9 research outputs found

    LIDAR-Based Lane Marking Detection For Vehicle Positioning in an HD Map

    Get PDF
    International audienceAccurate self-vehicle localization is an important task for autonomous driving and ADAS. Current GNSS-basedsolutions do not provide better than 2-3 m in open-sky environments. Moreover, map-based localization using HDmaps became an interesting source of information for intelligent vehicles. In this paper, a Map-based localization using a multi-layer LIDAR is proposed. Our method mainly relies on road lane markings and an HD map to achieve lane-level accuracy.At first, road points are segmented by analysing the geometric structure of each returned layer points. Secondly, thanks toLIDAR reflectivity data, road marking points are projected onto a 2D image and then detected using Hough Transform.Detected lane markings are then matched to our HD map using Particle Filter (PF) framework. Experiments are conducted on aHighway-like test track using GPS/INS with RTK correction as ground truth. Our method is capable of providing a lane-levellocalization with a 22 cm cross-track accuracy

    LIDAR-Based road signs detection For Vehicle Localization in an HD Map

    Get PDF
    International audienceSelf-vehicle localization is one of the fundamental tasks for autonomous driving. Most of current techniques for global positioning are based on the use of GNSS (Global Navigation Satellite Systems). However, these solutions do not provide a localization accuracy that is better than 2-3 m in open sky environments [1]. Alternatively, the use of maps has been widely investigated for localization since maps can be pre-built very accurately. State of the art approaches often use dense maps or feature maps for localization. In this paper, we propose a road sign perception system for vehicle localization within a third party map. This is challenging since third party maps are usually provided with sparse geometric features which make the localization task more difficult in comparison to dense maps. The proposed approach extends the work in [2] where a localization system based on lane markings has been developed. Experiments have been conducted on a Highway-like test track using GNSS/INS with RTK corrections as ground truth (GT). Error evaluations are given as cross-track and along-track errors defined in the curvilinear coordinates [3] related to the map

    Lane Endpoint Detection and Position Accuracy Evaluation for Sensor Fusion-Based Vehicle Localization on Highways

    Get PDF
    Landmark-based vehicle localization is a key component of both autonomous driving and advanced driver assistance systems (ADAS). Previously used landmarks in highways such as lane markings lack information on longitudinal positions. To address this problem, lane endpoints can be used as landmarks. This paper proposes two essential components when using lane endpoints as landmarks: lane endpoint detection and its accuracy evaluation. First, it proposes a method to efficiently detect lane endpoints using a monocular forward-looking camera, which is the most widely installed perception sensor. Lane endpoints are detected with a small amount of computation based on the following steps: lane detection, lane endpoint candidate generation, and lane endpoint candidate verification. Second, it proposes a method to reliably measure the position accuracy of the lane endpoints detected from images taken while the camera is moving at high speed. A camera is installed with a mobile mapping system (MMS) in a vehicle, and the position accuracy of the lane endpoints detected by the camera is measured by comparing their positions with ground truths obtained by the MMS. In the experiment, the proposed methods were evaluated and compared with previous methods based on a dataset acquired while driving on 80 km of highway in both daytime and nighttime. Document type: Articl

    Computer Vision Based Structural Identification Framework for Bridge Health Mornitoring

    Get PDF
    The objective of this dissertation is to develop a comprehensive Structural Identification (St-Id) framework with damage for bridge type structures by using cameras and computer vision technologies. The traditional St-Id frameworks rely on using conventional sensors. In this study, the collected input and output data employed in the St-Id system are acquired by series of vision-based measurements. The following novelties are proposed, developed and demonstrated in this project: a) vehicle load (input) modeling using computer vision, b) bridge response (output) using full non-contact approach using video/image processing, c) image-based structural identification using input-output measurements and new damage indicators. The input (loading) data due vehicles such as vehicle weights and vehicle locations on the bridges, are estimated by employing computer vision algorithms (detection, classification, and localization of objects) based on the video images of vehicles. Meanwhile, the output data as structural displacements are also obtained by defining and tracking image key-points of measurement locations. Subsequently, the input and output data sets are analyzed to construct novel types of damage indicators, named Unit Influence Surface (UIS). Finally, the new damage detection and localization framework is introduced that does not require a network of sensors, but much less number of sensors. The main research significance is the first time development of algorithms that transform the measured video images into a form that is highly damage-sensitive/change-sensitive for bridge assessment within the context of Structural Identification with input and output characterization. The study exploits the unique attributes of computer vision systems, where the signal is continuous in space. This requires new adaptations and transformations that can handle computer vision data/signals for structural engineering applications. This research will significantly advance current sensor-based structural health monitoring with computer-vision techniques, leading to practical applications for damage detection of complex structures with a novel approach. By using computer vision algorithms and cameras as special sensors for structural health monitoring, this study proposes an advance approach in bridge monitoring through which certain type of data that could not be collected by conventional sensors such as vehicle loads and location, can be obtained practically and accurately

    무인자율주행을 위한 도로 지도 생성 및 측위

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2016. 2. 서승우.This dissertation aims to present precise and cost-efficient mapping and localization algorithms for autonomous vehicles. Mapping and localization are ones of the key components in autonomous vehicles. The major concern for mapping and localization research is maximizing the accuracy and precision of the systems while minimizing the cost. For this goal, this dissertation proposes a road map generation system to create a precise and efficient lane-level road map, and a localization system based on the proposed road map and affordable sensors. In chapter 2, the road map generation system is presented. The road map generation system integrates a 3D LIDAR data and high-precision vehicle positioning system to acquire accurate road geometry data. Acquired road geometry data is represented as sets of piecewise polynomial curves in order to increase the storage efficiency and the usability. From extensive experiments using a real urban and highway road data, it is verified that the proposed road map generation system generates a road map that is accurate and more efficient than previous road maps in terms of the storage efficiency and usability. In chapter 3, the localization system is presented. The localization system targets an environment that the localization is difficult due to the lack of feature information for localization. The proposed system integrates the lane-level road map presented in chapter 2, and various low-cost sensors for accurate and cost-effective vehicle localization. A measurement ambiguity problem due to the use of low-cost sensors and poor feature information was presented, and a probabilistic measurement association-based particle filter is proposed to resolve the measurement ambiguity problem. Experimental results using a real highway road data is presented to verify the accuracy and reliability of the localization system. In chapter 4, an application of the accurate vehicle localization system is presented. It is demonstrated that sharing of accurate position information among vehicles can improve the traffic flow and suppress the traffic jam effectively. The effect of the position information sharing is evaluated based on numerical experiments. For this, a traffic model is proposed by extending conventional SOV traffic model. The numerical experiments show that the traffic flow is increased based on accurate vehicle localization and information sharing among vehicles.Chapter 1 Introduction 1 1.1 Background andMotivations 1 1.2 Contributions and Outline of the Dissertation 3 1.2.1 Generation of a Precise and Efficient Lane-Level Road Map 3 1.2.2 Accurate and Cost-Effective Vehicle Localization in Featureless Environments 4 1.2.3 An Application of Precise Vehicle Localization: Traffic Flow Enhancement Through the Sharing of Accurate Position Information Among Vehicles 4 Chapter 2 Generation of a Precise and Efficient Lane-Level Road Map 6 2.1 RelatedWorks 9 2.1.1 Acquisition of Road Geometry 11 2.1.2 Modeling of Road Geometry 13 2.2 Overall System Architecture 15 2.3 Road Geometry Data Acquisition and Processing 17 2.3.1 Data Acquisition 18 2.3.2 Data Processing 18 2.3.3 Outlier Problem 26 2.4 RoadModeling 27 2.4.1 Overview of the sequential approximation algorithm 29 2.4.2 Approximation Process 30 2.4.3 Curve Transition 35 2.4.4 Arc length parameterization 38 2.5 Experimental Validation 39 2.5.1 Experimental Setup 39 2.5.2 Data Acquisition and Processing 40 2.5.3 RoadModeling 42 2.6 Summary 49 Chapter 3 Accurate and Cost-Effective Vehicle Localization in Featureless Environments 51 3.1 RelatedWorks 53 3.2 SystemOverview 57 3.2.1 Test Vehicle and Sensor Configuration 57 3.2.2 Augmented RoadMap Data 57 3.2.3 Vehicle Localization SystemArchitecture 61 3.2.4 ProblemStatement 62 3.3 Particle filter-based Vehicle Localization Algorithm 63 3.3.1 Initialization 65 3.3.2 Time Update 66 3.3.3 Measurement Update 66 3.3.4 Integration 68 3.3.5 State Estimation 68 3.3.6 Resampling 69 3.4 Map-Image Measurement Update with Probabilistic Data Association 69 3.4.1 Lane Marking Extraction and Measurement Error Model 70 3.5 Experimental Validation 76 3.5.1 Experimental Environments 76 3.5.2 Localization Accuracy 77 3.5.3 Effect of the Probabilistic Measurement Association 79 3.5.4 Effect of theMeasurement ErrorModel 80 3.6 Summary 80 Chapter 4 An Application of Precise Vehicle Localization: Traffic Flow Enhancement Through the Sharing of Accurate Position Information Among Vehicles 82 4.1 Extended SOVModel 84 4.1.1 SOVModel 85 4.1.2 Extended SOVModel 89 4.2 Results and Discussions 91 4.3 Summary 93 Chapter 5 Conclusion 95 Bibliography 97 국문 초록 108Docto

    Robust Localization in 3D Prior Maps for Autonomous Driving.

    Full text link
    In order to navigate autonomously, many self-driving vehicles require precise localization within an a priori known map that is annotated with exact lane locations, traffic signs, and additional metadata that govern the rules of the road. This approach transforms the extremely difficult and unpredictable task of online perception into a more structured localization problem—where exact localization in these maps provides the autonomous agent a wealth of knowledge for safe navigation. This thesis presents several novel localization algorithms that leverage a high-fidelity three-dimensional (3D) prior map that together provide a robust and reliable framework for vehicle localization. First, we present a generic probabilistic method for localizing an autonomous vehicle equipped with a 3D light detection and ranging (LIDAR) scanner. This proposed algorithm models the world as a mixture of several Gaussians, characterizing the z-height and reflectivity distribution of the environment—which we rasterize to facilitate fast and exact multiresolution inference. Second, we propose a visual localization strategy that replaces the expensive 3D LIDAR scanners with significantly cheaper, commodity cameras. In doing so, we exploit a graphics processing unit to generate synthetic views of our belief environment, resulting in a localization solution that achieves a similar order of magnitude error rate with a sensor that is several orders of magnitude cheaper. Finally, we propose a visual obstacle detection algorithm that leverages knowledge of our high-fidelity prior maps in its obstacle prediction model. This not only provides obstacle awareness at high rates for vehicle navigation, but also improves our visual localization quality as we are cognizant of static and non-static regions of the environment. All of these proposed algorithms are demonstrated to be real-time solutions for our self-driving car.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133410/1/rwolcott_1.pd

    Contribution à la localisation de véhicules intelligents à partir de marquage routier

    Get PDF
    Autonomous Vehicles (AV) applications and Advanced Driving Assistance Systems (ADAS) relay in scene understanding processes allowing high level systems to carry out decision marking. For such systems, the localization of a vehicle evolving in a structured dynamic environment constitutes a complex problem of crucial importance. Our research addresses scene structure detection, localization and error modeling. Taking into account the large functional spectrum of vision systems, the accessibility of Open Geographical Information Systems (GIS) and the widely presence of Global Positioning Systems (GPS) onboard vehicles, we study the performance and the reliability of a vehicle localization method combining such information sources. Monocular vision–based lane marking detection provides key information about the scene structure. Using an enhanced multi-kernel framework with hierarchical weights, the proposed parametric method performs, in real time, the detection and tracking of the ego-lane marking. A self-assessment indicator quantifies the confidence of this information source. We conduct our investigations in a localization system which tightly couples GPS, GIS and lane makings in the probabilistic framework of Particle Filter (PF). To this end, it is proposed the use of lane markings not only during the map-matching process but also to model the expected ego-vehicle motion. The reliability of the localization system, in presence of unusual errors from the different information sources, is enhanced by taking into account different confidence indicators. Such a mechanism is later employed to identify error sources. This research concludes with an experimental validation in real driving situations of the proposed methods. They were tested and its performance was quantified using an experimental vehicle and publicly available datasets.Les applications pour véhicules autonomes et les systèmes d’aide avancée à la conduite (Advanced Driving Assistance Systems - ADAS) mettent en oeuvre des processus permettant à des systèmes haut niveau de réaliser une prise de décision. Pour de tels systèmes, la connaissance du positionnement précis (ou localisation) du véhicule dans son environnement est un pré-requis nécessaire. Cette thèse s’intéresse à la détection de la structure de scène, au processus de localisation ainsi qu’à la modélisation d’erreurs. A partir d’un large spectre fonctionnel de systèmes de vision, de l’accessibilité d’un système de cartographie ouvert (Open Geographical Information Systems - GIS) et de la large diffusion des systèmes de positionnement dans les véhicules (Global Positioning System - GPS), cette thèse étudie la performance et la fiabilité d’une méthode de localisation utilisant ces différentes sources. La détection de marquage sur la route réalisée par caméra monoculaire est le point de départ permettant de connaître la structure de la scène. En utilisant, une détection multi-noyau avec pondération hiérarchique, la méthode paramétrique proposée effectue la détection et le suivi des marquages sur la voie du véhicule en temps réel. La confiance en cette source d’information a été quantifiée par un indicateur de vraisemblance. Nous proposons ensuite un système de localisation qui fusionne des informations de positionnement (GPS), la carte (GIS) et les marquages détectés précédemment dans un cadre probabiliste basé sur un filtre particulaire. Pour ce faire, nous proposons d’utiliser les marquages détectés non seulement dans l’étape de mise en correspondance des cartes mais aussi dans la modélisation de la trajectoire attendue du véhicule. La fiabilité du système de localisation, en présence d’erreurs inhabituelles dans les différentes sources d’information, est améliorée par la prise en compte de différents indicateurs de confiance. Ce mécanisme est par la suite utilisé pour identifier les sources d’erreur. Cette thèse se conclut par une validation expérimentale des méthodes proposées dans des situations réelles de conduite. Leurs performances ont été quantifiées en utilisant un véhicule expérimental et des données en libre accès sur internet
    corecore