5 research outputs found

    Data-fused urban mobility applications for smart cities

    Get PDF
    Though vehicles are becoming more advanced with added safety feature technology, we must still rely on our own instincts and senses to make decisions. This thesis presents two applications that can be utilized by drivers, passengers, or pedestrians and allow a wider range of visibility during commutes. The first application uses the concept of see-through technology to assist the driver with a real-time augmented view of a traffic scene that in reality may be blocked by the vehicle in front. The second application presents a mobile application that utilizes two sources to gather the user\u27s location information, one using absolute location from a Global Positioning System (GPS) enabled device and the other from merging the concepts of computer vision, object detection, and mono-vision depth calculation, and place each instance of an identified object on the mapping application. Currently, mapping items such as stores, accidents, and traffic conditions are very common, but this application takes into account the location of individual users to give a holistic view of people instead of places

    Potential of Connected Fully Autonomous Vehicles in Reducing Congestion and Associated Carbon Emissions

    Get PDF
    Congestion is an ongoing problem for many urban centres worldwide (such as London), leading to excessive delays, noise and air pollution, frustrated drivers, and high energy consumption. The carbon footprint of conventional transport systems can be high as a result and transport is among the highest contributors of greenhouse gas emissions. Therefore, with the growing interest in developing connected fully autonomous vehicles (ConFAVs), there is a pressing need to consider their effects within the congested urban setting. To address this, the current research study was designed to investigate the potential for ConFAVs in providing a sustainable transport solution. During this research, a simulation model was developed, calibrated, and validated using field data collected from several sites in East London, using the graphical user interface (GUI) simulation software PTV VISSIM to simulate the proposed driving and car following behaviour, which included the platooning of these ConFAVs, to assess how they could improve the level of service of the roads. Using the new model, this research addresses the shortcomings of two other adaptations of the Wiedemann 99 car-following models by changing the ConFAV’s behaviour to be more cautious when travelling behind a human driven vehicle, and less cautious when behind another ConFAV. As little is known about the transitional period from zero autonomy to full autonomy on the already congested road network, due to the fact that these vehicles are typically tested in small numbers (often one at a time in a controlled environment), the present research study introduced ConFAVs to the simulated network gradually and in large numbers at 20% intervals (namely 0% where there are no ConFAVs, 20%, 40%, 60%, 80%, and finally 100% where all vehicles within the network were ConFAVs). The average delays and subsequent level of service for the roads within the networks were then assessed against each ConFAV penetration level. This helped understand how the network’s efficiency changes when the number of ConFAVs increases, and the potential benefits for these self-driving vehicles on congestion and the ensuing greenhouse gas emissions. The model showed that a reduction in delay of up to 100% can be achieved by introducing ConFAVs, which translates to a significant reduction in greenhouse gas emissions. This, coupled with the fact that ConFAVs are predominantly electric, points to a future sustainable road transport system. The primary purpose of this research would be to investigate the potential of ConFAVs in reducing traffic congestion and, as a result, greenhouse gas emissions

    Scalable Map Information Dissemination for Connected and Automated Vehicle Systems

    Get PDF
    Situational awareness in connected and automated vehicle (CAV) systems becomes particularly challenging in the presence of non-line of sight objects and/or objects beyond the sensing range of local onboard sensors. Despite the fact that fully autonomous driving requires the use of multiple redundant sensor systems, primarily including camera, radar, and LiDAR, the non-line of sight object detection problem still persists due to the inherent limitations of those sensing techniques. To tackle this challenge, the inter-vehicle communication system is envisioned that allows vehicles to exchange self-status updates aiming to extend their effective field of view and thus compensate for the limitations of the vehicle tracking subsystem that relies substantially on onboard sensing devices. Tracking capability in such systems can be further improved through the cooperative sharing of locally created map data instead of transmitting only self-update messages containing core basic safety message (BSM) data. In the cooperative sharing of safety messages, it is imperative to have a scalable communication protocol to ensure optimal use of the communication channel. This dissertation contributes to the analysis of the scalability issue in vehicle-to-everything (V2X) communication and then addresses the range issue of situational awareness in CAV systems by proposing a content-adaptive V2X communication architecture. To that end, we first analyze the BSM scheduling protocol standardized in the SAE J2945/1 and present large-scale scalability results obtained from a high-fidelity simulation platform to demonstrate the protocol\u27s efficacy to address the scalability issues in V2X communication. By employing a distributed opportunistic approach, the SAE J2945/1 congestion control algorithm keeps the overall offered channel load within an optimal operating range, while meeting the minimum tracking requirements set forth by upper-layer applications. This scheduling protocol allows event-triggered and vehicle-dynamics driven message transmits that further the situational awareness in a cooperative V2X context. Presented validation results of the congestion control algorithm include position tracking errors as the performance measure, with the age of communicated information as the evaluation measure. In addition, we examine the optimality of the default settings of the congestion control parameters. Comprehensive analysis and trade-off study of the control parameters reveal some areas of improvement to further the algorithm\u27s efficacy. Motivated by the effectiveness of channel congestion control mechanism, we further investigate message content and length adaptations, together with transmit rate control. Reasonably, the content of the exchanged information has a significant impact on the map accuracy in cooperative driving systems. We investigate different content control schemes for a communication architecture aimed at map sharing and evaluate their performance in terms of position tracking error. This dissertation determines that message content should be concentrated to mapped objects that are located farther away from the sender to the edge of the local sensor range. This dissertation also finds that optimized combination of message length and transmit rate ensures the optimal channel utilization for cooperative vehicular communication, which in turn improves the situational awareness of the whole system
    corecore