4,594 research outputs found

    Heterogeneous Dynamic Spectrum Access in Cognitive Radio enabled Vehicular Networks Using Network Softwarization

    Get PDF
    Dynamic spectrum access (DSA) in cognitive radio networks (CRNs) is regarded as an emerging technology to solve the spectrum scarcity problem created by static spectrum allocation. In DSA, unlicensed users access idle channels opportunistically, without creating any harmful interference to licensed users. This method will also help to incorporate billions of wireless devices for different applications such as Internet-of-Things, cyber-physical systems, smart grids, etc. Vehicular networks for intelligent transportation cyber-physical systems is emerging concept to improve transportation security and reliability. IEEE 802.11p standard comprising of 7 channels is dedicated for vehicular communications. These channels could be highly congested and may not be able to provide reliable communications in urban areas. Thus, vehicular networks are expected to utilize heterogeneous wireless channels for reliable communications. In this thesis, real-time opportunistic spectrum access in cloud based cognitive radio network (ROAR) architecture is used for energy efficiency and dynamic spectrum access in vehicular networks where geolocation of vehicles is used to find idle channels. Furthermore, a three step mechanism to detect geolocation falsification attacks is presented. Performance is evaluated using simulation results

    Developing capacity sharing strategy for vehicular networks with integrated use of licensed and unlicensed spectrum

    Get PDF
    A widely deployed cellular network, supported by direct connections, can offer a promising solution that supports new services with strict requirements on access availability, reliability, and end-to-end (E2E) latency. The communications between vehicles can be made using different radio interfaces: One for cellular communication (i.e., cellular communication over the cellular network based on uplink (UL)/downlink (DL) connections) and the other for direct communication (i.e., D2D-based direct communications between vehicles which allows vehicular users (V-UEs) to communicate directly with others). Common cellular systems with licensed spectrum backed by direct communication using unlicensed spectrum can ensure high quality of service requirements for new intelligent transportation systems (ITS) services, increase network capacity and reduce overall delays. However, selecting a convenient radio interface and allocating radio resources to users according to the quality of service (QoS) requirements becomes a challenge. In this regard, let’s introduce a new radio resource allocation strategy to determine when it’s appropriate to establish the communication between the vehicles over a cellular network using licensed spectrum resources or D2D-based direct connections over unlicensed spectrum sharing with Wi-Fi. The proposed strategy aims at meeting the quality of service requirements of users, including reducing the possibility of exceeding the maximum delay restrictions and enhancing network capacity utilization in order to avoid service interruption. The proposed solution is evaluated by highlighting different conditions for the considered scenario, and it is demonstrated that the proposed strategy improves network performance in terms of transmitted data rate, packet success rate, latency, and resource usag

    Cooperative medium access control based on spectrum leasing

    No full text
    Based on cooperative spectrum leasing, a distributed “win–win” (WW) cooperative framework is designed to encourage the licensed source node (SN) to lease some part of its spectral resources to the unlicensed relay node (RN) for the sake of simultaneously improving the SN’s achievable rate and for reducing the energy consumption (EC). The potential candidate RNs carry out autonomous decisions concerning whether to contend for a cooperative transmission opportunity, which could dissipate some of their battery power, while conveying their traffic in light of their individual service requirements. Furthermore, a WW cooperative medium-access-control (MAC) protocol is designed to implement the proposed distributed WW cooperative framework. Simulation results demonstrate that our WW cooperative MAC protocol is capable of providing both substantial rate improvements and considerable energy savings for the cooperative spectrum leasing system
    • …
    corecore