thesis,

we aim to decouple the way in which requests are executed—which we view

as an implementation choice—from the actual specification that we presented

above.

The assumption of sequential execution allows servers to be modeled as

deterministic state machines, greatly simplifying the implementation of SMR:

6

all that is required is that replicas agree on the order in which requests should

be executed. Once an order has been agreed upon, replicas simply execute

requests in that order. Since state machines are deterministic, correct replicas

are guaranteed to traverse the same sequence of state transformations and

produce the same sequence of responses. This agree-execute approach has

been adopted by a large number of replication protocols [1, 14, 18, 21, 43, 46],

from the original Paxos protocol [46] to more recent and advanced protocols

like Zyzzyva [43]. In 2003, Yin et al. [78] described how replication protocols

can be separated into an agreement and an execution phase, crystallizing the

picture of this popular agree-execute architecture.

For all its simplicity, the underlying assumption of the agree-execute

architecture has an unfortunate consequence: replicas must execute requests

in a sequential order. In other words, parallel execution of requests is not

easily supported by this architecture, since parallel execution can cause dif-

ferent replicas to execute requests’ instructions in different orders, causing

divergence. This drawback has become significantly more pronounced in the

last ten years, during which multicore computers and multithreaded execution

have become ubiquitous. Unfortunately, the current agree-execute architec-

ture forces system designers into an undesirable choice: either give up the

performance of multithreaded execution, or give up the robustness of fault-

tolerant replication. Chapter 3 addresses this dilemma: we show that State

Machine Replication is not, in fact, incompatible with multithreaded execu-

tion. Based on our refinement of the SMR specification, we propose a new

replication architecture that preserves both safety and liveness, while allowing

requests to be executed in parallel.

7

Chapter 3

Execute-Verify Replication

In this chapter, we present Eve, a novel replication architecture that aims to

reconcile replication with the ability to execute requests in parallel. Our first

step towards this goal was presented in Chapter 2: refining the specification

of state machine replication, no longer requiring that requests are executed

sequentially. Instead, Eve partitions requests in batches and, after taking

lightweight measures to make conflicts within a batch unlikely, it allows dif-

ferent replicas to execute requests within each batch in parallel, speculating

that the result of these parallel executions (i.e. the system’s important state

and output at each replica) will match across enough replicas.

To execute requests in parallel without violating the safety requirements

of replica coordination, Eve turns on its head the established architecture of

state machine replication. Traditionally, deterministic replicas first agree on

the order in which requests are to be executed and then execute them [14, 45,

46, 52, 66, 78]; in Eve, replicas first speculatively execute requests concurrently,

and then verify that they have agreed on the state and the output produced by

a correct replica. If too many replicas diverge so that a correct state/output

cannot be identified, Eve guarantees safety and liveness by rolling back and

sequentially and deterministically re-executing the requests.

Critical to Eve’s performance are mechanisms that ensure that, de-

spite the nondeterminism introduced by allowing parallel execution, repli-

8

cas seldom diverge, and that, if they do, divergence is efficiently detected

and reconciled. Eve minimizes divergence through a mixer stage that applies

application-specific criteria to produce groups of requests that are unlikely to

interfere, and it makes repair efficient through incremental state transfer and

fine-grained rollbacks. Note that if the underlying program is correct under

unreplicated parallel execution, then delaying agreement until after execution

and, when necessary, falling back to sequential re-execution guarantees that

replication remains safe and live even if the mixer allows interfering requests

in the same group.

Eve’s execute-verify architecture is general and applies to both crash tol-

erant and Byzantine tolerant systems. In particular, when Eve is configured to

tolerate crash faults, it also provides significant protection against concurrency

bugs, thus addressing a region of the design space that falls short of Byzantine

fault tolerance but that strengthens guarantees compared to standard crash

tolerance. Eve’s robustness stems from two sources. First, Eve’s mixer re-

duces the likelihood of triggering latent concurrency bugs by attempting to

run only unlikely-to-interfere requests in parallel [44, 61]. Second, its execute-

verify architecture allows Eve to detect and recover when concurrency causes

executions to diverge, regardless of whether the divergence results from a con-

currency bug or from distinct correct replicas making different legal choices.

In essence, Eve refines the assumptions that underlie the traditional im-

plementation of state machine replication. In the agree-execute architecture,

the safety requirement that correct replicas agree on the same state and output

is reduced to the problem of guaranteeing that deterministic replicas process

identical sequences of commands (i.e. agree on the same inputs). Eve contin-

ues to require replicas to eventually behave like deterministic state machines

for liveness, but it no longer insists that they execute identical sequences of

requests in the common case: instead of relying on agreement on inputs, Eve

reverts to the actual—and weaker—safety requirement of SMR that replicas

agree on state and output.

The practical consequence of this refinement is that in Eve correct repli-

9

cas enjoy two properties that prior replica coordination protocols have treated

as fundamentally at odds with each other: nondeterministic interleaving of

requests and execution independence. Indeed, it is precisely through the com-

bination of these two properties that Eve improves the state of the art for

replicating multi-core servers:

1. Nondeterministic interleaving of requests lets Eve provide high-performance

replication for multi-core servers. Eve gains performance by avoiding

the overhead of enforcing determinism. For example, in our experiments

with the TPC-W benchmark, Eve achieves a 6.5x speedup over sequen-

tial execution. This speedup compares favorably with the 7.5x speedup

achieved by the original unreplicated server. For the same benchmark,

Eve achieves a 4.7x speedup over the Remus primary-backup system [23]

by exploiting its unique ability to allow independent replicas to interleave

requests nondeterministically.

2. Independence lets Eve mask a wide range of faults. Without indepen-

dently executing replicas, it is in general impossible to tolerate arbitrary

faults. Independence makes Eve’s architecture fully general, as our pro-

totype supports tunable fault tolerance [18], retaining traditional state

machine replication’s ability to be configured to tolerate crash, omission,

or Byzantine faults. Notably, we find that execution independence pays

dividends even when Eve is configured to tolerate only crash or omission

failures by offering the opportunity to mask some concurrency failures.

Although we do not claim that our experimental results are general, we

find them promising: for the TPC-W benchmark running on the H2

database, executing requests in parallel on an unreplicated server trig-

gered a previously undiagnosed concurrency bug in H2 73 times in a span

of 750K requests. Under Eve, our mixer eliminated all manifestations of

this bug: it classified the requests that caused the bug as conflicting

and therefore did not allow them to execute in parallel. Furthermore,

when we altered our mixer to occasionally allow conflicting requests to

10

be parallelized, Eve detected and corrected the effects of this bug 82%

of the times it manifested, because Eve’s independent execution allowed

the bug to manifest (or not) in different ways on different replicas.

3.1 System model

The novel architecture for state machine replication that we propose is fully

general: Eve can be applied to coordinate the execution of multithreaded

replicas in both synchronous and asynchronous systems and can be configured

to tolerate failures of any severity, from crashes to Byzantine faults.

In this chapter, we primarily target asynchronous environments where

the network can arbitrarily delay, reorder, or lose messages without imper-

iling safety. For liveness, we require the existence of synchronous intervals

during which the network is well-behaved and messages sent between two

correct nodes are received and processed with bounded delay. Because syn-

chronous primary-backup with reliable links is a practically interesting con-

figuration [23], we also evaluate Eve in a server-pair configuration that—like

primary-backup [12]—relies on timing assumptions for both safety and live-

ness.

Eve can be configured to produce systems that are live, i.e. provide

a response to client requests, despite a total of up to u failures, whether of

omission or commission, and to ensure that all responses accepted by correct

clients are correct despite up to r commission failures and any number of omis-

sion failures [18]. Commission failures include all failures that are not omission

failures. The union of omission and commission failures are Byzantine failures.

However, we assume that failures do not break cryptographic primitives; i.e., a

faulty node can never produce a correct node’s MAC. We denote a message X

sent by Y that includes an authenticator (a vector of MACs, one per receiving

replica) as 〈X〉~µY .

11

3.2 Protocol overview

Figure 3.1 shows an overview of Eve, whose “execute-verify” design departs

from the “agree-execute” approach of traditional SMR [14, 46, 78].

3.2.1 Execution stage

Eve divides requests in batches, and lets replicas execute requests within a

batch in parallel, without requiring them to agree on the order of request

execution within a batch. However, Eve takes steps to make it likely that

replicas will produce identical final states and outputs for each batch.

Batching Clients send their requests to the current primary execution replica.

The primary groups requests into batches, assigns each batch a sequence num-

ber, and sends them to all execution replicas. Multiple such batches can be

in flight at the same time, but they are processed in order. Along with the

requests, the primary sends any data needed to consistently process any nonde-

terministic requests in the batch (e.g. a seed for random() calls or a timestamp

for gettimeofday() calls [14, 18]). The primary however makes no effort to

eliminate the nondeterminism that may arise when multithreaded replicas in-

dependently execute their batches.

Mixing Each replica runs the same deterministic mixer to partition each

batch received from the primary into the same ordered sequence of parallel-

Batches—groups of requests that the mixer believes can be executed in parallel

with little likelihood that different interleavings will produce diverging results

at distinct replicas. For example, if conflicting requests ρ1 and ρ2 both modify

object A, the mixer will place them in different parallelBatches. Section 3.3.1

describes the mixer in more detail.

Executing (in parallel) Each replica executes the parallelBatches in the

order specified by the deterministic mixer. After executing all parallelBatches

12

Clients Execution Verification

Mixer

ParallelBatches

Application
logic

Decision?

Rollback

Commit

State transfer

to clients...

to other replicas...

client
requests

Figure 3.1: Overview of Eve.

13

in the ith batch, a replica computes a hash of its application state and of the

outputs generated in response to requests in that batch.

This hash, along with the sequence number i and the hash for batch

i−1, constitute a token that is sent to the verification stage in order to discern

whether the replicas have diverged. We include the hash for the previous

batch to make sure that the system only accepts valid state transitions (see

Section 3.4.1 for why this is necessary). Verification replicas will only accept

a token as valid if they have already agreed that there is a committed hash

for sequence number i− 1 that matches the one in the ith token. Section 3.3.2

describes how we efficiently and deterministically compute the hash of the final

state and outputs.

3.2.2 Verification stage

Eve’s execution stage strives to make divergence unlikely, but offers no guar-

antees: for instance, despite its best effort, the mixer may inadvertently in-

clude conflicting requests in the same parallelBatch and cause distinct correct

replicas to produce different final states and outputs. It is up to the veri-

fication stage to ensure that such divergences cannot affect safety, but only

performance: at the end of the verification stage, all correct replicas that have

executed the ith batch of requests are guaranteed to have reached the same

final state and produced the same outputs.

Agreement The verification stage runs an agreement protocol to determine

the final state and outputs of all correct replicas after each batch of requests.

The input to the agreement protocol (see Section 3.4) are the tokens received

from the execution replicas. The final decision is either commit (if enough to-

kens match) or rollback (if too many tokens differ). In particular, the protocol

first verifies whether replicas have diverged at all: if all tokens agree, the repli-

cas’ common final state and outputs are committed. If there is divergence, the

agreement protocol tallies the received tokens, trying to identify a final state

and outputs pair reached by enough replicas to guarantee that the pair is the

14

product of a correct replica. If one such pair is found, then Eve ensures that all

correct replicas commit to that state and outputs; if not, then the agreement

protocol decides to roll back. Note that the actual number of matching tokens

required depends on the configuration at hand. Section 3.4 discusses how this

number is instantiated for two configurations: a BFT and a primary-backup

configuration.

Commit If the result of the verification stage is commit, the execution repli-

cas mark the corresponding sequence number as committed and send the re-

sponses for that parallelBatch to the clients.

Rollback If the result of the verification stage is rollback, the execution

replicas roll back their state to the latest committed sequence number and

re-execute the batch sequentially to guarantee progress. A rollback will also

rotate the current primary, to ensure that a faulty primary cannot compromise

liveness. Furthermore, to guarantee progress, the first batch created by the

new primary, which typically includes some subset of the rolled back requests,

is executed sequentially by all execution replicas.

A serendipitous consequence of its “execute-verify” architecture is that

Eve can mask replica divergences caused by concurrency bugs, i.e. deviations

from an application’s intended behavior triggered by particular thread inter-

leavings [31]. Some concurrency bugs may manifest as commission failures;

however, because such failures are typically triggered probabilistically and are

not the result of the actions of a strategic adversary, they can be often masked

by configurations of Eve designed to tolerate only omission failures.

Note that Eve does not actually know what the application intended

behavior is. Eve simply detects that different replicas have diverged in their

state and responses, and asks them to roll back their state and re-execute the

batch sequentially, thereby masking the concurrency bug. In other words, a

concurrency bug is indistinguishable from a commission failure or a divergence

due to inaccuracy at the mixer. As such, while Eve can be used to mask

15

Transaction Read and write keys

getBestSellers read: item, author, order line
getRelated read: item
getMostRecentOrder read: customer, cc xacts, address,

country, order line
doCart read: item

write: shopping cart line, shopping cart
doBuyConfirm read: customer, address

write: order line, item, cc xacts,
shopping cart line

Figure 3.2: The keys used for the 5 most frequent transactions of the TPC-W
workload.

concurrency bugs, it is not very accurate in detecting the presence of such

bugs, as it would introduce a fair amount of false positives.

Of course, like every system that uses redundancy to tolerate failures,

Eve is vulnerable to correlated failures and cannot mask concurrency failures

if too many replicas fail in exactly the same way. This said, Eve’s architecture

should help, both because the mixer, by trying to avoid parallelizing requests

that interfere, makes concurrency bugs less likely and because concurrency

bugs may manifest differently (if at all) on different replicas.

3.3 Execution stage

In this section we describe the execution stage in more detail. In particular, we

discuss the design of the mixer and the design and implementation of the state

management framework that allows Eve to perform efficient state comparison,

state transfer, and rollback.

3.3.1 Mixer design

Parallel execution will result in better performance only if divergence is rare.

The mission of the mixer is to identify requests that may productively be

16

executed in parallel and to do so with low false negative and false positive

rates. False negatives will cause conflicting requests to be executed in parallel,

creating the potential for divergence and rollback. False positives will cause

requests that could have been successfully executed in parallel to be serialized,

reducing the parallelism of the execution. Note however that Eve remains safe

and live independent of the false negative and false positive rates of the mixer.

A good mixer is just a performance optimization (albeit an important one).

The mixer we use for our experiments parses each request, trying to

predict which state it will access: depending on the application, this state

can vary from a single file or application-level object to higher-level objects

such as database rows or tables. Two requests conflict when they access the

same object in a read/write or write/write manner. To avoid putting together

conflicting requests, the mixer starts with an empty parallelBatch and two

(initially empty) hash tables, one for objects being read, the other for objects

being written. The mixer then scans in turn each request, mapping the objects

accessed in the request to a read or write key, as appropriate. Before adding a

request to a parallelBatch, the mixer checks whether that request’s keys have

read/write or write/write conflicts with the keys already present in the two

hash tables. If not, the mixer adds the request to the parallelBatch and adds

its keys to the appropriate hash table; when a conflict occurs, the mixer tries

to add the request to a different parallelBatch—or creates a new parallelBatch,

if the request conflicts with all existing parallelBatches.

In our experiments with the H2 Database Engine and the TPC-W work-

load, we simply used the names of the tables accessed in read or write mode

as read and write keys for each transaction2 (see Table 3.2). Note that be-

cause the mixer can safely misclassify requests, we need not explicitly capture

additional conflicts potentially generated through database triggers or view

accesses that may be invisible to us: Eve’s verification stage allows us to be

safe without being perfect. Moreover, the mixer can be improved over time

2H2 uses coarse-grain table-level locking, so it did not make sense to implement conflict
checks at a granularity finer than a table.

17

using feedback from the system (e.g. by logging parallelBatches that caused

rollbacks).

Although implementing a perfect mixer might prove tricky for some

cases, we expect that a good mixer can be written for many interesting appli-

cations and workloads with modest effort. Databases and key-value stores are

examples of applications where requests typically identify the application-level

objects that will be affected—tables and values respectively. Our experience so

far is encouraging. Our TPC-W mixer took 10 student-hours to build, without

any prior familiarity with the TPC-W code. As demonstrated in Section 3.5,

this simple mixer achieves good parallelism (acceptably few false positives),

and we do not observe any rollbacks (few or no false negatives).

3.3.2 State management

Moving from an agree-execute to an execute-verify architecture puts pressure

on the implementation of state checkpointing, comparison, rollback, and trans-

fer. For example, replicas in Eve must compute a hash of the application state

reached after executing every batch of requests; in contrast, traditional SMR

protocols checkpoint and compare application states much less often (e.g. when

garbage collecting the request log).

To achieve efficient state comparison and fine-grained checkpointing and

rollback, Eve stores the state using a copy-on-write Merkle tree, whose root

is a concise representation of the entire state. The implementation borrows

two ideas from BASE [62]. First, it includes only the subset of state that

determines the operation of the state machine, omitting other state (such as

an IP address or a TCP connection) that can vary across different replicas but

has no semantic effect on the state and output produced by the application.

Second, it provides an abstraction wrapper on some objects to mask variations

across different replicas.

Similar to BASE [62] and other traditional SMR systems such as PBFT,

Zyzzyva, and UpRight [14, 18, 42], where programmers are required to manu-

18

ally annotate which state is to be included in the state machine’s checkpoint,

our current implementation of Eve manually annotates the application code

to denote the objects that should be added to the Merkle tree and to mark

them as dirty when they get modified.

Compared to BASE, however, Eve faces two novel challenges: maintain-

ing a deterministic Merkle tree structure under parallel execution and parallel

hash generation as well as issues related to our choice to implement Eve in

Java.

Deterministic Merkle trees

To generate the same checksum, different replicas must put the same objects

at the same location in their Merkle tree. In single-threaded execution, de-

terminism comes easily by adding an object to the tree when it is created.

Determinism is more challenging in multithreaded execution when objects can

be created concurrently.

There are two intuitive ways to address the problem. The first option

is to make memory allocation synchronized and deterministic. This approach

not only negates efforts toward concurrent memory allocation [29, 67], but is

unnecessary, since the allocation order usually does not fundamentally affect

replica equivalence. The second option is to generate an ID based on object

content and to use it to determine an object’s location in the tree; this approach

does not work, however, since many objects have the same content, especially

at creation time.

Our solution is to postpone adding newly created objects to the Merkle

tree until the end of the batch, when they can be added deterministically. Eve

scans existing modified objects, and if one contains a reference to an object

not yet in the tree, Eve adds that object into the tree’s next empty slot and

iteratively repeats the process for all newly added objects.

Object scanning is deterministic for two reasons. First, existing objects

are already put at deterministic locations in the tree. Second, given an object,

Eve can iterate all its references in a deterministic order. Usually we can use

19

the order in which references are defined in a class. However some classes, like

Hashtable, do not store their references in a deterministic order; we discuss

how to address these classes below.

We do not parallelize the process of scanning for new objects, since it has

low overhead. We do parallelize hash generation, however: we split the Merkle

tree into subtrees and compute their hashes in parallel before combining them

to obtain the hash of the Merkle tree’s root.

Java Language & Runtime

The choice of implementing our prototype in Java provides us with several

desirable features, including an easy way to differentiate references from other

data that simplifies the implementation of deterministic scanning; at the same

time, it also raises some challenges.

First, objects which the Merkle tree holds a reference to are not eligible

for Java’s automatic garbage collection (GC). Our solution is to periodically

perform a Merkle-tree-level scan, using a mark-and-sweep algorithm similar

to Java’s GC, to find unused objects and remove them from the tree. This

ensures that those objects can be correctly garbage collected by Java’s GC. For

the applications we have considered, this scan can be performed less frequently

than Java’s GC, since objects in the tree tend to be “important” and have a

long lifetime. In our experience this scan is not a major source of overhead.

Second, several standard set-like data structures in Java, including in-

stances of the widely-used Hashtable and HashSet classes, are not oblivious to

the order in which they are populated. For example, the serialized state of a

Java Hashtable object is sensitive to the order in which keys are added and re-

moved. So, while two set-like data structures at different replicas may contain

the same elements, they may generate different checksums when added to a

Merkle tree: while semantically equivalent, the states of these replicas would

instead be seen as having diverged, triggering unnecessary rollbacks.

Our solution is to create wrappers [62] that abstract away semantically

irrelevant differences between instances of set-like classes kept at different repli-

20

cas. The wrappers generate, for each set-like data structure, a deterministic

list of all the elements it contains, and, if necessary, a corresponding itera-

tor. If the elements’ type is one for which Java already provides a comparator

(e.g. Integer, Long, String, etc.), this is easy to do. Otherwise, the elements

are sorted using an ordered pair (requestId, count) that Eve assigns to each

element before adding it to the data structure. Here, requestId is the unique

identifier of the request responsible for adding the element, and count is the

number of elements added so far to the data structure by request requestId.

In practice, we only found the need to generate two wrappers, one for each

of the two interfaces (Set and Map) commonly used by Java’s set-like data

structures.

3.4 Verification stage

The goal of the verification stage is to determine whether enough execution

replicas agree on their state and responses after executing a batch of requests.

Given that the tokens produced by the execution replicas reflect their current

state as well as the state transition they underwent, all the verification stage

has to decide is whether enough of these tokens match.

To come to that decision, the verification replicas use an agreement

protocol [14, 46] whose details depend largely on the system model. We present

the protocol for two extreme cases: an asynchronous Byzantine fault tolerant

system, and a synchronous primary-backup system. We then discuss how the

verification stage can offer some defense against concurrency bugs and how it

can be tuned to maximize the number of tolerated concurrency bugs.

3.4.1 Asynchronous BFT

In this section we describe the verification protocol for an asynchronous Byzan-

tine fault tolerant system with nE = u+max(u, r) + 1 execution replicas and

nV = 2u+r+1 verification replicas [17, 18], which allows the system to remain

21

live despite u failures (whether of omission or commission), and safe despite

r commission failures and any number of omission failures. Readers familiar

with PBFT [14] will find many similarities between these two protocols; this

is not surprising, since both protocols attempt to perform agreement among

2u + r + 1 replicas (3f + 1 in PBFT terminology). The main differences be-

tween these protocols stem from two factors. First, in PBFT the replicas try

to agree on the output of a single node—the primary. In Eve the object of

agreement is the behavior of a collection of replicas—the execution replicas.

Therefore, in Eve verification replicas use a quorum of max(u, r) + 1 match-

ing tokens from the execution replicas, if available, as their “proposed” value.

Second, in PBFT the replicas try to agree on the inputs to the state machine

(the incoming requests and their order). Instead, in Eve replicas try to agree

on the outputs of the state machine (the application state and the responses

to the clients). Hence, in the view change protocol (described below) the ex-

istence of a certificate for a given sequence number is enough to commit that

sequence number to the next view—a prefix of committed sequence numbers

is no longer required.

Why u+max(u, r)+1? At first glance, it might seem like Eve would require

u+r+1 execution replicas, since one must receive at least Q ≥ r+1 matching

responses (for safety) and cannot wait for more than Q ≤ nE−u responses (for

liveness); so nE ≥ u + r + 1. There is, however, an additional, rather subtle,

requirement: that the application state is maintained despite failures. For

example, consider a system where u = 2 and r = 1. In this system committing

requests based on r+ 1(= 2) responses could cause the application state to be

lost if those two replicas were to fail permanently.

Most previous replication protocols implicitly satisfy this requirement

by using 3f+1 execution replicas that are co-located with the agreement repli-

cas. Since Eve separates agreement—or rather verification—from execution,

it can afford to use fewer execution replicas. The price of this reduction in

the replication factor is that we must take care that the application state is

22

not permanently lost. In particular, we must ensure that updates to the ap-

plication state are performed in at least Q ≥ u+ 1 replicas. Taking the safety

requirement into consideration, we have that Q ≥ max(u, r) + 1. Adding the

liveness requirement, we get nE ≥ u+max(u, r) + 1.

The protocol When an execution replica executes a batch of requests (i.e., a

sequence of parallelBatches), it sends a 〈verify, view, n, T, e〉~µe message to all

verification replicas, where view is the current view number, n is the batch

sequence number, T is the computed token for that batch, and e is the sending

execution replica. Recall that T contains both the hash of batch n and the

hash of batch n− 1: a verification replica accepts a verify message for batch

n only if it has previously committed a hash for batch n− 1 that matches the

one stored in T . This mechanism is necessary to ensure that the verification

replicas only commit states that correspond to valid state transitions.

Without this mechanism in place, it would be possible for a malicious

replica to coerce the verification replicas to commit two states sn−1 and sn for

sequence numbers n− 1 and n, respectively, that do not correspond to a valid

state transition taken by a correct replica. To understand how this is possible,

consider a simple scenario where u = r = 1. This means there are 3 execution

replicas—call them A, B , and C . In this scenario B is malicious. In batch

n − 1, A and C diverge, and B produces the same token as A, causing the

state of A to be committed for this batch. In the next batch (n), C is still

diverged from the committed state, but does not know it yet, so it proceeds

to execute this batch and produce a token. This time, B “sides” with C : it

produces the same token as C , causing this token to be committed. That way,

B managed to commit two states that belong to diverged executions and may

not correspond to any valid state transition of a correct replica.

Case 1: Replicas reach agreement When a verification replica v re-

ceives max(u, r) + 1 verify messages with matching tokens, it marks this

sequence number as preprepared and sends a 〈prepare, view, n, T, v〉~µv mes-

23

sage to all other verification replicas. Similarly, when a verification replica

v receives nV − u matching prepare messages, it marks this sequence num-

ber as prepared and sends a 〈commit, view, n, T, v〉~µv to all other verifica-

tion replicas. Finally, when a verification replica v receives nV − u matching

commit messages, it marks this sequence number as committed and sends a

〈verify-response, view, n, T, v〉~µv message to all execution replicas. Note

that the view number view is the same as that of the verify message; this

indicates that agreement was reached and no view change was necessary.

Case 2: No agreement reached—view change In order to guarantee

liveness, replicas monitor the rate of committed requests and initiate a view

change if it is not high enough [16]. This can happen a) because the pri-

mary execution replica misbehaved and sent different batches of requests to

different replicas; or b) as a result of replica divergence, which stems from the

mixer allowing two conflicting requests to execute in parallel; or c) because of

asynchrony or network loss.

If a verifier replica v receives nE−max(u, r)+1 mutually non-matching

tokens—and is therefore certain that no matching quorum is possible—or the

commit rate is not high enough, it proposes a view change by sending a

〈view-change, view+1,P ,PP [], v〉~µv to all verifier replicas, where view + 1

is the next view number, P is the maximum prepared batch sequence num-

ber, along with the corresponding verify messages, and PP [] is the sequence

numbers it has preprepared that are greater than P , along with the correspond-

ing verify messages. A correct replica receiving a valid view-change mes-

sage will send a 〈view-change-ack, view+1, s, d, v〉~µv to the primary verifier

replica for view view, where view + 1 is the view number contained in the re-

ceived view-change message, s is the sender of the message and d is a digest

of the message.

When the primary verifier replica for that view receives nV − u valid

view-change messages, each supported by nV − u valid view-change-

ack messages, it tries to identify a sequence number that should be committed.

24

First it identifies the maximum prepared sequence number P among the view-

change messages it received. It further tries to identify r + 1 replicas that

have preprepared the same token for a sequence number greater than P . If

such a sequence number can be found, the primary will select it as the sequence

number it will commit; otherwise P is selected. Next, the primary will send

the message 〈new-view, view + 1, n, T,VC, v〉~µv to all verifier replicas, where

view + 1 is the number of the new view, n is the selected sequence number,

T is the corresponding token and VC is the quorum of view-change messages

that prove that the primary’s choice was valid.

A correct replica that receives a valid new-view message will change

its current view number to view (assuming it is greater than its current view

number) and send a 〈verify-response, view + 1, n, T, v, f〉~µv message to all

execution replicas, where f is a flag that indicates that the next batch should

be executed sequentially to ensure progress. Note that in this case the view

number has increased; this indicates that agreement was not reached and a

rollback to sequence number n is required.

Commit, State transfer and Rollback Upon receipt of r + 1 matching

verify-response messages, an execution replica e distinguishes three cases:

Commit If the view number has not increased and the agreed-upon token

matches the one e previously sent, then e marks that sequence number as

stable, garbage-collects any portions of the state that have now become

obsolete, and releases the responses computed from the requests in this

batch to the corresponding clients.

State transfer If the view number has not increased, but the token does not

match the one e previously sent, it means that this replica has diverged

from the agreed-upon state. To repair this divergence, e issues a state

transfer request to other replicas. This transfer is incremental: rather

than transferring the entire state, Eve transfers only the part that has

changed since the last stable sequence number. Incremental transfer,

25

which uses the Merkle tree to identify what state needs to be transferred,

allows Eve to rapidly bring slow and diverging replicas up-to-date.

When performing a state transfer, the requesting replica sends its latest

committed sequence number and the responding replica only sends the

state difference from that sequence number to its own latest committed

sequence number. Before applying the state difference, the requesting

replica rolls back its own state to its latest committed sequence number,

undoing any changes that might contribute to the divergence. Finally,

to tolerate commission failures, the requesting replica checks that the

state sent by the responding replica matches the token T included in

the verify-response message. This check ensures that the replica

only accepts the state that the verification replicas agreed upon as the

committed state for the corresponding sequence number.

Rollback If the view number has increased, this means that agreement could

not be reached. Replica e discards any unexecuted requests and rolls

back its state to the sequence number indicated by the token T , while

verifying that its new state matches the token (else it initiates a state

transfer). The increased view number also implicitly rotates the execu-

tion primary. The replicas start receiving batches from the new primary

and, since the flag f was set, execute the first batch sequentially to en-

sure progress. In general, the flag does not need to trigger sequential

execution immediately; for example, a different implementation would

be to only employ sequential execution after k consecutive attempts at

parallel execution have led to divergence, for some—configurable—value

of k.

Read-only requests

Previous BFT protocols like PBFT and Zyzzyva [14, 43] handled read-only

requests differently: requests that do not modify the state are executed at

only 2f + 1—out of 3f + 1 total replicas—without going through the ordering

26

phase, where f is the number of failures that the system can tolerate.

Perhaps surprisingly, Eve does not employ this so-called “read-only op-

timization”. There are three reasons why this optimization is not as compelling

in Eve.

First, Eve already executes requests in a reduced number of replicas:

Eve uses u + max(u, r) + 1 execution replicas, which corresponds to 2f + 1

replicas in the terminology of PBFT and Zyzzyva. Second, since Eve does not

perform agreement on the ordering of requests, but rather on the state and

outputs of the replicas, skipping the verification for read-only requests would

only provide minimal performance gains.

Finally, ensuring liveness in an asynchronous system with 2f+1 replicas,

requires waiting for no more than f + 1 responses. Since a normal request can

be committed with only max(u, r) + 1—i.e., f + 1—replicas, the quorum of

responses to a read-only request overlaps with the quorum of normal requests

in only one replica. Were that replica Byzantine, a read-only request could

return a stale result, violating the abstraction of a single correct server.

3.4.2 Synchronous primary-backup

A system configured for synchronous primary-backup has only two replicas

that are responsible for both execution and verification. While traditional

primary-backup employs passive replication, where the backup simply absorbs

state updates from the primary, Eve’s primary-backup configuration adopts

the active approach, where both replicas execute client requests independently.

The primary receives client requests and groups them into batches.

When a batch B is formed, it sends a 〈execute-batch, n,B, ND〉 message

to the backup, where n is the batch sequence number and ND is the data

needed for consistent execution of nondeterministic calls such as random()

and gettimeofday(). Both replicas apply the mixer to the batch, execute the

resulting parallelBatches, and compute the state token, as described in Section

3.2. The backup sends its token to the primary, which compares it to its own

27

token. If the tokens match, the primary marks this sequence number as stable

and releases the responses to the clients. If the tokens differ, the primary rolls

back its state to the latest stable sequence number and notifies the backup to

do the same. To ensure progress, they execute the next batch sequentially.

If the primary crashes, the backup is eventually notified and assumes

the role of the primary. As long as the old primary is unavailable, the new pri-

mary will keep executing requests on its own. After a period of unavailability,

a replica uses incremental state transfer to bring its state up-to-date before

processing any new requests.

3.4.3 Tolerating concurrency bugs

A happy consequence of the execute-verify architecture is that even when con-

figured with the minimum number of replicas required to tolerate u omission

faults, Eve provides some protection against concurrency bugs.

Concurrency bugs can lead to both omission faults (e.g., a replica could

get stuck) and commission faults (e.g., a replica could produce an output

or transition to a state that is not part of its intended behavior). However,

faults due to concurrency bugs have two important properties that in general

cannot be assumed for Byzantine faults. First, since parallel execution is only

employed among execution threads, such faults only affect the application state

and outputs, and cannot corrupt the state of the replication protocol. Second,

they are easy to repair. If Eve detects a concurrency fault, it can repair the

fault via rollback and sequential re-execution.

It is important to remember that Eve does not need to know what the

intended behavior of the application is; it simply detects that some replicas

diverge from other replicas in their outputs and state transitions. This method

is particularly effective against concurrency bugs, because such bugs only occur

in a—typically small—subset of interleavings and are thus unlikely to affect a

large number of replicas simultaneously.

28

Asynchronous case When configured with r = 0, Eve provides the follow-

ing guarantee:

Theorem 1 When configured with nE = 2u+ 1 and r = 0, asynchronous Eve

is safe, live, and correct despite up to u concurrency or omission faults.

Note that safety and liveness refer to the requirements of state machine replica-

tion—that the committed state and outputs at correct replicas match and that

requests eventually commit. Correctness refers to the state machine itself; a

committed state is correct if it is a state that can be reached by the state

machine in a fault-free run.

Proof sketch: The system is always safe and correct because the verifier re-

quires u+1 matching execution tokens to commit a batch. If there are at most

u concurrency faults and no other commission faults, then every committed

batch has at least one execution token produced by a correct replica.

The system is live because if a batch fails to gather u + 1 matching

tokens, the verifier forces the execution replicas to roll back and sequentially

re-execute. During sequential execution deterministic correct replicas do not

diverge; so, re-execution suffers at most u omission faults and produces at least

u+ 1 matching execution tokens, allowing the batch to commit.

When more than u correlated concurrency faults produce exactly the

same state and output, Eve still provides the safety and liveness properties of

state machine replication, but can no longer guarantee correctness of the state

machine itself.

Synchronous case When configured with just u+1 execution replicas, Eve

can continue to operate with one replica if u replicas fail by omission. In

such configurations, Eve does not have spare redundancy and can not mask

concurrency faults at the one remaining replica.

Extra protection during good intervals During good intervals when

there are no replica faults or timeouts other than those caused by concurrency

29

bugs, Eve uses spare redundancy to boost its best-effort protection against

concurrency bugs to nE − 1 execution replicas in both the synchronous and

asynchronous cases.

For example, in the synchronous primary-backup case, when both exe-

cution replicas are alive, the primary receives both execution responses, and if

they do not match, it orders a rollback and sequential re-execution. Thus, dur-

ing a good interval this configuration masks one-replica concurrency failures.

We expect this to be the common case.

In both the synchronous and asynchronous case Eve, when configured

for r = 0, enters extra protection mode (EPM) after k consecutive batches for

which all nE execution replicas provided matching, timely responses. While

Eve is in EPM, after the verifiers receive the minimum number of execution

responses necessary for progress, they continue to wait for up to a short timeout

to receive all nE responses. If the verifiers receive all nE matching responses,

they commit the response. Otherwise, they order a rollback and sequential re-

execution. Then, if they receive nE matching responses within a short timeout,

they commit the response and remain in EPM. Conversely, if sequential re-

execution does not produce nE matching and timely responses, they suspect

a non-concurrency failure and exit EPM to ensure liveness by allowing the

system to make progress with fewer matching responses.

3.5 Evaluation

Our evaluation aims to answer the following questions:

• What is the throughput gain that Eve provides compared to a traditional

sequential execution approach?

• How does Eve’s performance compare to an unreplicated multithreaded

execution and alternative replication approaches?

• How is Eve’s performance affected by the mixer and by other workload

characteristics?

30

• How efficient is Eve at masking concurrency bugs?

We address these questions by using a key-value store application and

the H2 Database Engine. We implemented a simple key-value store applica-

tion to perform microbenchmark measurements of Eve’s sensitivity to various

parameters. Specifically, we vary the amount of execution time required per

request, the size of the application objects and the accuracy of our mixer, in

terms of both false positives and false negatives. For the H2 Database Engine

we use an open-source implementation of the TPC-W benchmark [69, 70]. We

present the results of the browsing workload, which has more opportunities

for concurrency.

Our current prototype omits some of the features described above.

Specifically, although we implement the extra protection mode optimization

from Section 3.4.3 for synchronous primary-backup replication, we do not im-

plement it for our asynchronous configurations. Also, our current implementa-

tion does not handle applications that include objects for which Java’s finalize

method modifies state that needs to be consistent across replicas. Finally, our

current prototype only supports in-memory application state.

We run our microbenchmarks on an Emulab testbed with 14x 4-core

Intel Xeon @2.4 GHz, 4x 8-core Intel Xeon @2.66 GHz, and 2x 8-core hyper-

threaded Intel Xeon @1.6 GHz, connected with a 1 Gb Ethernet. We were able

to get limited access to 3x 16-core AMD Opteron @3.0 GHz and 2x 8-core Intel

Xeon L5420 @2.5 Ghz. We use the AMD machines as execution replicas to run

the TPC-W benchmark on the H2 Database Engine for both the synchronous

primary-backup and the asynchronous BFT configuration (Figure 3.3). For

the asynchronous BFT configuration we use 3 execution and 4 verifier nodes,

which are sufficient to tolerate 1 Byzantine fault (u = 1, r = 1). The L5420

machines are running Xen and we use them to perform our comparison with

Remus (Figure 3.10 and Figure 3.11).

31

3.5.1 H2 Database with TPC-W

Figures 3.3 demonstrates the performance of Eve for the H2 Database En-

gine [33] with the TPC-W browsing workload [69, 70]. We report the through-

put of Eve using an asynchronous BFT configuration (Eve-BFT) and a syn-

chronous active primary-backup configuration (Eve-PrimaryBackup). We com-

pare against the throughput achieved by an unreplicated server that uses

sequential execution regardless of the number of available hardware threads

(sequential). Note that this represents an upper bound of the performance

achievable by previous replication systems that use sequential execution [14,

18, 46, 52]. We also compare against the performance of an unreplicated server

that uses parallel execution.

With 16 execution threads, Eve achieves a speedup of 6.5x compared

to sequential execution. That approaches the 7.5x speedup achieved by an

unreplicated H2 Database server using 16 threads.

In both configurations and across all runs and for all data points, Eve

never needs to roll back. This suggests that our simple mixer never paral-

lelized requests it should have serialized. At the same time, the good speedup

indicates that it was adequately aggressive in identifying opportunities for

parallelism.

3.5.2 Microbenchmarks

In this section, we use a simple key-value store application to measure how

various parameters affect Eve’s performance. We only show the graphs for the

primary-backup configuration; the results for asynchronous replication are very

similar, because the verification stage has minimal impact on performance, as

Figure 3.3 shows. Except when noted, the default workload consumes 1 ms of

execution time per request, each request updates one application object, and

the application object size is 1 KB.

Figure 3.4 shows the impact of varying the CPU demand of each request.

We observe that heavier workloads (10 ms of execution time per request) scale

32

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

)

execution threads

TPC-W throughput

sequential

Eve-BFT
Eve-PrimaryBackup

unreplicated

Figure 3.3: The throughput of Eve running the TPC-W browsing workload
on the H2 Database Engine.

well, up to 12.5x on 16 threads compared to sequential execution. As the work-

load gets lighter, the overhead of Eve becomes more pronounced. Speedups

fall to 10x for 1 ms/request and to 3.3x for 0.1 ms/request. The 3.3x scaling

is partially an artifact of our inability to fully load the server with lightweight

requests. In our workload generator, clients have one outstanding request at a

time, thus requiring a high number of clients to saturate the servers; this causes

our servers to run out of sockets before they are fully loaded. We measure our

server CPU utilization during this experiment to be about 30%.

In Figure 3.4 we plot throughput speedup, so that trends are apparent.

For reference, the absolute peak throughputs in requests per second are 25.2K,

33

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
pe

ed
up

 o
ve

r
se

qu
en

tia
l

execution threads

Impact of CPU demand

10ms
1ms

0.1ms

Figure 3.4: The impact of CPU demand per request on Eve’s throughput
speedup.

34

 0

 2

 4

 6

 8

 10

 12

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
pe

ed
up

 o
ve

r
se

qu
en

tia
l

execution threads

Impact of object size

10B
1KB

10KB

Figure 3.5: The impact of application object size on Eve’s throughput speedup.

35

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0.01 0.1 1 10

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

)

Pairwise conflict probability (%) (log)

Impact of false negatives

single-threaded
0% FN

0.01% FN
0.1% FN

1% FN
2% FN

10% FN

Figure 3.6: The impact of conflict probability and false negative rate on Eve’s
throughput.

36

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0.01 0.1 1 10

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

)

Pairwise conflict probability (%) (log)

Impact of false positives

single-threaded
0% FP
1% FP

10% FP
25% FP
50% FP

100% FP

Figure 3.7: The impact of conflict probability and false positive rate on Eve’s
throughput.

37

10.0K, 1242 for the 0.1 ms, 1 ms, 10 ms lines, respectively.

The next experiment explores the impact of the application object size

on the system throughput. We run the experiment using object sizes of 10 B,

1 KB, and 10 KB. Figure 3.5 shows the results. While the achieved through-

put scales well for object sizes of 10 B and 1 KB, its scalability decreases for

larger objects (10 KB). This is an artifact of the hashing library we use, as it

first copies the object before computing its hash: for large objects, this mem-

ory copy limits the achievable throughput. Note that in this figure we plot

throughput speedup rather than absolute throughput to better indicate the

trends across workloads. For reference, the absolute peak throughput values

in requests per second are 10.0K, 10.0K, 5.6K for the 10 B, 1 KB, 10 KB lines,

respectively.

Next, we evaluate Eve’s sensitivity to inaccurate mixers. Specifically,

we explore the limits of tolerance to false negatives (misclassifying conflicting

requests as non-conflicting) and false positives (misclassifying non-conflicting

requests as conflicting). The effect of these parameters is measured as a func-

tion of the pairwise conflict probability: the probability that two requests

have a conflict. In practice, we achieve this by having each request modify

one object and then varying the number of application objects. For example,

to produce a 1% conflict chance, we create 100 objects. Similarly, a 1% false

negative rate means that each pair of conflicting requests has a 1% chance of

being classified as non-conflicting.

Figure 3.6 shows the effect of false negatives on throughput. First notice

that, even with no false negatives, the throughput drops as the pairwise conflict

chance increases because of the decrease of available parallelism. For example,

if a batch has 100 requests and each request has a 10% chance of conflicting

with each other request, then a perfect mixer is likely to divide the batch into

about 10 parallelBatches, each with about 10 requests.

When we add false negatives, we add rollbacks, and the number of roll-

backs increases with both the underlying conflict rate and the false negative

rate. Notice that the impact builds more quickly than one might expect be-

38

cause there is essentially a birthday “paradox”—if we have a 1% conflict rate

and a 1% false negative rate, then the probability that any pair of conflicting

requests be misclassified is 1 in 10000. But in a batch of 100 requests, each of

these requests has about a 1% chance of being party to a conflict, which means

there is about a 39% chance that a batch of 100 requests contain an undetected

conflict. Furthermore, with a 1% conflict rate, the batch will be divided into

only a few parallelBatches, so there is a good chance that conflicting requests

will land in the same parallelBatch. In fact, in this case we measure 1 rollback

per 7 parallelBatches executed. Despite this high conflict rate and this high

number of rollbacks, Eve achieves a speedup of 2.6x compared to sequential

execution.

Figure 3.7 shows the effect of false positives on throughput. As ex-

pected, increased false positive ratios can lead to lower throughput, but the

effect is not as significant as for false negatives. The reason is simple: false

positives reduce the opportunities for parallel execution, but they don’t incur

any additional overhead.

From these experiments, we conclude that Eve does require a good

mixer to achieve good performance. This requirement does not particularly

worry us. We found it easy to build a mixer that (to the best of our knowledge)

detects all conflicts and still allows for a good amount of parallelism. Others

have had similar experience [44]. Although creating perfect mixers may be

difficult in some cases, we speculate that it will often be feasible to construct

mixers with the low false negative rates and modest false positive rates needed

by Eve.

3.5.3 Failure and recovery

In Figure 3.8, we demonstrate Eve’s ability to mask and recover from failures.

In the primary-backup configuration we run an experiment where we kill the

primary node n1 at t = 30 seconds and recover it at t = 60 seconds (by

which time the secondary n2 has become the new primary). We then kill

39

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 20 40 60 80 100 120 140 160

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

)

Time (seconds)

Figure 3.8: Throughput during node crash and recovery for an Eve primary-
backup configuration.

the new secondary (n1) at t = 90 seconds and recover it at t = 120 seconds.

We observe that after the first failure the throughput drops to zero until the

backup realizes that the primary is dead after a timeout of four seconds.3 The

backup then assumes the role of the primary and starts processing requests.

The throughput during this period is higher because the new primary knows

that the other node is crashed and does not send any messages to it. At t = 60,

the first node recovers, and the throughput drops to zero for about one second

while the newly recovered node catches up. Then the throughput returns to

its original value. The process repeats when n1 crashes again at t = 90 seconds

and recovers at t = 120 seconds.

3.5.4 Concurrency faults

To evaluate Eve’s ability to mask concurrency faults, we use a primary-backup

configuration with 16 execution threads and run the TPC-W browsing work-

load on the H2 Database Engine with various mixers. H2 has a previously

undiagnosed concurrency bug in which a row counter is not incremented prop-

erly when multiple requests access the same table in read uncommitted mode.

Our standard mixer completely masks this bug because it does not let re-

3One could use a fast failure detector [50] to achieve sub-second detection.

40

Group all 1% FN 0.5% FN 0.1% FN Original Mixer
Times bug manifested 73 51 29 4 0
Fixed with rollback 60 38 18 3 0
All identical (not masked) 13 13 11 1 0
Throughput 1104 1233 1240 1299 1322

Figure 3.9: Effectiveness of Eve in masking concurrency bugs when various
mixers are used.

quests that modify the same table execute in parallel. By introducing less

accurate mixers we explore how well Eve’s second line of defense—the verifi-

cation stage—works in masking this bug.

Figure 3.9 shows the number of times that the bug manifested in one

or both replicas. When the bug manifests only in one replica, Eve detects

that the replicas have diverged and repairs the damage by rolling back and

reexecuting sequentially. If the bug happens to manifest in both replicas in

the same way, Eve will not detect it.

The first column shows the results when there is a trivial aggressive

mixer that places all requests of batch i in the same parallelBatch. In this

case, all requests that arrive together in a batch are allowed to execute in

parallel. Naturally, this case has the highest number of bug manifestations.

We observe that even when the mixer does no filtering at all, Eve masks 82%

of the instances where the bug manifests. In the remaining 18% of the cases,

the bug manifested in the same way in both replicas and was not corrected

by Eve. In columns 2 through 4, we introduce mixers with high rates of

false negatives. This results in fewer manifestations of the bug, with Eve still

masking the majority of those manifestations. In the fifth column, we show

results for our original mixer, which (to the best of our knowledge) does not

introduce false negatives. In this case, the bug does not manifest at all.

Although we do not claim that these results are general, we find them

promising.

41

3.5.5 Remus

Remus [23] is a primary-backup system that uses Virtual Machines (VMs) to

send modified state from the primary to the backup. An advantage of this

approach is that it is simple and requires no modifications to the application.

A drawback of this approach is that it aggressively utilizes network resources

to keep the backup consistent with the primary. The issue is aggravated by

two properties of Remus. First, Remus does not make fine-grain distinctions

between state that is required for the state machine and temporary state.

Second, Remus operates on the VM level, which forces it to send entire pages,

rather than just the modified objects. Also, because Remus is using passive

replication, it tolerates a narrower range of faults than Eve. Our experiments

show that, despite Eve’s stronger guarantees, it outperforms Remus by a factor

of 4.7x, while using two orders of magnitude less network bandwidth.

Figure 3.10 shows the throughput achieved by Remus and Eve on the

browsing workload of the TPC-W benchmark. We also show the latency and

throughput of the unreplicated system for the same workload. Both systems

run the H2 Database Engine on Xen and using a 2-node (primary-backup)

configuration. Remus achieves a maximum throughput of 235 requests per

second, while Eve peaks at 1225 requests per second. Remus crashes for loads

higher than 235 requests per second, as its bandwidth requirements approach

the capacity of the network, as Figure 3.11 shows. In contrast with Remus, Eve

executes requests independently at each replica and does not need to propagate

state modifications over the network. The practical consequence is that Eve

uses significantly less bandwidth, achieves higher throughput, and provides

stronger guarantees compared to a passive replication approach like Remus.

Of course, the increased performance and stronger guarantees do not come for

free. To achieve them, Eve pays the price of having to manually identify the

relevant parts of the application state and abstract away the irrelevant ones;

a programming effort that is not required for Remus.

42

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000 1200 1400 1600

La
te

nc
y

(m
s)

Throughput (requests/sec)

Latency and throughput

Unreplicated

Eve

Remus

Figure 3.10: The latency and throughput of Remus and Eve running the H2
Database Engine on Xen. Both systems use a 2-node configuration. The
workload is the browsing workload of the TPC-W benchmark.

43

 1

 10

 100

 1000

 0 200 400 600 800 1000 1200

B
an

dw
id

th
 c

on
su

m
pt

io
n

(M
b/

se
c)

 (
lo

g)

Throughput (requests/sec)

Network bandwidth consumption

Eve

Remus

Figure 3.11: The bandwidth consumption of Remus and Eve for the experi-
ment shown in Figure 3.10.

44

3.5.6 Latency and batching

Figure 3.10 provides some insight in Eve’s tradeoff between latency and through-

put. When Eve is not saturated, its latency is only marginally higher than

that of an unreplicated server. As the load increases, Eve’s latency increases

somewhat, until it finally spikes up at the saturation point, at a throughput of

1225 requests per second; the unreplicated server’s latency spikes up at around

1470 requests per second. To keep its latency low while maintaining a high

peak throughput, Eve uses a dynamic batching scheme: the batch size de-

creases when the demand is low (providing good latency), and increases when

the system starts becoming saturated, in order to leverage as much parallelism

as possible.

3.6 Conclusion

Eve is a new execute-verify architecture that allows state machine replication

to scale to multi-core servers. By revisiting the role of determinism in replica

coordination, Eve enables new SMR protocols that for the first time allow

replicas to interleave requests nondeterministically and execute independently.

This unprecedented combination is critical to both Eve’s scalability and to its

generality, as Eve can be configured to tolerate both omission and commission

failures in both synchronous and asynchronous settings. As an added bonus,

Eve’s unconventional architecture can be easily tuned to provide low-cost,

best-effort protection against concurrency bugs.

45

Chapter 4

Adam: Interacting Replicated

State Machines

4.1 Introduction

Interaction between services is an integral part of today’s computing. Services,

large and small, are typically used in conjunction with other services to build

large systems, like large-scale key-value stores [15, 25, 35], online shopping cen-

ters [4], data processing systems [24, 34], etc. In such environments, services

frequently need to issue requests to other services. Such interactions take place

both among services belonging to different domains, as well as among com-

ponents of a single infrastructure service. For example, when an online store

processes a client checkout, it issues a nested request—i.e., a request that is

issued while the original checkout request is being processed—to the client’s

credit card service, asking for a certain amount of money to be blocked. Sim-

ilarly, a web server processing client HTTP requests frequently needs to issue

nested requests to a back-end database.

Infrastructure services follow a similar pattern; such services typically

consist of multiple components that work together to provide a high-level

service. For example, Figure 4.1 shows the components of Google’s Photon

46

Figure 4.1: Components of Google’s Photon system within a single datacenter.

system [5] for processing ad clicks—their main source of revenue. Photon

consists of four main components, which regularly interact with each other

to provide the required functionality. Similarly, the HBase key-value store

consists of multiple components, some of which need to interact with as many

as three other components in order to process client requests.

The challenge To make such services highly available, one might hope to

use the tried abstraction of a Replicate State Machine. After all, if each of

these services can be replicated so that it provides the abstraction of a single

correct server, it should be easy to get these correct servers to interact with

each other. In principle there is indeed nothing that prevents the RSM ab-

straction from being applicable in this setting. In practice, however, 40 years

of applying RSM to the client-server model have led to lack of attention toward

the challenges involved in allowing RSMs to communicate with one another ef-

ficiently. In particular, RSM implementations that use the client-server model

assume that the replicated service can process requests independently and is

therefore allowed to choose any strategy to process requests that does not

violate the single-correct-server abstraction.

Fundamentally, maintaining this abstraction in an interactive setting

47

is harder than in the traditional client-server model, because the abstrac-

tion must be maintained towards other services as well; services that can be

exposed—through the means of nested requests—to intermediate states of the

replicated service.

Hence, execution of requests is no longer independent in this setting:

the way in which requests are processed directly affects the states that are

exposed to other services. Below, we describe the consequences of two popular

execution modes that are used by most replication protocols to achieve replica

convergence.

Sequential execution Most replication protocols require replicas to execute

requests sequentially to ensure that correct replicas make the same state

transitions and produce the same output. When services need to make

nested requests to other services, however, the requirement of sequential

execution prevents replicas from executing any other request while a

nested request is in flight, forcing them to remain idle for long periods

of time, causing a significant throughput reduction.

Speculative execution Some replication protocols employ speculation to

achieve high throughput [40, 43]. For example, Eve speculatively exe-

cutes requests in parallel, and then verifies whether replicas indeed ar-

rived at the same state. When the speculation fails, the service must

roll back its state to a consistent checkpoint. If, however, a service (A)

had already sent some nested requests to another service B, the state of

B is now inconsistent, since it has executed requests that may never be

issued when A re-executes the requests that caused the misspeculation.

In this chapter we present Adam, a replication library that allows repli-

cated services to interact with other services via nested requests. Adam’s de-

sign focuses on addressing the performance repercussions of sequential execu-

tion—a requirement that lies at the heart of all active replication protocols4—

4Even in the execute-verify architecture, sequential execution is required to guarantee
replica convergence, when speculation fails (see Section 3.4).

48

as well as the correctness consequences of speculative execution, which is em-

ployed by replication protocols such as Eve and Zyzzyva to achieve high per-

formance [40, 43].

4.2 System model

Adam assumes a system model similar to Eve. Adam applies to both syn-

chronous and asynchronous systems and can be configured to tolerate failures

of any severity, from crashes to Byzantine faults.

Similar to Eve, in Adam we primarily target asynchronous environments

where the network can arbitrarily delay, reorder, or lose messages without im-

periling safety. For liveness, we require the existence of synchronous intervals

during which the network is well-behaved and messages sent between two cor-

rect nodes are received and processed with bounded delay.

Each of the services participating in the Adam protocol can be config-

ured separately, depending on their fault tolerance requirements; i.e., using

their own u and r parameters. Each service is configured to be live, i.e., pro-

vide a response to client requests, despite a total of up to u failures, whether

of omission or commission, and to ensure that all responses accepted by cor-

rect clients are correct despite up to r commission failures and any number of

omission failures [18]. As in Eve, we assume that failures do not break cryp-

tographic primitives; i.e., a faulty node can never produce a correct node’s

MAC.

4.3 The Adam protocol

The Adam replication protocol stands on the shoulders of many previous pro-

tocols [14, 18, 40, 46, 78]. At a high level, the basic operation of Adam is not

different from these protocols: clients send requests to a designated leader

replica, which forwards the requests to all other replicas. These replicas

process the requests and send their replies back to the client. If there are

49

max (u, r)+1 matching replies, the client accepts the reply. One could choose

to implement this high-level description with either of the two architectures we

have described so far: the traditional agree-execute architecture or Eve’s new

execute-verify architecture. We choose to focus on the execute-verify archi-

tecture, since it encompasses both speculative and sequential execution—the

latter to guarantee replica convergence, when speculation fails. Additionally,

the execute-verify architecture can be used to emulate the behavior of the

agree-execute architecture by employing sequential execution at all times; the

verification phase effectively becomes an agreement on the order of requests.

Section 4.3.1 discusses how Adam addresses the performance inefficiencies as-

sociated with sequential execution when services interact, and Section 4.3.2

discusses how Adam addresses the inconsistencies that arise from using spec-

ulative execution in this setting.

4.3.1 Deterministic pipelining

Adam employs deterministic pipelining as an alternative to sequential exe-

cution: its goal is to guarantee replica convergence without forcing replicas

to remain idle while nested requests are in flight. The only assumption we

make is that the leader replica organizes client requests in batches before for-

warding them to other replicas of the same group, where each batch is an

ordered sequence of requests. This assumption is trivial to satisfy in leader-

based replication systems. While deterministic pipelining has the same goal

as sequential execution—replica convergence—it does not provide the same

end-to-end guarantees as sequential execution.

Previous systems which employed sequential execution [1, 14, 16, 21, 43,

46] typically provide linearizability of requests [36]. At first glance, lineariz-

ability may seem to be an integral part of the single-correct-node abstraction;

while that may have been true in a world where execution was only sequential,

it is no longer true when a single node can execute requests in parallel. Even

in a world of multithreaded execution, however, linearizability is still desir-

50

able in some settings, because of the strong and intuitively simple semantics

it provides. These strong semantics, however, come at a certain performance

cost, which is often unnecessary. Enforcing linearizability at the level of the

replication library appears to be yet another instance where the intricacies of

implementation have seeped into the specification.

This seems a situation ripe for applying the end-to-end argument [64]:

applications that require linearizability can enforce it end-to-end, but the un-

derlying abstraction should not. Our deterministic pipelining mode of execu-

tion is a first attempt at freeing the abstraction from the obligation to provide

overly restrictive properties, yielding a significant performance increase. De-

terministic pipelining is based on a simple insight: sequential execution, while

sufficient to provide replica convergence, is not necessary—even when the tra-

ditional agree-execute architecture is used. Sequential execution is merely an

instance of a deterministic schedule; in fact, any deterministic schedule is suf-

ficient to provide replica convergence.

Deterministic pipelining works as follows. Each replica is configured to

have the same number of execution threads, N . When a replica receives a

batch of requests, it starts executing the first request on the first thread. The

execution of that thread will only be stopped in two cases: a) when it finishes

executing a request and no other request is available in this batch for this

thread; or b) after it sends a nested request to another service. When either

of these halting events occur, the corresponding thread will be paused, the

second thread will become active and will start executing the second request.

Similarly, every thread will yield execution to the next thread when a halting

event occurs. This process is repeated until the N th thread yields, at which

point the first thread becomes active again, in a round-robin manner. Despite

pipelining, the active thread may still remain idle for some time, while the

response to its nested request is in flight. This idling can be reduced by

increasing the depth of the pipeline. Note, finally, that when a thread finishes

executing a request, it does not yield if another request is available; it starts

executing that request.

51

Any thread that resumes execution is in one of two states, depending

on the kind of halting event that caused it to yield. If the thread has reached

the end of the batch, the thread is considered stopped and does not participate

in the execution of this batch anymore—i.e. it yields immediately and is not

considered for reactivation until the next batch starts. If the halting event was

the sending of a nested request, then the thread waits until the response to that

nested request arrives. If the response arrives before the thread becomes active,

it is cached so that the thread can retrieve it immediately upon activation.

Note that the order in which requests are processed does not depend on the

timing of the responses, making the schedule deterministic across replicas.

Avoiding deadlocks

An undesirable side-effect of enforcing this round-robin schedule among half-

finished requests is that it raises the possibility of introducing deadlocks if

some suspended threads hold exclusive locks when they yield execution. In

Figure 4.2, the first request acquires a lock on x and then yields to the second

request, while still holding that lock. If the second request tries to acquire the

same lock, a deadlock occurs: the first request will keep waiting for the second

to yield, while the second request will keep waiting for the first to release the

lock.

To address this side-effect, we impose an intermediate layer of control

over the lock acquisitions. Specifically, we replace the lock(x) and unlock(x)

calls with trylock(x) and release(x), respectively. The pseudocode for

trylock and release is shown in Figure 4.3. The use of trylock prevents

deadlocks from being introduced by ensuring that, if a lock is already acquired,

no other request will be blocked waiting for that lock to be released. Instead,

that request will immediately yield control of the execution to the next request.

An immediate consequence of the above discussion is that failing to

acquire a lock can cause a thread to yield. An unsuccessful trylock is then

a halting event, just like sending a nested request and reaching the end of a

request. Table 4.1 summarizes all halting events that will cause a thread to

52

Figure 4.2: An example of how enforcing the deterministic pipeline schedule
among half-finished requests can introduce deadlocks.

1 function trylock(x)
2 while acquireLock(x)=false
3 yield()
4 return

6 synchronized function acquireLock(x)
7 if x.isAvailable
8 lock(x)
9 return true

10 else
11 return false

13 function release(x)
14 unlock(x)
15 return

Figure 4.3: Pseudocode for the trylock and release function calls.

yield.

4.3.2 Taming speculation

As we discussed earlier, employing speculative execution in an environment

where a service A can send nested requests to another service B can cause

correctness violations. Consider two services A and B , that use the Eve repli-

cation library. When speculation fails at A—because of non-matching tokens

at the end of a batch—the state of A must be rolled back; unfortunately, any

nested requests that were sent as part of executing the batch have already

53

Event name Summary
end batch The request has executed fully and no more

requests are available in this batch
send nested request A nested request is sent to another service
fail lock The request tried to acquire a lock that is al-

ready acquired by another request

Table 4.1: Events that cause a request to yield control of the execution to the
next request.

been executed at B . To make matters worse, the effects of that execution may

have been observed by other clients of B . As a result, even rolling back the

state of B may not be sufficient to repair this inconsistency.

The reason for such correctness violations is that nested requests are

sent half-way through the execution of a request or, more specifically, at a time

when the speculation is still unresolved: the requests are therefore contingent

on the speculation succeeding.

We propose two approaches to address this problem: the first requires

no modification to the backend service, while the second does require small

modifications to the backend service in exchange for lower request latency.

A1: resolve speculation The first approach treats the sending of a nested

request as an output commit. To prevent inconsistencies due to misspec-

ulation, we resolve the speculation before the nested request is sent out.

Resolving the speculation in the middle of executing a batch is, of course,

not straightforward.

A2: make speculation explicit The second approach does not try to re-

solve the speculation before sending nested requests: instead, it simply

ensures that the nested requests carry explicit information about the

speculative state they depend on. This information can be used by ser-

vice B to determine whether enough replicas of A agree on their specu-

lative state. In this approach, service A uses service B as its verification

stage.

54

Each approach has its own merits. A1 is transparent, since it does not

require any changes to service B . As such, it is preferred when service A inter-

acts with several services, especially if those services are not replicated to begin

with. A2 requires some modification at service B , but, as we describe below,

it is more efficient; service A does not need to perform an extra verification

phase before sending nested requests to B .

A1: resolve speculation

In Eve, speculation can only be resolved at the end of the batch, which serves

as a deterministically identifiable point at which a token of the state and

responses of each replica can be computed and verified. This mechanism is

obviously no longer sufficient for our case, as it resolves speculation after it has

been exposed to other services. Note, however, that verification of convergence

does not necessarily have to occur at the end of the batch: all that is required

is that the verification point be deterministically identifiable across all correct

replicas.

Fortunately, the end of the batch is not the only deterministically iden-

tifiable point in the execution. The sending of a nested request can serve the

same purpose: nested requests are sent at the same point in the execution,

across all replicas. Our goal is then to resolve speculation by leveraging the

existence of those deterministically identifiable points.

The execution stage proceeds in the same way as in Eve with respect

to batching and mixing. The primary execution replica collects client requests

and forms batches of requests, which it forwards to all other execution replicas.

Each replica then applies a deterministic and application-specific mixer, which

partitions each batch into the same sequence of parallelBatches—groups of re-

quests that the mixer believes can be executed in parallel with little likelihood

that different interleavings will produce diverging results at distinct replicas.

This is where things start diverging from the way Eve executes requests.

To aid in our description, we will again use the notion of halting events,

similar to our deterministic pipelining technique. In this case, the halting

55

Figure 4.4: An example of four threads processing a parallelBatch. Thick
vertical lines represent the sending of nested requests. The execution of the
parallelBatch is divided by the two walls into three parts, each colored with an
increasingly dark shade of gray. Note that the fourth thread does not execute
any requests during the third part, since it has already reached the end of the
parallelBatch.

events are two: the sending of a nested request and reaching the end of a

parallelBatch.

Consider the execution of a parallelBatch of requests using N execution

threads. Initially, up to N requests start being executed, one by each execution

thread. When every one of these requests reaches its first halting event—either

because it needs to send a nested request or because it just finished executing

a request and there are no more requests in the current parallelBatch—we say

that the execution has hit a wall. Note that, depending on how often requests

trigger nested requests, the execution can hit a sequence of walls while pro-

cessing a single parallelBatch. For example, in Figure 4.4 the execution hits

two walls before reaching the end of the parallelBatch. When a thread hits the

wall, its execution is paused until all threads hit the wall. When the halting

56

event is a send, execution is paused immediately before the nested request is

sent. When all its N threads hit the current wall, a replica calculates a token

that represents its state and any responses made by requests in this parallel-

Batch, using a mechanism similar to Eve, but with two notable differences.

First, the token must also represent any nested requests that are about to be

sent out, as these are also affected by the speculation in the execution. Second,

the application state must also include the entire application stack—function

calls and local variables—which is necessary to perform rollback and state

transfer, as we discuss below.

When the token is calculated, the execution replicas, as in Eve, send

it for verification: each replica sends a 〈verify, view, n, T, e〉~µe message to

all verifier replicas, where n is a sequence number that uniquely identifies the

current wall. The verification replicas respond with the last agreed-upon token,

along with the current view number; an increased view number indicates that

no agreement was reached and a rollback is required. Upon receipt of r + 1

matching verify-response messages, an execution replica e distinguishes

three cases:

Commit If the view number has not increased and the agreed-upon token

matches the one e previously sent, then e considers the execution up until

n to be committed. It can now send any nested requests that were about

to be sent before execution was paused. After those nested requests have

been sent, the execution replica resumes all threads. Any thread that

was paused at a send halting event will resume execution right after that

send. Note that threads do not need to receive the responses to nested

requests synchronously; a thread can continue executing until it needs to

access that response, at which point it will make a readResponse() call,

which will block until the corresponding response becomes available.

Correct replicas will send their nested requests to the primary execution

replica of B , the receiving service. That primary replica treats those

requests as a single client request—i.e., it does not process that request

57

more than once—with the difference that it waits for a quorum of size

max(uA,rA)+1 of matching requests before it starts processing the re-

quest, where uA and rA are the configuration parameters of the sending

service, A. Similarly, after B has finished processing the request, correct

execution replicas of B will send the response to all execution replicas

of A, which will in turn wait for a quorum of max(uB,rB)+1 matching

responses, where uB and rB are the configuration parameters of service

B .

Rollback If the view number has increased, then agreement could not be

reached. Replica e discards any unexecuted requests and rolls back its

state to the sequence number indicated by the token T , while verifying

that its new state matches the token (else it initiates a state transfer).

The main difference from Eve is that the replica does not necessarily roll

back to the beginning of the parallelBatch, but rather to the last com-

mitted wall, which could correspond to some requests being partially

executed. Rolling back to the middle of a request requires more than

restoring the corresponding application state: one must restore the ap-

plication stack that was active when the wall was reached. To that end,

the replicas record the application stack as part of the application state.

As in Eve, the increased view number also implicitly rotates the execu-

tion primary. In Adam, however, if a batch has been partially executed

the new primary does not propose new contents for that batch; replicas

execute the remaining requests in that batch sequentially and then start

receiving new batches from the primary. To ensure that a malicious

primary cannot prevent the system from making progress indefinitely

by sending a different batch of requests to different replicas, the batch

contents are included in the state that is verified. That way, if a wall

that corresponds to a partially executed batch is committed, replicas are

guaranteed to have implicitly reached agreement on the contents of the

partially executed batch; they can therefore always make progress by

58

executing requests within that batch sequentially.

State transfer If the view number has not increased, but the token does not

match the one e previously sent, then this replica has diverged from the

agreed-upon state. To repair this divergence, the replica issues an incre-

mental state transfer request to other replicas, as in Eve. The difference

is that the transferred state contains also a) the application stack, since it

is possible that the transferred state corresponds to a wall that includes

partially executed requests; and b) the contents of the partially executed

batch. The replica then restores not only the application state, but also

the application stack and the requests that are yet to be executed as

well. The details of how the application stack is recorded, rolled back

and restored in our prototype are described in Section 4.4.

Avoiding deadlocks Similarly to deterministic pipelining, the above pro-

tocol has the potential of introducing deadlocks. Figure 4.5 demonstrates an

example of such a deadlock. Requests 1 and 2 belong to the same parallel-

Batch and both try to acquire the same lock. If the first request acquires the

lock, the second one will be blocked until the lock is released. The lock will

never be released, however, since the first request must wait until the second

request reaches the wall before proceeding to execute its second part, which

would release the lock.

The reason why this type of deadlock is introduced lies in the fact that

requests can send out nested requests while holding exclusive locks, thereby

creating a two-way dependency with another request of the same parallelBatch

that waits to acquire the same lock. We detect such deadlocks by using a

timeout. When such a timeout occurs at replica e, we perform a rollback

at e and start re-executing requests in that parallelBatch sequentially. Note

that other replicas may not necessarily roll back, too, as these deadlocks are

subject to races and are not deterministically triggered. This could lead to a

situation where the remaining replicas successfully reach the wall and produce

enough matching tokens to commit that wall. In that case, e will eventually

59

Figure 4.5: An example of how a deadlock can arise when two requests that
belong to the same parallelBatch attempt to acquire the same lock.

realize—upon reception of the appropriate verify-response messages—that

it has diverged from the other replicas and will request a state transfer from

one of these replicas.

Fortunately, the root cause of these deadlocks—sending out nested re-

quests while holding exclusive locks—is not very likely to occur in practice.

Programmers typically avoid holding exclusive locks while performing time-

consuming tasks, such as calls to remote services. Additionally, even when

such exclusive locks are held for some requests, because of necessity or ne-

glect, the mixer can be designed to avoid placing requests that might acquire

the same locks in the same parallelBatch. We therefore believe that even a

conservative timeout should be enough to deal with the rather uncommon

circumstance where a request acquires a lock while making a nested request

to another service, while another request in the same parallelBatch tries to

acquire that same lock.

A2: make speculation explicit

This optimization is based on the insight that sending a speculative nested

request to another service is acceptable if that service can resolve the specu-

lation on its own. Instead of resolving speculation before making an output

60

commit to another service, we allow such output commits to be speculative—

but only if they carry an explicit description of the speculative condition on

which they depend. This optimization can have a significant benefit with re-

spect to request latency, since the middle service does not need to perform

an extra round of verification before sending the nested requests; the backend

service can perform that verification on behalf of the middle service.

The protocol for this approach proceeds just like A1 with respect to

batching and mixing. We again use the notion of the wall, executing each

request until it reaches a halting event, and calculating the application state

token when all threads reach the wall. Instead of sending that token for

verification, however, we simply include it in any nested requests that are

sent to the backend service, B , along with the corresponding token for the

previous wall. A nested request has the form 〈req, op, t, c, e, T 〉~µc,r , where op

is the operation that should be performed, t is a timestamp that can be used

instead of calls to gettimeofday to ensure convergence among replicas, c is the

client id, e is an identifier for this replica, and T is a token that contains a) the

wall sequence number n; b) a checksum s of the current state and generated

responses; and c) a checksum h of the state and responses generated for wall

n-1.

The primary execution replica of B , just like in the first approach, gath-

ers a quorum of max(uA, rA)+1 matching requests. If such a quorum is found,

the execution replicas of B process the requests taking the—by now familiar—

steps of batching, mixing, execution, and verification. Recall, however, that

the token sent for verification includes a checksum for both the current and the

previous sequence number, to prevent inconsistent histories from being com-

mitted. In this approach, when the execution replicas of B send a verify mes-

sage, they need to include the token they received from service A. The verify

message has therefore the following form: 〈verify, view, n, TA, TB, e〉~µe .
The verification of service B , in addition to verifying that the h check-

sum of TB matches the last committed token for B , must also perform the

same check for the h checksum of TA. To do that, the verification stage of B

61

must always be aware of the last token committed by service A. To prevent a

complicated protocol where the verification stages of A and B exchange infor-

mation about which tokens are committed, we simply have service A send all

verify messages to the verification stage of B , which must now store the last

committed token and view number for both services. Hence, in this approach

A does not need to have its own verification replicas.

If the verification at B is successful, the execution replicas of B send

the responses to the nested request to all execution replicas of A, including the

token TA that was accepted and the corresponding view number. An execution

replica of A that receives a quorum of max(uB, rB)+1 such messages implicitly

knows that TA is the verified token, and takes the appropriate action—commit

or state transfer—depending on whether its own token matches TA. If the

verification at B is unsuccessful, the verification replicas of B send a verify-

response message to all execution replicas of A and B , causing both services

to roll back to their last committed wall, respectively.

If the primary execution replica of B receives nEA
−max(uA, rA)+1 mu-

tually non-matching requests, where nEA
is the number of execution replicas of

A, the primary replica of B sends a special verify message to the verification

stage, notifying it of the divergence at A. The verification stage then sends

a verify-response message to all execution replicas of A, causing them to

roll back to the last committed wall.

To avoid ignoring requests indefinitely because of a malicious primary

replica, we take measures similar to Eve’s. The verification replicas of B

propose a view change if the commit rate is not high enough. Additionally,

the execution replicas of A, just like any client in Eve, resend nested requests to

all execution replicas of B if they receive no response within a timeout. Those

replicas then forward the requests to the primary and expect it to include

those requests in an upcoming batch within a given timeout; otherwise, they

stop participating, eventually causing the verification replicas to perform a

view change.

The approach of making speculation explicit can reduce request latency,

62

as it saves one verification phase and the corresponding messages between

execution and verification. This reduced latency, however, comes at the cost

of complexity, since the two services are no longer separate and independent,

but must be designed and maintained as a whole. Hence, this approach is

primarily targeting environments where both services are part of the same

administrative domain.

4.4 Implementation

We have implemented a prototype of Adam in Java. The codebase of the

Adam prototype descends from the Eve codebase, with modifications made

in the parts where the design of Eve and Adam diverge. Most notably, these

changes affect the following parts of the code.

Replicated client Since the middle service of Adam functions as a repli-

cated client to the backend service, our prototype includes the necessary code

to support quorum gathering of nested requests at the backend service, as well

as quorum gathering of responses at the middle service.

Nested request sequence numbers A subtle implementation problem is

that of assigning sequence numbers to nested requests. The middle service

in Adam functions like a client for the backend service. As such, its requests

must have a sequence number that increases by one with every new request.

However, when multiple threads are executing in parallel, some of which need

to issue nested requests and some do not, it becomes very hard, if not impos-

sible, to assign those request sequence numbers in a deterministic way across

all replicas. We therefore create a separate client for each of our N execu-

tion threads. To ensure that each thread is assigned the same requests across

all replicas, we no longer assign requests to threads in a first-come-first-serve

fashion, but rather preassign requests to each thread before the parallelBatch

is executed, using a round-robin algorithm. Using this approach, each thread

63

can independently generate request sequence numbers that increase by one

with each new request and are consistent across all replicas.

The wall, rollback, and state transfer The hardest part of the Adam

prototype is the implementation of the wall, the ability to roll back to a pre-

vious wall, and to implement state transfer that can bring another replica to

the correct wall. To implement rollback in Eve, it is sufficient to undo the

uncommitted changes to the application state, since the execution will restart

at the beginning of the batch. Instead, in Adam the execution will have to

restart at the last committed wall, which usually involves resuming the exe-

cution of some half-finished requests. It is therefore not sufficient to roll back

the application state; local variables as well as the entire stack must be reset

appropriately.

To implement such functionality, we use the notion of a continuation:

a data structure that represents the computational process at a given point

in the process’s execution. Unfortunately, Java does not have native support

for continuations. Instead, we use the open source Javaflow library, which

provides the basic continuation functionality. Specifically, the Javaflow API

includes two calls, Suspend() and ContinueWith(). When a thread calls Sus-

pend(), Javaflow starts iterating through all stack frames and saving them into

a continuation object, stopping only when it reaches the stack frame where

ContinueWith() is called; and finally returning the continuation object. Con-

tinueWith() takes a continuation object as an argument and causes the thread

to resume execution from that continuation, by restoring all stack frames in

the continuation and resuming execution from the last instruction after the

Suspend() was called.

Adam uses this continuation functionality in the following way: when

a new parallelBatch is started, each thread calls ContinueWith(), to mark the

beginning of a “clean” execution. Whenever a thread hits the wall, it calls

Suspend() which returns to where the initial ContinueWith is called and re-

turns the appropriate continuation object. At this point, the main coordinator

64

thread waits for all execution threads to call Suspend (i.e., hit the wall), and

then starts calculating the token that will be send for verification. Depend-

ing on the verification results, the coordinator thread will ask each execution

thread to call ContinueWith using the appropriate continuation object as its

argument: the one returned by the last Suspend, if verification succeeds; or the

one returned by the previous Suspend()—or null if no such Suspend exists—if

the verification failed.

While Javaflow provides us with a basic continuation functionality, it

is not sufficient for implementing state rollback to a given wall. In particular,

adapting Javaflow to fit our needs raised two problems. First, the Javaflow con-

tinuations only store shallow copies—i.e., references—to application objects.

Hence, if an object is modified between walls n− 1 and n, then simply rolling

back to the previous (n− 1) version of the reference will not actually roll back

the modifications to the object. Instead, in Adam we combine the continuation

functionality with the Merkle tree implementation, keeping a deep copy of the

application objects that are referenced by a continuation. Keeping deep copies

that are versioned through the Merkle tree module has the additional benefit

that it simplifies the implementation of state transfer. When a state transfer is

required, the replica sends a serialized version of the appropriate continuation,

which is sufficient—since it contains deep copies of the required objects—to

bootstrap the requesting replica. The second problem we met is that the stack

keeps references to all objects used in the execution. Remember that in Eve

we discussed the need to abstract away parts of the state that might not be

identical byte-wise, even though their respective replicas have not diverged.

Such state includes the state used by the replication library itself—e.g., the

replica id, which is by definition different across all replicas—local state like

IP address, or timestamps that may be used for logging. Adam takes an ap-

proach similar to Eve: we manually annotate such objects to prevent them

from being included in the hash calculation of the state.

Our current prototype omits some of the features described above.

Specifically, it does not implement approach A2 of making speculation explicit;

65

our experiments in Section 4.5 are performed using approach A1. Addition-

ally, our prototype does not implement the deadlock recovery mechanisms;

we have not yet found need for this mechanism, as the applications we have

experimented with do not acquire locks while nested requests are in flight.

4.5 Evaluation

Our evaluation of Adam aims to answer the following questions:

• What is the throughput gain of using deterministic pipelining compared

to a traditional sequential execution?

• How does Adam’s performance when using speculative execution com-

pare to sequential execution?

We address these questions by using the key-value store application we

presented in the evaluation of Eve (Section 3.5). In our experiments clients

send requests to a key-value store A. Each request requires some amount

of execution time, modifies one key-value pair, and makes a nested request

to a back-end key-value store, B . The purpose of these experiments is to

understand the potential benefit of using deterministic pipelining and spec-

ulation instead of sequential execution. Hence, our focus is mostly on the

amount of computation required by each requests, rather than the nature of

computation—which could be anything from performing queries in a database

to accessing files on a file server.

We run our experiments on a testbed with 12x 4-core Intel Xeon @2.4

GHz and 3x 16-core AMD Opteron @3.0 GHz, connected with a 1 Gb Ethernet.

We use the AMD machines as the execution nodes of the middle service and

use the Intel machines as clients, execution replicas for the back-end service,

and verification replicas for the middle and back-end service. Both services

are configured with u = r = 1, and have therefore three execution and four

verification replicas each. Due to the limited size of our testbed, we colocate

66

 0

 100

 200

 300

 400

 500

 600

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

)

execution threads

Deterministic pipelining throughput

pipelining (execTime=0.1ms)

pipelining (execTime=1ms)

pipelining (execTime=10ms)

Figure 4.6: The throughput of Adam using deterministic pipelining.

one verification replica of each service on the same machine. This does not

affect our results, however, since verification is very lightweight compared to

execution and does not introduce a performance bottleneck.

4.5.1 Deterministic pipelining

Despite its simplicity, deterministic pipelining can be significantly faster than

sequential execution. Figure 4.6 shows the throughput of Adam using deter-

ministic pipelining and for requests that require execution times of 0.1 ms,

1 ms, and 10 ms. The performance of sequential execution is equal to the

performance of deterministic pipelining when only one thread is used. As

expected, in all three cases Adam’s throughput increases as more execution

threads become available: a deeper pipeline means that the middle service

67

 0

 200

 400

 600

 800

 1000

 1200

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

)

execution threads

Deterministic pipelining throughput

sequential

pipelining (execTime=0.1ms)

Figure 4.7: The throughput of Adam using deterministic pipelining when the
back-end service is optimized to use a small time interval for batching. The
execution time of each request is 0.1ms.

remains idle for smaller intervals, masking the delay of previously sent nested

requests. When requests are lightweight (e.g., 0.1 ms of execution time), the

importance of deterministic pipelining becomes more pronounced: a system

bound by sequential execution ends up spending most of its time—about

95%—idling, waiting for responses to its nested requests.

To understand why the middle service may have to wait that long, we

must take a closer look at the way requests are processed by the back-end

service. To mitigate the costs of performing agreement, replicated services

perform batching of requests: the primary waits until it has received a certain

amount of client requests or a predefined time interval has elapsed, before

sending those requests to other replicas for agreement or execution, depending

68

 0

 100

 200

 300

 400

 500

 600

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

)

execution threads

Deterministic pipelining throughput

sequential

pipelining (execTime=1ms)

Figure 4.8: The throughput of Adam using deterministic pipelining when the
back-end service is optimized to use a small time interval for batching. The
execution time of each request is 1ms.

on the architecture. If the middle service is the only client to the back-end

service, then the back-end service will end up waiting for that time interval

to elapse, causing significant delays in the processing of nested requests. In

the experiments of Figure 4.6 that interval is set to 20 ms, which is the default

value used in UpRight [18] and Eve.

When the middle service is the only client to the back-end service, one

can tune this time interval, to reduce idle time at the middle service. Fig-

ures 4.7, 4.8, and 4.9 show the throughput of deterministic pipelining when

that time interval is reduced to 1 ms, for execution times of 0.1 ms, 1 ms, and

10 ms, accordingly. As expected, the speedup of deterministic pipelining is sig-

nificantly reduced in all these cases—about twice the throughput of sequential

69

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

)

execution threads

Deterministic pipelining throughput

sequential

pipelining (execTime=10ms)

Figure 4.9: The throughput of Adam using deterministic pipelining when the
back-end service is optimized to use a small time interval for batching. The
execution time of each request is 10ms.

execution—since, even when using sequential execution, the middle service

does not have to remain idle for quite as long. Once again, the benefit of

pipelining is more pronounced for lightweight requests, ranging from a 1.8x

speedup over sequential execution when the request execution time is 10 ms,

to a 2.2x speedup when the request execution time is 0.1 ms.

Note, however, that there are many cases where tuning the parameters

of the back-end service is impossible or undesirable. For example, the back-end

service might belong to a different administrative domain, or it could be that

our middle service is not its only client. Especially when the back-end service

is operating close to saturation, reducing the amount of batching performed in

that service could be detrimental to its throughput. In fact, such a reduction

70

 0

 100

 200

 300

 400

 500

 600

 700

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

)

execution threads

Parallel execution throughput

Figure 4.10: The throughput of Adam using parallel execution. The execution
time of each request is 1ms.

would drive that service past its saturation point, greatly increasing the latency

of requests and in turn hurting the throughput of our middle service as well.

4.5.2 Speculative execution

Our final experiment demonstrates the throughput of Adam when employing

parallel execution. In this setting Adam uses approach A1, where speculation

is resolved—by calculating the application token and performing verification—

before sending a nested request. Figure 4.10 shows the results of this experi-

ment. Notice that as more threads become available, the performance of Adam

increases, since more requests can be executed in parallel. The performance

increase compared to single-threaded execution is about 3.7x. We believe that

there are some steps one can take to reach even higher performance. For ex-

71

ample, while parallel execution is important to increase system throughput,

pipelining of requests is still crucial, even though sequential execution is not

used. When the execution threads hit the wall, they currently remain idle

while waiting for the response to their nested requests. We believe that a

combination of the two techniques we propose in this chapter—deterministic

pipelining and the wall—should achieve even higher performance than any of

those two techniques in isolation.

4.6 Conclusion

Adam is a new replication library that allows replicated services to be de-

ployed in environments where they have to interact with other services. Pre-

vious replication protocols based on the Replicated State Machine abstraction

assume a client-server model, which, as we showed, can have significant perfor-

mance limitations and consistency problems in interactive settings. In Adam,

we trace the cause of these issues to the use of sequential and speculative ex-

ecution, and propose new techniques that address these issues, allowing fast

and consistent replication of services in this setting.

72

Chapter 5

Related work

5.1 Replicating multithreaded services

The end goal of Eve is to allow a replicated service to maintain correctness

while executing requests in parallel. While we believe that an execute-verify

replication architecture is the most fitting way to achieve this goal, it is cer-

tainly not the only way. In this section we discuss other alternatives to achiev-

ing multithreaded replication and review other work that is related to Eve.

5.1.1 Deterministic Multithreading

Deterministic execution of multithreaded programs [6, 7, 9, 51] guarantees that,

given the same input, all correct replicas of a multithreaded application will

produce identical internal application states and outputs. Although at first

glance this approach appears a perfect match for the challenge of multithreaded

SMR on multi-core servers, there are two issues that lead us to look beyond

it. The first issue [8] is straightforward: current techniques for deterministic

multithreading either require hardware support [26, 27, 37] or are too slow

(1.2x-10x overhead) [6, 7, 9] for production environments. The second issue

originates from the semantic gap that exists between modern SMR protocols

and the techniques used to achieve deterministic multithreading.

73

x=1

x=2

Replica 1

Replica 2

parallel mode sequential mode

Quantum 1

x=1

x=2

parallel mode sequential mode

Quantum 1 Quantum 2

Quantum 2
parallel mode

parallel mode sequential mode
Final value:

x=1

Final value:
x=2

T1

T1

T2

T2

Figure 5.1: An example where ordering read-only requests (depicted as shaded
rectangles) differently at different replicas can lead to state divergence. The
replicas are using the DMP-O algorithm. The initial ownership status of vari-
able x is “shared” and the quantum size is 6.

74

Seeking opportunities for higher throughput, SMR protocols have in

recent years looked for ways to exploit the semantics of the requests processed

by the replicas to achieve replica coordination without forcing all replicas to

process identical sequences of inputs. For example, many modern SMR sys-

tems no longer insist that read requests be performed in the same order at all

replicas, since read requests do not modify the state of the replicated applica-

tion. This read-only optimization [14, 18, 42] is often combined with a second

optimization that allows read requests to be executed only at a preferred quo-

rum of replicas, rather than at all replicas [38]. Several SMR systems [21, 74]

use the preferred quorum optimization during failure-free executions also for

requests that change the application’s state, asking other replicas to execute

these requests only if a preferred replica fails.

Unfortunately, deterministic multithreading techniques know nothing

of the semantics of the operations they perform. Their ability to guaran-

tee replica coordination of multithreaded servers is based purely on syntactic

mechanisms that critically rely on the assumption that all replicas receive iden-

tical sequences of inputs: only then can deterministic multithreading ensure

that the replicas’ states and outputs will be the same. Read-only optimiza-

tions and preferred quorum operations violate that assumption, leading cor-

rect replicas to diverge. For instance, read-only requests advance a replica’s

instruction counter and may cause the replica to acquire additional read locks.

Figure 5.1 illustrates an example where executing a set of read-only

instructions in a different order at different replicas can cause their state to

diverge. In this example, replicas use the DMP-O deterministic multithreading

algorithm [7], with a quantum size of 6. The shaded instructions represent

the instructions of a read-only request. DMP-O uses instruction counting to

guarantee that each thread eventually leaves the sequential mode, even if it

does not need to synchronize with other threads. In this example, the read-

only requests are executed after the request [x = 1] at Replica 1, but before

that request at Replica 2. The presence of the read-only requests before [x = 1]

at Replica 2 ends the quantum and “pushes” the request [x = 1] to the next

75

quantum. This leads to different replicas serializing the [x = 1] and [x = 2]

requests in different ways, which causes the final value of x to diverge.

Paradoxically, the troubles of deterministic replication stem from stick-

ing to the letter of the state machine approach [45, 66], at the same time that

modern SMR protocols have relaxed its requirements while staying true to its

spirit.

5.1.2 Transactional processing systems

Vandiver et al. [71] describe a Byzantine-tolerant semi-active replication scheme

for transaction processing systems. Their system supports concurrent execu-

tion of queries but its scope is limited: it applies to the subset of transaction

processing systems that use strict two-phase locking (2PL). A recent paper

suggests that it may be viable to enforce deterministic concurrency control in

transactional systems [68], but the general case remains hard. Kim et al. [41]

recently proposed applying this idea to a transactional operating system. This

approach assumes that all application state is manageable by the kernel and

does not handle in-memory application state.

5.1.3 Semi-active replication and record-replay

One alternative is to use a replication technique other than state machine

replication. Semi-active replication [60] weakens state machine replication with

respect to both determinism and execution independence: one replica, the pri-

mary, executes nondeterministically and logs all the nondeterministic actions

it performs. All other replicas then execute by deterministically reproducing

the primary’s choices. In this context, one may hope to be able to leverage

the large body of work on deterministic multiprocessor replay [3, 22, 28, 49,

58, 59, 63, 72, 75, 76]. Unfortunately, relaxing the requirement of independent

execution makes these systems vulnerable to commission failures. Also, sim-

ilar to deterministic multithreaded execution approaches, record and replay

approaches assume that the same input is given to all replicas. As discussed

76

in Section 5.1.1 this assumption is violated in modern replication systems.

Rex [32] recently proposed an alternative architecture for replicating

multithreaded services, based on the notion of deterministic replay. Instead

of the traditional agree-execute architecture, or Eve’s execute-verify, Rex pro-

poses a new execute-agree-follow architecture, which has a primary replica exe-

cuting requests, recording the nondeterministic events during that execution—

called a trace—including dependencies among synchronization events. After

the execution has finished, replicas run a consensus protocol to agree on the

trace that was executed by the primary. Finally, non-primary replicas execute

those requests, reproducing the nondeterministic decisions of the primary, to

guarantee convergence.

Rex represents a different point in the design space than Eve. Since

replicas no longer execute independently, Rex cannot tolerate commission fail-

ures. Also, Rex makes different assumptions than Eve when it comes to

guaranteeing correctness. In the execute-verify architecture, correctness de-

pends on being able to identify the relevant application state. In the execute-

agree-follow architecture, instead, correctness hinges on accurately capturing

all sources of nondeterminism, like data races and synchronization events.

5.1.4 Passive primary-backup

Remus [23] is a typical example of a passive primary-backup system. Remus

takes a different approach to replicating multithreaded services: the backup

does not execute requests, but instead passively absorbs state updates from the

primary: since execution occurs only at the primary, the costs and difficulty

of coordinating parallel execution are sidestepped. These advantages however

come at a significant price in terms of fault coverage: Remus can only tolerate

omission failures—all commission failures, including common failures such as

concurrency bugs, are beyond its reach. Like Remus, Eve neither tracks nor

eliminates nondeterminism, but it manages to do so without forsaking fault

coverage; further, despite its stronger guarantees, Eve outperforms Remus by

77

a factor of 4.7x and uses two orders of magnitude less network bandwidth

(see Section 3.5.5) because it can ensure that the states of replicas converge

without requiring the transfer of all modified state.

5.1.5 Speculative systems

One of the keys to Eve’s ability to combine independent execution with nonde-

terministic interleaving of requests is the use of the mixer, which allows repli-

cas to execute requests concurrently with low chance of interference. Kotla

et al. [44] use a similar mechanism to improve the throughput of BFT repli-

cation systems. However, since they still assume a traditional agree-execute

architecture, the safety of their system depends on the assumption that the

criteria used by the mixer never mistakenly parallelize conflicting requests: a

single unanticipated conflict can lead to a safety violation.

Both Eve and Zyzzyva [42] allow speculative execution that precedes

completion of agreement, but the assumptions on which Eve and Zyzzyva

rest are fundamentally different. Zyzzyva depends on correct nodes being

deterministic, so that agreement on inputs is enough to guarantee agreement

on outputs: hence, a replica need only send (a hash of) the sequence of requests

it has executed to convey its state to a client. In contrast, in Eve there is no

guarantee that correct replicas, even if they have executed the same batch of

requests, will be in the same state, as the mixer may have incorrectly placed

conflicting requests in the same parallelBatch.

We did contemplate an Eve implementation in which verification is not

performed within the logical boundaries of the replicated service but, as in

Zyzzyva, it is moved to the clients to reduce overhead. For example, a server’s

reply to a client’s request could contain not just the response, but also the root

of the Merkle tree that encodes the server’s state. However, since agreement is

not a bottleneck for the applications we consider, we ultimately chose to heed

the lessons of Aardvark [16] and steer away from the corner cases that such

an implementation would have introduced.

78

5.1.6 Finding concurrency bugs

Concurrency bugs are notoriously hard to find. Several tools exist that try

to identify as many concurrency bugs as possible, without introducing a large

number of false positives. Many of these tools focus on identifying concurrency

bugs that cause some immediate or severe system failure (e.g. a crash) [13, 57,

79]. These tools, however, are rather limited in scope, as concurrency bugs

frequently do not have any such immediate side-effects [31].

Pike [30] is a tool for finding such elusive concurrency bugs. Specifically,

it tries to identify two classes of bugs: semantic bugs, which manifest as any

violation of the application semantics, such as returning an incorrect result to

the user; and latent bugs, which silently corrupt internal data structures and

can potentially manifest much later, when they are triggered by a subsequent

input. To identify these bugs, Pike tests whether the parallel execution of a

set of requests matches—in terms of both outputs and application state—some

sequential execution of those requests.

Pike resembles Eve in that they are both concerned with preventing

silent corruption of the application state. Hence, both systems require some

programming effort in identifying the relevant application state and abstract-

ing away the irrelevant parts.

Other than that, though, Pike’s goal is fundamentally different from

Eve’s: to identify the source of concurrency bugs, rather than to mask them,

as Eve does. Additionally, Pike’s approach is based on the assumption that

even complex executions provide semantics that are reasonably close to lin-

earizability [36], which introduces false positives. Eve, instead, does not make

any such assumptions, since it does not need to detect the source of the bug—

or even to reason about what the applications semantics are. Eve simply uses

the redundancy that is inherent in replicated systems to mask concurrency

bugs, as long as they do not manifest in the same way across all replicas.

79

5.1.7 Scaling State Machine Replication

There is a lot of work on improving various aspects of the performance of

State Machine Replication. Eve focuses on achieving high performance by

executing requests in parallel; as such, it focuses on environments where re-

quest execution is the performance bottleneck. Eyrie [10] has a similar goal:

to achieve scalability of the execution of requests by partitioning the appli-

cation state. Despite this partitioning, Eyrie guarantees linearizability, while

allowing commands to access any combination of partitions.

Other works have tried to scale the performance of State Machine Repli-

cation when the bottleneck lies in the agreement (or ordering) phase [39, 53–

56]. These works typically split the client requests into a number of sub-

streams of request, which are then ordered separately and then joined as re-

quired, before being executed.

5.2 Interacting Replicating State Machines

Service interaction is an integral part of building large distributed systems.

When faced with such interactions, previous works have proposed various so-

lutions; some to particular instances, others more general. In this section we

review previous work on service interaction and comment on the relation to

Adam.

Replicated Remote Procedure Call A number of early works provide

the functionality of a replicated—or fault tolerant—Remote Procedure Call

(RPC) [19, 20, 77]. These approaches typically provide mechanisms to ensure

that the receiving service will perform the requested procedure exactly once,

and that each replica of the sending service will receive the results of the

RPC, while providing transparency to the programmer, making Replicated

RPCs look like normal procedure calls. These approaches, however, predate

modern replication protocols and therefore do not consider the consequences of

80

those protocols’ design choices. In particular, they do not address the perfor-

mance limitations of sequential execution, and, since they predate speculative

protocols, such as Zyzzyva and Eve, do not consider the possibility that the

RPC of one service might be based on speculative state that can not be naively

exposed to other services.

Optimizing procedure calls among services More recently, Song et

al. proposed RPC Chains, a technique that allows a number of interacting

services to optimize complex patterns of RPCs, by composing multiple such

remote calls into a single path that weaves its way through all the required

services. This technique aims to reduce latency by eliminating the require-

ment that an RPC always returns to the caller before the next RPC is called.

Although operating in a similar setting, where multiple services interact to

provide some high-level functionality, Adam and RPC Chains have very dif-

ferent goals. Adam’s main goal is to allow such interactions for replicated

services, while RPC Chains only targets singleton services.

5.2.1 Interaction among Replicated Services

Replication has been used in many previous works to enhance the dependabil-

ity of a certain service. When that service needs to interact with other services

or components, typically a custom protocol is used to regulate this interaction.

For example, in Salus [73] a replicated region server needs to issue requests to

a replicated storage layer. The resulting protocol is quite complicated, despite

the fact that the region server does not employ speculative execution. Simi-

larly in Farsite [2], groups of replicated nodes can issue requests to other such

groups. To simplify the protocol for those interactions, Farsite groups com-

municate through message passing and avoid using nested calls altogether. As

such, it does not address the complications most services would face in such

settings. Adam, instead, tries to provide a general solution that transparently

allows each layer to provide the abstraction of a single correct server, thereby

facilitating the interaction between replicated services.

81

Chapter 6

Conclusion

This dissertation rethinks the design of replicated services in the era of multi-

core computers and large cloud infrastructures. In particular, it presents the

design and implementation of Eve, a replication system that is based on a

new execute-verify architecture; and Adam, a replication library that allows

replicated services to be fast and correct, even in environments where they

must interact with other services. In this dissertation we make the following

contributions.

In Chapter 3, we take a closer look at the Replicated State Machine

abstraction and refine its specification, removing the unnecessary strength-

ening that had seeped into it: the assumption of sequential execution. We

believe that this refined specification expresses the essence of State Machine

Replication, free from implementation details.

We rethink the architecture of active replication protocols, taking into

account the need for multithreaded execution. Our insight is that it does not

make sense to agree on the order of requests before they are executed, since

multithreaded execution will undo that order, anyway. We therefore submit

that the traditional agree-execute architecture is not well-suited to supporting

multithreaded execution of requests. Instead, we propose a new execute-verify

architecture, which has replicas first executing requests in parallel, and then

trying to reach agreement; not on the order of requests, but on the outcome

82

of the execution, namely the states and responses produced by the replicas.

We describe the design and implementation of Eve, a replication library

designed for the execute-verify architecture. To allow this architecture to be

efficient in practice, Eve takes the following steps. To make divergence un-

common, it introduces the mixer, an application-specific heuristic that tries

to identify commutative requests. The mixer is not assumed to be perfect; it

may occasionally allow non-commutative requests to execute in parallel, caus-

ing replicas to diverge. To check for such divergence efficiently, Eve organizes

the application state in a Merkle tree, which allows for rapid and incremental

computation of a hash of the entire state. Finally, to efficiently recover from

divergence, Eve uses a versioned copy-on-write mechanism, allowing for rapid

rollback and incremental state transfer.

In Chapter 4, we rethink our replication mechanisms in environments

where services communicate with other services. We show that two popular

execution modes, sequential and speculative execution, raise performance and

consistency concerns, respectively, when we move away from the traditional

client-server model.

To address the performance limitations of sequential execution in this

setting, we apply the end-to-end argument to replication, no longer insisting

that the replication library provide linearizability of requests. Instead, we

propose deterministic pipelining, a simple alternative to sequential execution

that guarantees replica convergence while not being subject to the performance

limitations of sequential execution.

To allow the use of speculative execution without creating inconsis-

tencies among services, we propose two techniques that allow speculation to

be used within a service, albeit in a controlled manner. The first technique

is transparent, resolving speculation before it is exposed to another service,

while the second trades transparency for lower latency, ensuring that nested

requests explicitly denote the speculation they depend on.

Through a combination of a novel architecture, protocols and mech-

anisms, Adam and Eve offer replicated services the necessary tools to meet

83

the increasing demands of today’s computing world, in terms of both perfor-

mance and complexity. Just like their biblical namesakes, Adam and Eve are

expected to have descendants: there is still a long way to go and several prob-

lems to be addressed; chief among them is the challenge of providing efficient

replication solutions that handle all types of failures, without requiring manual

modification of the application code. This challenge is hard as it requires a

combination of independent execution and the ability to compare application

states in an automated fashion.

84

Bibliography

[1] M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter, and J. Wylie.

Fault-scalable Byzantine fault-tolerant services. In SOSP, October 2005.

[2] A. Adya, W. Bolosky, M. Castro, R. Chaiken, G. Cermak, J. Douceur,

J. Howell, J. Lorch, M. Theimer, and R. Wattenhofer. FARSITE: Feder-

ated, available, and reliable storage for an incompletely trusted environ-

ment. In Proc. 5th OSDI, pages 1–14, December 2002.

[3] Gautam Altekar and Ion Stoica. ODR: output-deterministic replay for

multicore debugging. In SOSP, 2009.

[4] Amazon. http://www.amazon.com.

[5] Rajagopal Ananthanarayanan, Venkatesh Basker, Sumit Das, Ashish

Gupta, Haifeng Jiang, Tianhao Qiu, Alexey Reznichenko, Deomid

Ryabkov, Manpreet Singh, and Shivakumar Venkataraman. Photon:

Fault-tolerant and scalable joining of continuous data streams. In SIG-

MOD, 2013.

[6] Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford. Efficient

system-enforced deterministic parallelism. In OSDI, 2010.

[7] Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and Dan Gross-

man. CoreDet: a compiler and runtime system for deterministic multi-

threaded execution. SIGARCH Comput. Archit. News, 2010.

85

[8] Tom Bergan, Joseph Devietti, Nicholas Hunt, and Luis Ceze. The deter-

ministic execution hammer: How well does it actually pound nails? In

2nd Workshop on Determinism and Correctness in Parallel Programming,

2011.

[9] Tom Bergan, Nicholas Hunt, Luis Ceze, and Steven D. Gribble. Deter-

ministic process groups in dOS. In OSDI, 2010.

[10] Eduardo Bezerra, Fernando Pedone, and Robbert van Renesse. Scalable

state-machine replication. In DSN, Atlanta, GA, June 2014.

[11] N. Budhijara, K. Marzullo, F. Schneider, and S. Toueg. The primary-

backup approach. In S. Mullender, editor, Distributed Systems. Addison-

Wesley, 2nd edition, 1993.

[12] Navin Budhiraja, Keith Marzullo, Fred B. Schneider, and Sam Toueg.

Primary-backup protocols: Lower bounds and optimal implementations.

In CDCCA, 1992.

[13] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and San-

tosh Nagarakatte. A randomized scheduler with probabilistic guarantees

of finding bugs. SIGARCH Comput. Archit. News, 38(1):167–178, March

2010.

[14] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance

and proactive recovery. ACM Trans. Comput. Syst., 2002.

[15] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Debo-

rah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and

Robert E. Gruber. Bigtable: A distributed storage system for structured

data. In OSDI, pages 15–15, 2006.

[16] A. Clement, M. Marchetti, E. Wong, L. Alvisi, and M. Dahlin. Making

Byzantine fault tolerant systems tolerate Byzantine faults. In NSDI, 2009.

86

[17] Allen Clement. UpRight Fault Tolerance. PhD thesis, The University of

Texas at Austin, December 2010.

[18] Allen Clement, Manos Kapritsos, Sangmin Lee, Yang Wang, Lorenzo

Alvisi, Mike Dahlin, and Taylor Riche. UpRight cluster services. In

SOSP, 2009.

[19] Eric C. Cooper. Replicated procedure call. In PODC, pages 220–232,

1984.

[20] Eric C. Cooper. Replicated distributed programs. In SOSP, pages 63–78,

1985.

[21] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Rodrigues, and

Liuba Shrira. HQ replication: A hybrid quorum protocol for Byzantine

fault tolerance. In OSDI, 2006.

[22] Heming Cui, Jingyue Wu, John Gallagher, Huayang Guo, and Junfeng

Yang. Efficient deterministic multithreading through schedule relaxation.

In SOSP, 2011.

[23] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and

A. Warfield. Remus: High availability via asynchronous virtual machine

replication. In NSDI, 2008.

[24] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data pro-

cessing on large clusters. Commun. ACM, 51(1):107–113, January 2008.

[25] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan

Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-

manian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s highly

available key-value store. SIGOPS Oper. Syst. Rev., 41(6):205–220, Oc-

tober 2007.

[26] Joseph Devietti, Brandon Lucia, Luis Ceze, and Mark Oskin. DMP:

deterministic shared memory multiprocessing. In ASPLOS, 2009.

87

[27] Joseph Devietti, Jacob Nelson, Tom Bergan, Luis Ceze, and Dan Gross-

man. RCDC: a relaxed consistency deterministic computer. In ASPLOS,

2011.

[28] George Dunlap, Dominic Lucchetti, Michael Fetterman, and Peter Chen.

Execution replay for multiprocessor virtual machines. In VEE, 2008.

[29] Jason Evans. A scalable concurrent malloc(3) implementation for

FreeBSD, April 2006.

[30] P. Fonseca, C. Li, and R. Rodrigues. Finding complex concurrency bugs

in large multi-threaded applications. In Eurosys, 2011.

[31] P. Fonseca, Cheng Li, V. Singhal, and R. Rodrigues. A study of the

internal and external effects of concurrency bugs. In DSN, 2010.

[32] Zhenyu Guo, Chuntao Hong, Mao Yang, Lidong Zhou, Li Zhuang, and

Dong Zhou. Rex: Replication at the speed of multi-core. In Eurosys,

2014.

[33] H2. The H2 home page. http://www.h2database.com.

[34] Hadoop. http://hadoop.apache.org/core/.

[35] Hbase. http://hbase.apache.org/.

[36] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correct-

ness condition for concurrent objects. ACM Trans. Program. Lang. Syst.,

12(3):463–492, 1990.

[37] D.R. Hower, P. Dudnik, M.D. Hill, and D.A. Wood. Calvin: Deterministic

or not? Free will to choose. In HPCA, 2011.

[38] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.

Zookeeper: wait-free coordination for internet-scale systems. In USENIX,

2010.

88

[39] Manos Kapritsos and Flavio P. Junqueira. Scalable agreement: Toward

ordering as a service. In HotDep, 2010.

[40] Manos Kapritsos, Yang Wang, Vivien Quema, Allen Clement, Lorenzo

Alvisi, and Mike Dahlin. All about Eve: Execute-verify replication for

multi-core servers. In OSDI, October 2012.

[41] Sangman Kim, Michael Z. Lee, Alan M. Dunn, Owen S. Hofmann, Xuan

Wang, Emmett Witchel, and Donald E. Porter. Improving server appli-

cations with system transactions. In EuroSys, 2012.

[42] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva:

Speculative Byzantine fault tolerance. In SOSP, 2007.

[43] R. Kotla, A. Clement, E. Wong, L. Alvisi, and M. Dahlin. Zyzzyva: specu-

lative byzantine fault tolerance. Communications of the ACM, November

2008.

[44] R. Kotla and M. Dahlin. High throughput Byzantine fault tolerance. In

DSN, 2004.

[45] L. Lamport. Time, clocks, and the ordering of events in a distributed

system. CACM, 1978.

[46] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst.,

1998.

[47] Leslie Lamport. Fast paxos. Distributed Computing, 19(2):79–103, 2006.

[48] Leslie Lamport and Mike Masa. Cheap paxos. In Proc. DSN-2004, pages

307–314, June 2004.

[49] Dongyoon Lee, Benjamin Wester, Kaushik Veeraraghavan, Satish

Narayanasamy, Peter M. Chen, and Jason Flinn. Respec: efficient on-

line multiprocessor replay via speculation and external determinism. In

ASPLOS, 2010.

89

[50] Joshua B. Leners, Hao Wu, Wei-Lun Hung, Marcos Kawazoe Aguilera,

and Michael Walfish. Detecting failures in distributed systems with the

Falcon spy network. In SOSP, 2011.

[51] Tongping Liu, Charlie Curtsinger, and Emery D. Berger. Dthreads: effi-

cient deterministic multithreading. In SOSP, 2011.

[52] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. Mencius: building

efficient replicated state machines for WANs. In OSDI, 2008.

[53] Parisa Jalili Marandi, Eduardo bezerra, and Fernando Pedone. Rethink-

ing state-machine replication for parallelism. In ICDCS, 2014.

[54] Parisa Jalili Marandi and Fernando Pedone. Optimistic parallel state-

machine replication. In SRDS, 2014.

[55] Parisa Jalili Marandi, Marco Primi, and Fernando Pedone. Multi-ring

paxos. In DSN, 2012.

[56] Parisa Jalili Marandi, Marco Primi, Nicholas Schiper, and Fernando Pe-

done. Ring paxos: A high-throughput atomic broadcast protocol. In

DSN, 2010.

[57] M. Musuvathi, S. Qadeer, T. Bell, G. Basier, P. Nainar, and I. Neamtiu.

Finding and reproducing Heisenbugs in concurrent programs. 2008.

[58] Josep Torrellas Pablo Montesinos, Luis Ceze. Delorean: Recording and

deterministically replaying shared-memory multiprocessor execution effi-

ciently. In ISCA, 2008.

[59] Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning Yin, Rini Kaushik,

Kyu H. Lee, and Shan Lu. PRES: probabilistic replay with execution

sketching on multiprocessor. In SOSP, 2009.

[60] D. Powell, M. Chéréque, and D. Drackley. Fault-tolerance in Delta-4.

ACM OSR, 1991.

90

[61] C. Reis, J. Dunagan, H. Wang, O. Dubrovsky, and S. Esmeir. Browser-

Shield: Vulnerability-driven filtering of dynamic HTML. In OSDI, 2006.

[62] Rodrigo Rodrigues, Miguel Castro, and Barbara Liskov. BASE: using

abstraction to improve fault tolerance. In SOSP, 2001.

[63] Michiel Ronsse and Koen De Bosschere. RecPlay: a fully integrated

practical record/replay system. ACM TCS, 1999.

[64] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in

system design. ACM Trans. Comput. Syst., 2(4):277–288, November 1984.

[65] F. B. Schneider. Implementing fault–tolerant services using the state ma-

chine approach: A tutorial. Computing Surveys, 22(3):299–319, Septem-

ber 1990.

[66] Fred B. Schneider. Implementing fault-tolerant services using the state

machine approach: a tutorial. ACM Computing Surveys, 1990.

[67] Sun Microsystems, Inc. Memory management in the Java HotSpot virtual

machine, April 2006.

[68] Alexander Thomson and Daniel J. Abadi. The case for determinism in

database systems. VLDB, 2010.

[69] TPC-W. Open-source TPC-W implementation.

http://pharm.ece.wisc.edu/tpcw.shtml.

[70] Transaction Processing Performance Council. The TPC-W home page.

http://www.tpc.org/tpcw.

[71] B. Vandiver, H. Balakrishnan, B. Liskov, and S. Madden. Tolerating

Byzantine faults in transaction processing systems using commit barrier

scheduling. In SOSP, 2007.

91

[72] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. Chen, J. Flinn, and

S. Narayanasamy. DoublePlay: parallelizing sequential logging and replay.

In ASPLOS, 2011.

[73] Yang Wang, Manos Kapritsos, Zuocheng Ren, Prince Mahajan, Jeevitha

Kirubanandam, Lorenzo Alvisi, and Mike Dahlin. Robustness in the Salus

scalable block store. In NSDI, pages 357–370, Lombard, IL, 2013.

[74] T. Wood, R. Singh, A. Venkataramani, P. Shenoy, and E. Cecchet. ZZ

and the art of practical BFT. In Eurosys, 2011.

[75] Min Xu, Rastislav Bodik, and Mark D. Hill. A “flight data recorder” for

enabling full-system multiprocessor deterministic replay. In ISCA, 2003.

[76] Min Xu, Vyacheslav Malyugin, Jeffrey Sheldon, Ganesh Venkitachalam,

and Boris Weissman. Retrace: Collecting execution trace with virtual

machine deterministic replay. In MOBS, 2007.

[77] Kiam S. Yap, Pankaj Jalote, and Satish K. Tripathi. Fault tolerant remote

procedure call. In ICDCS, pages 48–54, 1988.

[78] J. Yin, J-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin. Sepa-

rating agreement from execution for Byzantine fault tolerant services. In

SOSP, 2003.

[79] Wei Zhang, Chong Sun, and Shan Lu. Conmem: Detecting severe con-

currency bugs through an effect-oriented approach. In ASPLOS, pages

179–192, New York, NY, USA, 2010. ACM.

92

