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ABSTRACT

This thesis presents two applications that can be utilized by drivers, passengers, or 

pedestrians and allow a wider range of visibility during commutes. The first application uses the 

concept of see-through technology to assist the driver with a real-time augmented view of a 

traffic scene that in reality may be blocked by the vehicle in front. The second application 

presents a mobile application that uses two sources to gather location information, one using 

absolute location from a Global Positioning System (GPS) enabled device and the other from 

merging the concepts of computer vision, object detection, and mono-vision depth calculation, 

and place each instance of an identified object on the mapping application. Currently, mapping 

items such as stores, acci-dents, and traffic conditions are very common, but this application 

takes into account the location of individual users to give a holistic view of people instead of 

places.
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CHAPTER 1

INTRODUCTION

1.1 Motivation for Thesis Applications

According to a report by the National Safety Council [1], motor vehicle incidents took 

the life of 40,100 individuals in 2017, an average increase of 5 percent from 2015 and 2016. In 

addition to these deaths, approximately 4.57 million people required medical attention due to 

the severity of their injuries, costing approximately $413.8 billion in total. To break down the 

severity of motor vehicle incidents even further, the National Highway Traffic Safety 

Administration’s National Center for Statistics and Analysis released a report in February 2018 

[2] identifying motor vehicle traffic crashes as a leading cause of death in the United States in 

2015. Among newborns to age 64, motor vehicle crashes are listed at the top ten leading causes 

of death; the number one cause for ages 8-24. Motor vehicle crashes are also listed at the top two 

leading causes of unintentional injury and death across all ages; the number one for ages 4-24.

The statistics shown are hard to ignore, and attempts have been made to decrease 

these numbers such as automatic braking, backup cameras, forward collision warning, blind 

spot assis-tance, and lane change assist [3]. Many of these technologies are now available by 

default on newer vehicle models, but this movement toward advanced safety features should 

not exclude those who own vehicles without these features. This thesis will discuss two 

applications using Vehicle-to-In-frastructure (V2I) and Vehicle-to-Vehicle (V2V) 

communication to help bridge the gap between these two generations of vehicles and 

improve the safety of individuals on the roadways with or without autonomous driving 

features. V2I and V2V communication is commonly included in the concept of Vehicle-to-

Everything (V2X).
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The move toward fully autonomous vehicles has gained momentum within the past

decade but has not yet fully reached level 4 full autonomy; Figure 1.1 shows the five levels of

autonomy. As the journey continues, new challenges will be faced and new solutions must be

found. Currently companies such as Uber, Waymo, and Tesla has reached level 3 autonomy in

which there is an autonomous mode, but the driver must take control of the vehicle in an

emergency situation or when they choose [4].

Figure 1.1 Levels of autonomy for vehicles

This thesis is divided into multiple chapters to assist the reader’s understanding of the

individual components that were involved in this research as well as to be able to see how each

topic gradually affects the next. Chapter 2 will describe the testbed used to test our

applications. Chapters 3 and 4 will each present one of the applications created during this

research period, including real-world use cases for each application in each of the results

section. Finally, Chapter 5 will conclude this thesis with my final thoughts about the

experiments performed and future research that could be done using these applications or the

technology utilized in these applications.
2



1.2 Background Information

To better understand the content presented in this thesis, this section will explain

key concepts used during the development of the applications presented in the next

chapters. The primary concepts that will be covered in this section are: computer vision,

object recognition, convolutional neural networks (CNN), and You Only Look Once

(YOLO).

1.2.1 Computer Vision and Object Recognition

Computer vision is the process of interpreting and extracting information from a still

image or video feed to achieve a particular goal. Just as humans use their eyes to obtain

information from the world around them, computers can obtain information with the use of a

camera and an algorithm. The algorithm is designed to process the image by “looking” at the

image and extracting the necessary information to achieve the user’s goal [5]. Unfortunately,

the computer does not see the objects in an image as separate object forms such as a cat, dog,

etc. Instead, the image is converted to greyscale, analyzed, and converted back to a red, blue,

and green (RGB) image to more easily distinguish key differences between pixel values of the

greyscale image. During the greyscale period, the computer sees the individual pixels that make

up the image that range from 0 to 255 depending on the intensity of the pixel (see Figure 1.1).

These values are used as building blocks for the computer to compare different sections of an

image to find similarities between the input image and the image matrix data stored in its

database from previously input images for the training set, which will be discussed further in

the next section. By doing this, the computer can form a recognizable image comparable to the

image we see as humans. This is the basis of how we are using computer vision as a primary tool

for our applications. By using the information gained by the computer vision process,

individuals can create algorithms to train the machine to recognize and identify an object, also

known as object detection or object recognition, within an image [6–10]. Examples of this

identification are shown in Figure 1.2 and Figure 1.3.
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Object recognition is the process of identifying objects with the use of pattern recognition 

and matching algorithms based on unique features in an image or video [11]. A few 

feature-based matching algorithms include: histogram of oriented gradients (HOG) [12], 

Haar cascades [13], and canny edge detection [14].

Figure 1.2 Excerpt of a pixel matrix from an image

Computer vision and object recognition areused across many disciplines. In one experi-

ment, Töreyin, et al. created an algorithm to detect fire and flames in videos and real-time [15], 

Other research groups are using computer vision to detect the use of detecting falsified pharma-

ceuticals [16], the overall quality of food products [17],  and  for  various  applications  for  facial

4



recognition [18–20]. The examples listed are only a few instances in which computer vision has been

used. In recent years, one of the largest uses of computer vision has been in the area of roadway and

urban safety. By using computer vision in combination with an object detection al-gorithm,

individuals have been researching how to better detect pedestrians, vehicles, and objects on the

roadway to lessen the occurrence of roadway accidents [6,8]. We have combined these two concepts

to create an application to assist in vehicular and pedestrian safety called see-through technology.

The next chapter will explain more about our version of see-through technology and how it is

different from the version we found during our literature review on the topic.

1.2.2 Convolution Neural Networks

Convolutional neural networks (CNNs) are used as a more automatic feature recognition in

comparison to the previously mentioned feature-based matching techniques. CNNs are trained by

using hundreds to thousands of images that are input into an algorithm to find the primary object in

the foreground of the image. When training the network, images containing the object and images

not containing the object are entered into the algorithm. The algorithm then learns to recognize the

object of interest in the foreground apart from the natural scene of the background. When the image

containing the object is entered, it is entered with a label created by a human telling the computer

what the object is. Once the network is trained with hundreds to thousands of labeled images, a test

image can be put through the network to test the accuracy of the model.

When the image enters the CNN algorithm, the image appears to the computer as a 2-

dimensional (2D) matrix if the image is in greyscale or a 3-dimensional (3D) matrix if the image uses

RGB channels. In the previous section on computer vision, Figure 1.2 shows an example of a 2D

matrix because the image used was converted to greyscale before it was returned as a RGB image.

At the beginning of the identification process, the algorithm will scan through the image section by

section and learn key features of the image based on the distinct features of the object, such as edges.

By analyzing the image in sections, usually as a matrix, the computer has a better chance of

correctly identifying the attributes it is searching for, such as an eye to recognize a face
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or a tail for an animal. By increasing the matrix from a 3x3 to a 4x4 to analyze more of the 

image at once, the process could be sped up, but the accuracy may decrease due overlooking 

details for the sake of time. Conversely, if the sliding window matrix was reduced to a 1x1 or 

2x2 matrix, it could provide more accuracy in identification but cause the process to be longer 

due to having a smaller analysis area compared to the size of the overall image. Once the model 

is trained, the model will be able to distinguish the key features of the object from the 

background based on the value of the pixels in the matrix. When separating the interpretation 

of the foreground and background, the background will have a lower pixel value, if not a value 

of zero, and the foreground that contains a recognized image from its model will have a higher 

pixel value based on the intensity of the grey or RGB value depending on the type of color 

channel used. At the end of this algorithm, the features of the object will be determined by the 

largest numbers of pixel values in the matrix. The algorithm will then create probabilities based 

on the key features from the test image and the images containing an object and label in the 

model to determine which object label matches the input image the most. The one that has the 

highest probability will be selected and output as what item is detected in the image [21–24].

(a) Identification from back of the vehicle (b) Identification from side of the vehicle

Figure 1.3 Object detection and recognition using computer vision
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For a more human-relatable example of the process of a CNN, consider the following: a 

person’s electricity in their home goes out during the night and they need to find the electrical 

switch to turn their lights back on. They cannot see, but if they have a light, they can recognize 

certain objects to identify their location and navigate through their home. Using a flashlight, 

they shine the light from side to side in front of them to see different features of the room. In one 

section they see a desk, in the next a chest of drawers, and so on. Even though the light can only 

shine on a small section, the person is able to recognize and store the features of the room they 

had seen and identified in a previous section to piece each scene together and understand where 

they are. A CNN works in a similar way but using more mathematical values and a database of 

stored images, similar to the human brain storing images to identify objects or scenery at a later 

date.

Figure 1.3 shows an example of CNNs in action. The figure displays the CNN’s ability 

to identify a vehicle from the rear, which will be the point-of-view primarily used during the 

identification process for the first application, using a mounted camera on a vehicle’s windshield. 

Figure 1.3 also displays the CNN’s ability to identify a vehicle from the side; this viewpoint 

allows the algorithm to seamlessly continue while the vehicles are making a turn if the driver is 

making the same turn as the vehicle in front. If the vehicle in front makes a turn while the driver 

continues straight, or the front vehicle moves out of the camera’s view, the algorithm will simply 

redirect its focus onto the next vehicle matching the parameters of the see-through algorithm 

that will be explained in the next chapter.

Figure 1.3 also shows the results of the identification process by displaying a bounding 

box around the identified object. The bounding box placed around the vehicle displays a rough 

parameter surrounding the vehicle and gives the coordinates to use when a developer needs to 

manipulate or reference that particular section of the detected object. The bounding box also 

plays a role visually by giving the user a specific place on the video to focus and find the 

necessary information instead of overloading their brain by scanning the image to find where 

they need to focus.
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Figure 1.4 CNN YOLO process

1.2.3 You Only Look Once (YOLO)

You Only Look Once (YOLO) is an open source CNN that simultaneously predicts 

multiple object identifying probabilities while creating bounding boxes around the identified 

object, as seen in Figure 1.4. YOLO processes and analyzes frames at 45 frames per second (fps) 

with a relatively high accuracy. The original YOLO network is made up of 24 convolutional 

layers followed by 2 fully connected layers and trained using the ImageNet 1000-class 

competition. Though YOLO is a powerful CNN, it has limitations. The creators of YOLO 

mention in their scientific paper that their model struggles picking up on small objects that 

appear in groups and generalize objects in new or unusual aspect ratios or configurations [7].

1.2.4 Related Works

Given that this thesis covers two separate projects, related work attributed to each 

project will be discussed in their respective chapter.
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CHAPTER 2

TESTBED

Figure 2.1 UTC’s wireless testbed on 5th street from Google Maps

In order to test our applications in a real-world scenario, a testing location was 

needed. In 2017, a local testbed was created along one of the most densely populated streets 

at the University of Tennessee at Chattanooga (UTC), 5th Street. This chapter presents the 

details of the 5th Street testbed, including the hardware that was placed along the street to 

provide a wireless connection between the clients and the server.

9



Figure 2.1 shows a Google Maps screenshot of 5th Street at UTC with the testbed area 

highlighted. The testbed extends approximately 1,060 feet (323 meters) along 5th Street. 

Along the testbed, wireless access points (AP’s) were mounted on five electrical poles. Each of 

the access points were distributed on the same side of the street and approximately 3.3 meters 

from the ground. The access points used were able to utilize either a 2.4Ghz or 5Ghz frequency. 

Each of the access points were placed approximately 120 meters apart, which allowed for an 

adequate range for communication as well as the ability to overlap and allow a seamless 

handover to each other AP’s during experimentation. Dedicated short range communication 

(DSRC) was tested during our research to determine whether it would be beneficial to our 

applications or not. From our findings, we determined that the range was too small for the type 

of data we were sending and receiving via V2V and V2I. Therefore, we chose to use the IEEE 

802.11ac standard 5Ghz frequency to allow for a faster data transfer rate compared to 2.4Ghz 

that will be needed to ensure a near real-time exchange of data for each client. Each of the AP’s 

are connected to Chattanooga’s Electric Power Board (EPB)’s fiber optic internet so that a 

higher bandwidth and transfer speed can be achieved when transferring the data from the 

client to the server across components and vice versa.

One feature that was recently added to the testbed was a 1080p infrastructure 

camera to assist in the localization and mapping of individuals who are not using the 

mobile version of the mapping application which will be presented later in this paper. To 

help ensure the privacy of detected individuals, the camera does not record or save any data; 

it is only for real-time streaming and analysis purposes. A graphical representation of the 

testbed can be seen in Figure 2.2.
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Figure 2.2 Graphical representation of UTC’s 5th Street testbed
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CHAPTER 3

SEE-THROUGH TECHNOLOGY

3.1 Introduction

The concept of see-through is not new, but previous attempts at making the concept a 

reality was either theoretical or was accomplished using stereo-vision, such as research from [8, 

25, 26, 26]. See-through is the process of overlapping and stitching, or combining, images from 

one or more cameras onto one or more related images from another camera by transferring the 

images through V2X communication, which currently includes V2V and V2I. The application 

pre-sented here is able to achieve see-through using mono-vision, a single camera view, on a 

moving vehicle compared to stereo-vision. The application itself enables the driver to essentially 

"see through" the vehicle in f ront and give an extended view of the driver’s immediate 

environment while proceeding forward in their vehicle. This chapter will present the motivation 

behind at-tempting the see-through application specifically, the overall setup for the 

experiments to test this application, results from our experiments, and challenges we faced 

during the development process.

3.2 Motivation for the See-Through Technology Application

From calls, texts, e-mails, and even mobile games, distracted driving is prevalent on 

roadways today. One of the simplest solutions to decrease distracted driving and increase driver 

awareness would be to stop using mobile phones while driving, but in reality, a request such as 

this seems highly unlikely and difficult to be effectively enforced. In 2015, the National Highway 

Traffic  Safety  Administration’s  National  Center  f or  Statistics  and  Analysis  published  a
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report  of statistical analysis related to distracted driving [27]. It was reported that of the 32,166 

vehicle crashes that occurred, 3,196 (10 percent) were distraction-affected. Of those 3,196 

distracted-based crashes, 442 were documented due to the use of mobile phones. The same 

document also reports that of the 35,092 fatalities reported, 3,477 (10 percent) were distraction-

affected and 476 were documented due to the use of mobile phones.

According to the Centers of Disease Control and Prevention [28], there are three 

categories of distracted driving: visual, manual, and cognitive. Visual distractions occur during 

an event where the driver takes their eyes off of the road, manual distractions occur when the 

driver takes their hand(s) off of the steering wheel, and cognitive distractions when the driver 

takes  their  mind  off  of  the  actions  taking  place  on  the  roadway around them. Any one of these

distractions can increase the potential for an incident and combining more than one can increase the 

rate even more. A recent campaign to raise awareness and attempt to decrease distracted driving is 

the “It Can Wait” campaign commissioned by AT&T [29]. To date, the campaign has had 

approximately 21 million pledges to stop using smartphones while driving. Another campaign 

created by the Ad Council and National Highway Traffic and Safety Administration (NHTSA) is 

“Stop Texts. Stop Wrecks” [30]. As the name states, the main purpose of this campaign is used to 

promote awareness of the dangers of texting and driving. In relation to the three types of distracted 

driving listed above, texting is one of the most dangerous because it combines all three of the 

distracted driving categories. Thinking about the process of texting and driving, the driver takes 

their eyes off the road and hand off the steering wheel to access the text and begins using their 

thought process to perform these tasks plus the action of reading and trying to comprehend the 

message. The texting example combined each of the three driving distraction categories into the 1-2 

second of reading the text; it did not include the extra time it would take for the driver to respond to 

the text. Triggs and Harris [31] tested the reaction times of drivers in different simulations. According 

to their findings of the 85th percentile reaction time values, the range of driver reaction times were 

between 1.26 and 3.6 seconds, varying with the type of simulation. Combining the time used to 

perform a simple task such as texting with a value from the range of reaction times concluded  by

13



Triggs and Harris, the driver could potentially be distracted from their driving environment 

for at least three to ten seconds. On roadways, this time could result in a collision that could 

potentially injure the driver or others.

In an effort to improve safety in various situations, such as distracted driving, 

researchers have produced many publications and applications featuring the concept of 

computer vision (de-tailed in section 1.2) [7, 8, 26, 32–35]. Being able to incorporate a concept 

such as this can rev-olutionize the safety software we have today. With the combination of 

computer vision and the CNNs used during the analysis process, we can gain time and accuracy 

while identifying objects. Imagine if this combination was utilized in a way to allow an extra 

two to three seconds of added time between a driver being made aware of an obstacle and 

having that extra time to react to the situation. The driver may be able to think more clearly 

about what actions to take to avoid or prepare for the obstacle; this can also create a buffer 

between a distracted driver and the real-time action they need to take pertaining to the 

obstacle ahead. One such way to give the driver a larger time span to react to an obstacle is by 

utilizing the concepts of object detection and computer vision to create a see-through 

application.

In the next section, the goal and concept of see-through technology using V2X 

communi-cation is explored in the context of improving driver awareness; one with the use 

of V2I and V2V communication and one with only V2V communication. The ultimate 

goal of the experiments was to allow the rear vehicle to be able to “see-through” the 

middle vehicle (see Figure 3.1) and increase the driver’s knowledge of the overall driving 

environment.

3.3 See-Through Technology Experiments

3.3.1 Vehicular Setup

In this subsection, two experiments pertaining to see-through will be discussed. The 

first  will  use  V2I  communication  by  utilizing  the 5th  Street testbed at UTC, as described in 
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3.3.2 Experiment 1: V2I

While the imaging program was running, each of the cameras captured a continuous

series of images and sent them to an offsite server via the connection between the clients and

APs along the street. The server then incorporates its graphics processing unit (GPU) for

the use of multithreading to analyze each of the image feeds simultaneously to check for any

objects matching or related to the image data found in the CNN model. If there is an

object found, the program will create a visible bounding box around the object for the driver’s 

visual  reference.  If  the  rear vehicle is close enough to the middle vehicle for the see-through to 
15

Chapter 2, to send and receive video streams. To achieve see-through during these experiments, 

three vehicles were aligned linearly along 5th Street so that each were being visually blocked by 

the vehicle in front. The second will solely be using V2V wireless communication via APs 

placed within the middle vehicle. A graphical representation of this setup can be found in

Figure 3.1. The same vehicular setup was used during the first V2X experiment, excluding

the AP located within the middle vehicle.

Figure 3.1 Vehicular setup for V2V and V2I see-through experiments



be activated, the server will overlay the image from the middle vehicle onto the center of the 

object bounding box detected by the rear vehicle. The overlapping of the images result in a

continuous image feed as long as the rear vehicle is behind the vehicle it is connected to via

the infrastructure connection. This continuous overlapping allows the rear vehicle to “see-

through” the middle car and expand the driver’s field of view. Figure 3.2 shows a

representation of the image transfer and overlaying process. At a larger scale with multiple

vehicles with the capability to use this application, see-through would not activate until it is

close enough to connect to the vehicle in front. Ideally, this distance would be approximately

two car lengths away to give the driver enough time to acknowledge the new visual without

being too close to the vehicle in front to cause an accident if the vehicle in front was to

suddenly stop.

Ultimately, with the combination of the wireless communication connected to fiber

and the enhancement of the see-through algorithm used, the overall latency was one second

or less. Figure 3.3 shows images taken from a recorded video of our experiment from the

view of the rear car. These images would be for the use of the driver to broaden their field of

vision to better understand their full driving environment.

To minimize the distraction of the see-through visualization presented, the feature

itself could be viewed as an optional assist feature using a visual or auditory alert when the

driver should be notified. The visualization would not be active throughout the duration of

driving time, but it could be activated when the driver is within a set range that was

previously mentioned between itself and the vehicle in front. This range can be a manually

set distance or activated once the vehicles have been wirelessly connected and ready to

receive data from each other. Other than the driver needing to understand how to interpret

the image shown, the see-through component would be completely passive and would need

no further interaction from the user once activated.
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Figure 3.2 Graphical representation of image transfer and processing

3.3.3 Experiment 2: V2V

To achieve the goal of identifying the vehicle in front of the driver, our algorithm

consisted of a thirty-two-layer pre-trained CNN called YOLO, explained in further detail in

Chapter 1, was used to identify the objects of interest in the images. In the case of this

experiment the objects of interest were vehicles. To further explore the concept of see-through

technology for the use in roadway safety, the differences in a driver’s ability to see an object in

their field of vision with and without the see-through algorithm presented was tested. The

likelihood of continuously being located in an area with APs connected to fiber is not always

plausible. To account for this, the next section describes a second experiment where APs

connected to fiber and a group of APs for separate connections are unavailable. In this

experiment V2V communication is the focus of the wireless communication system.
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Figure 3.3 Example of see-through algorithm from rear vehicle’s perspective

In the event of no V2I access points, how would see-through technology still benefit

driver awareness while using V2V communication instead of both V2V and V2I

communication? This experiment takes this question into account as well the case of having no

offsite server for collecting, processing, and returning the images with a multi-threaded system.

The image processing for this experiment was done by the laptop that is receiving the image

from the vehicle in front; in this case, the rear vehicle acts as the server and processes the

images from the front vehicle. This experiment was performed to examine the potential benefits

see-through can give drivers in the case of V2V communication and local computation only.

The vehicular setup for this experiment is similar to that of experiment one, but

instead of using three vehicles for the experiment, only two were used. See Figure 3.1 for a

representation of the vehicular setup involving three vehicles. A wireless router
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was placed on the rear vehicle to allow a local connection by the laptops within the vehicles.

The router was set to a 5Ghz frequency to allow improved communication between the

vehicles and laptops. Using 5Ghz provided sufficient bandwidth to support continuous transfer

of the data in the case of an object blocking the direct path between the router and the laptop

from the front vehicle. The see-through algorithm of capturing the image stream from both

vehicles, analyzing each of them with YOLO, and sending the overlapped image to the rear

vehicle (depicted in Figure 3.2) used was the same algorithm used in experiment one, with the

exception of sending the collected images to the offsite server. Instead, a laptop placed in two

vehicles were running a custom-written Python script to capture video with the current time

based of the local time from the operating systems. After these videos were captured, they were

later processed using the same see-through algorithm as experiment one. Compared to

experiment one, this process was done without multithreading and also used a less powerful

GPU than experiment one. Though the GPU was less powerful, similar results in time

differences between the frame in which the rear vehicle can see the obstacle in its frame versus

the see-through frame was found. In the next section, we will take a look at the results from

each experiment.

3.4 Challenges Faced During the See-Through Experiments

During the development of our see-through algorithm we face a few challenges:

1. The first challenge we faced was a result of YOLO detecting and identifying any object in

the frame that did not relate to an object we were interested in visually identifying with a

bounding box. Before resolving this, YOLO would create a bounding box around objects we

had no use for such as boats, potted plants, etc. instead of only vehicles and pedestrians. To

solve this issue, we edited the labels in the source code to only detect objects related to our

experiment such as vehicles and pedestrians rather than sofas, televisions, etc.

2. The second challenge  we  faced  was  YOLO  detecting  multiple  instances  of  the identified
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objects. In a real-world scenario this could potentially be the appropriate action needed,

depending on the application, but for our purposes we only needed to detect the vehicle

directly in front of the rear vehicle. To resolve this, we set a margin within the image frame so

that YOLO would only detect objects within the set frame. Once the program was running

with the new specifications, we were able to successfully detect the single vehicle in front.

3. The  third  challenge  we  faced  was  regarding  latency.   Prior  to  this  change,  we  were

processing each image that was received from both vehicles one frame at a time; first the

middle vehicle’s image and then the rear vehicle’s image. This caused a large latency time

between the video feed that was returned to the rear vehicle and the real-time feed that was

being sent to be processed. To resolve this, we implemented a multi-threading aspect to our

server. This allowed us to process both vehicles’ image feed simultaneously and decreased the

latency of the output to under 2 seconds. While the video feeds were being processed, we

used time stamps based on the time on the client machine to be sure that the video times

were synchronized. If the time stamps were one second older than the current time, they

were discarded. By discarding the frames that were older than one second, this assured that

we would be getting the appropriate frame for object analysis. Once we implemented this

process on 5th Street where fiber was available, the latency and ability to keep the videos

synchronized at the analysis time was enhanced even more.

3.5 Results and Discussion

The following results are divided into three sections based on overall data collected

through-out the development process and results related to each see-through experiment

performed. The first section of results will be pertaining to experiment one. The second section

of results will be pertaining to experiment two. The experiments are divided into two separate

sections to compare each case individually. In the Discussion section, all scenarios

presented in this section will be discussed as a whole.    In each results section, the results shown
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were implemented and recorded by screen recording software in real-time. The times states in 

the descriptions are based on the time that particular event appeared in the frame compared

to the overall time of the recorded video.

3.5.1 Image Transfer Delays Using YOLO

Figure 3.4 Table screenshot of time taken to fully execute the image transfer

During the development process of the see-through application, we performed an

analysis of the time to determine the time delay during the image transfer from vehicle to

vehicle. To find this time, we used a V2V style connection and sent a series of sequential frames

from one vehicle to the other that were sent through the YOLO pipeline to detect objects in the

frame. The data set comprised of 450 frames transferred at the 5GHz frequency. To get a better

understanding the maximum range at which we could effectively transfer the images, we ran an

image transfer test at 25ft (7.62m) and 50ft (15.24m). To record the times, we added a line of

code into our program
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to begin and end a timer at the beginning and end of the image transfer code and also around the

section where YOLO was processing the image. Figure 3.4 shows the times for the first 30 frames

with each column labeled based on the times taken. The times shown are the time taken in

milliseconds at the arrival time of the frame post-processing to the rear vehicle and the time

taken in milliseconds for YOLO to complete its analysis at 25ft and 50ft. The final two columns

show the combination of the two times at each distance to provide an overall delay time from

the beginning to end of the image transfer process. The average time found from all 450 frames

was approximately 696ms at 25ft and 733ms at 50ft (see Table 3.1). A charted result from the

overall delay time over all 450 frames can be seen in Figure 3.5, where the x-axis represents the

number of frames and the y-axis represents the delay in milliseconds; at both distances, the

delay was less than one second.

Table 3.1 Average Time for Image Transfer with YOLO

Distance Between Vehicles Average Time for Complete Transfer (ms)
25 Feet 696.42
50 Feet 733.07

In Figure 3.6, a scenario of a lane blocked by another vehicle is shown. In this case, the

lane was blocked by a truck owned by an electrical company. In the recorded video, the event of

the truck appearing within the rear vehicle frame was at 7:14 (Figure 3.6 b) whereas with see-

through in effect, the driver of the rear vehicle was able to determine something was blocking its

lane at 7:11 (Figure 3.6 a); this is a 3 second time difference. If the rear vehicle had been driving

too close to the vehicle in front or had see-through not been activated, the driver of the rear

vehicle would have had less time to react to the situation and potentially have caused an

accident that would have endangered themselves and the workers that were in their line of

sight. The extra 3 seconds given to the driver could have been the difference between

endangering lives and the ability to make a decision to keep all parties safe.
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Figure 3.5 Line graph of time taken to fully execute the image transfer

3.5.2 Experiment 1 Results

Blocked Lane

Another observation based on this scenario is that by using see-through not only 

did the driver of the rear vehicle gain an early view of the electrical workers, they also 

gained a view of the lane to the left of the truck that would have been blocked by the 

vehicle in front had see-through not been available. Having this extended view before the 

truck was within the rear vehicle’s viewpoint allowed the rear vehicle to smoothly pass the 

truck along with the car in front instead of having to stop to make sure no vehicles were 

driving in the opposite direction toward them before proceeding.
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3.5.3 Experiment 2 Results

Road Debris

In Figure 3.7, an object was placed in the center of a parking lot lane. To avoid this

object, each of the vehicles would have had to shift to the opposite side of the lane or stop,

in the event of a vehicle traveling in the opposite direction in the same lane. In the

recorded video, the time at which the object was in the frame of the rear vehicle without

see-through was at 0:32 (Figure 3.7 b). The time at which the object was in the frame of

the rear vehicle with see-through was at 0:30 (Figure 3.7 a). This gave the driver of the

rear vehicle an extra two seconds to decide what action to take to avoid the object. As

mentioned in a previous example where an electrical company’s truck was blocking the lane,

the see-through capability also gave the driver of the rear vehicle an opportunity to see

whether another vehicle was driving towards them while the vehicle in front is actively

avoiding the object by switching lanes and act accordingly.

Pedestrian Crossing

In many cases of a pedestrian crossing the street, the vehicle furthest away will be able

to see the pedestrian before the vehicle in front of them, but what if they are distracted by

something? What if they do not see the pedestrian beginning to cross, decide the car in front of

them is stopping for no reason, and go around them? That driver has now put a life in danger

because of their lack of awareness to their driving environment. By using see-through, the

driver in the rear vehicle is able to see a pedestrian crossing the street for the duration of the

time the pedestrian is present both in the first vehicle and the rear vehicle’s line of sight. This

gives them the opportunity to see that there is someone crossing the road regardless of whether

they were distracted by a sign, person, or even a text. In the case of the experiment shown in

Figure 3.8, a three second difference was recorded from the time the pedestrian entered the field

of vision for the see- through image at 1:01 (Figure 3.8 a) of the recorded video and the field of

view of the rear vehicle at 1:04 (Figure 3.8 b).
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In the results section, each of the scenarios were observed using a real-time

implementation of the see-through algorithm presented in this thesis and a screen recorder to

film each experiment. In each scenario, a time difference between the point in which the rear

vehicle could see the obstacle in its primary frame without see-through versus the time it could

see the obstacle in its frame with see-through was stated. Each of the times was based on the

time the scenario appeared on the recorded video from the experiment. Table 3.2 shows each of

the times individually from each scenario presented and the difference between the two times to

show the consistency see- through has with giving the driver of the rear vehicle an early

awareness of the obstacle. This excess time gives the driver more opportunity to react to the

situation and be able to think more clearly about what actions need to be taken to avoid a

collision or accident. Table 3.3 shows the absolute worst, best, and average time difference taken

overall from the experiments performed. The time shown is the time difference in seconds that

the driver of the rear vehicle was able to see an object in the road and react using see-through

compared to not using see-through. Table 3.3 can be interpreted similarly to Table 3.2 with the

exception that Table 3.3 encompassing the time differences from all experiments performed.

Being that these experiments are preliminary experiments for the overall see-

through concept being developed, the following are important factors to take into

consideration relating to the results presented and discussed in this paper:

1. Vehicle Speed: The vehicle speed varied depending on the experimental environment.

In Experiment One, the speed varied from approximately 15 mph to 25 mph due to the

combination of the V2V and V2I communication used. Higher speeds were not tested due to

the testbed being on a university campus. In the event of hardware and driving environment

becoming available at an off-campus site where speeds can be increased, further research into

developing the algorithm for higher speeds can be explored. The vehicle speed for Experiment

Two varied from approximately 5 mph to 15 mph due to this experiment using solely V2V

communication. In order to obtain a continuous video to extract results, vehicle speed was

lowered.
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2. Image Resolution: The image resolution was scaled to 448x448 pixels to effectively run

through the CNN used. This allowed the CNN to analyze the images at the same reso-lution

each time to minimize any type of image distortion and decrease the probability of

misinterpreting a feature within the image.

3. Frame Rate: The web camera used in this experiment captured images at 30 fps.

Though this was the frame rate, the algorithm only processed one out of every ten frames

taken to reduce latency while analyzing frequently enough to gather important data for a

real-time interpretation.

Table 3.2 Times Displayed from Recorded Experiment Videos in Results Section

Scenario Without See-Through With See-Through Time Difference (s)
Blocked Lane 7:14 7:11 3.0 Seconds
Road Debris 0:32 0:30 2.0 Seconds
Pedestrian 1:04 1:01 3.0 Seconds

Table 3.3 Best, Average, and Worst Reaction Time with See-Through

Category Time (s)
Best Improvement in Reaction Time 1.4 Seconds

Average Improvement in Reaction Time 1.9 Seconds
Worst Improvement in Reaction Time 2.3 Seconds

3.6 Conclusions about the See-Through Application

In this chapter we presented two experiments using a single camera on a set of vehicles,

a set of access points for one experiment, and an algorithm built upon a convolutional neural

network to identify vehicles and pedestrians to expand upon the concept of see-through

technology. By using a CNN, the identification of an object in an image feed allowed the ability

to create a dynamic output of overlapping images from one vehicle to another to create the

illusion of being able to “see-through” the car in front with the driver’s own eyes. Not only does

this  ability  increase  a  driver’s  view  of  the roadway environment, but it also allows the driver to

26



have a higher sense of awareness.

As stated in the beginning of this chapter, distracted drivers made up 10 percent of the

roadway crashes in 2015. This Introduction also discussed an example of how 2 seconds can

make the difference between life and death: “According to their findings of the 85th percentile

reaction time values, the range of driver reaction times were between 1.26 and 3.6 seconds” [31].

Depending on the way that see-through is implemented, it can be used to actively alert with a

sound as well as by - at the moment of the alert - making see-through available. With a tool like

this to redirect your attention back to driving, this reaction time can be improved by those 2

seconds.

From the results explained in this chapter, see-through technology allows a driver a

look into what is to come on the roadway and gives them more time to think and take

action. Though see-through is not the complete solution to prevent distracted drivers from

avoiding accidents, the ability to give the driver at least two to three extra seconds to be

aware of an obstacle in their path could be all the time they need to evaluate their

surroundings and take the correct action to prevent endangering their lives or the lives of

others.
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(a) (b)

Figure 3.6 Lane blocked from viewpoint of rear vehicle with see-through

(a) (b)

Figure 3.7 Road debris shown to the rear vehicle via see-through algorithm
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(a) (b)

Figure 3.8 Pedestrian crossing street and viewed via the see-through algorithm
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CHAPTER 4

ALL-IN-ONE MAPPING APPLICATION (AIO)

4.1 Goal of the All-in-One Urban Mapping Application (AIO)

Figure 4.1 Screenshot of the AIO mobile mapping application

The goal of the All-in-One Urban Mobility Map (AIO), shown in Figure 4.1, is to

be an application that allows users, pedestrians, or drivers, to see other vehicles, cyclists, and

pedestrians within their immediate surroundings.  Allowing  the  users to see what is

surrounding them gives the  user  a  better understanding of what to be aware of while traveling to 
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their destination. This extra awareness allows more time for the user to make decisions

during their commute, with the addition to improve their safety in the environment overall.

4.2 Motivation

As urban environments become more prevalent and saturated, the amount of risk a

driver takes in city traffic is increasing. A summary of the National Motor Vehicle Crash

Causation Sur-vey (NMVCCS) showed that driver-related attributes such as recognition

errors, decision errors, etc., caused 94 percent of the NMVCCS crashes [36]. Cooperative

sensing and cooperative mobil-ity have the potential to greatly reduce the number of accidents

by collecting information about current road conditions and using Inter-Vehicle

Communications (IVC), V2I, and Infrastructure–to-Vehicle Communications (I2V) to

propagate the information throughout the fleet. To present a holistic view of current road

conditions, we cannot rely strictly on a sensor suite that is installed on the vehicle. In other

words, camera, radar, and light detection and ranging (LiDAR) typically cannot see beyond a

hill or around a curve. Yet, data beyond the sight distance of the vehicle might be available and

is being sensed by other vehicles or can be acquired from fixed roadside sensing units. In

addition, image and point-cloud data are extremely processing intensive; thus, if we can

augment data sensed and processed by the vehicle with data already processed elsewhere, we

can improve processing efficiency and create smart reuse of the data.

Many previous explorations of this topic were focused on single data sources, such as

the Global Positioning System (GPS) and Global System for Mobile Communications (GSM)

coordinates [37] In recent years, the use of many heterogeneous sources at once has been

adopted in place of single data sources. One such example is the dubiously named Shotgun

Reading via Wi-Fi, a process inspired by DNA sequencing that outputs a directed, weighted

graph of the individual devices discovered after a “burst” read of a wide area [38]. Mobile sensor

networks have also been implemented, involving the use of a fusion algorithm to measure a

scalar field and construct its map to discern occupants of the surveyed area [39]. Another viable
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option is multi-sensor data-fusion; fusing recorded data from multiple sensors together with pre-

existing knowledge [37]. This chapter explores an implementation which utilizes positioning

from multiple sensors, including GPS-enabled mobile devices and wireless cameras, to

anonymously track multiple subjects of interest on a unified map interface. The next section will

explain the goals of the application presented and methods used, which will cover gaining the

information to map the absolute GPS coordinate via mobile devices, the relative GPS

coordinate via object detection and infrastructure communication, and steps taken to achieve

rerouting algorithms based on obstacles hindering the driver on their typical route.

4.3 Methods

Two forms of detection and identification were used during this project. The first used a

single camera to capture and send an image to an off-site server, analyze the image for any

useful information, and send that information to a database to be used for adding the relative

location of an object to a map updated in real-time. The second used a mobile device, such as an

iPad or iPhone, to send an absolute location of an application user to the database and map.

Both forms of identification and localization simultaneously appear on the mapping system

after being unified in the database. Each of these components will be further explained in this

section, beginning with the process of tracking objects using computer vision.

4.3.1 Tracking Objects via Computer Vision

Should absolute location be unavailable via the mobile application, there is an

alternative method for localizing objects. This algorithm does not rely on the use of GPS

services directly; instead it utilizes a trilateration algorithm which requires three known

points accompanied by three known distances based on designated reference points. The

following steps are taken to obtain the needed reference points.

1. Object Detection: For object detection, YOLO version 2, which can detect 80 different

class types, was used [7]. These classes include people, bicycles, cars, motorbikes, airplanes,
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and 75 other common objects. Using YOLO, multiple common roadway objects can

be detected and tracked, further increasing driver awareness.

2. Camera Calibration Process: Obtaining three known points to perform the

trilateration algorithm was done through a calibration procedure. During the calibration

procedure, the latitude and longitude are used together to determine the geolocation of the

camera. Once the geolocation of the camera has been determined, the camera location and

the geolocation points from objects in the camera’s field of view are used to determine a

specific area to the pixel values of the reference points. The pixel values can be approximate

due to other portions of the algorithm post-calibration. During the calibration process, a

person, ideally of average height, must stand a known distance away in the frame. 

(a) Pedestrian detection located
distant from the camera

(b) Pedestrian detection located close
to the camera

Figure 4.2 Graphical representation of the camera calibration process

At this point in the calibration process, YOLO provides an approximate pixel-

height of the detected person where ”x” is width and ”y” is height. The process then

prompts the user to manually provide the distance between the camera and the person

to get the location of the camera compared to the person and the two initial points and the

object. The x and y of the detected object will change if the object moves closer or away

from the camera due to the concept of visual depth. Therefore, if the number of pixels

in the detected object’s bounding box increases,  we  can  assume  the  object is moving closer
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increases, we can assume the object is moving closer to the camera, and if the pixel

numbers decrease, we can assume the object is away from the camera based on the

bounding box pixel area from the original calibration (see Figure 4.2).

3. Obtaining Distance from Three Known Points: There are three distances which we

require: that from each of the two reference points and that from the camera. The distance

from the reference points can be approximately calculated using a pixel scalar. This scalar is

calculated using a formula which provides the distance in meters between two geo-

locations, which can be used to determine the physical distance between the two reference

points. Once complete, the physical distance can be used with the pixel distance between

the reference points to create a ratio which can approximately convert pixels to meters

within the image. Next, the distance in pixels between the bottom-center point of a

detected object and each of the known geolocations are calculated. By choosing the

bottom-center point, the Y-value of the detected object will not change as a result of size

in reference to the camera; it will only change as a result of actual movement.

The distance from the camera can be calculated by using the bounding box distance and

height from the calibration process. Combining these two along with the current height

of the bounding box gets us a distance:

DistanceAtCalibration

CurrentP ixelHeight/P ixelHeightAtCalibration
(4.1)

The trilateration process must be adapted from typical implementations, as all measurements

taken via computer vision are approximate. The algorithm starts by creating a ratio from the

actual distance and pixel distance between the reference points. This ratio is then applied to

the pixel distance between the subject and both reference points. This gives two approximate

radii for the circles needed to be formed. The third circle is formed from the point where the

camera is mounted. An approximate distance from the camera can be calculated using data

from the calibration process.  During this process, the pixel-height of a person standing at a
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Figure 4.3 Graphical representation of object mapped using trilateration

known distance is recorded, along with the known distance. With this, the new pixel-height

can be used to approximate a new distance. The intersections of the three circles can be

used to determine approximately where the subject is located in real space.

Using the distance and geolocation, two circles are formed: one at the camera and one at

either reference point; the radii of each circle being their respective distance. Next, the

two intersections between these circles are found and the intersection closest to the unused

reference point is chosen, unless it is smaller; in this case, the further point is chosen (see

Figure 4.3). Through this method, it is possible to take the pixel coordinates of any object

in an image and convert them to a geo-location that is not relative to the scene.

4.3.2 Mapping Objects
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Once the objects have been identified and the location has been determined, the 

mobile application or computer vision algorithm will automatically upload the relative 

information, such as the identity, latitude, and longitude of the object, to Google’s Firebase 

database. Using the relative information from the devices and existing locations in the 

database, the database places a custom icon corresponding to the identification of the object 

onto the Google Maps API used for this project; this process is repeated every half second to 

update the map. Each of the icons shown in Figure 4.4 represent a different object based on 

the user’s preference on the mobile device and the identity the computer vision algorithm 

gave the object upon detection. These details were successfully implemented into a mobile-

based map as well as a web-based map to show each of the icons moving in real-time 

along with the user or object detected.

A key feature that needed to be addressed was the ability to delete items from the 

Firebase database. This was necessary to avoid having objects displayed on the map that 

have already left the camera’s field of view or if a user has closed the application. The 

solution was simple for the mobile-based communication; if the device stopped sending 

information for a certain period of time, the database will delete their entry and delete their 

icon from the map. Regarding deleting the entry from the database in relation to the camera, 

if the object moves out of the camera’s field of view, the database entry related to that object 

is deleted. In doing this, the stability of tracking of the object and retaining the unique 

identification information of the object had to be continuously taken into account.

For the mobile front-end map application, choosing Google Maps had several benefits in 

addition  to  its multifaceted API. Aside from its availability on several platforms, this choice was 

advantageous  for  its  ability to utilize custom icons for its markers. The latitude and longitude
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stored in the database were used to determine the location of these markers, and their

location was updated in a regular interval to correspond to the user’s movement. This

polling rate from the server on the front-end corresponds with the update rate of the

locations from the computer vision algorithm. A main feature that must be addressed when

talking about Google Maps is that the map can be viewed via ”street view” and ”satellite

view”. Street View allows the user to see a minimal graphical representation of the

environment around them while satellite view gives the user more detailed information

comparable to what we would see as humans through an aerial view. Though satellite

view gives more information, we felt that because of the level of detail displayed it would

distract the user more that the street view; the level of detail given on satellite view was not

necessary for the stage of the experiments presented in this thesis.

In addition to the mobile front-end, a web interface can be made for testing and perfor-

mance benchmarking. The Google Maps and Google Firebase APIs both offer JavaScript imple-

mentations, which aid in the creation of a rudimentary map which can track the same subjects

the mobile front-end can see. This JavaScript-based front-end uses the same polling rate from

the database as the mobile front-end and the computer vision algorithm.

4.3.3 Tracking Object via GPS-Enabled Devices

Cellular GPS

The second form of object identification was done by utilizing the user’s mobile device.

The All-in-One (AIO) mobile mapping application was downloaded onto a user’s iOS device.

The AIO mapping application was built using the Ionic mobile development platform [40] and

deployed and tested on iOS devices. The application used the native Google Maps SDK to

visualize information on the surrounding environment and send and retrieve object locations in

real-time using  Google’s Firebase  database.  The application  utilized  a Cordova plugin to provide
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Firebase database. The application utilized a Cordova plugin to provide current GPS

information collected from a combination of network signals such as the IP address, Wi-Fi,

Bluetooth MAC addresses, RFID, and GSM/CDMA cell IDs [41]. The user’s device geo-

coordinates were updated every 250 milliseconds while the user had the application open and

active.

Mobile Application Anonymity and Mobile Type Classification

The mapping application required iOS privacy control permissions to be granted

by the user before it could access its location. The application did not have the ability to

monitor a user’s location while inactive on the mobile device. Privacy and anonymity

concerns were prioritized, and no self-identifying ID, service provider, or name information

was associated to any of the participating device’s geo-coordinates stored in the database.

Random IDs were generated by the application and used to identify entries on the Firebase

server. A user could choose to identify their type of transportation as pedestrian, vehicle,

or cyclist. A user who chose not to identify their transportation type was treated as a

pedestrian. The description of the user was associated with the device’s geo-coordinates and

sent back to the cloud database. The transportation’s type was then used to determine the

type of icon that would be used to visualize the coordinates on the mobile map.

4.4 Results

4.4.1 Object Tracking

Combing the components discussed in the methods section provides an integrated

solution for congregating data gathered. During the testing and data gathering process, it was

discovered that the AIO application icons created a distraction caused by the continuous

updating of the icons’ locations. This distraction was in the form of “flickering’ caused by

removing and replacing all of the icons on the map during each iteration. To minimize this

distraction, existing  markers  were  moved  and  shifted  in  a  way  that  corresponds  with  the
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subject’s actual movement.  This  helped  prevent  the icons  from“flickering” and decreased the 

possibility of distraction from updating the relative positions of the objects.

Figure 4.5 Infrastructure camera maps information in real-time on application

Figure 4.6 A vehicle waits as another passes to allow driver to pass safely

Figure 4.5 and Figure 4.6 show the driver’s actual field of view (left) relative to the

AIO application communication range (right). The application also gives the driver a wider

view of objects to come ahead while driving and can help them prepare decision-making tasks

earlier compared to what they are able to see only from their field of view. For example, in

Figure 4.6, the driver is able to see a stalled vehicle on the side of the road, but the hill

in front of  them prevents the ability to see the vehicle approaching them from the other
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lane. If the driver wereto pass the stalled vehicle, an accident could occur, but using the 

AIO mapping application, the driver is able to see a vehicle approaching on the map and

avoid an accident by waiting for the driver to pass and rechecking the map to make sure

the lane is clear before advancing around the stalled vehicle.

As the web-based front-end is written in JavaScript, it is trivial to keep its features

in line with the mobile application. As such, a web front-end has been launched for testing

purposes with no issue. This interface does not offer tracking of the current user (mostly due

the lower accuracy of IP-based geolocation), but it does allow the user to pan through the

Google Maps window and view all tracked subjects.

4.5 Conclusions on AIO

The All-in-One mobile mapping application has the potential for short-term and

long-term success if well-utilized and further developed. This application has the

ability to give drivers, passengers, and pedestrians a real-time view of their surrounding

environment relating to mobility. With the use of individual app users and installed

infrastructure cameras anonymously identifying the location of individuals, users can be

more aware as they travel throughout their day and increase the chances of making a

well-planned decision to help make urban streets and roadways safer for our communities.
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CHAPTER 5

CONCLUSION

5.1 Final Thoughts

During this thesis, two applications were presented using the concept of V2V Communi-

cation and V2I Communication to help improve roadway safety, whether they be cyclists, drivers, 

passengers, or pedestrians, during their commute. WWith the utilization of fiber-connected V2X 

Communication in combination with object detection and t he ubiquitous connection the world 

now has with GPS-enabled devices, we have the capability to create technology that can benefit 

lives worldwide. W hat has been presented here is only one piece of the equation, but with the 

cooperation and creativity of others, new applications can be created to help further the goal of 

creating a safer roadway for our community and the community of others.

A common question that has been asked throughout presenting these applications at 

public events is how do these applications lessen driver distraction compared to causing more 

distraction due to the visuals the applications produce. This is a great question and one I have 

thought about myself from time to time. These applications are in the beginning s tages in a 

setting where experiments are being performed by non-autonomous vehicles. Therefore, in order 

to help validate and share our results, a visual component is necessary. I dealistically, the data 

gathered f rom these applications, such as the location of a pedestrian, will be used to assist the 

decision-making in autonomous vehicles upon approaching the locations stored. A nother 

thought is that once these applications are f unctioning well within an autonomous vehicle, the 

passengers may find an interest in visually viewing applications such as these out of the interest 

of seeing the correlation  of  the  vehicle’s  action  and  what  they  see  on  the  screen  or  they can
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view it for pure entertainment during their commute.

5.2 Future Research

Future research for these applications can be divided into short-term research

goals and long-term research goals.

5.2.1 Short-Term Research Goals

1. Immediate next steps to be taken will involve combining the two applications that

were presented to create a single safety application. The two applications will be

combined in a way that see-through will still be performed, but it will not be visualized

for the driver; at least not in the way depicted in Chapter 3. Instead, the data gathered

from the see-through application will work similar to the infrastructure camera. It will

identify the object, estimate its location based on the vehicle’s location, and place an

icon on the mapping application. This will create less distraction without impeding the

integrity of the mobile application.

2. The second feature to be added to the applications will be the transition from using

Google Firebase to web sockets to allow for scalability. The web sockets reduce latency

and elimi-nates the data limit we currently have while using Google Firebase.

3. Another feature to be added to the AIO application could be the detection of objects on the

road that could hinder the ability for a smooth commute. By expanding our algorithm to

detect objects on the road that are not classified as a cyclist, pedestrian, or vehicle, we can

label it as a generic object and place it on the map. If the object has not been detected after

a set length of time, we can assume the object has been moved and the icon can be removed

until another object, or the same object, is detected and will be placed back on the map.

4. A final short-term goal is to include a type of automatic detection to the process. To save

energy and processing power, we can find a way to only activate the algorithms and report

locations if there is activity within an area where a version of  the  application is  running.  If
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there is no activity in a designated area, there is no reason to continue using processing

power to run this hardware and software. A possible method for this is to apply a

geofence around the devices connected to the application. If someone enters that

geofence, the equipment and algorithms will be activated and begin analyzing the area,

and any geofenced area that is overlapping the activated area will be activated as

well to create a seamless transition for connectivity as well as giving the user a

broader look at their surroundings. If the algorithms have not detected anything

within a certain time frame, we can assume there is no activity and the equipment can

hibernate until another instance triggers it. This type of functionality would be ideal in

situations where there is little to no activity, such as college campuses during academic

breaks.

5.2.2 Long-Term Research Goals

1. If the applications presented were ever introduced into actual autonomous vehicles, a

visual representation would not be needed. Therefore, the database storing the locations

gathered by the application would be the primary focus. If the vehicle were to have

access to the database storing the objects’ locations, the visual part of the application

would not be necessary for the vehicle anymore and keeping that visual within the

vehicle for passengers to see may cause unnecessary anxiety. The visual application

would of course still be used by pedestrians, cyclists, and the necessary hubs utilizing the

application for safety purposes, such as monitoring the vehicle’s action or potentially for

crime investigation.

2. Another long-term goal would be to implement automatic rerouting based on objects or

construction detected via computer vision object detection reports. Rerouting can be added

in a short amount of time, but the reason I place it under long-term goals is because we want

to create a more effective rerouting algorithm that will also take into consideration how

many vehicles have already been rerouted in each direction instead of rerouting all vehicles

in   a   single   direction.   This  will   involve   a   much   deeper   understanding    of    different
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functionalities behind cooperative mobility on a large scale.

3. A key aspect that needs to be researched is how to seamlessly transfer the video stream

from V2I to V2V in the event of no infrastructure access points connected to fiber are

available. In addition to the transfer, the challenge of controlling the latency during the

transition will need to be taken into account.

4. Lastly, in the event of a user needing to be notified, we want to integrate an auditory

indicator, and potentially a visual representation with see-through if necessary, to make

sure the driver is aware of their surroundings in the case of a person crossing the street as

they approach or a vehicle driving through a red light.
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