242 research outputs found

    A Distributed and Privacy-Aware Speed Advisory System for Optimising Conventional and Electric Vehicles Networks

    Get PDF
    One of the key ideas to make Intelligent Transportation Systems (ITS) work effectively is to deploy advanced communication and cooperative control technologies among the vehicles and road infrastructures. In this spirit, we propose a consensus-based distributed speed advisory system that optimally determines a recommended common speed for a given area in order that the group emissions, or group battery consumptions, are minimised. Our algorithms achieve this in a privacy-aware manner; namely, individual vehicles do not reveal in-vehicle information to other vehicles or to infrastructure. A mobility simulator is used to illustrate the efficacy of the algorithm, and hardware-in-the-loop tests involving a real vehicle are given to illustrate user acceptability and ease of the deployment.Comment: This is a journal paper based on the conference paper "Highway speed limits, optimised consensus, and intelligent speed advisory systems" presented at the 3rd International Conference on Connected Vehicles and Expo (ICCVE 2014) in November 2014. This is the revised version of the paper recently submitted to the IEEE Transactions on Intelligent Transportation Systems for publicatio

    Analysis and design of controllers for cooperative and automated driving

    Get PDF

    Developing a Distributed Consensus-Based Cooperative Adaptive Cruise Control System for Heterogeneous Vehicles with Predecessor Following Topology

    Get PDF
    Connected and automated vehicle (CAV) has become an increasingly popular topic recently. As an application, Cooperative Adaptive Cruise Control (CACC) systems are of high interest, allowing CAVs to communicate with each other and coordinating their maneuvers to form platoons, where one vehicle follows another with a constant velocity and/or time headway. In this study, we propose a novel CACC system, where distributed consensus algorithm and protocol are designed for platoon formation, merging maneuvers, and splitting maneuvers. Predecessor following information flow topology is adopted for the system, where each vehicle only communicates with its following vehicle to reach consensus of the whole platoon, making the vehicle-to-vehicle (V2V) communication fast and accurate. Moreover, different from most studies assuming the type and dynamics of all the vehicles in a platoon to be homogenous, we take into account the length, location of GPS antenna on vehicle, and braking performance of different vehicles. A simulation study has been conducted under scenarios including normal platoon formation, platoon restoration from disturbances, and merging and splitting maneuvers. We have also carried out a sensitivity analysis on the distributed consensus algorithm, investigating the effect of the damping gain on convergence rate, driving comfort, and driving safety of the system

    The Impact of Driver Reaction in Cooperative Vehicle Safety Systems

    Get PDF
    Cooperative Vehicular Safety (CVS) has recently been widely studied in the field of automated vehicular systems. CVS systems help decrease the rates of accidents. However, implementing and testing CVS applications in real world is very costly and risky. Hence, most of the related research studies on CVS applications have relied mainly on simulations. In simulated CVS systems, it is important to consider all critical aspects of used models, and how these models affect one another. The movement model is a key component in the simulation study of CVS systems, which controls the mobility of vehicles (nodes) and responses to the continually changing acquiredinformation. However, existing mobility models are not created to take action(s) in response to hazardous situations (identified by situational awareness component). Integrating the reaction(s) to a hazardous alert is a missing element in current CVS system simulations. Hence to rectify this deficiency, this work is to incorporate a Driver’s Reaction Model (DReaM) that react and respond to hazard alerts, and studies the effect of main components of CVS system including the added model. We examined a simulation modeling framework that describes cooperative vehicle safety system as one unified model. The studied framework is powered by cooperation and communication between vehicles. Investigated elements are communication model, movement model, warning generation, and driver response to warning indicating an emergency of near to crash situation

    Deep-Learning-Based Intelligent Intervehicle Distance Control for 6G-Enabled Cooperative Autonomous Driving

    Get PDF
    Research on the sixth-generation cellular networks (6G) is gaining huge momentum to achieve ubiquitous wireless connectivity. Connected autonomous vehicles (CAVs) is a critical vertical application for 6G, holding great potentials of improving road safety, road and energy efficiency. However, the stringent service requirements of CAV applications on reliability, latency, and high speed communications will present big challenges to 6G networks. New channel access algorithms and intelligent control schemes for connected vehicles are needed for 6G-supported CAV. In this article, we investigated 6G-supported cooperative driving, which is an advanced driving mode through information sharing and driving coordination. First, we quantify the delay upper bounds of 6G vehicle-to-vehicle (V2V) communications with hybrid communication and channel access technologies. A deep learning neural network is developed and trained for the fast computation of the delay bounds in real-time operations. Then, an intelligent strategy is designed to control the intervehicle distance for cooperative autonomous driving. Furthermore, we propose a Markov chain-based algorithm to predict the parameters of the system states, and also a safe distance mapping method to enable smooth vehicular speed changes. The proposed algorithms are implemented in the AirSim autonomous driving platform. Simulation results show that the proposed algorithms are effective and robust with safe and stable cooperative autonomous driving, which greatly improve the road safety, capacity, and efficiency

    Towards a Severity Assessment Method for Potential Cyber Attacks to Connected and Autonomous Vehicles

    Get PDF
    CAV (connected and autonomous vehicle) is a crucial part of intelligent transportation systems. CAVs utilize both sensors and communication components to make driving decisions. A large number of companies, research organizations, and governments have researched extensively on the development of CAVs. The increasing number of autonomous and connected functions however means that CAVs are exposed to more cyber security vulnerabilities. Unlike computer cyber security attacks, cyber attacks to CAVs could lead to not only information leakage but also physical damage. According to the UK CAV Cyber Security Principles, preventing CAVs from cyber security attacks need to be considered at the beginning of CAV development. In this paper, a large set of potential cyber attacks are collected and investigated from the aspects of target assets, risks, and consequences. Severity of each type of attacks is then analysed based on clearly defined new set of criteria. The levels of severity for the attacks can be categorized as critical, important, moderate, and minor. Mitigation methods including prevention, reduction, transference, acceptance, and contingency are then suggested. It is found that remote control, fake vision on cameras, hidden objects to LiDAR and Radar, spoofing attack to GNSS, and fake identity in cloud authority are the most dangerous and of the highest vulnerabilities in CAV cyber security
    • …
    corecore