103 research outputs found

    Bounding Box-Free Instance Segmentation Using Semi-Supervised Learning for Generating a City-Scale Vehicle Dataset

    Full text link
    Vehicle classification is a hot computer vision topic, with studies ranging from ground-view up to top-view imagery. In remote sensing, the usage of top-view images allows for understanding city patterns, vehicle concentration, traffic management, and others. However, there are some difficulties when aiming for pixel-wise classification: (a) most vehicle classification studies use object detection methods, and most publicly available datasets are designed for this task, (b) creating instance segmentation datasets is laborious, and (c) traditional instance segmentation methods underperform on this task since the objects are small. Thus, the present research objectives are: (1) propose a novel semi-supervised iterative learning approach using GIS software, (2) propose a box-free instance segmentation approach, and (3) provide a city-scale vehicle dataset. The iterative learning procedure considered: (1) label a small number of vehicles, (2) train on those samples, (3) use the model to classify the entire image, (4) convert the image prediction into a polygon shapefile, (5) correct some areas with errors and include them in the training data, and (6) repeat until results are satisfactory. To separate instances, we considered vehicle interior and vehicle borders, and the DL model was the U-net with the Efficient-net-B7 backbone. When removing the borders, the vehicle interior becomes isolated, allowing for unique object identification. To recover the deleted 1-pixel borders, we proposed a simple method to expand each prediction. The results show better pixel-wise metrics when compared to the Mask-RCNN (82% against 67% in IoU). On per-object analysis, the overall accuracy, precision, and recall were greater than 90%. This pipeline applies to any remote sensing target, being very efficient for segmentation and generating datasets.Comment: 38 pages, 10 figures, submitted to journa

    Target classification in multimodal video

    Get PDF
    The presented thesis focuses on enhancing scene segmentation and target recognition methodologies via the mobilisation of contextual information. The algorithms developed to achieve this goal utilise multi-modal sensor information collected across varying scenarios, from controlled indoor sequences to challenging rural locations. Sensors are chiefly colour band and long wave infrared (LWIR), enabling persistent surveillance capabilities across all environments. In the drive to develop effectual algorithms towards the outlined goals, key obstacles are identified and examined: the recovery of background scene structure from foreground object ’clutter’, employing contextual foreground knowledge to circumvent training a classifier when labeled data is not readily available, creating a labeled LWIR dataset to train a convolutional neural network (CNN) based object classifier and the viability of spatial context to address long range target classification when big data solutions are not enough. For an environment displaying frequent foreground clutter, such as a busy train station, we propose an algorithm exploiting foreground object presence to segment underlying scene structure that is not often visible. If such a location is outdoors and surveyed by an infra-red (IR) and visible band camera set-up, scene context and contextual knowledge transfer allows reasonable class predictions for thermal signatures within the scene to be determined. Furthermore, a labeled LWIR image corpus is created to train an infrared object classifier, using a CNN approach. The trained network demonstrates effective classification accuracy of 95% over 6 object classes. However, performance is not sustainable for IR targets acquired at long range due to low signal quality and classification accuracy drops. This is addressed by mobilising spatial context to affect network class scores, restoring robust classification capability

    Image-based recognition, 3D localization, and retro-reflectivity evaluation of high-quantity low-cost roadway assets for enhanced condition assessment

    Get PDF
    Systematic condition assessment of high-quantity low-cost roadway assets such as traffic signs, guardrails, and pavement markings requires frequent reporting on location and up-to-date status of these assets. Today, most Departments of Transportation (DOTs) in the US collect data using camera-mounted vehicles to filter, annotate, organize, and present the data necessary for these assessments. However, the cost and complexity of the collection, analysis, and reporting as-is conditions result in sparse and infrequent monitoring. Thus, some of the gains in efficiency are consumed by monitoring costs. This dissertation proposes to improve frequency, detail, and applicability of image-based condition assessment via automating detection, classification, and 3D localization of multiple types of high-quantity low-cost roadway assets using both images collected by the DOTs and online databases such Google Street View Images. To address the new requirements of US Federal Highway Administration (FHWA), a new method is also developed that simulates nighttime visibility of traffic signs from images taken during daytime and measures their retro-reflectivity condition. To initiate detection and classification of high-quantity low-cost roadway assets from street-level images, a number of algorithms are proposed that automatically segment and localize high-level asset categories in 3D. The first set of algorithms focus on the task of detecting and segmenting assets at high-level categories. More specifically, a method based on Semantic Texton Forest classifiers, segments each geo-registered 2D video frame at the pixel-level based on shape, texture, and color. A Structure from Motion (SfM) procedure reconstructs the road and its assets in 3D. Next, a voting scheme assigns the most observed asset category to each point in 3D. The experimental results from application of this method are promising, nevertheless because this method relies on using supervised ground-truth pixel labels for training purposes, scaling it to various types of assets is challenging. To address this issue, a non-parametric image parsing method is proposed that leverages lazy learning scheme for segmentation and recognition of roadway assets. The semi-supervised technique used in the proposed method does not need training and provides ground truth data in a more efficient manner. It is easily scalable to thousands of video frames captured during data collection. Once the high-level asset categories are detected, specific techniques needs to be exploited to detect and classify the assets at a higher level of granularity. To this end, performance of three computer vision algorithms are evaluated for classification of traffic signs in presence of cluttered backgrounds and static and dynamic occlusions. Without making any prior assumptions about the location of traffic signs in 2D, the best performing method uses histograms of oriented gradients and color together with multiple one-vs-all Support Vector Machines, and classifies these assets into warning, regulatory, stop, and yield sign categories. To minimize the reliance on visual data collected by the DOTs and improve frequency and applicability of condition assessment, a new end-to-end procedure is presented that applies the above algorithms and creates comprehensive inventory of traffic signs using Google Street View images. By processing images extracted using Google Street View API and discriminative classification scores from all images that see a sign, the most probable 3D location of each traffic sign is derived and is shown on the Google Earth using a dynamic heat map. A data card containing information about location, type, and condition of each detected traffic sign is also created. Finally, a computer vision-based algorithm is proposed that measures retro-reflectivity of traffic signs during daytime using a vehicle mounted device. The algorithm simulates nighttime visibility of traffic signs from images taken during daytime and measures their retro-reflectivity. The technique is faster, cheaper, and safer compared to the state-of-the-art as it neither requires nighttime operation nor requires manual sign inspection. It also satisfies measurement guidelines set forth by FHWA both in terms of granularity and accuracy. To validate the techniques, new detailed video datasets and their ground-truth were generated from 2.2-mile smart road research facility and two interstate highways in the US. The comprehensive dataset contains over 11,000 annotated U.S. traffic sign images and exhibits large variations in sign pose, scale, background, illumination, and occlusion conditions. The performance of all algorithms were examined using these datasets. For retro-reflectivity measurement of traffic signs, experiments were conducted at different times of day and for different distances. Results were compared with a method recommended by ASTM standards. The experimental results show promise in scalability of these methods to reduce the time and effort required for developing road inventories, especially for those assets such as guardrails and traffic lights that are not typically considered in 2D asset recognition methods and also multiple categories of traffic signs. The applicability of Google Street View Images for inventory management purposes and also the technique for retro-reflectivity measurement during daytime demonstrate strong potential in lowering inspection costs and improving safety in practical applications

    INTELLIGENT ROAD MAINTENANCE: A MACHINE LEARNING APPROACH FOR SURFACE DEFECT DETECTION

    Get PDF
    The emergence of increased sources for Big Data through consumer recording devices gives rise to a new basis for the management and governance of public infrastructures and policy de-sign. Road maintenance and detection of road surface defects, such as cracks, have traditionally been a time consuming and manual process. Lately, increased automation using easily acquirable front-view digital natural scene images is seen to be an alternative for taking timely maintenance decisions; reducing accidents and operating cost and increasing public safety. In this paper, we propose a machine learning based approach to handle the challenge of crack and related defect detection on road surfaces using front-view images captured from driver’s viewpoint under diverse conditions. We use a superpixel based method to first process the road images into smaller coherent image regions. These superpixels are then classified into crack and non-crack regions. Various texture-based features are combined for the classification mod-el. Classifiers such as Gradient Boosting, Artificial Neural Network, Random Forest and Linear Support Vector Machines are evaluated for the task. Evaluations on real datasets show that the approach successfully handles different road surface conditions and crack-types, while locating the defective regions in the scene images

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin
    corecore