57 research outputs found

    Global guidance for local generalization in model checking

    Get PDF
    SMT-based model checkers, especially IC3-style ones, are currently the most effective techniques for verification of infinite state systems. They infer global inductive invariants via local reasoning about a single step of the transition relation of a system, while employing SMT-based procedures, such as interpolation, to mitigate the limitations of local reasoning and allow for better generalization. Unfortunately, these mitigations intertwine model checking with heuristics of the underlying SMT-solver, negatively affecting stability of model checking. In this paper, we propose to tackle the limitations of locality in a systematic manner. We introduce explicit global guidance into the local reasoning performed by IC3-style algorithms. To this end, we extend the SMT-IC3 paradigm with three novel rules, designed to mitigate fundamental sources of failure that stem from locality. We instantiate these rules for Linear Integer Arithmetic and Linear Rational Aritmetic and implement them on top of Spacer solver in Z3. Our empirical results show that GSpacer, Spacer extended with global guidance, is significantly more effective than both Spacer and sole global reasoning, and, furthermore, is insensitive to interpolation

    Global Guidance for Local Generalization in Model Checking

    Get PDF
    SMT-based model checkers, especially IC3-style ones, are currently the most effective techniques for verification of infinite state systems. They infer global inductive invariants via local reasoning about a single step of the transition relation of a system, while employing SMT-based procedures, such as interpolation, to mitigate the limitations of local reasoning and allow for better generalization. Unfortunately, these mitigations intertwine model checking with heuristics of the underlying SMT-solver, negatively affecting stability of model checking. In this paper, we propose to tackle the limitations of locality in a systematic manner. We introduce explicit global guidance into the local reasoning performed by IC3-style algorithms. To this end, we extend the SMT-IC3 paradigm with three novel rules, designed to mitigate fundamental sources of failure that stem from locality. We instantiate these rules for the theory of Linear Integer Arithmetic and implement them on top of SPACER solver in Z3. Our empirical results show that GSPACER, SPACER extended with global guidance, is significantly more effective than both SPACER and sole global reasoning, and, furthermore, is insensitive to interpolation.Comment: Published in CAV 202

    Formally Verified Algorithmic Fairness using Information-Flow Tools (Extended Abstract)

    Get PDF
    This work presents results on the use of Information-Flow tools for the formal verification of algorithmic fairness properties. The problem of enforcing secure information-flow was originally studied in the context of information security: If secret information may “flow” through an algorithm in such a way that it can influence the program’s output, we consider that to be insecure information-flow as attackers could potentially observe (parts of) the secret. Due to its wide-spread use, there exist numerous tools for analyzing secure information-flow properties. Recent work showed that there exists a strong correspondence between secure information-flow and algorithmic fairness: If protected group attributes are treated as secret program inputs, then secure information-flow means that these “secret” attributes cannot influence the result of a program. We demonstrate that off-the-shelf tools for information-flow can be used to formally analyze algorithmic fairness properties including established notions such as (conditional) demographic parity as well as a new quantitative notion named fairness spread

    Improving dynamic code analysis by code abstraction

    Get PDF
    In this paper, our aim is to propose a model for code abstraction, based on abstract interpretation, allowing us to improve the precision of a recently proposed static analysis by abstract interpretation of dynamic languages. The problem we tackle here is that the analysis may add some spurious code to the string-to-execute abstract value and this code may need some abstract representations in order to make it analyzable. This is precisely what we propose here, where we drive the code abstraction by the analysis we have to perform

    Affine Disjunctive Invariant Generation with Farkas' Lemma

    Full text link
    Invariant generation is the classical problem that aims at automated generation of assertions that over-approximates the set of reachable program states in a program. We consider the problem of generating affine invariants over affine while loops (i.e., loops with affine loop guards, conditional branches and assignment statements), and explore the automated generation of disjunctive affine invariants. Disjunctive invariants are an important class of invariants that capture disjunctive features in programs such as multiple phases, transitions between different modes, etc., and are typically more precise than conjunctive invariants over programs with these features. To generate tight affine invariants, existing constraint-solving approaches have investigated the application of Farkas' Lemma to conjunctive affine invariant generation, but none of them considers disjunctive affine invariants

    Compass: {S}trong and Compositional Library Specifications in Relaxed Memory Separation Logic

    Get PDF

    Get rid of inline assembly through verification-oriented lifting

    Full text link
    Formal methods for software development have made great strides in the last two decades, to the point that their application in safety-critical embedded software is an undeniable success. Their extension to non-critical software is one of the notable forthcoming challenges. For example, C programmers regularly use inline assembly for low-level optimizations and system primitives. This usually results in driving state-of-the-art formal analyzers developed for C ineffective. We thus propose TInA, an automated, generic, trustable and verification-oriented lifting technique turning inline assembly into semantically equivalent C code, in order to take advantage of existing C analyzers. Extensive experiments on real-world C code with inline assembly (including GMP and ffmpeg) show the feasibility and benefits of TInA

    Synthesizing Specifications

    Full text link
    Every program should always be accompanied by a specification that describes important aspects of the code's behavior, but writing good specifications is often harder that writing the code itself. This paper addresses the problem of synthesizing specifications automatically. Our method takes as input (i) a set of function definitions, and (ii) a domain-specific language L in which the extracted properties are to be expressed. It outputs a set of properties--expressed in L--that describe the behavior of functions. Each of the produced property is a best L-property for signature: there is no other L-property for signature that is strictly more precise. Furthermore, the set is exhaustive: no more L-properties can be added to it to make the conjunction more precise. We implemented our method in a tool, spyro. When given the reference implementation for a variety of SyGuS and Synquid synthesis benchmarks, spyro often synthesized properties that that matched the original specification provided in the synthesis benchmark
    corecore