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ABSTRACT

Situational awareness in connected and automated vehicle (CAV) systems becomes particularly

challenging in the presence of non-line of sight objects and/or objects beyond the sensing range of

local onboard sensors. Despite the fact that fully autonomous driving requires the use of multiple

redundant sensor systems, primarily including camera, radar, and LiDAR, the non-line of sight

object detection problem still persists due to the inherent limitations of those sensing techniques.

To tackle this challenge, the inter-vehicle communication system is envisioned that allows vehicles

to exchange self-status updates aiming to extend their effective field of view and thus compensate

for the limitations of the vehicle tracking subsystem that relies substantially on onboard sensing

devices. Tracking capability in such systems can be further improved through the cooperative shar-

ing of locally created map data instead of transmitting only self-update messages containing core

basic safety message (BSM) data. In the cooperative sharing of safety messages, it is imperative

to have a scalable communication protocol to ensure optimal use of the communication channel.

This dissertation contributes to the analysis of the scalability issue in vehicle-to-everything (V2X)

communication and then addresses the range issue of situational awareness in CAV systems by

proposing a content-adaptive V2X communication architecture. To that end, we first analyze the

BSM scheduling protocol standardized in the SAE J2945/1 and present large-scale scalability re-

sults obtained from a high-fidelity simulation platform to demonstrate the protocol’s efficacy to
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address the scalability issues in V2X communication. By employing a distributed opportunistic

approach, the SAE J2945/1 congestion control algorithm keeps the overall offered channel load

within an optimal operating range, while meeting the minimum tracking requirements set forth by

upper-layer applications. This scheduling protocol allows event-triggered and vehicle-dynamics

driven message transmits that further the situational awareness in a cooperative V2X context. Pre-

sented validation results of the congestion control algorithm include position tracking errors as

the performance measure, with the age of communicated information as the evaluation measure.

In addition, we examine the optimality of the default settings of the congestion control parame-

ters. Comprehensive analysis and trade-off study of the control parameters reveal some areas of

improvement to further the algorithm’s efficacy. Motivated by the effectiveness of channel conges-

tion control mechanism, we further investigate message content and length adaptations, together

with transmit rate control. Reasonably, the content of the exchanged information has a signifi-

cant impact on the map accuracy in cooperative driving systems. We investigate different content

control schemes for a communication architecture aimed at map sharing and evaluate their per-

formance in terms of position tracking error. This dissertation determines that message content

should be concentrated to mapped objects that are located farther away from the sender to the edge

of the local sensor range. This dissertation also finds that optimized combination of message length

and transmit rate ensures the optimal channel utilization for cooperative vehicular communication,

which in turn improves the situational awareness of the whole system.
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CHAPTER 1: INTRODUCTION

Automated driving systems heavily rely on a wide range of onboard sensors to better perceive

the surrounding driving context and to take optimal driving decisions. To complement the detec-

tion mechanism of local sensing, dedicated short range communications (DSRC) technology is

introduced which facilitates communication among neighboring vehicles, roadside traffic control

systems, and networked mobile devices carried by pedestrians [1]. V2X-enabled onboard units

operating in the DSRC band can communicate with neighboring entities that are beyond the reach

of local sensing devices. In this way participating vehicles in cooperative intelligent transportation

systems (ITS) can achieve a sweeping perception of their surroundings by combining the commu-

nicated and locally sensed objects into a situational awareness map. This locally constructed map

can then be fed to higher-level vehicle safety applications including, but not limited to, long-range

trajectory planning, crash avoidance strategy [1], conflict resolution at traffic intersections [2] [3],

vehicle re-routing [4]. The performance of these applications can be significantly improved by

the cooperative exchange of the locally constructed situational awareness map information with

neighboring vehicles.

In its fundamental form, inter-vehicle communications allow vehicles to exchange periodic up-

date messages containing vehicle status information which are called Basic Safety Messages [5]

(BSMs) in the United States and Cooperative Awareness Messages [6] (CAMs) in Europe. The
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update messages typically contain information collected by the global navigation satellite system

(GNSS) receiver of the vehicle. These include position information, speed and heading, and op-

tionally, some path history data of the sender vehicle. A richer set of information can be exchanged

if data from local sensing devices are combined with the positional data. Data collected by the local

sensing devices such as radars, LiDARs or cameras can provide a vehicle with information about

its surroundings, and sharing this information with neighboring vehicles can benefit the whole co-

operative automated driving system. However, the inclusion of all locally aggregated information

may not always be possible because of the limited capacity of the communication channel. In

vehicular ad hoc networks (VANETs), the communication medium becomes congested due to an

increase in the traffic density or an increase in the offered data load. For a given network density,

the offered load on the channel is a function of message length, message generation rate, transmit

power or a combination of these parameters. A seamless communication requires these parameters

to be regulated in such a way that the channel congestion can be avoided; otherwise, information

cannot be shared in a timely fashion, which is essentially one of the main objectives of cooperative

vehicle safety communication. Furthermore, the content of the exchanged messages must deliver

useful information to the intended recipients because the effectiveness of the overall map of a net-

worked vehicular system not only depends on the quality of the communication channel but also

the usefulness of the disseminated information.

Considering the capacity of the communication channel, it is imperative to have demonstrated

evidence that the communication system can scale as the number of participating vehicles in-

creases, prior to large scale deployment of V2X technology. To that end, a BSM scheduling mech-
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anism regulating inter-transmit interval and transmit power is standardized in the SAE J2945/1 that

outlines an adaptive upper layer message rate control mechanism as a function of vehicle dynamics

and estimated tracking error, and a transmit power control approach as a function of instantaneous

channel busy measurement. In this dissertation, we demonstrate the potency of the congestion

control mechanism through the scheduling of core BSM update messages, by focusing on the per-

formance evaluation of the SAE J2945/1 congestion control algorithm. We also provide additional

analysis to further the efficacy of the algorithm, in light of an extensive trade-off study of the al-

gorithm’s control parameters. In the process, we develop and validate a high fidelity simulation

platform for realistic simulations of inherently dynamic vehicular environments. We recognize that

the validation of V2X communication framework requires numerous test cases to be evaluated to

ensure its robustness. Understandably, evaluation and validation of upper layer safety applications

greatly depend on the performance of the underlying DSRC network. However, it is very diffi-

cult, if not impossible, to evaluate application performance under different DSRC communication

conditions and in particular at a large scale. As a result, researchers resort to the simulation of

DSRC networks to determine possible issues that may exist for application performance. In this

dissertation, we describe how connected vehicle applications can be simulated, with an emphasis

on high fidelity but efficient simulation of underlying DSRC networks. Different approaches to

simulation of DSRC are summarized and the sub-frame based method, which has widespread use,

is discussed in detail. We present several enhancements to widely used discrete event simulators

(such as ns-3) to enable sub-frame level simulation of DSRC. The resulting simulator is evaluated

and shown to be accurate when comparing to results from field tests. In addition to sub-frame
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level processing, which mostly concerns how wireless frames are processed in a node, the channel

propagation model is also discussed. The channel model stages and components are described

and its use in the simulator is also explained. In this dissertation, we first establish the efficacy

of channel congestion control mechanism using a high fidelity sub-frame level DSRC simulation

platform and then seek to extend its applicability to a content-adaptive cooperative communication

paradigm to further the benefits of envisioned vehicle safety applications.

1.1 V2X Simulation Platform

Cooperative vehicle safety applications use Dedicated Short-Range Communications (DSRC)

technology to disseminate safety-critical or traffic information [7] [8] [9]. Active safety appli-

cations are arguably the most important connected vehicle applications. Given the criticality of

safety applications, it is imperative to extensively research and test the applications before deploy-

ment. However, the dynamic nature of (DSRC) communication networks and vehicular traffic, and

a multitude of factors that affect each make it prohibitively expensive, and technically infeasible to

conduct field tests for all possible communication and traffic scenarios. In particular, the nature of

safety applications and rarity of events is such that large scale tests with hundreds of vehicles are

usually very difficult, if not impossible. Even small scale tests of the application under all commu-

nication possibilities may not be feasible. Given the difficulties of field trials, researchers generally

resort to simulation to examine and verify the performance of safety applications. Simulation ef-

forts generally target three different aspects of DSRC based safety applications: communication
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network, vehicle traffic and movement, and safety algorithms. While safety algorithms can often

be exactly implemented in simulators, the communication network and traffic aspects have to be

modeled and simulated at lower fidelity. As a result, it becomes vital to ensure that the simulation

tools are precise enough and credible.

Transmitter

Application

Channel Propagation
Path Loss + Shadowing + Fading

Receiver

Application

TxPower RxPower

Node Model

Channel Model

Transport + Network + Data Link Layers

Figure 1.1: Functional diagram of V2X communication layers.

Simulation of wireless communication networks requires modeling different layers of the pro-

tocol stack (Figure 1.1), in addition to the behavior of the wireless medium. While most protocol

behaviors can be exactly implemented according to the standard, some details at the lower layers

have to be abstracted. Modeling of the wireless medium, i.e., channel propagation behavior, is also

a challenging task and exact reconstruction of what goes on in the physical wireless environment

is generally impossible. As a result, there are numerous approaches to modeling and abstracting

the behavior of different layers and channel models.
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Overall, the simulation of wireless networks requires developing models for nodes and the

wireless channel. Node models should in general take into account transmitter and receiver behav-

ior, while channel models describe the signal loss and deformation between each pair of nodes.

Therefore, we describe the node model and channel model separately in this dissertation. It should

be noted that the node model details will depend on how detailed the channel model is.

Some of the recent works on simulation of DSRC focused on adapting existing popular net-

work simulators such as ns-2 and ns-3. Chen et al. in [10] [11] addressed the shortcomings of

the simplistic physical layer (PHY) and medium access control (MAC) implementations of ns-

2. In their work, the authors separated PHY and MAC layer implementations in such a way that

functionalities of the network components are placed in their respective layers, improving ns-2

simulation accuracy. The simplistic approach of carrier sensing in ns-2 was also enhanced by in-

tegrating a “NoiseMonitor” to keep track of all interferences at a transceiver. The work in [10]

also introduced an SINR based reception criteria, that determined whether a frame is successfully

received or not. In [12] the authors have extensively investigated, using their 802.11 testbed, the

details of the physical layer capture effect by explaining various capture scenarios. Based on that

study [13], [14] proposed some modifications of the 802.11 PHY in QualNet [15]. Papanastasiou,

Mittag et al. [16], [17] developed a detailed PHY model (PhySim-Wifi) based on ns-3 in an effort

to incorporate DSRC based vehicular communication to the simulator. Instead of using a frame

that is defined solely by the length field of the frame, PhySim-Wifi emulates the physical bits of

the frame by transforming a randomly generated bit sequence equal to the size of the length field

into complex time-domain samples as per IEEE 802.11 standard. Although PhySim models a real-
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istic WiFi PHY by considering bitwise processing of the signal, the trade-offs here are the higher

memory and computational requirements.

Another DSRC simulation component demanding higher realism is the wireless propagation

behavior which is affected by the characteristics of electromagnetic signals. The strength of elec-

tromagnetic signal attenuates as it travels through the medium (air) from the sender to the receiver.

Signal strength weakens in the presence of obstructing elements such as buildings and large trees.

Furthermore, radio signals are also influenced by some natural phenomena [18] [19]. Reflection

occurs when a propagating signal encounters a surface which is much greater than its wavelength.

Usually, buildings, walls, or even ground can be reflectors of signals. Diffraction occurs when

irregular-shaped objects are on the signal path, and several copies of the signal are produced from

the irregular sharp edges of the blocking objects. Different copies will have different amplitudes

and phases and will arrive at the receiver at different times. Scattering happens when the signal

hits objects that are smaller than the signal wavelength and the original signal splits into several

ones. Considering these natural phenomena that deteriorate wireless signals, three types of model-

ing are required to approximate the channel losses: large-scale deterministic path loss, shadowing

or large-scale fading, and small-scale fading.

Different measurement campaigns have been established and numerous scenarios were inves-

tigated concerning various surrounding environments of VANETs to identify the aforementioned

parameters of vehicular channels based on both channel sounder devices and RSSI-based measure-

ments. In [20], two different path-loss models are proposed for inter-vehicle communication chan-

nels for three different environments: rural, highway, and urban. In that work, the measurement
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framework was set up at 5.9 GHz, using a channel sounder at the transmitter side which generated

a multi-tone signal and one receiver. A two-ray model with a zero mean log-normal shadowing is

derived as a rough path-loss model for both rural and highway environments for distances larger

than 32 meters. For the urban scenario, a general log-distance model with a zero mean log-normal

shadowing is recommended. The path-loss exponent of 1.61 is calculated based on their measured

dataset. Path-loss, power delay profile and delay Doppler spectrum analysis in highway, rural,

urban and suburban environments were investigated using channel sounder in [21] [22] [23] [24].

Measurements were performed over the 240 MHz band around 5.2 GHz central frequency. Two

GPS-equipped trucks were employed as transmitter and receiver. The most important characteris-

tic of all of their measurement scenarios is the dominant line-of-sight (LOS) between transmitter

and receiver. Log-distance model plus a zero-mean log-normal shadowing is proposed for high-

way, urban, and suburban environments. The parameters are evaluated for the measured data using

the least mean square error curve fitting method. Due to the low density of scatterers, which leads

to a dominant LOS plus a ground reflection, two-ray is found to be the best matching path-loss

model in the rural environment. The validity of the models is claimed for distances greater than 10

and 20 meters for log-distance and two-ray, respectively. Nakagami-m and Weibull distributions

were proposed in [24] [25] to model the small scale fading in a highway scenario based on the

MIMO car-to-car measurements at 5.3 GHz. In [26] two different obstruction modes are proposed

as NLOS and obstructed LOS (OLOS) based on the type of obstacle between transmitter and re-

ceiver. Three different log-distance path-loss models are then derived for LOS, OLOS, and NLOS

cases from a measurement data using LUND channel sounders. Rayleigh and Rician fading mod-
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els have been proposed for V2V channels with realistic non-isotropic scatterers in [27] and [28]. A

novel method with higher precision for Rayleigh parameter computation was investigated in [27]

while Rician envelope level crossing rate and average fade duration are investigated in [28]. A

Rician geometry-based stochastic fading model has been proposed for wideband multiple-input

multiple-output (MIMO) V2V channels in [29] and a method for inter-carrier interference (ICI)

cancellation is proposed based on this model. In [30], fading statistics are analyzed in four envi-

ronments: highway, motorway, urban and suburban. Two vehicles, one transmitter equipped with

a 5.2 GHz signal generator and one receiver equipped with a network analyzer were used for data

collection. It is claimed that urban and suburban environments have the same behavior, in terms of

small-scale fading, as motorway and highway scenarios, respectively. Rician, Rayleigh, Gaussian,

and Nakagami-m distributions were examined and the Rician channel model was found to be the

best match in all scenarios based on the least mean absolute error method which was reasoned

by dominant LOS in all measurements. The log-normal model was offered to be used for shad-

owing in all scenarios. It should be mentioned that flat fading assumption for vehicular channels

is insupportable for DSRC-based networks [31], [32]. Therefore, due to the frequency selective

nature of DSRC channel fading, whereas RSSI values represent the effect of total channel atten-

uation through energy measurement, their use is best limited to path-loss, shadowing, and fading

analysis [32], [33]. Authors in [34] [35] [36] [37] considered the intermediate vehicles between

transmitter and receiver as dynamic obstacles and added them to static obstacles, like buildings,

in the path-loss model calculations. The results indicate that path-loss of the vehicular channel,

packet delivery ratio (PDR), latency, and jitter completely depends on the presence of LOS. Two
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vehicles - one transmitter and one receiver, were equipped with NEC LinkBird-MX which is a

DSRC platform working based on IEEE 802.11p on 5.9 GHz frequency. RSSI and PDR values

were logged in different measurement scenarios. The results supported the two-ray as the best

fitted path-loss model in the presence of LOS for highway, suburban, and urban areas. Empirical

RSSI values from a measurement campaign in the freeway environment, divided into ten-meter

bins, were used to find the best fitted fading distribution in [33]. Nakagami-m distribution is

proposed as an appropriate fit based on the cumulative distribution function (CDF) matching ap-

proach. Reported values of shape parameter m for Nakagami-m distribution lies between 1 to 1.8

for distances less than 100 meters, and 0.7 to 1 beyond it. Therefore, the behavior of Nakagami-

m distribution is dominantly similar to Rician and Rayleigh for distances below and above 100

meters, respectively. In another effort [38], path-loss and fading were analyzed for the suburban

environment based on two RSSI datasets collected from two vehicles as a transmitter-receiver pair.

A dual-slope log-distance path-loss model, plus a zero-mean log-normal shadowing, is suggested

to model large-scale power attenuation. Different path-loss exponents and shadowing standard de-

viations for distances under and above 100 meters are calculated using regression methods. Small-

scale fading is modeled using Nakagami-m distribution. The first dataset tends toward Rician and

Rayleigh distributions for distances under and above 70 meters, respectively. The other dataset has

the same behavior pattern except that the transition point is around 90 meters. A similar approach

is taken to derive the log-distance path-loss and zero mean log-normal shadowing parameters from

RSSI measurements in highway and rural environments in [38], [39]. Due to the fewer number

of obstacles, the critical distance for slope change in the path-loss model is reported much closer
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to the first Fresnel zone. Moreover, shadowing standard deviations of rural and highway environ-

ments are also less than shadowing standard deviation of the suburban environment of [37], [38].

RSSI-based measurements with a single transmitter-receiver pair of vehicles in motorway, rural

and urban environments have been utilized to identify the best fading model for vehicular sce-

narios in [39], [40]. Dual-slope log-distance path-loss with a zero mean log-normal shadowing

and Nakagami-m fading models are derived as the best match for large- and small-scale received

power variations, respectively. Nakagami-m distribution is also selected to model the small-scale

fading of the vehicle-to-vehicle (V2V) channel based on the RSSI measurements in a highway and

an open-sky area [40], [41]. The results propose greater values of Nakagami-m shape parameter

m for open-sky in comparison with the highway. A simulation-based study of IEEE 802.11p also

takes Nakagami-m fading to model the vehicular networks channel in [42]. A suburban scenario is

simulated in OPNET with a modified physical layer model that has a Nakagami-m fading model

included. They found the best value for shape parameter m, as a function of separation distance

and relative velocity of transmitter and receiver.

In [43], the authors studied the shadowing impact of trucks as obstacles and found that an av-

erage of additional 12-13 dB losses is added in the presence of a truck. Diverse TX antennas were

also used to find the best antenna location to model the shadowing loss for such obstacles. Authors

in [44] emphasize on the importance of the vehicle type in overall vehicle shadowing distribution.

The authors argued that using the prior knowledge of vehicle type distribution, field observations

in the presence of obstacles can be reproduced in simulation. In [45], the authors investigated

the limitation of log-normal and unit disk models in realistic V2X settings and proposed a match-
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ing mechanism for log-normal model parameter tuning based on vehicle density and a correlation

model to account for the evolution of the link characteristics over time. In [46], the authors stud-

ied a field RSS dataset to model a composite channel propagation loss. The large-scale dataset

consists of RSS samples from a controlled highway like scenario; however, the proposed method-

ology works for separation distances where packet loss ratio is minimal. Most of the RSS-based

measurement campaigns reported in the literature either consists of a smaller set of transmitting

entities or collected in a controlled environment. As a result, corresponding datasets fail to capture

many driving and topological scenarios from real-world roadways. This work investigates RSS

samples collected from real-world driving scenarios and models the propagation behavior to better

realize the V2X communication channel.

1.2 Scalable V2X Communication for Connected Automated Driving

Smart vehicles outfitted with sensors like radar, LiDAR or cameras can collect a variety of posi-

tional and surroundings data to provide situational awareness to the automated driving system. The

collected information can then be combined with the map (in the form of vehicle position update

and additional neighbor data) information exchanged over the communication channel to construct

a localized map. Figure 1.2 illustrates how a host vehicle (HV) sees its surroundings in a roadway.

In such a map data exchange based communication approach, a map radius is defined for the HV to

focus on a particular area of interest that it deems critical from a safety perspective. Therefore, HV

tracks only those RVs that are in its map radius. In cooperative vehicle communications, vehicles
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maintain a local map by combining data from various local sensors and incoming safety beacons

from surrounding vehicles. This local map helps a vehicle to maintain up-to-date knowledge about

its surroundings. Since the local map contains information about all the neighboring vehicles,

communicating the full map is limited by the capacity of the wireless medium.

Figure 1.2: Host vehicle’s perspective of the situational awareness map

In heavy traffic environments, with a high number of transmitting V2X entities, the commu-

nication channel suffers congestion due to rising interference and channel contention [47]. The

conventional approach to handle interference in the IEEE 802.11p standard (PHY standard for

DSRC) is to use Carrier-Sense Multiple Access with Collision Avoidance (CSMA/CA) as the

medium access protocol [48]. In CSMA/CA, when a node (or vehicle) has a packet (i.e., BSM)
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to transmit it first listens to the channel. If the channel is deemed idle or unoccupied, it transmits

the packet. Otherwise, the node waits for a random back-off time before transmitting the packet.

While this mechanism reduces the chances of packet collisions, it does not avoid it entirely. In

large and dense V2V networks, the performance of safety applications may therefore unnecessar-

ily suffer if all vehicles send their BSMs at the same high transmission rate and transmit power.

The consequent high packet losses affect V2V situational awareness and make it difficult to pre-

dict a vehicle’s movement or recognize an imminent crash in a timely manner. Hence, mitigating

channel congestion has been widely studied to address the challenge of scalability and to make

safety applications robust.

Channel congestion in DSRC can be regulated by adapting a number of transmit parameters,

e.g., message length, transmit rate, transmit power, and data rate. Various congestion control algo-

rithms have been proposed in the literature that adapts these transmit parameters in combination

or separately. The authors of [49] proposed a scalable communication method where a subject

vehicle adjusts its BSM generation rate depending on the estimated tracking accuracy of the ve-

hicle from the perspective of the neighboring vehicles. The sender also adapts the transmit power

based on the observed channel load to curb channel congestion. In [50], a congestion control

algorithm called Linear Message Rate Integrated Control (LIMERIC) based on linear message

rate adaptation has been outlined which converges to a desired channel utilization level. In [51],

the authors enhanced LIMERIC algorithm to control transmit power by mapping message rate

through a predefined monotonic transmit rate-power function. Rate-adaptive congestion control

based on observed channel load is also studied in [52]. In [53], the authors presented an analysis

14



of the distribution of inter-packet receptions to determine the optimized transmit parameters and

proposed a joint transmit power/rate control approach for a targeted awareness distance. In this

approach, transmit power is selected based on the awareness distance while the transmit rate is

adapted based on channel load. In [54], the authors proposed a content-centric medium access

control (MAC) scheme that provides a mechanism through which the limited wireless bandwidth

is adaptively allocated to the information objects based on the number of requests for them. This

approach also allocates bandwidth for the participating network entities based on the timeliness

and completeness of the information they possess about a given requested region. In [55], the

authors proposed an awareness framework for vehicle safety applications where a joint transmit

rate/power control algorithm adapts the awareness quality as a function of the awareness range.

In [56], the authors provided a congestion control algorithm based on transmit power control that

separately targets two different groups of vehicles, using two different transmit powers. The high

power transmits are for farther vehicles as well as for the closer vehicles, while the low power

transmits are only for closer ones. The authors also presented results of a hybrid variant that uses a

combination of transmit power and transmit rate control. In [57], the authors proposed a machine

learning-based congestion control algorithm to mitigate channel congestion at road intersections.

Using a k-means algorithm to identify the vehicle clusters in the aggregated data at intersections,

the congestion control unit determines a set of transmit and MAC parameters for each cluster. De-

termined transmit parameters are disseminated to the stopped (awaiting) vehicles at an intersection

using road-side units (RSUs). The SAE J2945/1 [58] standardized a scalable BSM scheduling

methodology based on the channel congestion level and the estimated vehicle density. In this algo-
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rithm, BSMs are transmitted depending on the vehicle dynamics and the estimated vehicle density

in a predetermined radius of the sender vehicle. It also adapts transmit power as a function of the

observed channel load. The decentralized congestion control (DCC) algorithm standardized by

the European Telecommunications Standards Institute (ETSI) [59] considers channel load as the

feedback input to regulate the message rate. Depending on the observed load on the channel, the

algorithm switches to one of three possible states: relaxed, active and restrictive. Each of these

states has its own transmit rate and power setting. In [60], the authors proposed a distributed con-

gestion control approach based on a modified CSMA/CA mechanism of the MAC layer that adjusts

the contention window size considering the priority of the user data. A scalable and cooperative

MAC protocol for VANETs is also proposed in [61] where a time-slot reservation policy is intro-

duced for upcoming channel demand in DSRC networks. This policy helps the scalability issue in

dense traffic scenarios. In [62], the authors provided a detailed survey of the adaptive beaconing

approaches suggested to date by classifying them based on their underlying design approaches.

Local dynamic map (LDM) is being standardized by ETSI which aggregates data locally in a

subject vehicle [63,64]. LDM contains real-world data of four different types: (1) permanent map

data provided by map data supplier, (2) transient static data, e.g., speed limit signs, (3) transient

dynamic data, e.g., weather advisory, and (4) highly dynamic data, e.g. CAMs. LDM is essentially

a database that locally serves queries from the safety applications, but it does not share local infor-

mation with neighboring vehicles. In [65], a general vehicle communication framework has been

proposed where each vehicle creates a multi-resolution map based on the information collected by

its local sensing devices as well as the information extracted from the awareness-map broadcast
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by other vehicles within its communication range. To tackle the scalability problem of such a

map sharing scheme, a message length and content control strategy have been presented to adapt

the size and content of the exchanged messages based on locally observable network performance

metrics. In this approach, message size is adapted by considering the offered load on the communi-

cation channel. After determining the message length, contents (neighboring vehicle information

to disseminate) are selected based on their distance to the sender vehicle where mapped objects at a

closer distance get a higher priority over farther objects. Given the well-known issue of scalability

in DSRC networks reported in [49, 50, 53, 66, 67], when BSMs are used, it is clear that any ex-

change of sensory information among the connected vehicles has to consider the limited capacity

of the network. This limitation of channel capacity poses a major challenge here since sensory

information in automated driving applications are usually much richer than what is included in

the periodically exchanged BSMs. A new method about message content control and message

length adaptation was proposed in an earlier work [65]. However, the issue of adapting the rate

of message generation and its trade-off with controlling the message length had not been consid-

ered. Also, the distance aspect of the included message objects on map accuracy had not been

investigated in [65], where semantic-less maps are considered in the form of multi-resolution map

representation. This multi-resolution map was created by transforming point cloud data to map

format similar to [54]. A method of adding the multi-resolution maps to object maps was pre-

sented in [65], giving higher priority to detected objects and then using the remaining capacity

to deliver the multi-resolution map data. In general, since the semantic-less maps are expected to

be static, we can assume that some stored information from these maps can be preloaded into the
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vehicle and frequent communication of those objects will not be necessary. It is expected that only

a small differential between stored maps and sensed static semantic-less maps exist and will be

represented as a multi-resolution map as described in [65]. We can simply consider such differ-

entials as an object and encode them in the smallest resolution, and then treat it as another object

in the object map. Also, note that the object map information that is being shared and discussed

in this dissertation is used to augment and extend a vehicle’s view of its environment and is not a

replacement for point cloud-style immediate maps of the surrounding.

1.3 Organization of the Dissertation

The first major contribution of this dissertation is to validate and analyze the channel congestion

control mechanism standardized in SAE J2915/1 and elaborate on the optimality of the congestion

control algorithm to identify potential room for improvements to further its efficacy. The second

major contribution is to extend the safety benefit of channel congestion mechanism through a

content-adaptive map information dissemination architecture, aiming at improving map accuracy

in connected automated driving systems.

In Chapter 2 we discuss the development of high fidelity and efficient simulation platform for

evaluating connected vehicle applications. Modeling techniques for deriving realistic V2X channel

from large scale RSS dataset is provided and validated. Factors, ranging from vehicle density to

relative position of transmitting vehicles to the presence of blockers, are considered in the modeling

stage. Enhancement of DSRC based receiver model in the popular ns-3 simulator is outlined, where
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empirical results from prototype V2V devices were utilized to align the receiver behavior with the

IEEE 802.11 PHY specifications. The developed simulation platform is then used to validate the

channel congestion control algorithm standardized in SAE J2945/1 and outlined in Chapter 3.

In Chapter 3 we present large scale simulation results to validate the effectiveness of the chan-

nel congestion control algorithm standardized in SAE J2945/1. The results are obtained for real-

world mobility scenarios using channel models calibrated to the vehicular environment the mobil-

ity traces are generated from. We further analyze the optimality of the current parameter settings

of the CC algorithm. With a thorough trade-off study, we seek to identify potential areas of im-

provement to further the algorithm’s safety benefit.

In Chapter 4, motivated by the channel congestion control validation results presented in Chap-

ter 3, we provide a content-adaptive map information dissemination approach to extend situational

awareness beyond the sensing range of on-board sensors like cameras, radars, and LiDARs. The

idea is to leverage the availability of rich local sensor data and exchange that information with the

immediate neighborhood. The issue of scalability in such a cooperative communication paradigm

is discussed to find that optimal combination of length and transmit interval can significantly im-

prove the tracking accuracy of the whole system. We also provide insights into the inclusion

priority of the map objects in the communicated messages, which can be used as a guideline for

map information dissemination based cooperative safety applications. And finally, we conclude in

Chapter 5 with a list of research areas for future work.

Table 1.1 lists several terms and definitions that will be later used within the dissertation.
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Table 1.1: Terms and Definitions

BSM Basic Safety Message (BSM) contains position information data like latitude,

longitude, speed, heading

RSS Received Signal Strength (RSS) is the received power in dBm associated with

a received packet over the air

CBP Channel busy percentage (CBP) is the fraction of time the communication

channel is sensed busy by the onboard network device during a predefined time

interval (100 milliseconds)

PER Packet Error Ratio (PER) is the ratio of missed BSMs to the total number of

transmitted BSMs for each sender-receiver distance

PT E Position Tracking Error (PTE) is the difference between current position es-

timate of a transmitting vehicle and the estimate of that vehicle at a receiver

(based on received BSM) at a given time

IA Information Age (IA) quantifies the time difference between the timestamp of

contained data in a received BSM and the current time
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CHAPTER 2: EFFICIENT AND HIGH FIDELITY SIMULATION
PLATFORM FOR V2X COMMUNICATION

1Generally, computationally inexpensive yet realistic simulation platforms are desired for large

scale evaluation experiments for V2X safety applications. As a result, many of the popular network

simulators such as ns-2, ns-3, OMNET, etc., use frame level simulation of channel effect. The

propagation model is also abstracted in most cases to formulas that try to recreate the impact

of large scale channel loss, shadowing and fading on an entire frame. Some simulators allow

for employing of ray tracing and more granular modeling of the propagation loss (e.g., OPNET

allows both approaches). Nevertheless, such detailed propagation models are computationally

costly. In this chapter, we detail the approach taken by ns-3 (an open-source simulator widely

used by academic and industry researchers) and present the corrections that we have made to ns-3

based on DSRC field tests, to derive a higher fidelity sub-frame level simulator, which remains

computationally efficient. We also outline a modeling technique for V2X propagation calibration

using large scale field RSS data.

1The work presented in this chapter is based on the following publications: [1] S. M. O. Gani, A. Tahmasbi-
Sarvestani, M. Fanaei, and Y. P. Fallah, "High fidelity DSRC receiver model for ns-3 simulation using large-scale field
data," in the proceedings of 2016 IEEE Wireless Communications and Networking Conference, April 2016. [2] Y. P.
Fallah and S. M. O. Gani, "Efficient and High Fidelity DSRC Simulation," Cham:Springer International Publishing,
2019
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2.1 DSRC Physical Layer Modeling

ns-3 [68] was chosen as the base simulation platform in this work which is a discrete event

simulator for internet systems and widely used in the wireless research community. Since any

simulation-based evaluation process demands an accurate implementation of the underlying mod-

els, we calibrated ns-3 to fine-tune the DSRC physical layer (PHY) model to better align it with the

PHY specifications outlined in IEEE 802.11 standard [69]. The calibration includes the adoption

of frame capture features and empirical error rate models for the detection and decoding of OFDM

frames. The calibration significantly enhanced the simulator to reflect the observations from DSRC

hardware experiments [70].

2.1.1 OFDM Frame Modeling

Any OFDM frame in 802.11p can be divided into three key components: PLCP preamble, PLCP

header and data bits [69]. The PLCP preamble is a sequence of training symbols that marks the

start of an OFDM frame. The training symbols are known to both the transmitter and the receiver.

Therefore, when a signal with a power level greater than the receiver sensitivity arrives at the

receiver, a preamble detection mechanism is triggered. This mechanism essentially synchronizes

the receiver with the transmitter for upcoming data bits that are contained in the payload of the

frame. The SIGNAL field is included in the PLCP header which specifies the bit rate and length

information of the payload. In 802.11p, the durations of the preamble and PLCP header are 32
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microseconds and 8 microseconds long, respectively. Since bit-level processing of OFDM frames

is computationally expensive, in our DSRC PHY model, we combine the preamble and PLCP

header into the first key component of a frame and loosely refer to it as “preamble”. We will use

“payload” to collectively refer to the data bits. The resulting OFDM frame can then be considered

as a two-part entity as illustrated in Fig. 2.1.

Preamble + PLCP Header Payload

Start Receive Evaluate Preamble 
Detection

End Receive

Figure 2.1: Key components of an OFDM frame along with associated action events.

2.1.2 Interference Modeling

To accommodate physical carrier sensing and energy detection, and to model impact of interfer-

ence on signal decoding, the receiver model needs to keep track of cumulative interference by

maintaining a list of all signals that are currently present in the medium. This list is populated

by adding the incoming signal which can be described by the received power (RxPower), and the

start and end time of a signal that has just arrived at the receiver, assuming that the RxPower does

not vary over the frame lifetime. This interference list helps calculate instantaneous cumulative

interference by simply summing up all signals that are active at that time instance. Also, the calcu-

lation of signal-to-interference-and-noise ratio (SINR) is possible for individual signals, which is
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frequently used for checking reception probability and making a decision about the continuation of

current reception or switching to frame capture. The determination of SINR for a signal of interest

is required for various frame detection and decoding steps. For example, the arrival of a new signal

during the reception of another signal requires an SINR check to decide whether the newer frame

should be captured or not. To accommodate the calculation of SINR for any signal, a subroutine is

needed which returns the total interference caused by signals that overlap with the signal of inter-

est. During the SINR calculation, the noise floor and noise figure are also considered. The noise

floor is a measure of all unwanted background noise present in the system. In general, thermal

noise is modeled as Nt = KT B, where K is Boltzmann constant, T is the temperature in Kelvin,

and B is the signal bandwidth in Hz. Noise figure, NF , is a measure of degradation of SNR caused

by the components in the radio signal chain, for a given bandwidth. Therefore, the total noise floor

is calculated by

noise f loor = NF ∗Nt (2.1)

SINR of signal i is then calculated as follows:

SINRi =
RxPoweri

noise f loor+ ∑ j= signal overlaps with i RxPower j
(2.2)

Where RxPoweri and RxPower j are in Watts. An example showing SINR computations for a signal

of interest (in red color) at different instance of time is illustrated in Figure 2.2.
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Figure 2.2: An example SINR computation for a signal of interest (in red color) at different in-

stances of time

2.1.3 DSRC Receiver Modeling

An incoming OFDM frame is processed based on the instantaneous PHY state. A DSRC PHY

can be in one of the four following possible states at a given time: transmit (TX), receive (RX),

idle (IDLE) and busy (CCA_BUSY). If the PHY is in TX state, the signal is ignored and does

not require any processing. If the PHY state is in RX or CCA_BUSY, a receiver sensitivity (rth)

is used to trigger an RX event. If the total energy (e) on the communication channel exceeds rth,

the detection of the preamble training symbols begins. At the end of preamble (40 microseconds)

duration, the SINR of the receiving signal is evaluated to determine a successful preamble detec-

tion. A Frame Success Rate vs. SINR relationship curve is used for the evaluation. If a preamble is

successfully detected, the receiver is deemed to be in sync with the signal and further processing

of the receiving frame can advance. A payload decoding probability is evaluated when the last bit
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of the frame is received. Similar to preamble detection, an empirical Frame Success Rate vs. SINR

curve is used to determine if the frame can be successfully decoded.
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Figure 2.3: SINR versus frame success probability for preamble detection and capture, and payload

decoding and capture.

The processing of an incoming signal becomes complex when the PHY is in RX state, i.e.,

the receiver is either already locked to a signal or is in the preamble detection stage. Simplistic

modeling of DSRC receiver would drop an incoming (colliding) signal when the receiver is in

RX state. However, field experiments, as reported in [71] [70], suggest that the frame capture

mechanism kicks in in such scenarios. The radio chipsets in real-world DSRC devices try to

capture the stronger signal when multiple signals overlap in time. This is called frame capture

which, based on the arrival times of the colliding frames, can be further divided into two classes,

preamble capture, and payload capture. Preamble capture occurs when a second signal arrives at
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the receiving antenna when its radio is in the detection phase of an existing potential OFDM signal.

SINR of the first signal is compared to determine if its strength can result in a successful preamble

detection. If so, the receiver continues the detection of the first signal. If the SINR evaluation

does not favor the first signal, the SINR of the second signal is evaluated for a possible preamble

detection. In the payload capture case, the arrival of the second signal happens after successful

preamble detection of the first signal, resulting in a signal overlap in time during the payload part of

the first signal. Similar to preamble capture, the SINR of the first signal is evaluated to determine if

its reception can advance. The receiver continues with the first signal if SINR is deemed sufficient

for a successful frame decode. Otherwise, SINR of the second signal is evaluated to determine

if the receiver needs to switch to that signal. The Frame Success Rate vs. SINR probabilities

for preamble detection, preamble capture, payload capture, and payload decoding are graphed in

Fig. 2.3.

Enhanced DSRC receiver model with the tweaks mentioned above provides a high-fidelity

simulation platform to evaluate upper layer algorithms with higher accuracy. The calibrated PHY

model is validated against the large-scale field dataset reported in [70]. CBP and PER plots, as

illustrated in Fig. 2.4, evidently suggest that the results from the calibrated PHY model are in good

agreement with the field observations.
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Figure 2.4: Validation of calibrated DSRC radio model (a) CBP of field dataset versus simulation

results (b) PER of field dataset versus simulation results

2.2 Realistic V2X Channel Modeling

Characterization of the naturally dynamic V2X channel is particularly challenging due to im-

mensely diverse environments typical vehicular networks operate in. Driving context in such

networks ranges from rural highways to multi-lane freeways to urban grids. Successful deploy-

ment of V2X solutions demands accurate modeling of channel propagation for validating different

network protocols. To that end, several channel characterization datasets are reported in the lit-

erature using different measurement approaches. While a channel sounder based approach can

analyze channel behavior at a significant degree of details, this approach may suffer from limited

dataset size due to the complex setup of the associated data collecting apparatus. A cost-effective

measurement approach is to equip a number of vehicles with off-the-shelf prototype on-board V2X
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units and drive along the region of interest to collect received signal strength data for a variety of

driving conditions. However, this approach also has limitations of its own. Off-the-shelf V2X

units log RSS information only for successfully decoded packets, which essentially place a hard

threshold on the received RSS information. The measurement, therefore, results in a dataset that

is censored below the receiver sensitivity threshold. Despite this limitation, this approach is used

by several measurement campaigns aiming at collecting V2X characterization data. Furthermore,

ease of equipment setup makes this approach an ideal candidate for a large scale measurement

drive in real-world driving environments.

Using prototype V2X onboard units, Crash Avoidance Metrics Partners (CAMP LLC) Vehi-

cle Safety Communications 6 (VSC6) Consortium measured a dense freeway stretch and a four-

way suburban intersection to collect RSS samples for characterizing the DSRC band. A total of

ten vehicles (sedans of different auto makes) were used in the data collection campaign. The

total dataset consists of multi-day RSS measurements sampled from different times of the day.

Dashboard-mounted GoPro R© cameras were used to capture traffic conditions during data collec-

tion runs. Each vehicle was equipped with DSRC On-Board Equipment (OBE) and Global Po-

sitioning System (GPS) devices that were connected to a roof-mounted omnidirectional shark-fin

antenna (Figure 2.5). Transmit power was set to 20 dBm and over the air packet size was 139

bytes. The 10 MHz channel in the frequency range of 5855 MHz - 5865 MHz of the DSRC band

(Channel 172) was measured. The GPS devices were providing position and time information to

the OBEs. The OBEs were logging relevant items for the transmitted and received Basic Safety

Messages (BSMs) [5] such as timestamp, transmit power, RSS, latitude, longitude, speed, heading,
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and message sequence number. The GPS data is used to determine the sender-receiver separation

distances and for accurate positioning of the transmitting and receiving vehicles. The time-stamped

OBE logs come in handy for separating time-spanned samples from the whole data set collected

over multiple days from a variety of traffic conditions. We observed variation in RSS samples

depending on the traffic congestion present at the time of sampling. We used the reference data

from Caltrans PeMS ( [72]) to map the time-stamped logs from freeway measurement to different

traffic densities. The details of density-level filtering are provided in a later section.

Figure 2.5: Equipment setup as shown was identical in all vehicles under test

2.2.1 Large Scale RSS Measurement

As part of the large-scale data collection campaign conducted by CAMP LLC Vehicle Safety Com-

munications 6 (VSC6) Consortium, RSS samples were collected using a set of DSRC-equipped
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cars from a 3.5-kilometer section of the I-405 freeway in Orange County, California. The stretch

between the I-405/I-605/SR-22 and I-405/SR-22 junctions is chosen due to the relative flatness

and straightness of the freeway segment. This part of the freeway has 16 lanes of traffic consisting

of 8 lanes in each direction, including 2 High Occupancy Vehicle (HOV) lanes in each direction,

as shown in Figure 2.6. The roadside environment is characterized by open fields on one side and

noise barrier on the other, and by a median barrier separating the traffics in each direction (ap-

proximately 1.45 meters high). A variety of driving patterns were used to capture the randomness

of vehicular settings in typical freeway scenarios. RSS samples were measured with cars driving

in the same direction (convoy) and opposite direction (encounter). The dataset is comprised of

measurements from different times of the day to obtain RSS samples for different traffic densities.

(a) Highlighted stretch of the I-405 Freeway in Orange

County, CA is chosen as our region of interest for free-

way RSS measurement. Source: Google Inc c©

(b) 4-way Intersection of Beach Boulevard and West-

minster Avenue in Orange County, CA. Source: Google

Inc c©

Figure 2.6: RSS measurement sites for freeway and intersection region of interest (ROI)

To characterize V2X channel in suburban intersections, a representative of the typical 4-way

intersections (the intersection of Beach Boulevard and Westminster Avenue in Orange County,
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CA) was selected to collect RSS samples from different legs of the intersection. Using a variety

of driving patterns, e.g., intersection-encounter and midblock-encounter, channel characteristics of

radio links for different sender-receiver separations were captured.

Figure 2.7: Analysis of highway datasets led to clustering the data for different traffic levels. We

can observe the difference of the median between different clusters and the effect of vehicle density

on PER. Median values are calculated considering the ratio of the lost packet. Median of samples

with PER values higher than 50% cannot be calculated.

2.2.2 Freeway RSS Analysis

This subsection provides insight into the channel propagation characteristics of the freeway RSS

dataset, focusing on dominant channel loss factors that affect the communication link behavior.

RSS and Travel Direction. As mentioned earlier, the measured freeway-stretch has a median bar-

rier with a height closer to the heights of vehicles under study. Therefore, we reasonably assume

32



that measurements of vehicles driving in the same direction and opposite direction have charac-

teristically different RSS pattern. Opposite direction links usually lack a prominent LOS for a

longer period. Also, the relative speed is greater for communicating pair traveling in the oppo-

site direction which may influence the fading characteristics of the corresponding links. This RSS

dependency on relative travel direction is further corroborated by the median curves shown in Fig-

ure 2.7. Based on the above analysis of the RSS dependency on travel direction and vehicle density,

required channel propagation models for the I-405 freeway dataset can be classified as shown in

Figure 2.8.

RSS and Traffic Density. It is commonly understood that RSS has a direct relationship with den-

sity around the link, the higher the density the greater the propagation loss. This loss in signal

strength can be attributed to the blockage amount the existing traffic density, in the form of physi-

cal dimension and orientation of the vehicles relative to communicating pair, may introduce to the

communication link. Owing to this fact, we categorized the freeway RSS dataset considering the

traffic density present at the time of measurement. Traffic density data is obtained from publicly

available Caltrans PeMS data by calculating whether the communicating vehicle pairs are in op-

posite lane having a barrier in between or in the same direction of the highway. Traffic density

calculation is shown in (2.4).

di =
q
v

(2.3)

d = ∑
di

n
(2.4)
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where q,v,n,di are vehicle flow, average speed, number of lanes and density of vehicles over lane

i respectively. The freeway dataset is divided into six clusters as shown in Table 2.1. While the

RSS data can be separated into more clusters, the cost for doing so would decrease the number of

samples per cluster and eventually result in noisy estimation.

Freeway Channel Model

Same

Low Medium Heavy

Opposite

Low Medium Heavy

Travel Direction:

Density:

Figure 2.8: Freeway channel model classification - the density ranges defining the density levels

shown here are provided in Table 2.1.

Table 2.1: Highway Dataset Clusters (density in veh/mile/lane)

Travel

Direction

Density Level Density

(veh/mile/lane)

Travel

Direction

Density Level Density

(veh/mile/lane)

Encounter

Low ≤10

Following

Low ≤10

Medium (10 - 20) Medium (10 - 20)

Heavy ≥ 30 Heavy ≥ 30
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2.2.3 Intersection RSS Analysis

A number of channel loss factors are identified from the observations on RSS samples collected

from intersection driving scenarios. Since the loop-sensor data was not available for the inter-

section we measured RSS data from, we assumed no distinction based on traffic density. This

assumption is further supported by the observation we made from the dataset by plotting them for

different time segments of the day, which showed no evidence of time-dependency (and in turn,

density dependency) of the RSS dataset.
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Figure 2.9: RSS vs. distance for TX-RX pair on same road and intersecting roads.

Same Road vs. Intersecting Road. From the field data we observed that, for a given TX-RX

separation distance, signal strength significantly differs based on the relative position of the TX-

RX pair. Signal levels are typically higher for the links on the same road while links on intersecting
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roads show lower RSS due to the NLOS nature of such links. As a result, the same road evidently

shows extended range compared to intersecting roads, as illustrated in Fig. 2.9.

Same Leg LOS vs. Different Leg LOS. The same leg LOS occurs when the TX-RX link is ob-

structed on the same leg. Different leg LOS occurs when the sender and receiver are located on

different legs of the intersection. This can occur in two cases: when the sender-receiver pair is on

the same road but different legs; or, if the pair is on intersecting roads but still has a direct LOS due

to the opening of the intersection box. Fig. 2.10 shows RSS samples for the case where the TX-RX

pair is on intersecting roads. Higher RSS values are observed when at least one of the vehicles of

the communicating pair is closer to the intersection box. If a polygon can be defined comprised

of the corners of four building-blocks located on the four corners of the intersection, then any link

intersecting that polygon can be considered as LOS. The higher RSS values around the corners

are essentially representing these different leg LOS cases. Figure 2.11 shows the median RSS and

associated PER of LOS and NLOS links.

Based on our observations on the RSS variation due to relative sender-receiver distance, we

classified the RSS samples into three broad categories: the same leg LOS, different leg LOS (across

leg or intersecting leg) and NLOS. Figure 2.12 graphs the relative position of these three classes

of TX-RX links. And overall required intersection models to capture channel loss behavior in the

intersection can be classified as shown in Figure 2.13.
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(a) South RX-West TX (b) South RX-East TX

(c) North RX-West TX (d) North RX-East TX

Figure 2.10: RSS vs Distance-to-Center of the intersection box for sender-receiver pair on inter-

secting roads.
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Figure 2.11: RSS Median vs. Distance based on selected scenarios for clustering data.

Figure 2.12: Orientation of communication links based on relative positions of the sender and

receiver
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Intersection Channel Model

Obstructed LOS Potential LOS

Across/ Intersecting Legs Same Leg

LOS Condition:

Link Orientation:

Figure 2.13: Intersection model classification

2.2.4 V2X Channel Propagation Loss Modeling

2.2.4.1 Modeling Approach: Big Picture

The overall flow of the channel propagation modeling can be explained by the steps illustrated

in Figure 2.14. As can be seen, after filtering the dataset into different categories based on the

insights discussed above, identical methodologies are applied to estimate model parameters for

both freeway and intersection channel propagation behavior.

Considering the natural phenomena that deteriorate signals, three models are required to ap-

proximate the channel losses: large-scale path loss, shadowing or large-scale fading, and small-

scale fading. The logarithmic representation of received signal strength at an arbitrary transmitter-

receiver separation distance d can be written as:

Pr(d) = Pt−LLS(d)+g(P,dB)+Sσ (2.5)
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where Pt is the transmission power in dB, LLS (d) is the deterministic path-loss at distance d,

g(P,dB) is the small-scale fading, and Sσ is the zero-mean shadowing with standard deviation of σ .

Large-scale path loss describes the deterministic signal attenuation at a specific distance. Shad-

owing, in vehicular communications, occurs when the direct path of the propagating signal is

obstructed by large objects. Vehicular networks are very dynamic in nature, and thus, shadowing

may change rapidly over time, especially in urban settings. Small-scale fading, sometimes referred

to as just fading, captures the signal strength changes due to vehicle movements. All these models

collectively describe a wireless channel. We can rewrite (2.5) by assuming that the components

governing the distribution of RSS samples at a given distance are a composite of a deterministic

and a non-deterministic (combining the effects of shadowing and multi-path fading) function. The

non-deterministic function is a member of distribution familyM. (2.6) and (2.7) are defining the

general setting of our modeling technique.

Xd = Yd + γd (2.6)

Yd ∼M(θd) (2.7)

where random variable Y at distance d is sampled from distributionM parameterized on θ . γd is

the deterministic function acting as a bias at distance d.

In the next few sections, we elaborate on the challenges (and assumptions) of model estimation

from a censored dataset and then provide derivation techniques for deterministic large scale path

loss and stochastic fading models for such datasets.
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Figure 2.14: Channel propagation modeling steps: from measurement to filtering to modeling.

After dataset is classified based on the identified channel loss factors, a parameter estimation tech-

nique is used for both freeway and intersection loss models.

Figure 2.15: RSS versus packet error ratio (PER): all packets having Rx power above -90 dBm are

considered successfully received, assuming zero interference from other transmitting vehicles and

a noise floor of -98 dBm.
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2.2.4.2 Censored RSS Dataset and PER Assumption

Censored data is inherent in the RSS dataset obtained using off-the-shelf DSRC radio devices.

Here, censoring occurs due to the operating receiver sensitivity level of the DSRC devices and

the decodability of the received messages. RSS samples are only logged if the received signals

are above the receiver sensitivity and corresponding messages are successfully decoded. A mes-

sage’s decodability depends on its signal-to-interference-plus-noise ratio (SINR). In this dataset,

we assume that the lost messages are due to signal attenuation rather than signal collisions as

the number of transmitting vehicles is relatively low. Therefore, we assume no interference from

other transmitting vehicles and the thermal noise is determined to be approximate -98 dBm for a

10 MHz channel in 5.9 GHz band. An empirical SINR-versus-PER curve is derived from DSRC

hardware experiments in [73], which can be transformed into the RSS-vs-PER curve as shown

in Figure 2.15, assuming zero interference from transmitting vehicles. In our model derivations,

we use this packet error model to determine the portion of RSS samples that were not correctly

decoded and thus, considered missing in the RSS dataset.

2.2.4.3 Large Scale Path Loss Estimation

From the measured data, it is observed that the relationship between RSS and sender-receiver

separation distance closely resembles the structure of widely reported two-ray ground reflection
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path loss [74] [75]. Therefore, we assume that model for estimating the large scale path loss

component, which can be formulated as follows:

γ(d;α,εr) = 10∗α ∗ log(4π
d
λ
|1+Γ⊥eiφ |−1) (2.8)

where α is the path loss exponent, εr is a fixed unit-less constant dependent on the reflection

medium, and λ = c
f is the wavelength of the corresponding transmitted signal with central fre-

quency of f that is propagating in the environment with the speed of c. In the above equation, the

reflection coefficient Γ⊥ can be found as:

Γ⊥ =
sinθ −

√
εr− cos2 θ

sinθ +
√

εr− cos2 θ
(2.9)

where sinθ = ht+hr
dre f

and cosθ = d
dre f

, with dre f =
√

d2 +(ht +hr)2, are dependent on ht and hr

which are the heights of the transmitter and receiver antennas, respectively. Furthermore, the

phase difference of the two interfering rays, φ , can be found as:

φ = 2π ∗
dlos−dre f

λ
(2.10)

where dlos =
√

d2 +(ht−hr)2.

By applying the assumptions made in [46] about the fading parameters having minimal vari-

ation compared to path loss and considering (2.6), we can remove the fading component by sub-
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tracting the expected value of RSS random variables at neighboring distances. Therefore (2.11)

holds true.

E(X |d2)−E(X |d1)≈ γ(d2;α,εr)− γ(d1;α,εr)

= 10∗α ∗ log(
d1

d2
∗

∣∣∣∣∣1+Γ⊥,d2eiφd2

1+Γ⊥,d1eiφd1

∣∣∣∣∣)
(2.11)

Although using (2.11) for any arbitrary pair of distinct distances should theoretically yield to an

identical value of εr, the obtained value may vary for each pair of distances due to the empirical

data imperfection. Therefore, statistical mode of the distribution of obtained εr values is chosen as

the best approximation of the actual value. A similar method is used to determine the value of α

which can be derived using Equation (2.11), and using the same reasoning as εr, statistical mode

of the distribution of obtained values of α is selected as the most accurate approximation of the

actual value.

Having different PER values at neighboring distances due to path loss makes estimation of

expectation equivalent to estimating the full distribution. Hence, estimating path loss according to

(2.11) is only valid when packet loss is minimal. In order to avoid the packet loss problem we can

use (2.12). ṗ is an arbitrary probability value preferably close to 0.5. Choosing ṗ close to 0 or 1

leads to increased presence of noise in percentile estimation.

F−1
X (ṗ;d2)−F−1

X (ṗ;d1) = γ(d2;α,εr)− γ(d1;α,εr) (2.12)
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Since F−1(ṗ,di) cannot be estimated for values less than pdi
e , value of ṗ should be selected with

respect to the following condition.

ṗ≥ max(pd2
e , pd1

e ) (2.13)

Having samples from X̂ rather than X , we can use Eq. (2.14):

F−1
X̂d2

(pd2)−F−1
X̂d1

(pd1) = γ(d2;α,εr)− γ(d1;α,εr) (2.14)

where

pdi :=
ṗ− pdi

e

1− pdi
e

(2.15)

we can estimate the path loss with the aforementioned method in case PER is greater than zero and

changing with a high rate in a neighborhood as path loss can have a prominent effect in variation

of PER.

2.2.4.4 Small Scale Fading Estimation

By removing large scale path loss, we can estimate the fading distribution parameters over the

distance. Assuming fading parameters are more consistent over the distance, we expect to observe

smoother parameter variations over distance by removing large scale path loss. This property

will become handy in cases where the estimation becomes noisy due to a small sample set and

additionally will help us in parameter initialization during the optimization process.

To estimate the distribution of RSS, given the distance between transceivers, we have con-

structed two cost functions. It is crucial for the cost functions introduced to incorporate the em-
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pirical PER value. The first cost function is inspired by the conventional Maximum Likelihood

Estimator with respect to PER value. We refer to such a method as Censored Maximum A Poste-

riori (CMAP). The cost function consists of two terms: the first is log-likelihood and the second

is an auxiliary regularization term. First, we will discuss the details about the log-likelihood term

and explain why a second term might be a necessity for the optimization process.

2.2.4.5 Maximum Likelihood Estimator for Left Censored Samples

Log likelihood is a well-known loss function for estimating distributions from observations. While

likelihood function is usually derived from Bayesian framework and often introduced as the log

of such probability in order to simplify calculations, it is worth mentioning that log likelihood

can also be interpreted as the total number of bits required to describe a set of samples based on

a model assuming that the coding scheme is based on minimum length prefix coding [76]. Eq.

(2.16) is the log-likelihood function with regards to target distribution familyM parameterized on

θ .

L(θ |y) = ∑
yi∈y

log( f (yi;θ)) (2.16)

Since the samples are censored, using the loss function defined at Eq.2.16 is not valid. We need

to redefine the loss function while considering the censoring function. The sample set likelihood

should be maximum with regards to a distribution after being affected by the censoring function.

PDF of the observed samples given censoring function according to underlying distribution family
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is shown in Eq. (2.17).

f̂ (y;θ ,E ,γ) = f (y;θ)E(y+ γ)∫
E(x+ γ) f (x;θ)dx

(2.17)

where f̂ is the PDF corresponding to distribution family M̂, and therefore the defined log-

likelihood overM is as follows:

L̂(θ |y) = ∑
yi∈y

log( f̂ (yi;θ)). (2.18)

Eq. (2.18) is the result of incorporating the error model.

Using the PER information, we can set a constraint on the parameter space to ensure that the

censored distribution has the same PER measure. (2.19) is the function used for the constrained

optimization.

π(θ ;y) = 1−
∫

∞

−∞

f (y;θ)E(y+ pl)dy (2.19)

argmax
θ

L̂(θ |y) s.t. π(θ ;y) = pe (2.20)

Since calculation of π(θ ;y) might not be analytically feasible, we simplify the problem by intro-

ducing an alternative error model, Ê , shown in (2.21), and modify the sample set accordingly.

Ê(x) = I(x > t) (2.21)

where t is an arbitrary value such that the error model outputs at values above t are close to 1.

Consequently, p̂e can be recalculated as (2.22).

p̂e =
∫ t

−∞

f (y; θ̂)d(y) (2.22)
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Having the new error model we can remove samples below the threshold from the sample set.

Eq. (2.23) is the constraint with regards to the new error model. the new sample set is defined as

Eq. (2.24). As t increases we omit the noise on censored density estimation; on the other hand,

removing samples from the data set increases the variance in error of estimation.

t = F−1(p̂e;θ) (2.23)

ŷ = {y|y≥ t} (2.24)

The modified log likelihood function is sufficient for correctly estimating the censored distribution

parameters since it implicitly incorporate Eq. (2.23).

2.2.5 Freeway Model Validation

Figure 2.16 shows the validation results of channel modeling for the freeway dataset.

2.2.6 Intersection Model Validation

Figure 2.17 shows the intersection model validation results as well as the model parameters as a

function of sender-receiver separation distance.
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(a) (b) (c)

(d) (e) (f)

Figure 2.16: Freeway channel modeling validation: first row is the RSS percentiles for each sce-

nario, second row is the PER and the last two rows are corresponding parameters for fading distri-

butions. Nakagami distribution family was selected for fading modeling.
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(a) (b) (c)

Figure 2.17: Intersection channel modeling results using log-normal distribution. From left to

right, columns show results of the Same Leg LOS, Different Leg LOS and Different Leg Building

Blocked (NLOS) channel modeling, respectively. The first two rows are the comparison of RSS

percentiles and packet error rate, respectively. The last two rows are parameters of log-normal

distribution with respect to transmitter-receiver distance.

50



CHAPTER 3: SCALABLE V2V COMMUNICATION THROUGH DSRC
BASED CHANNEL CONGESTION CONTROL

This chapter evaluates the SAE J2945/1 congestion control [58] algorithm using realistic ve-

hicle mobility and channel propagation models. While some previous research efforts evaluate

the overall stability and fairness of the algorithm, this work focuses more on the end goal of scal-

able communication among entities in a vehicular context. To that end, we present performance

evaluation metrics for cases where reliable communication is most needed. The second major con-

tribution is to further analyze the BSM generation rate and transmit power settings to reveal any

potential room for improvement in the default parameter settings of the algorithm.

3.1 Overview of the SAE J2945/1 Congestion Control Algorithm

The SAE J2945/1 outlines a feedback loop based adaptive channel congestion control (CC) algo-

rithm that regulates BSM scheduling interval and BSM transmit power. This section provides a

brief overview of the CC mechanism including the algorithm inputs, BSM scheduling criteria and

the transmit power control logic.
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3.1.1 Algorithm Prerequisites

The SAE J2945/1 BSM scheduling protocol requires a set of input parameters to be updated at

a predefined interval to adaptively change the inter-transmit interval and transmit power. These

parameters are consulted at every BSM scheduling interval (ttxCtrlIntvl) to make a transmission

decision.

• Vehicle Density (VD): Each ego-vehicle or host vehicle (HV) keeps track of its surrounding

vehicle density by aggregating information from the received BSMs. This quantity is denoted

as Ns and essentially computes the number of unique V2V entities within a predefined range

(rPER), regardless of their travel direction. At least one BSM needs to be received from each

node to be considered in the density calculation. This parameter assists the CC algorithm to

have a coarse estimation of the number of transmitting vehicles contributing to the channel load.

• Channel Busy Percentage (CBP): Expressed as a percentage, this network layer metric mea-

sures the ratio of the time during which the wireless channel is busy (i.e., the energy level is

higher than the carrier sensing threshold) to the period of time (tcbpIntvl) over which CBP is be-

ing measured. If tbusy is the measured total busy duration, then CBP can be calculated as follows

:

CBP = 100∗
tbusy

tcbpIntvl
(3.1)

CBP is considered a local feedback measurement available at every node in the network at any

time.
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• Packet Error Ratio (PER): This metric essentially quantifies the communication channel qual-

ity as the time-window based packet loss ratio by determining the number of missed packets at a

receiver from a transmitter and the total number of sent packets by that transmitter. The number

of the total sent packet is determined from the sequence number of received BSMs.

3.1.2 BSM Scheduling

The SAE J2945/1 states that the host vehicle shall decide at every ttxCtrl , time indexed as k, if a

BSM update is required to be broadcast based on the following criteria.

• If the vehicle is currently experiencing any critical event such as hard-braking, a BSM is defi-

nitely transmitted with the latest vehicle status update.

• Otherwise, the vehicle shall determine the estimated tracking error perceived by the remote

vehicles by extrapolating the last sent BSM considering the BSM loss probability as indicated

by the channel quality. Depending on the estimated error, a BSM is transmitted probabilistically

using the following equation.

p(k) =



1− e−α∗|err(k)−T |2, if T ≤ err(k)< S

1, if err(k)≥ S

0, Otherwise

(3.2)
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where err(k) is the estimated tracking error of the host vehicle perceived by the remote vehicles

at k− th BSM schedule interval. T and S are the minimum and maximum bounds for tracking

errors, respectively.

• Otherwise, the vehicle shall schedule a BSM based on determined vehicle density Ns within

rPER, as follows.

IT T (k) =



100, if Ns(k)≤ β

100∗ Ns(k)
β

, if β < Ns(k)< ittmax
100 ∗β

ittmax, if ittmax
100 ∗β ≤ Ns(k)

(3.3)

Where β is the vehicle density coefficient that determines the starting point of rate control and

defines the slope of rate change. The constraint of ittmax ensures that for highly dense traffic

conditions, the vehicles will disseminate BSMs to maintain the minimum safety requirement of

inter-packet gap.
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3.1.3 Transmit Power Control

The SAE J2945/1 BSM scheduling protocol uses transmit power control as a function of channel

busy percentage. The system calculates the transmit power based on the latest available CBP

(referred to as U in the equation). Raw radiated power (RP) is calculated as follows.

f (U) =



RPmax, if U ≤Umin

RPmax−

RPmax−RPmin)
Umax−Umin

∗ (U−Umin), if Umin <U <Umax

RPmin, if Umax ≤U

(3.4)

where U is the current CBP measurement, Umin and Umax are used to constrain the transmit power

to keep channel load within the optimal channel utilization range. Radiated power (RP) is then

calculated as follows.

RP = RPPrevious +SUPRAGain∗ ( f (U)−RPPrevious) (3.5)

And final transmit power is then determined by accounting for the antenna gain G and cable loss

losscable.

T xPower = RP−G+ losscable (3.6)
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3.2 Evaluating the SAE J2945/1 Congestion Control Algorithm

We performed extensive simulations to evaluate the performance of the CC algorithm in a variety

of vehicular environments for different levels of traffic density. Communication link performance

in inherently dynamic vehicular environments varies significantly. Therefore, it is important to

realize the characteristics of the propagation channel for performance evaluation of V2V commu-

nication protocols. Capturing realistic vehicle movements are equally important for the legitimate

evaluation of performance metrics such as tracking error. A high fidelity simulation platform is

thus desired to validate the safety benefits of the standardized CC algorithm.

3.2.1 Simulation Setup

The degree of dependability in VANET simulation experiments relies on the realism of modeled

components such as vehicle trajectory, wireless propagation model and the radio model. To that

end, we enhanced ns-3 [68], a discrete event network simulator, by incorporating various simula-

tion components derived from an empirical dataset. Received signal strength (RSS) samples from

a large-scale field test are obtained to model realistic radio signal propagation in a vehicular con-

text. The RSS measurements are from a carefully chosen freeway region-of-interest on the I-405

in Orange County, CA and a typical sub-urban 4-way intersection, also located in Orange County,

CA. Collected RSS samples from the freeway region of interest were broadly classified into three

different densities based on available loop-sensor data provided by CalTrans PeMS dataset [72].
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Derived channel propagation models further consider the relative direction of the sender-receiver

pair, as a significant difference in link quality is observed for the same direction and opposite direc-

tion traffic. The large-scale path loss is modeled using two-ray ground reflection [74] with differ-

ent loss exponents for different traffic density levels in freeway scenarios. In intersection channel

models, the path loss exponents vary based on the relative positioning of the sender-receiver pair.

While all Tx-Rx links in the freeway (same and opposite direction) and same roads in intersection

scenarios are modeled as a function of 2D Euclidean distance between Rx-Tx, the model for inter-

secting Tx-Rx considers the pair’s relative distance from the intersection center. This distinction

was made to further realize the effects of the intersection landscape on signal propagation [77],

as vehicle pairs on intersecting legs typically have an NLOS or partial LOS. We aimed to validate

the CC algorithm using the same physical environments the channel characteristics measurements

were collected from. Therefore, vehicle mobility traces were generated for the same road stretches,

utilizing a microscopic traffic simulation model calibrated using CalTrans PeMS data. The mobil-

ity generation tool is specifically geared to capture the traffic levels at different times of the day,

and it enabled us to narrow in to time-period specific vehicle trajectories that match the densities

observed during RSS measurement. A high fidelity DSRC PHY model is used in the simulation

experiments which was validated against a large-scale field dataset as reported in [78] [79]. The

simulation platform used in the validation of the CC algorithm is detailed in Chapter 2. Congestion

control settings used in the simulated environments are tabulated in Table 3.1.
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Table 3.1: Simulation settings for SAE J2945/1 BSM congestion control

Parameter Value Parameter Value

β 25 ittmax 600 ms

RPmin 10 dBm RPmax 20 dBm

Umin 50% Umax 80%

T 0.2 m S 0.5 m

α 75 SUPRAGain 0.5

G 0 dB losscable 0 dB

ttxCtrlIntvl 100 ms rPER 100 m

3.2.2 Performance Metrics

We evaluate the performance of the standardized CC algorithm in terms of an evaluation metric

called information age (IA), and a performance metric called tracking error (TE). These metrics

are defined as follows.

3.2.2.1 Tracking Error

At a given time t, the tracking error (TE) at the receiver HV for a particular transmitting remote

vehicle RV is the 2D distance difference between the current position estimate of the transmitting

RV at HV and the true position of that RV obtained from GPS logs. Since TE sampling is dependent
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on the availability of actual position updates, it can be done at most at the sampling rate of GPS

updates, which is 10 Hz in our simulation experiments. Vehicle dimension and GPS error are

not considered in the simulations, and therefore, TE is only affected by the communication link

quality and vehicle dynamics. If t is the GPS time at a certain RV and t ′ is the last received BSM

timestamp from that RV at HV, then the estimated position of the RV at t can be extrapolated over

∆t = t ′− t using the received BSM information as follows:


x̂ = x̃+∆t ∗ ṽ∗ cos(θ̃)

ŷ = ỹ+∆t ∗ ṽ∗ sin(θ̃)

(3.7)

where (x̂, ŷ) is the estimate of the current position of RV at HV, assuming Cartesian coordinate

system and constant velocity model, and (x̃, ỹ) is the latest received BSM position from RV with a

speed value of ṽ. The tracking error TE can then be calculated as

T EHV,RV (t) = d((x̂, ŷ),(x,y)) (3.8)

where d(., .) is the 2D Euclidean distance, in meters.

3.2.2.2 Information Age

The information age (IA) at a given time t, at a given HV, is the difference between the timestamp

corresponding to the data contained in the most recently received information kt from a given

59



transmitting RV and can be expressed as follows.

IAHV,RV (t) = t− tRV,HV (kt) (3.9)

where kt is the index of the most recent data received up to time t, tRV,HV (kt) is the timestamp

corresponding to the data of sample indexed kt , received from RV at the HV. Figure 3.1 illustrates

how IA is calculated over time as BSMs from a certain remote vehicle are being received.

Time

IA

Received BSM from a certain remote vehicle

Figure 3.1: IA calculation over time. IA grows from the point a BSM is received from a particular

RV, until the next BSM is received form it. Each tick on both axes represents unit time.

3.2.3 Evaluating CC Algorithm in Freeway Scenarios

To evaluate the performance of CC algorithm in freeway scenarios, we simulated a 3.5-kilometer

section of the I-405 freeway in Orange County, California, stretched between the I-405/I-605/SR-
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22 and I-405/SR-22 junctions (Figure 3.2). This part of the freeway has 16 lanes of traffic con-

sisting of 8 lanes in each direction (including two High Occupancy Vehicle (HOV) lanes in each

direction). Realistic vehicle mobility traces are generated using a calibrated micro-simulation mo-

bility tool. The mobility generation tool also enabled us to accurately timestamp the hard-braking

events as well as the lane-change maneuvers. The simulated vehicular environments are broadly

categorized in light, medium and heavy traffic density and have average vehicle densities of 10, 25

and 50 vehicles/mile/lane, respectively.

Figure 3.2: Highlighted stretch of the I-405 Freeway in Orange County, CA is chosen as our

region of interest for freeway RSS measurement, and subsequently used for the validation of the

SAE J2945/1 CC algorithm. Source: Google Inc c©

Figure 3.3(a) shows the CBP and transmit power measured at the subject vehicle. It suggests

that the transmit power is adjusted adaptively based on the measured channel load. And thus,

channel load is kept within the optimal operating range. Figure 3.3(b) shows how the rate is

adaptively adjusted based on vehicle density, to regulate the offered load to the channel.
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Figure 3.3: CBP, Transmit Power, Vehicle Density (VD) in 100 m radius and Max ITT for different

traffic density cases.
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The collection of performance measures from the simulation logs, as depicted in Figure 3.4,

show IA and TE comparisons of the baseline (No CC) and CC algorithm. IA for light and medium

densities are similar for both baseline and CC algorithms. When the channel is loaded below

the optimal level, the baseline can achieve the same performance as the CC algorithm. When

the channel gets congested with BSMs from an increased number of transmitting vehicles, as is

the case for the heavy traffic scenario we simulated, IA for CC transmit protocol outperforms

baseline. Higher density translates to a higher number of BSM transmission which essentially

increases the probability of packet collision over the air. As a result, BSMs from farther ranges

have a greater loss ratio compared to the BSMs from closer ranges. This is because the BSMs

from a farther distance will attenuate more, resulting in a relatively lower received power at the

HV side. CC algorithm keeps the interference level at a minimal level by reducing the BSM

scheduling frequency as density increases. In addition, it further adapts the transmit power to limit

the interference range. The combined effect of rate and power adaptation results in an improved

information age at farther ranges. While IA has a direct relationship with the BSM reception

ratio, TE of an RV depends on the corresponding IA and vehicle dynamics. Figure 3.4(b) shows

how tracking accuracy of CC compares with baseline. It is observed that, while both the baseline

and CC transmit protocols performed well on tracking accuracy, the CC algorithm achieves

slightly better accuracy. The performance gain once again has a wider margin at farther ranges.
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(b) Tracking Error (TE)

Figure 3.4: Performance evaluation of No CC vs. CC in freeway scenarios. Empirical CDFs are

calculated for samples pertaining to same direction traffic. The samples are aggregated regardless

of the remote vehicle maneuvers.
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(b) Lane Change TE

Figure 3.5: Tracking errors during hard-braking and lane change maneuvers of remote vehicles.
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As mentioned in Section 3.1, the CC algorithm transmits event- and dynamics-driven BSMs

to further the situational awareness. A lower generation rate for the guard BSMs ensures that the

critical BSMs can get through in a timely manner. Guard BSMs are those BSMs that are transmit-

ted based on the HV node’s perceived vehicle density within a predefined range. The microscopic

traffic simulation tool we used for generating realistic vehicle trajectories enabled us to timestamp

the span of critical events for each vehicle. Using that information we can filter the IA and TE

samples for critical event instances. Likewise, lane change maneuvers were also timestamped to

further investigate the efficacy of the CC algorithm in improving situational awareness. The track-

ing performance of the CC algorithm during lane-change and critical event conditions, as shown

in Figure 3.5, outperforms the No-CC transmit approach. This substantial gain in tracking accu-

racy can be attributed to the lower interference levels the critical BSMs experience. Typically, at

a given time a small subset of the total participating transmitting nodes engage in hard-brake or

lane-change maneuvers. Therefore, the inter-transmit times of this subset go low, while the rest

are communicating at higher intervals (guard intervals). The net interference level, therefore, for

the time-critical BSMs are low, and that leads to a higher successful receive ratio and eventually,

higher tracking accuracy.

3.2.4 Evaluating CC Algorithm in Intersection Scenarios

As mentioned earlier, a representative of the typical suburban 4-way intersections (the intersection

of Beach Boulevard and Westminster Avenue in Orange County, CA illustrated in Figure 3.6)
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was selected as our evaluation environment. The intersection is characterized by building blocks

on each corner, effectively creating a non-line of sight condition for communication vehicle pairs

on perpendicular roads. Vehicles on the same leg or the same road generally have line-of-sight,

ignoring blockage by vehicle bodies. Due to very different communication link characteristics, we

look into performance measures by filtering IA and TE samples based on the relative position of

the sender-receiver pair. We also bounded our analysis region of interest (ROI) to 100m from the

center of the intersection, as most of the vehicles in this environment are concentrated around the

intersection. The ROI-filtered samples are then binned based on the 2D distance of the Tx-Rx pair.

Figure 3.6: 4-way Intersection of Beach Boulevard and Westminster Avenue in Orange County,

CA. Source: Google Inc c©

Table 3.2 captures the IA and TE measures for CC and No-CC cases. Note that the range

bin size and maximum range are different than the results shown in freeway scenarios. Relative

vehicle density in intersection scenarios is relatively low and from a safety application perspective,

a maximum ROI range of 150m is deemed to be sufficient in such environments. From Table 3.2,
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we observe that, while at closer ranges the No-CC performs slightly better, the obvious benefits

of CC are noticeable at farther ranges. It is worth noting that the CC algorithm, by design, allows

the perceived tracking error to grow to some extent, by increasing the inter-transmit time as den-

sity grows. This helps reduce the interference level and enables BSMs from farther ranges to be

received.

Table 3.2: 90-th Percentile IA and TE for intersection scenarios. Results are filtered based on

relative positions of sender-receiver pairs on same road and intersecting roads.

Density Road Type Range No-CC IA (s) CC IA (s) No-CC TE (m) CC TE (m)

Light

Same

0m - 50m 0.092 0.131 0.013 0.015

50m - 100m 0.096 0.157 0.020 0.021

100m - 150m 0.150 0.187 0.028 0.044

Intersecting

0m - 50m 0.094 0.135 0.009 0.010

50m - 100m 0.153 0.218 0.011 0.014

100m - 150m 0.298 0.365 0.087 0.083

Heavy

Same

0m - 50m 0.218 0.459 0.020 0.064

50m - 100m 0.445 0.513 0.134 0.184

100m - 150m 0.929 0.848 0.313 0.276

Intersecting

0m - 50m 0.253 0.420 0.041 0.139

50m - 100m 0.758 0.643 0.217 0.206

100m - 150m 1.775 0.854 3.243 0.589
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Figure 3.7: IDR vs. Message Rate and Transmit Power (EDT = -82 dBm)
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3.3 Optimizing Information Dissemination Rate

In this section, we seek to confirm the adequacy of the default CC parameter settings with respect

to the realistic channel propagation model we used in simulation experiments. Since, from the

cooperative vehicle communication viewpoint, maximizing the amount of delivered information

to the neighboring vehicles is a desired feature, we look into the performance measure referred

to as Information Dissemination Rate (IDR) in [66]. This metric is an indication of how well

neighboring vehicles can hear each other and quantifies, in vehicular communication context, the

number of successfully received basic safety messages (BSMs) by a set of receiving vehicles from

a certain transmitter. Typically, V2V applications tend to track a small subset of the vehicles in

close proximity, and therefore, IDR measures at a set of target safety ranges are more meaningful.

If there are N nodes in the communication range or within the range of interest of a transmitter,

IDR can be calculated as follows.

IDR =
N/2

∑
i=N/2

SRR(i) (3.10)

where SRR(.) is the successful reception rate at the receivers that are located within communication

range of the subject transmitter.

Since all transmitting nodes in the DSRC channel use CSMA/CA mechanism for medium

access, and assuming similar hidden nodes situation for all nodes, IDR will be similar for all nodes

in a homogeneous traffic density scenario. Thus, IDR can be calculated from receiving node’s

perspective as well, meaning the quantity in (3.10) equates to the number of successfully received
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messages by a receiving vehicle in per unit time, from all the transmitting vehicles in range (whole

communication range or a range of interest).

(a) Rate = 2 Hz, Power = 20 dBm (b) Rate = 10 Hz, Power = 20 dBm

Figure 3.8: Packet collision statistics of all the received packets (from all neighbors in commu-

nication range) at the subject vehicle for vehicle density of 0.75 veh/m. Distance of SOI node

and interfering nodes are calculated with respect to the receiver node. The right Y-axis shows the

number of received BSMs per second at the receiver from different ranges.

Participating vehicles in cooperative safety communications employ broadcast transmit mode

which does not have any handshake protocol in place. The only available carrier sensing in broad-

cast is physical carrier sensing. Therefore, the energy detection threshold (EDT) of the V2V radio

devices becomes a determining factor of IDR. Typically, EDT is not configurable at run-time, and

mostly depends on the chipset manufacturer, and may vary across chip makers. Furthermore, IDR

can be defined over the entire communication range as well as over a range of interest. From vehi-
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cle safety perspective IDR needs to be maximized over an application-specific critical range rather

than the entire communication range. As a result, the impact of transmit rate and power is required

to be analyzed for designing optimal channel congestion management schemes.

The application-layer metric IDR depends on the choices of rate and transmit power, thus, has

the following relationship:

IDR def
= fidr(R,P) (3.11)

where R is the set of rate values and P is the set of transmit power values. The end goal of the CC

algorithm is to find the optimal combination of these parameters that maximizes the IDR. Thus,

we can formulate the objective function of the CC algorithm as:

maximize
R,P

IDR

subject to Rmin ≤ R≤ Rmax, Pmin ≤ P≤ Pmax.

(3.12)

where message rate R is bounded between Rmin and Rmax, and transmit power P is bounded between

Pmin and Pmax.

3.3.1 Simulation Study

We analyze different aspects of the IDR metric through simulation experiments. We set up a

simulation environment with an 8 kilometer long 1-D roadway. Transmitting nodes are placed

with uniform spacing in-between. In the experiments, we vary node density ρ to determine the

impact of PHY and MAC layer on IDR. Furthermore, channel load U for a given density is varied
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by varying message generation rate R and transmit power P. We set EDT to -82 dBm as found

by the hardware test reported in [73]. In this study, we use the channel model derived for heavy

traffic condition in freeway scenario, as mentioned in Section 3.2.

3.3.2 BSM Rate, Transmit Power and IDR

To determine how BSM rate (inter-transmit interval), transmit power and IDR are related, we

perform simulations for different rate and power settings for varying node density levels. Figure 3.7

shows that a higher BSM rate generally achieves higher IDR when vehicle density is lower. As

vehicle density increases, maximum IDRs tend to be achieved at lower message rates. Another

observation we made is that for a fixed density, lower message rates improve IDRs at higher ranges.

This observation can be explained using the interference characteristics of transmitting nodes.

Handshake RTS/CTS mechanism is not available in CSMA/CA-based cooperative vehicle

communication systems as such networks use broadcast transmit protocol. All contending nodes

use the same contention window (CW) (assuming similar IP traffic) for channel access in a broad-

cast which potentially increases the possibility of multiple nodes count down to zero after their

respective back-off procedures. This allows multiple transmitting nodes to collide concurrently.

This is very commonplace for VANETs as smaller CWmin is preferable due to latency requirements

of V2X safety applications. Furthermore, the transmitters involved in concurrent packet collisions

are usually closely located to the origin of the signal of interest (SOI), which results in a lower

SINR for the SOI at the receiver end. Another factor affecting the packet collision rate is the

73



presence of hidden nodes. This particularly affects VANETs due to high fading and shadowing

channels. Typically, nodes that are geographically far apart tend to appear as hidden nodes to each

other. The spatial relationship between the SOI and interference signals explains the IDR gain

at lower message rates in the congested scenario. SOI is the incoming signal that the receiver is

eventually tuned to after preamble detection and frame capture (if any). When the last bit of the

SOI arrives at the receiver antenna, it decides whether the total frame can be declared success-

fully decoded. In our simulator, this is determined using an empirical error rate model which is

a function of SINR of the SOI [73]. Figure 3.8 graphs the distances of the interferer nodes to

the RX that are deemed hidden to each other. It also shows the distances of interfering nodes that

count down to zero at the same time as the SOI node to gain access to the channel. Note that

we graph only those interfering node positions, signals from which are above the noise floor (-98

dBm). Packet collisions due to multiple nodes being counted down to zero are referred to as the

concurrent collision in this paper. Figure 3.8 shows that when BSM transmit interval is sparse,

the number of concurrent collision and collision due to hidden nodes are significantly low. An

increase in the BSM rate increases packet collisions of both kinds. Increased concurrent collisions

are particularly detrimental for successful packet reception, as transmitting nodes contributing to

concurrent collisions are geographically located at close proximity of each other and the SOI node,

and therefore, severely impacts the SINR of SOI. In contrast, distances between SOI and hidden

nodes are greater, which naturally have a lower impact on the SINR of SOI. The rate control com-

ponent of the CC algorithm helps reduce the concurrent collisions significantly, which essentially
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benefits the upper layer performance metrics in dense traffic conditions. With a lower number of

overall BSMs, the number of hidden node collisions is also get reduced.

(a) ρ = 0.25 veh/m (b) ρ = 0.25 veh/m (c) ρ = 0.25 veh/m

(d) ρ = 0.50 veh/m (e) ρ = 0.50 veh/m (f) ρ = 0.50 veh/m

(g) ρ = 0.75 veh/m (h) ρ = 0.75 veh/m (i) ρ = 0.75 veh/m

Figure 3.9: IDR versus Channel Occupancy for different TxPower levels. The vertical lines corre-

spond to each of the TxPower-IDR curve.
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3.3.3 Channel Occupancy and IDR

Figure 3.9 shows the IDR measures for different channel occupancy levels for varying vehicle

densities of 0.25, 0.50 and 0.75 veh/m. Note the channel occupancy levels corresponding to the

maximum achievable IDR. When the channel is under-utilized or saturated, the CBP values as-

sociated with optimal IDRs remain similar for individual power levels at different ranges. It is

observed that the optimal CBP varies for different IDR ranges, and generally remains within 60%-

80%, which suggests that the current settings of minimum and maximum channel utilization in

CC algorithm are in good agreement with realistic propagation models derived from field RSS

dataset. The current minimum and maximum channel utilization parameters are set at 50% and

80%, respectively.

3.4 Optimizing SAE J2945/1 Congestion Control Parameters

From the simulation experiments using mobility traces obtained from calibrated microscopic traffic

simulation tool, we observe that the frequency of BSM transmissions due to higher-order vehicle

dynamics or hard-braking events are relatively lower compared to the guard interval triggered

BSM exchange. Therefore, most of the channel load is offered by the density-triggered guard

messages as defined in (3.3). The CC algorithm set default ittmax to 600 milliseconds. However,

based on extensive simulation results for different channel conditions, it is observed that the BSM

generation rate of 2-3 Hz yields optimal IDR in a highly congested scenario. This observation

76



calls for further tuning of the rate control component in the CC algorithm. One potential parameter

change could set the ittmax to the optimal BSM rate value observed; however, doing so will limit the

flexibility of accommodating an increasing number of nodes. Therefore, a favorable improvement

option would be to adjust the slope of inter-transmit time as defined in (3.3) which defines how

the inter-transmit time changes over different density values considering the configured vehicle

density coefficient (β ) value. A lower β value means a more aggressive inter-transmit time (ITT)

changes as the density changes. Figure 3.10 shows the ITT changes for different β values. We

performed simulations for a range of β values to see how the tracking accuracy compare over

different ranges of interest, as illustrated in Figure 3.11 and Figure 3.12. We observed that a

higher density coefficient sacrifices some of the tracking gains at higher ranges while affording

better tracking accuracy at closer distances.

Figure 3.10: Max ITT for different density coefficients (β ).
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(a) IA (b) TE

Figure 3.11: 90-th Percentile IA and TE for different choices of vehicle density coefficient (β ) in

freeway scenarios with heavy traffic.
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(a) Same Road (b) Intersecting Road

Figure 3.12: 90-th Percentile IA and TE for different choices of vehicle density coefficient (β ) in

intersection scenarios.
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CHAPTER 4: CONTENT ADAPTIVE V2X COMMUNICATION
ARCHITECTURE FOR CONNECTED AUTOMATED DRIVING

1This chapter discusses a content-adaptive communication architecture for CAV driving sys-

tems where disseminated content information consists of multi-sensor data from onboard sensor

suite. The first main contribution of this chapter is a thorough investigation of different message

content control approaches in CAV driving systems based on the distances of the mapped objects

to the sender vehicle. We demonstrate that including information about vehicles located near the

edge of the sensor range is more beneficial to map accuracy than exchanging information about

closer vehicles. We believe that this is the first work that investigates into the distance aspect of

sharable map objects in a cooperative automated driving system. We also believe that the findings

of this work will serve as a guideline for designing map sharing algorithms in cooperative driving

systems. The second main contribution of our work is that we study different channel congestion

control algorithms based on the adaptation of message length, transmit rate, and a combination of

both of these parameters. We determine, by examining the trade-off between message length and

transmission rate, that a joint rate-length congestion control offers improvement in terms of the

network throughput and the position tracking capability in cooperative vehicle safety systems. We

1The work presented in this chapter is based on the following publication: S M Osman Gani, Yaser P. Fallah,
Gaurav Bansal, Takayuki Shimizu, A Study of the Effectiveness of Message Content, Length and Rate Control for
Improving Map Accuracy in Automated Driving Systems, IEEE Transactions on Intelligent Transportation Systems,
2018
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evaluate the proposed content control approaches for a variety of traffic densities using a realistic

channel propagation model derived from a large-scale field test data.

4.1 System Architecture

The basic components of a relay-based cooperative vehicle communication system are illustrated

in Figure 4.1. Each vehicle is equipped with sensing devices such as LIDAR, radar, GNSS receiver,

and cameras. Data collected by the sensor suite is fed to a data fusion module that is used to create

the situational awareness map (object map) of the vehicle. The map information available at each

vehicle can then be exchanged aiming at extending the situational awareness range. This exchange

of map information is particularly beneficial to higher-layer applications in making timely deci-

sions. Combining the communicated information with the locally available sensor data enhances

the local map even further.

Sensor 

Suite

Data fusion

Situational 

Awareness 

Map

Channel load and 

content 

adaptation

Communication 

module

Vehicular Network

Figure 4.1: Functional diagram of cooperative vehicle communication system.
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While sharing the local map data with neighboring vehicles can increase the overall tracking

accuracy, the capacity of the communication channel limits the amount of sharable information. To

make the communication scalable, aggregated offered load to the channel needs to be controlled

using feedback from the network-layer performance metrics such as CBP, PER, and IDR. TABLE

I provides definitions of these performance metrics along with others that we use throughout this

paper. Generally, any network-layer performance measure Γ in cooperative vehicle safety commu-

nications depends on transmission rate, power (or range), and the size of messages broadcast by

the vehicles forming the network, and can be defined as a multi-variable function:

Γ
def
= f (R,L,P) (4.1)

where R def
= [r1,r2, ...,rv]

T is the vector of transmit rates of v vehicles forming the network of auto-

mated vehicles, P def
= [p1, p2, ..., pv]

T is the vector of transmit powers and L def
= [l1, l2, ..., lv]T is the

vector of the transmitted message lengths.

After determining a suitable performance measure as the feedback parameter for controlling

the network load, the next direction towards ensuring the effectiveness of the communication pro-

tocol is to look at it from the application-layer perspective. In automated driving systems, tracking

neighboring objects with high accuracy is of the utmost importance. However, network-layer per-

formance measures may not always be a true indicator of application-layer performance. For exam-

ple, optimal network performance in terms of throughput can be achieved through a combination

of transmit rate, message length and transmit power adaptation, but optimal network performance

may not altogether ensure optimal application-layer performance. If we consider position tracking

error (PTE) as a performance metric, for example, it not only depends on network performance
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but also depends on the exchanged contents, which are not taken into accounts by network layer

metrics like CBP, IDR, and PER.

In this work, we adopt CBP as the network-layer performance metric for controlling the channel

load, and PTE as the application-layer performance metric to evaluate the effectiveness of different

scalability approaches. CBP is readily available at the DSRC onboard units (OBUs) and this met-

ric provides a fairly good estimation about the channel congestion level. Therefore, CBP can be

used as a feedback metric in any congestion control approaches that employ message length, trans-

mission rate or power adaptation. On the other hand, the application-layer metric PT E quantifies

how good the neighboring vehicles are being tracked by a subject vehicle, which is essentially the

single most important metric of interest for vehicular safety applications. Since we focus on the

performance evaluation of channel congestion control schemes based on message length and trans-

mission rate adaptation, we keep transmit power fixed, and thus, PT E can be defined as follows:

PT E def
= e(Γ,C) = h(R,L,C) (4.2)

where C def
= {C1,C2, . . . ,Cv} is the set of the map objects included in the broadcast messages. The

dependence of PTE on the content of the exchanged messages cannot usually be quantifiable, and

is therefore, proposed in this paper rather heuristically. Once a message content selection scheme

is chosen, our next goal is to study the effect of different rate and length control schemes, and
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to find out the optimal combination of these parameters that minimizes the PTE. Thus, we can

formulate the objective function as:

minimize
R,L

PT E

subject to Rmin ≤ R≤ Rmax, Lmin ≤ L≤ Lmax.

(4.3)

where message rate R is bounded between Rmin and Rmax, message length L is bounded between

Lmin and Lmax.

4.2 Channel Congestion Control

In this section, we describe the transmit parameters that a cooperative vehicle communication

system can control to achieve scalability. As mentioned earlier, we use CBP as the feedback

measure to determine the channel condition. Let CBP = U(R,L) denote the channel utilization

measured by a vehicle when the message generation rate is R, the message length is L, and the

transmit power is assumed to be fixed. Therefore, a specific level of channel utilization can be

achieved by controlling message length and rate separately, or by a joint rate/length control. We

denote the optimal channel occupancy level, CBP∗ which is used by both rate and length control

algorithms for convergence. The optimal value for CBP∗ used by the algorithms in this paper is

ideally around 68% as found in [66].
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4.2.1 Message Length Control

Message size is adapted at each iteration t using a descent-based message size-control algorithm

proposed in [66] as follows:

Lt
OPT = Lt−1

OPT +η ∗ (CBP∗−CBPt−1) (4.4)

where Lt
OPT denotes the message size at iteration t, CBPt−1 is the observed channel busy ratio at

the end of iteration t−1, CBP∗ is the desired channel busy value that ensures maximum throughput

and η is a tunable gain that can be adjusted to ensure convergence of the length control algorithm.

The value of η must be selected in a way such that the system does not end up achieving low IDR

values. Since the granularity of the message length in the map sharing model is on the scale of

an object, and each object consists of several bytes, we simplify (4.4) as follows. If the measured

channel occupancy is below CBP∗, the number of message items is incremented by one from the

last iteration; otherwise, one less item will be included in the next transmission cycle. We also

constrain the number of message items to be bounded between Lmin and Lmax. Note that Lt
OPT is

the number of map items to be included in the message in addition to a sender’s status update.

Therefore, if a vehicle requires C bytes to include the self-status update and k bytes for each

additional map item, then the size of the message generated at iteration t would be C+Lt
OPT ∗ k

bytes.

85



4.2.2 Message Rate Control

This subsection describes an adaptive message transmission approach which, instead of using a

fixed transmit rate (TX cycle), sends safety messages based on the observed channel load. At

each vehicle, CBP is measured at the end of a fixed channel monitoring interval τ . To reduce the

measurement noise, calculated CBP is smoothed out at each iteration t using a first-order auto-

regressive, AR (1) technique:

CBPt = α ∗CBPt +(1−α)∗CBPt−1 (4.5)

where α is the smoothing factor, and 0 < α < 1. At the end of each τ interval, a new message rate

is calculated for the next iteration using the following control function.

Rt =


Rt−1 ∗ (1−aD), if CBPt ≥CBP∗

Rt−1 +aI, otherwise

(4.6)

where aD and aI are decrease factor and increase parameter, respectively, and Rt is bounded be-

tween some predefined values of Rmin and Rmax.

4.3 Message Content Selection

Relay based vehicle communication system is different from basic DSRC communications in that

it not only exchanges information containing a status update of individual vehicles, but it also

forwards information collected through different sources such as local sensors and communicated
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messages. Therefore, in this architecture, any application layer performance metric such as map

accuracy or PT E depends largely on the content of the exchanged messages. Message contents

can be selected using a multitude of approaches, and since the optimality of a certain approach

is difficult to prove in this paradigm, we rely on heuristics. In cooperative ITS, a vehicle can

receive messages from all the neighboring vehicles in its communication range; however; from

the perspective of safety applications, a subset of these neighboring entities makes up the area of

interest for the subject vehicle. This area of interest can be defined in terms of a map radius that the

subject vehicle concerns about and therefore, tracks only those of the neighboring vehicles that are

in the map radius. Figure 4.2 shows an example orientation of map objects from the viewpoint of

a subject vehicle. It also illustrates the sensor range and the map radius form the subject vehicle’s

point of view. In this illustration, we see that some map objects are located within local sensor

range, and therefore, position updates of these objects are available either from the local sensors

or from the communicated messages or both of these sources. The position updates of the map

objects which are located beyond the sensor range but within the map radius can be obtained from

communicated messages only. In this way, map objects can be categorized into two broad classes:

a) sensor-sensed and/or communicated objects, and b) only communicated objects.

In this work, we seek to demonstrate how the distances of the included map objects impact the

tracking accuracy. With this goal in mind, we consider three different content control schemes,

as illustrated simplistically in Figure 4.3. The inclusion weight function g1 assigns equal weights

to all objects in the map radius. For objects located in the sensor range, g2 prefers closer ones,

while g3 assigns higher inclusion weights to farther objects. In this subsection we provide formal
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description of the content control strategies depicted in Figure 4.3. For analysis simplicity, we

consider the deterministic variants of g2 and g3. This means that instead of computing probabilistic

inclusion weights, map objects are sorted according to their distance to the sender.

Subject Vehicle

Figure 4.2: Example orientation of map objects with respect to the subject vehicle.
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Figure 4.3: Content control options based on the distance of mapped object to the sender.
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Algorithm 1 Baseline Content Selection
Require: Number of objects to fill Msg (NMsg), Object map (map)

Ensure: Fill Msg with NMsg objects from the map

1: if NMsg > size(map) then

2: Include all the map objects into Msg

3: else

4: Randomly shuffle objects of the map

5: for i = 0→ NMsg do

6: Include object i from the shuffled map into Msg

7: end for

8: end if

4.3.1 Baseline

The map object inclusion scheme which we name baseline is depicted as the function g1 in Fig-

ure 4.3. In this scheme, all objects located in the map radius of the sender are given equal priority,

and thus, objects are selected uniformly w.r.t. their distance. The baseline content selection ap-

proach is motivated to determine whether distinguishing map objects based on their distance affects

tracking accuracy. Baseline content selection is detailed in Algorithm 1. The algorithm requires

the number of message objects NMsg which is determined by the length adaptation procedure out-

lined in Section 4.2. In lines 1-2, the algorithm checks the map size against NMsg. If NMsg is

smaller than the map size, the algorithm trivially includes all map objects into the message. If
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NMsg is greater than the map size, map objects are randomly shuffled in line 3, and then NMsg count

of objects are included in the message iterating over the shuffled map list (lines 5-7).

Algorithm 2 Closer Objects First (COF) Content Selection
Require: Number of objects to fill Msg (NMsg), Object map (map)

Ensure: Fill Msg with NMsg objects from the map

1: if NMsg > size(map) then

2: Include all the map objects into Msg

3: else

4: Sort the subset “1” of map objects that are within the sensor range in ascending order ac-

cording to their distance to the sender vehicle

5: for each object obj in subset “1” and in sensor range & size(Msg)< NMsg do

6: Include obj into Msg

7: end for

8: Sort the subset “2” of map objects that are beyond the sensor range in ascending order

according to their distance to the sender vehicle

9: for i = 0→ NMsg− size(Msg) do

10: Include object i from the sorted map subset “2” into Msg

11: end for

12: end if
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4.3.2 Closer-Objects First (COF)

The weight function for including map objects graphed as g2 in Figure 4.3 is a non-increasing

function of distance which can be described as follows:

Princlusion(d) = e−k∗d (4.7)

where d is the object’s distance to the sender and k > 0. A content selection approach of

this form includes “closer objects first” into the outgoing messages, and hence, we name this

approach closer objects first (COF). This algorithm is motivated by the objective to determine

whether the tracking capability is increased by the inclusion of closer objects that have a higher

degree of certainty in terms of position updates at the subject vehicle. Position updates from closer

objects are available from local sensors as well as the communicated messages. Furthermore,

communication links for these entities are highly reliable because of their close proximity to the

subject vehicle.

Algorithm 2 details the object selection strategy of COF which, similar to the baseline algo-

rithm, requires NMsg as input. In lines 1-2, COF trivially includes all map objects if the map size

is smaller than NMsg. Otherwise, line 4 sorts the map elements in the sensor range in increasing

order of distance from the vehicle. In lines 5-7, the algorithm iterates over the sorted list to include

object into the message as long as there is room. After iterating over all the objects in the sensor

range, if the number of included objects is still smaller than NMsg, the algorithm, in line 8, sorts the

list of map objects located beyond the sensor range in increasing order of distance. In lines 9-11,

the algorithm fills up the remaining empty spots in the message by iterating over this sorted list.
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4.3.3 Farther-Objects First (FOF)

In “farther objects first” or FOF approach shown in Figure 4.3 as g3, map objects located near the

edge of the sensor range are assigned higher priorities during inclusion into the message, and can

generally be formulated as a non-decreasing function of distance, as follows:

Princlusion(d) = 1− e−k ∗d (4.8)

where d is the object’s distance to the sender and k > 0. In a typical vehicular communication

scenario, the message loss ratio for farther vehicles is higher than that of the closer vehicles. Gener-

ally, a higher message loss ratio contributes to the decrease in tracking capability. If objects located

near the edge of the sensor range are included in the outgoing messages, some of the recipients of

those messages will find the information useful as the included objects are farther from the sender

vehicle. Therefore, the included map objects for FOF are those physically located even farther

away from a receiver subset. Because of the fact mentioned above, the FOF approach selects ob-

jects from the edge of sensor range first. If there is still room for more map objects in the message,

after including all objects located in the sensor range, the algorithm employs a closer-objects-first

policy for the objects beyond the sensor range. Algorithm 3 describes the FOF approach in detail.

The selection procedure of map objects is similar to COF except for the sorting order of map items

located in sensor range. While COF sorts the object list in increasing order of distance, FOF sorts

them in decreasing order to allow farther objects to be included first.
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Algorithm 3 Farther Objects First (FOF) Content Selection
Require: Number of objects to fill Msg (NMsg), Object map (map)

Ensure: Fill Msg with NMsg objects from the map

1: if NMsg > size(map) then

2: Include all the map objects into Msg

3: else

4: Sort the subset “1” of map objects that are within the sensor range in descending order

according to their distance to the sender vehicle

5: for each object obj in subset “1” and in sensor range & size(Msg)< NMsg do

6: Include obj into Msg

7: end for

8: Sort the subset “2” of map objects that are beyond the sensor range in ascending order

according to their distance to the sender vehicle

9: for i = 0→ NMsg− size(Msg) do

10: Include object i from the sorted map subset “2” into Msg

11: end for

12: end if
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4.4 Experiment and Evaluation

To evaluate the performance of the content control schemes, we use ns-3 [68], a discrete-event net-

work simulator. ns-3 enables the simulation of both the communication and the application aspects

of cooperative driving systems. The presented content control schemes are evaluated based on

actual position tracking error (PTE) which is defined as the 2D Euclidian distance between the es-

timated position and the actual position of a simulated vehicle. The estimated position of a vehicle

at each PTE calculation cycle (every 100 milliseconds) is determined by extrapolating its position

from the local situational awareness map data which consists of the sensor and communicated in-

formation. The actual instantaneous position is obtained from the mobility model of the simulated

vehicles. In the DSRC-enabled communication architecture used in this paper, we assume that

all vehicles are equipped with the GNSS receiver (as required by upcoming V2X standards). The

positioning information (position, speed, heading, time) of the subject vehicle is derived from the

GNSS receiver information and included in the exchanged BSMs. Whenever a BSM is received

from a neighboring vehicle, the situational awareness map updates the corresponding neighboring

vehicle information with the positioning information contained in the received BSM. The BSM

information, in turn, is used for estimating the vehicle position in the simulation. We use 95-th

percentile PTE as the evaluation metric, which is the value below which 95% of the tracking error

observations are found. 20-meter distance bins and 5-second time bins are used in the figures.

Also, measurements collected during the first 5 seconds were not considered in the computation of
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any performance metrics as we allowed the congestion control algorithms to converge first. As a

result, all the distance-plots start from 20 meters while the time-plots start from 10 seconds.

4.4.1 Simulation Setup

Two road topologies are used in the simulations as shown in Figure 4.4. The first one is a circular

roadway, as illustrated in Figure 4.4(a), which has three lanes in each direction with the outermost

lane having a 650-meter radius. In this road topology, the simulated vehicles have constant head-

ing change over time, which makes it a good road scenario to evaluate the tracking performance of

the presented algorithms. The second road topology used in the simulation is a 4-kilometer long

highway, as depicted in Figure 4.4(b), which has three lanes in each direction and a winding seg-

ment in the middle with a 40-meter radius of curvature. The vehicle trajectories for this highway

scenario are produced by using the traffic simulator Simulation of Urban Mobility (SUMO) [80]

with the modifications detailed in [81]. The extracted vehicle trajectories from SUMO for this road

topology consist of realistic lane change maneuvers in a typical highway scenario. Furthermore,

the sharp curvature of the road poses a real challenge for vehicle safety applications that require

precise tracking estimations. Therefore, we also deem this road topology an ideal traffic scenario

for evaluating the tracking performance of the discussed content control schemes. In both road

topologies, the average speeds of the vehicles are 17 m/s, 18 m/s, and 19 m/s from the slowest

(rightmost) to the fastest (leftmost) lane, respectively.
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(a) (b)

Figure 4.4: Road topologies used in the ns-3 simulations; (a) Circular Roadway, (b) Winding

Roadway

In order to evaluate the content control approaches, a propagation loss model is derived from

a large-scale field test conducted by the Crash Avoidance Metrics Partnership (CAMP) Vehicle

Safety Communications 3 (VSC-3) Consortium, in partnership with the United States Department

of Transportation (USDOT). This data collection campaign was a part of the V2V safety com-

munications scalability activity of the Interoperability Issues of Vehicle-to-Vehicle Based Safety

Systems (V2VInteroperability) Project. In this derived propagation model, the two-ray interfer-

ence model [74] is used for modeling the deterministic, large-scale path loss component. This

pathloss model has recently been validated for vehicular networks and takes into account the in-

terference caused by a single ground reflection ray at the receiver. Similar to most studies in the

literature, the random, small-scale fading component of the wireless channel is modeled assuming

a Nakagami-m distribution (for fading amplitude in linear units) [38]. The Nakagami distribu-

tion can model a wide range of small-scale fading scenarios from the strong line-of-sight (LOS)

and Rician-distributed fading (m > 1), to non-LOS and Rayleigh-distributed fading (m ≤ 1). The

MAC protocol used in the simulations is carrier-sense multiple access with collision avoidance

(CSMA/CA) with the quality of service (QoS) based contention mechanism called enhanced dis-
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tributed channel access (EDCA). A higher fidelity DSRC receiver model proposed in [78] is used

as the physical layer (PHY) model which provides an implementation of packet preamble decoding

and frame capture features available in modern network chipsets. The derived channel propagation

model and the receiver model have been validated in [78] against the large-scale data set collected

by CAMP in the data collection campaign mentioned above.

The DSRC-enabled vehicles in the simulations are configured as follows. The core content

of a BSM containing the self-status update of a vehicle requires 204 bytes, while each map entry

requires an additional 68 bytes. The packet fragmentation threshold is set to 2346 bytes as per

the IEEE 802.11 standard [69]. The maximum number of message items Lmax is set to 29 which

amounts to a total message length of 2242 byte including the core BSM contents and the headers for

transport, internet, and data link protocols. The value of Lmax is chosen such that the total message

length remains smaller than the fragmentation threshold. To isolate the effect of communication

loss on the tracking accuracy of the simulated vehicles, we make the simplifying assumption that

each vehicle is equipped with such a sensor that can detect all objects located within its sensing

radius, meaning that no real-life events are considered like occlusion, badly set thresholds or other

sources of typical sensing errors. In this way, the possibility of any error sources from local sensors

contributing to the calculated tracking error is restricted. We assume that this hypothetical sensor

can detect objects in the range of up to 120 meters. We recognize that a sensor does not necessarily

pinpoint an object at a distance close to its detection range; however, the hypothetical assumption

we made about detecting all objects within the sensor range does not affect the content selection

schemes presented in this paper, because the sensor range is used as a configurable parameter in
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the algorithms, and the content control part of the algorithms selects map objects that are assumed

detected. Furthermore, the main objective of this work is to determine the impact of inter-vehicle

communication on map accuracy. For further details on map information representation, an inter-

ested reader is referred to [65]. In the simulations, we use a map radius of 300 meters which is

sufficient for the anticipated vehicle safety applications [58, 82, 83]. Other simulation parameters

are summarized in Table 4.1.

Table 4.1: System parameters used in ns-3 simulations

Parameter Value Parameter Value

Carrier Sense Threshold -94 dBm Contention Window (min) 15

CBP∗ 68% MAC Queue Size 1

Transmit Power 15 dBm Lmin,Lmax 0,29

Minimum Message Rate (Rmin) 1 Hz Max Allowed Message Rate (Rmax) 10 Hz

Rate Decrease Factor 0.15 Rate Increase Constant 0.3

We performed simulation tests for three different vehicle densities: 25, 125 and 250 veh/ km.

The first two vehicle densities were simulated for 100 seconds, while the third one was simulated

for 60 seconds as we deemed these simulation durations sufficient enough to gather meaningful

statistics about the tracking aspects of the experimented road topologies. Generally, for a higher

vehicle density like 250 veh/km, a shorter simulation time than that of the lower vehicle density

scenarios (25 veh/km or 125 veh/km) can gather a reasonable amount of statistics since the to-

tal number of exchanged BSMs are higher due to higher vehicle density. Since we evaluate the
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performance of different congestion control schemes in terms of map accuracy, and the map accu-

racy depends on the content of the exchanged messages, we start with investigating the impact of

content control approaches on PTE.

4.4.2 Effect of Message Content Control

To analyze the impact of the content selection schemes on the tracking accuracy, we performed

tests for all three content-adaptive approaches outlined in Section 4.2.2. Message length adapta-

tion was enabled during these tests to keep the channel utilization at the optimal level. Note that

enabling the length adaptation does not skew the performance of the content control schemes be-

cause it runs independently, and determines the same message length values for all content control

schemes. Figure 4.5 - Figure 4.7 show the 95-th percentile PTE for different traffic densities. The

first observation from the figures is that both COF and FOF show a lower tracking error, compared

to the baseline scheme. The consistent poor tracking accuracy of the baseline scheme is due to its

indifference to the proximity of included objects, and therefore, this scheme includes objects from

the communicated information with the same level of priority as sensor-sensed objects. Further-

more, in the baseline scheme, objects are selected randomly from the local map which can lead

to situations where some objects would not be included in the outgoing messages by any vehicles

in an arbitrary road topography. In contrast, COF and FOF select objects, depending on the dis-

tribution of vehicles, in such a way that information of all vehicles in any given area are relayed.

To illustrate how information in a road scenario propagates, we consider a one-dimensional road
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topology as shown in Figure 4.8, where a sender picks objects from either side of its current loca-

tion to include in the message. Let the x- position of the vehicles on that road be stretched from

-20 to 20, and hypothesize that there is a vehicle at each discrete x-position; the sensor range is

hypothesized to be 5 and each message has room for 2 objects. Fiugre 4.9 shows the x-position of

included objects and the number of times each vehicle positioned at x is chosen by neighboring ve-

hicles to be included in their outgoing messages. As can be seen, both COF and FOF ensure that all

objects are included at least once. In contrast, information about some map objects is not shared

at all in the baseline scheme, which is why it shows a lower map accuracy than COF and FOF.

This issue about the baseline scheme is compounded when messages are exchanged at lower rates.

Figure 4.5 shows the 95-th percentile PTE for a vehicle density of 25 veh/ km with a maximum

allowed message rate of 10 Hz for circular and winding roadways. Since vehicle density is low in

this traffic setting, the channel is likely to be less congested and allows for more successful recep-

tion, which in turn increases the tracking accuracy. Furthermore, channel load remains within the

optimal channel utilization range when the network is lightly loaded, and all exchanged messages

include Lmax objects. Therefore, the difference in tracking performance depends solely on the con-

tent control scheme. In fact, in low vehicle density, both COF and FOF show similar performance

when NMsg�NRng, where NMsg is the number of objects in the communicated messages, and NRng

is the number of objects within the sensor range. This observation can be explained using the ratio

(β ) of message length to the available objects in the sensor range.

β =
NMsg

NRng
(4.9)

where NMsg is the number of objects in message and NRng is the number of objects within rsensor.
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Figure 4.5: 95-percentile PTE and (bottom) NMsg and NRng for ρ = 25veh/km;Rmax = 10Hz: (a)

Circular Roadway, and (b) Winding Roadway

Both COF and FOF include the same set of objects when β ≥ 1, and as expected, both the

algorithms show similar tracking accuracy in light traffic scenario. Figure 4.6 depicts the 95-th

percentile PTE curves for ρ = 125veh/km and r = Rmax = 10Hz. It is evident that as message

length remains the same for both the content selection approaches and β < 1, the better tracking

performance of FOF can be attributed to its object selection approach where farther objects get

a higher priority during the inclusion process. β becomes even smaller when the channel load

increases either because of an increase in the number of vehicles or an increase in the message

rate and thus, the difference in the performance of COF and FOF becomes more prominent. In

the ρ = 250veh/km scenario, for both COF and FOF, message length adaptation helps to curb
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the channel congestion, and as shown in Figure 4.7, FOF outperforms COF again because of its

content selection approach.
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Figure 4.6: 95-percentile PTE and (bottom) NMsg and NRng for ρ = 125veh/km;Rmax = 10Hz: (a)

Circular Roadway, and (b) Winding Roadway

To get more insight into the performance of the distance-based content selection, we consider

a simplified one-dimensional road topology where the sender is located at the center, as shown in

Figure 4.10. Let d be the distance of the objects that are included in the generated message by the

sender, rsensor is the detection range of the sensing device, and rcomm is the communication range.

We assume uniform vehicle density and all distances are normalized with respect to rcomm. Let n be

the number of receivers in the communication range of the sender, and k be the number of included

objects in the message. Now, from Figure 4.10 (a) we see that in COF, the included objects do not
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offer any new information to the receivers that are located within the range of 2∗ rsensor−2∗d due

to the fact that the included objects are already in the sensor range of the receivers.
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Figure 4.7: 95-percentile PTE and (bottom) NMsg and NRng for ρ = 250veh/km;Rmax = 10Hz: (a)

Circular Roadway, and (b) Winding Roadway

For FOF, Figure 4.10 (b) shows that k/2 of the included objects are useful to receivers located

in each half of the sensor range of the sender. This is because the objects that are selected from one

side of the sender are not in the sensor range of the receiver vehicles on the other side of it. Now

we define a function g that describes how useful the included object (located at distance d from the

sender) is for the intended recipients located at distance x.

g(x) =


0, if |x−d| ≤ rsensor

1, otherwise

(4.10)
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0 1 2-2 -1-3 3 4-4

Figure 4.8: One-dimensional road topology where it is assumed that a vehicle (depicted as a circle)

is located at each discrete x-position

The total number of recipients u within the communication range rcomm that find the included

information useful can be computed as follows

u =
n

∑
i

g(xi,d) (4.11)

Both COF and FOF provides similar useful information to recipients when no loss in the com-

munication channel is assumed. However, by factoring in the packet error ratio (PER), which

quantifies the message loss ratio for a sender-receiver pair, we can see what is helping FOF to

achieve higher tracking accuracy than COF. PER has a direct relationship with distance; the greater

the distance, the higher the PER. Now, for example, assume that the sender-receiver distance is r

and the distance of the included object to the sender is d, meaning that the distance of the included

objects to the intended receiver is (r+ d), assuming the recipient is located on the opposite side

of the road of the included object. In COF, closer neighbors are included first, and thus, as d→ 0,

PER(r) ≈ PER(r+d) . Therefore, it is likely that receivers will have the same probability of re-

ceiving packets from both the sender and its neighbors that are included in the sender’s message.

On the other hand, FOF prefers objects near the sensor range boundary. Clearly, when d→ rsensor,

PER(r+rsensor)> PER(r), and therefore, FOF shows better tracking accuracy because it provides
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the receivers with the information about farther objects, transmitted messages from which would

have a higher loss ratio at the intended receivers.

4.4.3 Effect of Message Length Control

As discussed in Section 4.2, channel congestion can be controlled by adapting message length and

transmission rate separately, or through joint adaptation of both parameters. The effectiveness of

message length adaptation can be shown analytically. For a given bit error rate pb, the packet loss

probability p for L bit long packet can be expressed as,

p = 1− (1− pb)
L (4.12)

Now, very large messages of length L may lead to channel saturation quickly where high packet

loss ratio limits the throughput. Because p is an increasing function of L, if we seek to achieve

the optimal packet length, LOPT , p needs to be reduced exponentially from p = 1− (1− pb)
L

to p = 1− (1− pb)
LOPT . This packet loss probability p has a significant impact on the overall

broadcast throughput when the number of vehicles increases in the network, or the channel be-

comes congested because of large packets transmitted at high rates. Shorter packets are desirable

in those situations as they are more robust against channel errors, and since the length adaptation

approach tries to adapt the length of transmitted messages to maintain the optimal channel load,

better tracking accuracy is expected with LOPT .
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Figure 4.9: Object inclusion by the vehicles in a one-directional roadway: (a) Baseline, (b) COF,

and (c) FOF
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(a) (b)

Figure 4.10: Included object’s distance to the sender: (a) COF and (b) FOF approaches

4.4.4 Effect of Message Rate Control

Message transmit rate adaptation or joint rate-length adaptation can improve the network through-

put by selecting the right combination of message rate and length values. To evaluate which ap-

proach performs better, we compare all three options through simulations. Figure 4.11 – Fig-

ure 4.12 show tracking improvement when message rate control is employed in conjunction with

or without message length adaptation for vehicle densities of 125 and 250 veh/ km, respectively.

Message rates and lengths over the simulation time are also shown in the figures which show that

lower transmission rates allow the exchange of larger messages. If both length and rate parameters

are adapted together, they work in tandem and seek to achieve a combination of rate and length val-

ues that keeps the channel load close to CBP∗. But when the length adaptation is disabled, the rate

must be very low as it is the sole congestion control parameter in this setting to maintain the chan-

nel load close to CBP∗. Transmit rate values are depicted in the middle plots of Figure 4.11 and

Figure 4.12. It is apparent from the figures that as the traffic density increases when the message

rate control is disabled, the communication channel gets congested even if vehicles share messages
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containing only core BSM contents and no additional information about map objects. Therefore,

in high traffic densities, message length control alone cannot keep the channel load at its optimal

operating point, and thus, enabling message rate control achieves better tracking accuracy in these

density settings. Notice that the PTE curves show a higher tracking accuracy when “only” rate

control is enabled. To explain the performance gain of rate control, we take the traffic scenario

where ρ = 125veh/km and Rmax = 10Hz. (r,d) pairs from Figure 4.11(b) for different channel

load adaptation approaches are shown in Table 4.2. In CSMA/CA-based DSRC communications,

we can represent emission throughput of the network as

Temission
def
= femission(r, l) = r ∗ l (4.13)

And reception throughput can be defined as

Treception
def
= freception(r, l,PER) (4.14)

where packet error ratio at distance d is defined as PER = fper(d,r, l). From ( 4.14) it is obvious

that at a given distance d, Treception depends on the rate and the length choices of the transmitted

messages. Since the offered load on the communication channel remains close to the optimal level

in all three (r, l) choices tabularized in Table 4.2, and as the PER curves show similar trends, the

network throughput remains almost the same, for these rate-length combinations. However, the

goodput, which quantifies the useful data bits exchanged over the communication channel, for in-

dividual approaches may vary. Each L unit long packet is comprised of a K unit long overhead

and a (L−K) unit long actual payload data. In IEEE 802.11p, the headers for user datagram

protocol (UDP), internet protocol (IP), logical link control (LLC) and MAC protocol are 8, 20,
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8 and 26 bytes long, respectively. Also, the frame check sequence (FCS) is 4 bytes long. All

these headers and the FCS amount to a total of K = 66 Bytes in the simulations. For analysis

simplicity and without any loss of generality, we assume Temission = Treception = T as PER re-

mains almost the same in all three cases. Now, computing the goodput G as G ≈ R∗ (L−K), we

get GLengthCtrl ≈ 5440bytes/sec, GLength+RateCtrl ≈ 5502bytes/sec and GRateCtrl ≈ 5658bytes/sec.

Therefore, exchanging larger packets at lower rates yield better goodput because of the less over-

head. And it is evident that rate control offers more information dissemination irrespective of

the usage of length adaptation. In terms of the tracking accuracy of the example cases tabular-

ized in Table 4.2, message rate control achieves higher accuracy than the joint length-rate control

schemes. This observation brings in the following question: Does transmitting larger messages

at low rates (minimum possible) always allow to achieve a higher map accuracy? To answer this

question, we shed more light on the interaction of message length and transmit rate with respect to

the performance metrics CBP and PTE.

We ran simulations for different fixed message length and rate settings. For Lt
OPT =

{2,4,6,8,10,12,14,16,18,20,22,24,26,28}, simulations were run for each of the message rate

value in the range of 1 to 10 Hz. To plot the CBP curves in Figure 4.13(b), we use the mean of all

CBP values calculated at each vehicle. The PTE metric is measured by averaging (weighted by a

function W ) over all the vehicles in the map radius rmap = 300 meters, as follows.

PT Eavg =
1
N
∗∑i∈N W (i)∗PT E(i) (4.15)

Assuming equal weight W for all N vehicles in map radius, PTE is plotted in Figure 4.13(a).

The optimal message rates for different message lengths can be found from the intersecting points
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of the CBP curves and the optimal CBP∗. Figure 4.13(c) shows the optimal CBP control line,

which suggests that any (r,l) pair from this line can achieve optimal channel utilization. It is evi-

dent from the PTE curves that neither the maximum-sized messages at the minimum rate nor the

minimum-sized messages at the maximum rate can ensure the optimal PTE performance. The op-

timal operating point is something in between. Of course, there is an exception for low-density

traffic scenarios where the maximum message rate is expected to achieve the best performance as

the message lengths are typically smaller there because of the smaller map size. For moderate to

heavy traffic density scenarios, the non-linear relationship between channel load and tracking per-

formance demands further investigation. Certainly, better network goodput is a desirable property

in vehicle safety applications to achieve optimal or near-optimal tracking performance. However,

the goodput analysis explains the effectiveness of different channel control schemes to some ex-

tent, but not completely. Increases in the network goodput may not always result in improvement

in tracking accuracy because of the data quality. This is because cooperative safety communica-

tion systems not only require better network goodput but also demand freshness of the exchanged

information which can be quantified using the metric Information Age (IA). In CSMA/CA, when

senders transmit fixed-length messages containing only their own status updates, information age

depends on the throughput and the MAC layer delay. Aging of information due to delay in the

MAC layer is mostly dominated by the configured maximum MAC queue size in the network de-

vice. In low-density traffic scenarios where the network is lightly loaded, the MAC queue remains

almost empty and does not affect IA. However, in higher traffic densities, longer MAC queue size

increases the information age significantly. In vehicular safety applications where we care about
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sharing the latest status update of the vehicles, having outdated information stored in the MAC

queues does not help. Therefore, in the simulations, we configured the queue size to be 1. Further-

more, when a new packet is generated at the application layer, we discarded the outdated packet in

the MAC queue to replace it with the newly generated one. In this way, the information age due to

MAC queue delay is reduced. Although MAC delay cannot completely be eliminated in this way,

we keep the delay to the least amount possible without making any changes in the MAC mecha-

nism, and by simply reconfiguring the MAC queue size and the queue drop policy. Since the queue

delay factor of information aging is minimized and kept constant for all simulation scenarios, the

throughput of the network decides the IA performance. In all of the channel congestion control

strategies presented in this work, the same optimal CBP value is used for convergence, therefore,

the overall throughput remains similar. Hence, in relay-based communication architecture where

variable-length messages are exchanged, IA depends on both the choices of (r, l) and the content

of the messages. Now that the factors that directly impact mapping accuracy are identified, we

seek to relate them. CBP, map accuracy and IA for different choices of message rate and length

values are illustrated in Figure 4.14 - Figure 4.16 for ρ = 25,125 and 250 veh/km. Map accuracy

is calculated as follows.

Map Accuracy =
1
N
∗∑i∈N

Errorthreshold

PT E(i)
(4.16)

where Errorthreshold defines the tracking error tolerance value below which all estimated po-

sition measurements are considered accurate. One advantage of using map accuracy as a perfor-

mance metric is that this quantity is not affected by the objects that cannot be tracked due to the lack

of communicated or sensor data. Generally, vehicles that are not tracked are assigned a very large
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tracking error. Therefore, ( 4.16) will compute zero as the map accuracy for these vehicles. Also,

this quantity is normalized between 0 and 1 with respect to the Errorthreshold and can be adopted

as an efficiency measure for networked systems of different sizes. We set Errorthreshold = 0.5m in

our map accuracy calculation, meaning that the PTE measurements below 0.5m are considered to

have 100% map accuracy in the computation.

Table 4.2: (r, l) Pairs for Different Channel Load Adaptation Approaches when ρ = 125veh/km

and Rmax = 10Hz

Adapted Parameters Rate (Hz) Length (Bytes)

Length 10 ∼ 610

Length + Rate ∼ 3 ∼ 1900

Rate ∼ 2.6 2242

Generally, all feedback control systems use a threshold value for comparing the feedback met-

ric. In the congestion control algorithms presented in this paper, CBP is used as the feedback

metric and the chosen threshold value CBP∗ = 68%. Comparing the CBP plots and their corre-

sponding map accuracy for ρ = 125and250veh/km, it is observed that an acceptable range of map

accuracy can be achieved for CBP values in the range between 40% and 80%. This observation is

in good agreement with the observations about CBP in [66]. For ρ = 25veh/km, CBP does not

exceed the optimal level, and good map accuracy is observed when CBP is higher than 30%. Com-

paring the map accuracy and the IA plots, we see that information age can be directly related to

tracking accuracy because a lower IA is an indication of a lower end-to-end delay of the exchanged
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information. Note that finding the absolute optimal tracking accuracy in real-time is impractical in

map sharing based vehicular networks. However, through our observations based on actual PTE,

we see that the congestion control algorithm based on a target CBP keeps the tracking accuracy

close to the optimal value. Notice that the results from transmit rate control in the simulations

consistently show a better tracking performance than the approach that employs a combination of

message length and transmit rate control. We identify that the decrease factor of the transmit rate

parameter is the key component here that affects the tracking accuracy in joint length-rate control.

When there is no length adaptation for the messages, the transmit rate will eventually settle at

some value to keep the channel utilization close to CBP∗. The time required for the transmit rate to

converge depends on the choices of the rate decrease factor. An aggressive decrease factor makes

the transmit rate converge faster than that of a conservative decrease factor. However, both the ag-

gressive and the conservative decrease factor yield the same steady-state transmit rate when only

the message rate is adapted. In the case where both length and rate adaptations are enabled, the

choices of the decrease factor have a significant impact on the steady-state transmit rate. Since both

message length and transmit rate use the same feedback metric CBP for convergence, the rates at

which the parameters adapt matters. As can be seen in Figure 4.13(c), several combinations of the

message rate and length can achieve the optimal channel utilization. However, not all combinations

may result in the same tracking accuracy as can be seen in Figure 4.13(a). Now, from Figure 4.15

we see that for ρ = 250veh/km, there is a large patch of length values for a certain range of rate

values allow the system to achieve optimal or near-optimal tracking accuracy. This observation

suggests that, depending on the adaptation rate of the message length and rate parameter, the joint
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rate-length adaptation may end up in some sub-optimal regions of the map accuracy space. Now

we assume that the joint rate-length control algorithm starts with Lmax and Rmax. If the message

rate is adapted at a higher proportion than the length parameter to settle on a smaller rate value,

the algorithm will allow using a large message length value. And this combination of the message

rate and length would have a higher likelihood to match one of the rate-length combinations that

achieve near-optimal tracking accuracy as depicted in Figure 4.15. To see how the choices of mes-

sage rate decrease factor affect the tracking accuracy, we tested two different rate decrease factors,

0.15 and 0.40. Figure 4.17 shows how a larger decrease factor increases the tracking accuracy for

joint length-rate adaptation and achieves almost similar performance as the “rate only” adaptation.

Based on the above observation we conclude that even though “rate-only” and joint length-rate

adaptations demonstrate similar tracking performance, the latter is preferable because it can scale

in very dense traffic scenarios as with joint length-rate adaptation, the algorithm has two parame-

ters at disposal for maintaining the channel load at the desired level. In contrast, by adapting only

the rate parameter, the transmission of fixed-length messages of size Lmax at the lowest possible

rate Rmin may still lead to channel saturation in high traffic conditions.
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Figure 4.11: top) 95-percentile PTE, (middle) Average message rate, (bottom) Average message

length for ρ = 125veh/km; Rmax = 10Hz: (a) Circular, (b) Winding roadway
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Figure 4.12: top) 95-percentile PTE, (middle) Average message rate, (bottom) Average message

length for ρ = 250veh/km; Rmax = 10Hz: (a) Circular, (b) Winding roadway
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Figure 4.13: (a) 95% PTE; the perpendicular lines show the minimum points for each PTE curve,

(a) CBP, and (c) Optimal CBP control Line for different rate and length setting for ρ = 250veh/km
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Figure 4.14: Mean CBP (%) for different (rate, length) choices: (a) ρ = 25, (b) ρ = 125 and (c)

ρ = 250veh/km
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Figure 4.15: Map Accuracy for different (rate, length) choices: (a) ρ = 25, (b) ρ = 125 and (c)

ρ = 250veh/km
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Figure 4.16: Information Age (IA) in milliseconds for different (rate, length) choices: (a) ρ = 25,

(b) ρ = 125 and (c) ρ = 250veh/km
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CHAPTER 5: CONCLUSIONS

We provided an overview of the DSRC simulation process, describing specific components

of simulation which include node and propagation modeling. Node behavior modeling has been

presented with a focus on the most commonly used approach of a frame or sub-frame-based simu-

lation. We described methods used by popular discrete event simulators such as ns-3 and presented

several corrections and enhancements that were made to achieve higher fidelity of simulation for

DSRC. Channel modeling approaches were also briefly discussed, and the steps of RSS-based

channel model implementation has been presented in detail. To describe the channel propagation

model, a specific model developed from large scale field test data has been explained. The overall

simulation model for the channel and node behavior was validated and shown to be more accurate

than the frame-level simulator.

We presented a performance evaluation of the SAE J2945/1 congestion control algorithm by

presenting extensive simulation experiments using realistic vehicle trajectories. To validate the

performance of the congestion control algorithm, a large-scale field RSS dataset is used to derive a

realistic channel propagation model and vehicle trajectories from a microscopic traffic simulation

tool are obtained for the same road stretch the channel measurements were collected from. Pre-

sented results show that the congestion control algorithm achieves significant performance gain in

terms of the information age and tracking accuracy in dense traffic scenarios. Further analysis of
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the relationship of message rate and power with information dissemination rate reveals a potential

area of improvement to optimize the vehicle density coefficient parameter of the congestion con-

trol algorithm. Simulation experiments were performed to find an optimal value for this parameter

and results indicate that the choice of this parameter value comes with a trade-off for safety bene-

fits at different range of interests. A less aggressive rate control approach achieves slightly better

tracking gain at lower ranges, trading off greater safety benefits at higher distances.

We also presented an overview of different message rate, length and content control schemes,

and evaluated their performance in terms of position tracking accuracy, in a map information shar-

ing based cooperative V2X communication architecture. It was shown that including information

about objects that are located near the edge of local sensors’ detection range is more beneficial

to map accuracy. We also investigated the effect of message length and rate control on mapping

accuracy. Our study found that tracking accuracy in cooperative vehicle communications can be

improved through the use of channel congestion control based on message length, rate and/or joint

rate-length adaptation. By examining the trade-off between message length and transmission rate,

we determined that a joint rate-length congestion control offers more flexibility than controlling

the parameters separately.
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