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Abstract 

The emergence of increased sources for Big Data through consumer recording devices gives rise to a 

new basis for the management and governance of public infrastructures and policy design. Road mainte-

nance and detection of road surface defects, such as cracks, have traditionally been a time consuming 

and manual process. Lately, increased automation using easily acquirable front-view digital natural 

scene images is seen to be an alternative for taking timely maintenance decisions; reducing accidents 

and operating cost and increasing public safety. In this paper, we propose a machine learning based 

approach to handle the challenge of crack and related defect detection on road surfaces using front-

view images captured from driver’s viewpoint under diverse conditions. We use a superpixel based 

method to first process the road images into smaller coherent image regions. These superpixels are then 

classified into crack and non-crack regions. Various texture-based features are combined for the clas-

sification model. Classifiers such as Gradient Boosting, Artificial Neural Network, Random Forest and 

Linear Support Vector Machines are evaluated for the task. Evaluations on real datasets show that the 

approach successfully handles different road surface conditions and crack-types, while locating the de-

fective regions in the scene images. 

Keywords: Road surface image analysis, Crack detection, Surface defect detection, Machine learning 

1 Introduction 

The processes of digitalization and datafication have been affecting various aspects of society (Kitchin,  

2014), including research practices (Abbasi et al., 2016; Shmueli and Koppius, 2011) and decision mak-

ing in business environments (Abbasi et al., 2016). With ubiquitous recording devices increasingly be-

coming sources for big data (Yoo, 2010), data-driven management and governance of public infrastruc-

tures and policy design has emerged (Rabari and Storper, 2014). The resulting ubiquitous rich image 

data enables the use of analytics to gain insights into situations and processes in public areas, such as 

planning and road maintenance (Tang and Sun, 2012; Yang and Lin, 2013). Consequently, we identify 

research opportunities regarding the development of analytics-based solutions that can leverage visual 

data to support public planning decisions. Therefore, we present a machine learning (ML) approach in 

this paper for processing two-dimensional (2D) road and scene images to automatically detect cracks 

and related surface defects. The images that we use in this study are captured using commodity cameras 

mounted on pedelecs and e-bikes. We propose that an intelligent road surface defect detection system 

can improve the effectiveness of maintenance and decrease manual labour associated with the inspection 

of road conditions. 

Roads are the vital infrastructure and asset for economic growth, at the same time it also requires peri-

odic checks and maintenance which are time and resource intensive. A comprehensive research by 
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Gleave (2014) studied the effect of the untimely maintenance of roads on different factors such as: (1) 

Increased maintenance costs, (2) Vehicle operating costs, (3) Environmental degradation from CO2 

emissions, fuel consumption and pollution from difficult rehabilitation works, (4) Increased safety issues 

related to accidents and health impacts. Automation in road defect and distress detection is an ongoing 

research area and is crucial for road infrastructure management as it detects surface conditions such as 

cracks, potholes, patches (Koch et al., 2015; MnDOT, 2009). However, automated decision making in 

public infrastructure management of roads or bridges are yet to be realized on a large scale. They are 

still predominantly surveyed and assessed manually or in a semi-automatic manner to a great extent 

(Chambon and Moliard, 2011; Gavilan et al., 2011; Radopoulou et al., 2016). Distress detection is cur-

rently done by manual visual detection, through large specialized vehicles or robotic carts to cover for 

the aspects of data acquisition and processing (BASt, 2008; MnDOT, 2009; Prasanna, 2012; Zalama et 

al., 2013) and by citizen reports.  However, such specialized vehicles are much larger in size and come 

fitted with multiple cameras, artificial lighting, friction sensors, laser profilers, radars, etc., making them 

costly (could be around $800,000 (Radopoulou et al., 2016)) – unaffordable for most road authorities or 

agencies and used infrequently. This results in major maintenance backlogs (Gleave, 2014) and an ina-

bility to run on inner-city roads, narrower roads, bike paths and sidewalks. 

To discuss more on the objectives that could be achieved through increased automation using the power 

of data, we can look at the findings in Gleave (2014). Based on their study of the roads in European 

countries, poor pavements and road surface leads to a 34% and 12% increase in the fuel consumption of 

light vehicles and heavy vehicles, respectively, leading to higher CO2 emissions. Furthermore, deficient 

road surface could also increase the vehicle maintenance cost by 129% for heavy vehicles and 185% for 

light vehicles. In addition, poor road surfaces decrease the life of the vehicle tires by approximately 10% 

for heavy vehicles and 66% for light vehicles. Further, poor road conditions are directly responsible for 

increased accidents, affecting public security and safety. Automated systems providing timely monitor-

ing could thus contribute toward enhanced environmental sustainability (Gholami et al., 2016; Melville, 

2010). Thus, the need for a cost-efficient, scalable, flexible and intelligent system that can inspect roads 

for defects from simple images with reduced human intervention is undebatable. 

We see that digital image analysis based road maintenance provides cheaper solutions and better re-

sistance to movements than sensors (Chambon and Moliard, 2011; Yang and Lin, 2013). Given the 

increased usage of surrounded digital technologies and cameras, or aerial vehicles (Zakeri et al., 2016), 

scene images are easily acquirable nowadays by consumer devices (Henfridsson and Lindgren, 2005; 

Yoo, 2010). In turn, this requires robust processing for intelligent decision making. Hence, this research 

deals with the automatic detection of cracks, the most common form of surface defects, and related 

surface degradations from scene images using ML techniques. 

However, to the best of our knowledge, most 2D image-based approaches work with the images taken 

by cameras from a close distance facing downwards directly towards the road (allowing an easier control 

of external conditions. Artificial lighting is also often used for image acquisition). Moreover, most of 

the approaches for crack detection are image-processing and segmentation based, with very limited us-

age of ML for detailed analysis (Koch et al., 2015; Mohan and Poobal, 2017; Varadharajan et al., 2014). 

Such image-processing based methods are particularly sensitive to noise like thresholds and cannot be 

directly applied to different locations (Gavilan et al., 2011). On the contrary, images captured from the 

driver’s front viewpoint under normal daylight presents the challenges of varied illumination and surface 

conditions, lack of closer or focused view on image regions, cracks and defects occupying only smaller 

area in the whole image, and the presence of scene and surface elements (cars, road markings, buildings, 

grass, etc.). In-spite of these, they are much easily acquirable and have more coverage of the area to be 

inspected for quick first-hand analysis, thereby reducing future search spaces. However, there is a lack 

of a systematic insight related to: (1) Most relevant features to be used and the ML approach to follow, 

(2) Developing similar techniques for handling different crack-types such as single, network, cracks 

near edges, block cracks and related degraded surface areas (BaSt, 2008), (3) Avoiding noisy threshold-

ing based techniques, (4) Handling front-view images for a majority of the detections and defect locali-

zation in images. Thus, in order to achieve increased automation for intelligent infrastructure manage-

ment, we aim to attend the below research questions in this work: 
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RQ1: What are the most relevant feature types that can be used and selected using ML based 

classifier’s performance, in order to detect surface cracks and related degraded surface areas 

on roads from the scene images captured through a driver’s front-faced camera’s viewpoint? 

RQ2: How can state-of-the-art ML techniques be applied to crack and defect detection using 

front-view scene images for handling different crack-types, locations and surface conditions? 

Figure 1 shows examples of images handled by us and our approach for data collection. Unlike many 

existing methods, we use front-view scene images which are more cluttered and less structured. We do 

not use the commonly followed edge detection, thresholding or segmentation based methods, thereby 

making our work challenging. We take complete scene images as input and output the recognized crack 

and degraded surface area on roads as shown in Figure 3 (c). We use extracted features from superpixels 

and supervised ML-based classifiers for the task at hand. Moreover, we use the classifier performance 

for tuning the parameters of different feature extraction algorithms. Figure 2 shows the approach that 

we follow in this study. The remainder of this paper is organized as follows: in next sections we state 

the related works, data collection and data preparation processes, the features used and the classifier 

design for road surface defect detection. Finally, we present our evaluations and the discussion. 

 

 
Figure 1.  (Left- most) Our approach for data collection using a simple HD camera mounted on a 

pedelac taking scene images from front viewpoint. Rest of the images show examples of 

pre-processed road images that are used in our approach. Few crack-types are shown. 

 

 

Figure 2:  ML-based crack and defect detection approach for road condition evaluation and cat-

egorization using labeled superpixels and scene images.  

2 Related Work 

Some of the common automatic visual inspection methodologies for road surface evaluations are based 

on radar, laser, accelerometer or vibration, 3D reconstruction, remote sensing and 2D image-based tech-

niques (BASt 2008; Koch et al., 2015; MnDOT, 2009; Salari, 2012; Staniek, 2014; Zakeri et al., 2016). 

These approaches have both advantages and disadvantages, with approaches other than image-based 

ones being more expensive as they require more equipment and computation. However, image-based 

techniques pose many challenges for increased automation such as varied viewpoint, lighting, shadows, 

texture, surface-types, less or more distress coverage area within images. The techniques for 2D road 

surface crack detection could be broadly classified into either more image-processing based (Mohan and 

Poobal, 2017) or a combination of image-processing and ML (Koch et al., 2015). Further, these detec-

tion techniques could be classified into either using downward view-images or front-view images. 

One of the common approaches in road or pavement defect evaluation is seen to be based on threshold-

ing techniques, binarization, mathematical morphology (Teomete et al., 2005). Most image-processing 
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based approaches assume that crack pixels are darker than non-crack pixels and use different threshold-

ing or histogram based techniques (Mohan and Poobal, 2017) depending on it. Statistical measure based 

approach using variance and standard deviation solely is also be seen in many works (Sinha and Fieguth, 

2006, Huidrom et al., 2013). A matrix operation based approach using residuals, followed by probabil-

istic and thresholding techniques, is used by Day et al. (2012) for analysing durability cracking. Edge 

detection based systems using local curves, along with their combination with SVM, is also seen 

(Prasanna et al., 2012). A good overview of parametric and non-parametric ML approaches for crack 

detection is presented in Oliveira and Correia (2009) and the authors used mean and standard deviation 

as features. Li et al. (2014) used features such as rectangle area around cracked area and cracking rate 

(i.e. number of defect pixels in an image) with Artificial Neural Network (ANN) for crack-type recog-

nition (longitudinal, transverse, linear and network cracks). However, for crack detection or extraction 

it used Otsu’s and other thresholding approaches as the first step. In Rababahh et al. (2005) thresholding 

based crack detection was followed by crack classification using Hough space features and edge detec-

tion, Genetic Algorithm, Self-Organizing Maps and Multilayer Perceptron; with Multilayer Perceptron 

outperforming the rest. An adaptive seed based approach is also seen to be used where pavement type 

is first classified using Support Vector Machine (SVM) prior to crack detection (Gavilán et al., 2011). 

Features are extracted here based on histogram shape descriptor that gives difference between crack and 

non-crack objects, and classifying them using SVM, after morphology is used. Line scan cameras were 

used in it. A Wavelet Transform based approach is seen in Nejad and Zekeri (2011) that uses Dynamic 

NN and gives good results for network cracks (cluster of cracks). A Deep Learning based approach 

using Convolutional Neural Network can also be seen in some literatures (Pauly et al., 2017; Ruoxing 

et al., 2018; Zhang et al., 2016). An AdaBoost based system using Gabor filter features like, frequency, 

was also used for crack-type classification into transverse or longitudinal by Zalama et al. (2014). Wu 

et al. (2016) showed an ANN based approach for crack recognition, where the crack extraction and 

grouping is done using thresholding and morphology. As it is seen, most studies used downward-view 

images (with closer view) or specialized vehicle acquisition method. Furthermore, ML is seen to be used 

more for crack-type (like, linear, network, etc. using coverage area properties) classification (Li et al., 

2014) or recognition, after considerable image-processing based approaches such as thresholding or 

morphology have been employed as the main step for crack detection or extraction (Koch et al., 2015; 

Moon and Kim, 2011); making them sensitive toward noise. 

On the contrary, few recent studies show growing interest in using ML extensively for crack or defect 

detection using front-view images, which are similar to the image types we use in this work (Varadhara-

jan et al., 2014). In Radopoulou et al. (2016), the camera was placed much lower, closer to the license 

plate and the authors used the Wavelet Transform and Semantic Texton Forest ML approaches to ana-

lyse the data. Varadharajan et al. (2014) presented a Multiple Instance Learning based SVM technique 

for crack detection using a combination of Local Binary Pattern (LBP) texture, position and colour giv-

ing 138 features, with the camera placed on the car’s windshield. The approach in it helped handle 

subjective and weakly labelled images produced by people. However, the model missed distributed or 

lighter cracks and displayed similar and brightly lit surface conditions. As can be seen, the features used 

in various such approaches does not have easy discriminative abilities (Pauly et al., 2017). Gavilan et 

al. (2011) stated that location dependent results is a bottleneck in crack detection. Further, a lack of 

benchmark or publicly available datasets (Koch et al., 2015), along with difficult and costly image ac-

quisition systems (Radopoulou et al., 2016), make the progress in automation slower. Thus, for an im-

proved road surface management and increased digitalization, one should aim to procure HD images in 

an easier way and make digital image data availability more reachable. Using digital images for most of 

the major first-hand surface analysis will enhance road quality and reduce search space for follow-up 

intensive analysis. Furthermore, the development of intelligent techniques for handling various defects 

across different locations and conditions, instead of using more surface conditions and location specific 

approaches for enabling cross-applications has become a necessity. 
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3 Data Collection and Preparation 

In this work, we collected high definition natural scene videos and images, along with their GPS values, 

in Germany over a period of 1 year by mounting a camera on pedelecs and e-bikes. We collected around 

75 videos, each being 40 minute long, giving a large repository of images. We obtained images of 

1242×720 resolution from the video clips. The images that we selected in this work belong to varied 

scenes such as rural and urban, varied road width and varied times such as morning and afternoon. They 

were all taken under normal daylight. As we process scene images taken from such front-view cameras, 

we first extract our region-of-interest in the scene image, i.e. road area needs to be extracted, as shown 

in Figure 3, for preparing the data for crack detection. From now on, we use the term "scene image" to 

refer the complete captured scene, while "road image" refers to the image with only extracted road area. 

The steps of pre-processing are as follows: (1) Road area extraction to generate “road images” from 

“scene images”, (2) Segmenting the road image into superpixels (groups of pixels) from which features 

are to be extracted, (3) CLAHE usage. Data preparation is shown in Figure 2 (steps 1 and 2). Figure 3 

shows different aspects of our data preparation. 

 

 

Figure 3:  Data preparation: (a) Generated road images and region of interest (box) from scene 

images. (b) Basic shadow handling (shadow in gray color). (c) Annotated cracks on the 

image and SLIC superpixels (in yellow) over road images. Background superpixels with 

black color are avoided. (d) Sample superpixels belonging to crack category. (e) Sample 

superpixels belonging to non-crack category.  

3.1 Generating road images from scene images 

A scene contains various elements like, cars, buildings, trees, etc. and needs to be removed before the 

road area is extracted and used for surface defect detection. In this work, we used the approach in Chat-

terjee et al. (2017) to extract the road area region from the complete scene. We selected this approach 

as it helped us achieve the following: (1) The method is applicable to a wide range of scene types such 

as, rural and urban. So, we can use the same algorithm for different scene types that we handle in this 

work, (2) The algorithm detects the major shadow areas that could be avoided or handled accordingly, 

thus reducing false positives in the crack or surface defect detection step. The used approach is based 

on the Gaussian kernel based hybrid distance metric, linear optimization with Hungarian Algorithm and 

pairwise assignment from a distance matrix for hierarchical clustering. Once the road area is clustered, 

it is extracted as the road image as shown in Figure 3 (a-b). 

3.2 Pre-processing of road images and superpixel generation  

Once the road images are generated by extracting the road area from scene images, we used Hough 

lines to demarcate the road-side edges. Such lines are thus not considered as cracks in later stages. 

Following this, we resized the road images to 300 × 150 size and then divided the image into sn (here, 

sn = 150) superpixels, to group similar pixels. We used Simple Linear Iterative Clustering (SLIC) 

(Achanta et al., 2012) to generate the superpixels by clustering the red, green, blue colour values of the 
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pixels, along with their (x, y) location values. Furthermore, followed by the superpixel segmentation of 

each image, each of the superpixel undergoes histogram equalization. General histogram equalization 

(Gonzales and Woods, 2002) provides the possibility to enhance the contrast of an image. An image 

with enhanced contrast is a much better input for a feature extraction algorithm. General histogram 

equalization might suffer losses due to over-brightness or over-darkness. To solve the information loss 

in general transformation we used Contrast Limited Adaptive Histogram Equalization (CLAHE) 

(Zuiderveld, 1994). CLAHE transforms the image by calculating the histogram of each region instead 

of one histogram over the whole image. In this work, the original image is divided into smaller blocks 

called "tiles" having the size of 8x8. Then these blocks are histogram equalized. Thus, no data has been 

lost by extreme general histogram transformation, yet the crack region’s colour intensity has improved. 

3.3 Final road image dataset for defect detection 

As our approach is based on supervised learning, it is a requirement to train the classifier models with 

samples. In our case, each sample is one superpixel, i.e. groups of pixels, as in Figure 3 (d-e). We se-

lected 30 manually annotated images under diverse conditions. Every image is divided into sn superpix-

els. Each superpixel sample belongs to one of the two categories - crack (positive) and non-crack (neg-

ative) at the broadest level. In this work, a dataset of images under diverse lighting and surface condi-

tions have been used for annotation, as required for training and ground truth comparison. Figure 3 (c, 

second image) shows an example of an annotated image. Out of the superpixels those with black colour 

values are not used as they are the background, as shown in Figure 3 (c). For every remaining valid 

superpixel, features are extracted and are labeled as crack (output as 1) or non-crack (output as 0) for 

the training. So, the regions are now encoded in terms of the feature space and we have a task of binary 

classification to be solved. It should be noted that the sample dataset is highly unbalanced, i.e., for every 

image, there are more superpixels which are non-crack than crack. One way of solving this is to generate 

more such data samples or superpixels belonging to diverse crack conditions. However, this requires 

more annotated images. Another way could be to drop some non-crack samples as many of them might 

have similar features. Accordingly, we balance our data by dropping similar non-crack samples and 

finally selected 1215 samples (containing samples for non-crack to crack in 50:50 ratio). Out of these, 

we used 1000 samples for training and 215 samples for testing and comparison to the annotated ground 

truth. We also report successful crack defect detection on 80 additional test images (i.e. 8828 more non-

black valid test superpixel samples) with varied conditions and crack-types. 

4 Problem Formulation 

Each superpixel is a data point and we characterize it by a feature vector x. We denote the set of all 

feature vectors by 𝑋. Here, x = [x1, x2,…, xm] with m being the total number of features per data point. 

For training, marked superpixels have a label 𝑦 ∈ 𝑌, where, 𝑌 = {0,1}. The aim of the research is to 

find a ML approach with the combination of input features and the model, f: X → Y, which maximizes 

the overall accuracy. The learned function, f, is the classifier which is then used to predict the label of 

unseen data into either class 1 (superpixel with positive condition having crack or defect) or class 0 

(superpixel with negative condition having no crack or defect). In the next section we state how the m 

features are tuned (using steps 1 -3 of Figure 2) and selected by the classifier’s accuracy.   

We use the following four classifiers in this work- Gradient Boosting (GB) (Friedman, 1999), Random 

Forest (RF) (Breiman, 2001), Artificial Neural Network (ANN) (Rojas, 1996), and Linear Support Vec-

tor Machine (LSVM) (Cortes and Vapnik, 1995). They are shortly described here. GB and RF are typical 

examples of ensemble learning. For ensemble classifiers, in general, weak learners are used to form a 

strong learner. RF works in a parallel manner using independent classifiers following a bagging ap-

proach, while GB works sequentially following a boosting approach. Compared to RF, gradient boosted 

trees makes use of very small decision trees (tree stumps) (Hastie et al., 2009). The ground truth in GB 

is modelled by incrementally adding more trees where each tree tries to minimize the loss function 

evaluated on the previous model. On the other hand, RF uses many classification trees and it chooses 

majority vote concept to classify an object aggregating the result of these trees. ANN mimics the biolo- 
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gical neuron characteristics and gives the non-linear function approximation. It typically consists of 

multiple layers with nodes known as input layers for receiving signals and data, hidden layers, and 

output layer that provide final results. The layers are inter-connected and weights are learned to adjust 

the flow of input signals across layers for minimizing the error. Binary SVM classifier works on the 

concept of decision hyperplane that separates a set of objects within two different classes by maximizing 

the margin between them. The objects lying on the hyperplane are called support vectors. 

5 Feature Extraction 

Following our research approach in Figure 2, we use extracted features from image regions, i.e. super-

pixels, to classify them as regions containing defect or no defect. Features are the image descriptors 

which help encode regions. The texture and edge features could be intuitively understood to be more 

relevant than other kind of features, as cracks are inherently regions of anomalies or discontinuities. We 

experimented with state-of-the-art features, such as statistical measures, Grey Level Co-occurrence Ma-

trix (GLCM) (Haralick, 1979), Gabor (Daugman, 1985; Gabor, 1946), Histogram of Oriented Gradients 

(HoG) (Dalal and Triggs, 2005), Local Binary Patterns (LBP) (Silva et al., 2015), different colour chan-

nel (Gonzales and Woods, 2002) variants and histograms (e.g. HSV, RGB, LSV), as well as, Sobel and 

Canny edge features (Canny, 1986; Gonzales and Woods, 2002). Selection of these algorithms was 

motivated by their varied use in the literature and that a crack in essence is an edge or a typical change 

in gradient. Using classifier’s accuracy metric and incremental subset feature selection process (step1 - 

step 3 in Figure 2), we selected the following 40 features for each of the superpixels: variance, skewness, 

6 GLCM features and 32 features from a newly defined feature variant called Variance of-Gabor (VoG).  

To start discussing the features, variance and skewness are calculated using the flattened array of gray 

scale pixel values, say Gx, within a superpixel S. This array contains # (Gx) elements. In grayscale, 

every image pixel gets a weighted average of 0.29 R + 0.56 G + 0.11 B from its R, G, B individual 

colors. Variance simply measures the spread or variability in the data and skewness measures the asym-

metry or imbalance within the data distribution, which in this case could be defined for a superpixel as: 

𝑉𝑎𝑟 (𝑆) =
1

# (𝐺𝑥) 
 ∑ (

# (𝐺𝑥) 

𝑖=1
 Gx i – 𝐺𝑥̅̅̅̅ )2. Similarly, Skew (𝑆) is obtained.  

Apart from these, we also use GLCM second-order statistical properties of an image region (superpixel 

in our case) as texture features. Unlike first-order properties like variance, GLCM properties or features 

consider spatial relationship between neighbouring pixels. The GLCM matrix is calculated on the gray-

scale image and six features of homogeneity (gh), angular second moment (gasm), energy (ge2), correlation 

(gc), contrast (gcontrast) and dissimilarity (gd) are extracted from each of the superpixel as in equations (1-

5).  Energy ge2 is square of gasm. The GLCM matrix is derived from frequency of each reference pixel 

and the neighbouring one.  

 

                   

 

where, the probability of change from graylevel i to j at a distance do and directional angle θ is given by 



Chatterjee et al. /Machine Learning Based Defect Detection 

Twenty-Sixth European Conference on Information Systems (ECIS2018), Portsmouth,UK, 2018 8 

 

p(i, j). Distance should be small to consider closer pixels. Moreover, using the feature importance rank-

ing of the RF classifiers, these features could be ranked as follows: correlation, homogeneity, contrast, 

dissimilarity, energy and angular second moment. GLCM is parameterized by (do,  θ) i.e. angle θ (giving 

direction for the spatial relationship) and an offset do (neighbour pixels to be considered). The number 

of graylevel is taken as 256. Here, θ = {0o, 45o, 90o, 135o} and do = {1, 2, 3, …, 8} are the used ranges 

for the parameters for tuning using the classifier’s accuracy metric to select their best combination of 

(do , θ). Figure 4 provides example of the effect of parameter tuning on final ANN classifier’s accuracy. 

 

 

Figure 4. Effect of GLCM parameters on ANN classifier’s performance. Seven percent variation 

can be seen in accuracy (in percent) depending on GLCM parameters. For each value 

of x-axis, multiple dots show accuracy for it when combined with other parameters. 

5.1 Variance-of-Gabor (VoG) features 

Gabor filter based approaches are widely applied for a variety of computer vision use cases such as 

object detection, texture analysis, edge detections, to name a few, owing to their similarity to human 

visual system characteristics. When Gabor filters are overlaid on an image, useful edge and texture 

features could be extracted as the filters respond to pixel positions where a major change in texture or 

edge takes place.  Gabor filter is built as a product of Gaussian and sinusoid functions. The parameters 

of it are: α (controls the orientation of the filters), k (Gabor filter kernel size), 𝜎 (the scale parameter of 

the Gaussian function g), λ (controls the wavelength of the Gabor filter sinusoid s) in pixels. α is one of 

the most important parameters and for each of the α,  a filter is produced, thus giving a series of filter 

bank. α also determines the angular response of the Gabor filter. For instance, α = 0o indicates that the 

Gabor filter only responds to horizontal features. Here, α is taken in the range of 0o to 180o (to avoid 

symmetry and directional redundancy) and 32 filter orientations are defined at an equal interval of 5.625 

o in order to get the features at different angles. Thus, α = [α, αi+1,,…, α i+31] with i = 1 and α i+1 - α i = 

5.625 o. At the end, a filtered image is generated for each of the α orientation, as in Figure 5.  

 

 

Figure 5:  Sample Gabor filtered images of a superpixel for each corresponding orientation. 

 

We define Variance-of-Gabor (VoG) features of any superpixel following equation (6). Thus, for every  

superpixel having b Gabor filter bank, i.e. orientations for the θ, a VoG feature set of size b is obtained 

using the corresponding Gabor filtered images as follows: 
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Here, S is the superpixel and Gi is the ith Gabor filtered image with i = 1…b. Var (G1) is the variance of 

the ith Gabor image. We take b =32 as it gives the best performance. For generating VoG features, we 

need to generate Gabor filtered images of the superpixels for each of the α using the filter parameters: 

k, 𝜎, λ, ɵ. We automatically tune k, 𝜎 and λ using classifier’s accuracy metric and obtain α with 32 

orientations, k = 11, 𝜎 = 15, λ = 10, Ø = 0 for generating 32 VoG features. It has been noticed that larger 

𝜎 and λ fade away the edges and make the filtered image blurred. As an example, Figure 6 show the 

tuning process for two of these parameters, 𝜎 and λ. 

In order to tune the parameters of the feature extraction algorithms we used, i.e., GLCM and Gabor 

filter, we first took algorithm-specific feature subsets with different parameters and tuned the parameters 

using classifier’s accuracy, as shown in steps 1 – 3 of Figure 2. Once the tuned parameters of feature 

extraction algorithms are obtained, the classifier’s hyperparameters are extensively tuned using the com-

plete feature set. 10 fold cross-validation has been used for all the tuning. Finally, we have well-tuned 

40 features, as given in Table 1, for each superpixel. The development platform in this work is Python 

2.7 and we used libraries of OpenCV 3.3.0, SciPy, scikit-image and scikit-learn. 

 

 

 

Figure 6. Parameter tuning of the Gabor filter for VoG features using classifier’s performance. 

 

Variance, skewness, 32 VoG features with k = 11, 𝜎 = 15, λ = 10 for Gabor filter and 6 GLCM fea-

tures (gc, gh, gcontrast, gd, gasm, ge2) with best combination of (do , θ) as θ = 45o, do = 5.  

Table 1. List of features extracted from each superpixel using the tuned parameters. 

6 Evaluations 

We used here precision (P), recall (R), F1-measure for comparing the four classifiers as follows: 𝑃 =

 
𝑇𝑃

𝑇𝑃+𝐹𝑃
, 𝑅 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
, 𝐹1 = 2

𝑃.𝑅

𝑃+𝑅
, 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =    

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 . Here, TP gives true positives 

(crack detected as crack), TN gives true negatives (non-crack detected as non-crack), FP gives false 

positive (detecting non-crack area as crack), FN gives false negative (detecting crack as non-crack). All 

evaluations are at the superpixel level. In total, we used 1000 data points for training, 215 first test data, 

and 8828 additional new test data from 80 test images. The results are given in Table 2 and Table 3.  

 
 Classifier Accuracy (%) P (%) R (%) F1 (%) TP FP TN FN 

GB 91.16 92.38 89.81 91.08 97 8 99 11 

ANN 90.24 93.94 86.11 89.86 93 6 101 15 

RF 90.69 94.85 85.98 90.61 92 5 103 15 

L-SVM 74.88 75.96 73.15 74.53 79 25 82 29 

Table 2. Performance of the classifiers on 215 test data.  

 

𝜎 λ 
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Classifier Accuracy (%) P (%) R (%) F1 (%) 

GB 92.77 87.62 94.88 91.11 

ANN 90.63 81.37 93.91 87.19 

RF 91.82 88.81 93.02 90.87 

Table 3. Performance of the classifiers on additional 8828 test data from various locations, 

surface conditions and crack-types. 

 

 

Figure 7. Detected crack areas on images marked in white. (a) First image is the original image, 

second image shows marked area (superpixels) detected to contain cracks using RF, 

third image using ANN, fourth using GB, fifth using L-SVM. (b-c) Crack detections with 

RF for given original images. Few crack-types and conditions are marked. 

The hyperparameters of all four classifiers are selected using grid search and a 10 fold cross-validation. 

For GB classifier, an ensemble of weak learners of Decision Trees are considered and Logistic function 

is taken as the loss function; while, hyperparameters like maximum depth of the estimator is taken to be 

7 and minimum required samples for splitting at the internodes nodes is taken to be 8. For ANN con-

struction, features are standardized prior to the learning process, along with the input layer size of 41 

nodes (with a bias), 1 hidden layer, and a learning rate of 0.001 being used. For RF, maximum depth of 

trees is taken as 18 and minimum samples for splitting at internal nodes is taken to be 8. The number of 

estimators with 300 showed convergence for it. Finally, L-SVM learner with a linear kernel having the 

regularization penalty parameter set to 0.01 has been used for comparison. Once we obtain the learned 

predictions, we generate two outputs for visualization of the results: an auto-annotated image showing 

location of detected cracks and defective areas, as shown in Figure 7, and percentage of superpixels 

detected as crack. This helps to rank road surfaces, thus helping to come up with maintenance strategies. 

Higher percentage indicates that the road has severe defects and needs attention. 
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7 Discussion and Future Work 

Digitalization in today’s time has given rise to unprecedented traces of data (Goes, 2014). Leveraging 

the process of datafication, through which consumer devices are being turned into sources of big data 

(Galliers et al., 2015), one may derive significant value for society through ML techniques, using data 

generated by portable and connected devices during consumers’ everyday activities (Günther et al., 

2017). In this work, we provided evidence for the effectiveness of data analytics based on data gathered 

through commodity devices (i.e., electric bikes equipped with cameras) that can be operated by standard 

consumers. More specifically, we successfully developed a ML approach for detecting cracks and re-

lated defects in normal scene images to facilitate road maintenance process. We used state-of-the-art 

feature extraction algorithms and tuned their parameters using ML, along with incremental subset fea-

ture select ion method. Finally, we used ML to classify the image regions into crack and non-crack using 

tuned feature extraction algorithms and classifiers. Figure 7 shows different illumination, surface con-

ditions, locations, crack-types (such as single, network, cracks at edges, etc.) and related surface defects 

or distresses that are handled by our approach for defective region detection.  

This research contributes to research streams of decision support systems (Banker and Kaufmann, 2004) 

by helping in intelligent decision making using automated tools for road maintenance and monitoring. 

The way front-view images are handled in this study for crack detection using the developed ML-based 

approach in Figure 2 shows the technical possibilities of a future modular and flexible decision support 

system, based on the algorithms developed in this work. This could help pavement management systems 

(BASt, 2008; FHWA, 2016) to come up with a pavement condition index (e.g. bad, medium, good, etc.) 

(BASt, 2008) in an automated manner and with reduced human interventions, for example using per-

centage of cracks detected. 

Moreover, as we work with front-view images, image acquisition and analysis becomes cheaper and 

easier because simple everyday devices such as smartphones, car and traveller’s cameras could be used, 

contributing toward a decentralized crowdsourcing-based system for road condition assessment (Laubis 

et al., 2016). In this context, individual cars for example could be employed for crack detection and 

quick monitoring. GPS-based mapping systems may be used to combine different or same road segments 

that are analysed separately in such cases. Additionally, autonomous vehicles can detect cracks and 

avoid such areas, thus incurring lower vehicle operating costs and select safer routes, consequently af-

fecting road safety (Stilgoe, 2017). Lately, using commodity devices, big data and crowdsourcing ap-

proaches for decision making in maintenance services is observed to be on a rise (Galliers et al., 2015; 

Nitsche, 2014). This helps in timely maintenance of roads to have less backlog and come up with strat-

egies for efficient resource planning and monitoring (Laubis et al., 2017; Tang and Sun, 2012). Addi-

tionally, citizens could be engaged in activities involving road monitoring such as voluntary data acqui-

sition (e.g. from traveller’s or cars). Intelligent decision making could also help in developing alert sys-

tems to notify citizens for surface defects and cracks so that they can select safer routes. Thus, it en-

hances collaboration between citizen and government for inclusive information technology-based soci-

etal development and smart services (Fink, 2010). For such services one needs to develop approaches 

for analysing road surface condition for defects automatically, timely, and quickly; motivating us to 

develop the ML-based approach in this work for intelligent decision making.  

The ML approach for defect detection in this work shows robust behaviour when first-order statistical 

features of variance and skewness are extensively used, along with GLCM second-order statistical fea-

tures and Gabor filtering for feature extraction. While, first-order features showed variabilities over an 

image area or region, second-order features considered more local and neighbourhood properties. Ad-

ditionally, defining the new feature variant called Variance-of-Gabor (VoG) helped us to process crack 

and non-crack superpixels at different orientations. Table 1 gives the final set of features and their pa-

rameters. Here, we followed the incremental subset feature selection process and tuned feature extrac-

tion algorithm’s parameters automatically using ML algorithm’s performance metric; moving towards 

a systemic approach for feature mapping. Texture related features show more adaptability to various 

illumination conditions than edge-based features. To discuss their effectivity, GLCM features alone, 

along with standard deviation or variance features, were found highly discriminative, while Gabor filters 
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helped to make the system more generalized and adaptable by extracting interesting edges. Similarly, 

VoG features alone also show a high accuracy, as seen in Figure 6, whereas the best combination of 

identified features provided a higher accuracy of around 91.16 %, as given in Table 2. However, only 

non-filtered texture features showed more sensitivity to lighting, roughness, or acquisition distance.  

It is seen from the evaluations in Table 2 and Table 3 that RF and GB perform better following highest 

accuracy, good F1 and lowest false positives. LSVM did not perform well. ANN’s performance de-

creased for the dataset with varied conditions in Table 3, with a specific decrease in precision. This is 

because, it has been noticed that for surfaces with very little crack area and single cracks ANN gives 

more false positives (as in Figure 7 (c - first row, first image set)) or absolutely no crack (as in Figure 3 

(a – second row), Figure 3 (c second row, second image set)). RF and GB can handle both single or 

network cracks and does not give many false positives even if crack does not exist. Overall performance 

shows better fit of ensemble ML techniques such as RF and GB for the task at hand, even when images 

from different location than those used for training were used. It is noted that lower false positives are 

an important criteria for defect detection, while not compromising the overall accuracy, and Random 

Forest shows highly consistent detections for all the datasets. The presented approach is applicable 

across different locations and crack-types. 

In comparison to other related works for crack defect detection, we did not use downward-view images 

under controlled external conditions, thresholding or morphological approaches as a major detection 

step, or costly equipment systems with lasers or radars (MnDOT, 2009; Wu et al., 2016; Zalama et al., 

2014). Moreover, we provide a systematic approach for ML based crack and related defect detection 

using feature selection and tuning feature extraction algorithm’s parameters and a thorough comparison 

among different ML techniques. It is also seen that unlike this work, in most related works crack-type 

(e.g. linear, network) classification or recognition is done using ML using features such as crack angle, 

covered area, whereas the major crack detection or extraction step still uses noisy thresholding based 

approaches; making the overall approach sensitive toward cross-location application. Finally, as we used 

simple 2D images which are easily acquirable, our approach is flexible, cost-efficient and scalable for 

either wider or narrower roads. The presented approach also makes data acquisition for such image-

based maintenance easier as many service vehicles such as public transportation systems like busses and 

taxis, or patrolling cars could be fitted with front-view cameras to gather necessary images and data   

(Mertz, 2011). This effects directly the increased automation for timely maintenance on local and urban 

roads which are seen to experience the highest safety issues (Gleave, 2014). We can thus see that the 

immense use fullness of increased automation for infrastructure management using big data and ML can 

reduce human effort and increase the timeliness of maintenance. Moreover, as detection of defects is 

delayed, the defects (e.g. cracks) become worse and often need more time and money to rehabilitate and 

repair them. For example, if network cracks are not timely attended they could develop into potholes 

over time. This clearly shows the positive impacts of data-driven innovations (Abella et al., 2017) to 

create value using simple image data for continuous detection, monitoring and road maintenance. Thus, 

the approach for intelligent analysis of 2D images in this study could bring about quicker monitoring of 

road maintenance, lower costs, provide safer routes and an enhanced traveling experience for the public.  

Limitations and future work 

One of the major limitations of the proposed approach is the lack of information on the depth of visual 

entities arising from the 2D nature of the images. Nevertheless, detecting cracks and defects from these 

images and obtaining GPS locations of defective roads are major first steps towards automating road 

maintenance. Thereby, most of the road inspection tasks can be performed automatically and search 

spaces can be reduced drastically. Rather than using expensive sensors and 3D analysis systems in gen-

eral, images can be supplemented with 3D information only at these specific defective search locations. 

The need to invest in costly equipment or systems at a larger scale can thereby be eliminated. Addition-

ally, external elements such as drainage, manholes, as marked in Figure 7 (c) (third row, first image set), 

could cause false detections. Another limitation is that the approach suffers if the surface contains weath-

ering, swelling, or rough edges (as in Figure 7 (c), last row), then the crack gets detected at the junctions 

although no explicit crack is visible. In future, we plan to handle these defects by incorporating pave-

ment-type categorization technique, as defects or crack-types depend on pavement surface-type and ma- 
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terial. Additionally, we aim to extend our approach for detecting other defects such as potholes, patches 

and classify cracks into types, e.g., linear or network category. Finally, it can be stated that the approach 

developed in this paper constitutes a technology artifact (Lee et al., 2015) comprising ML models that 

process constant inputs of image and video data to automatically detect road surface defects. While we 

sketch the shape of the information flow and the social dynamics required to apply the system, we have 

not formally designed an information and social artifact that, along with the technology artifact, are 

necessary to form an information systems artifact (Lee et al., 2015). Therefore, we encourage research-

ers to further study the requirements for applying ML-based, crowdsourced surface defect detection in 

everyday life and – based on our technical contributions – develop a solution by considering the inter-

action of different actors, data sources and processes of data analysis 

8 Conclusion 

In this work, we presented an ML-based approach for crack detection on road surfaces of natural 2D 

scene images taken from a driver’s viewpoint under normal daylight. We propose the usage of simple 

images with regard to the automation in defect detection, given their cost-efficiency, quickness and 

flexibility. In addition, this simplicity provides scalable solutions that could reduce manual efforts and 

long-term costs for maintenance, while increasing public safety. We used state-of-the-art feature extrac-

tion algorithms at the superpixel level, such as, GLCM, statistical measures of variance and skewness, 

and defined a new feature variant called Variance-of-Gabor using the Gabor filters. Tuning of important 

parameters of these feature extraction algorithms and incremental feature selection were automatically 

done in a systematic manner using ML algorithm’s performance metric. It has been noticed that texture 

based features, after being filtered, are highly effective for the task of crack and defect detection in such 

images. We compared state-of-the-art classifiers like, Gradient Boosting, Artificial Neural Network, 

Random Forest and Linear Support Vector Machines, along with various feature extraction algorithms 

for the task at hand. Random Forest and Gradient Boosting show the best overall performance with the 

lowest false positives and high accuracy. As a result, crack regions belonging to different crack-types, 

such as single or network, and related defects are successfully detected on road images belonging to 

varied external conditions and locations. In this way, identified defects are located on road images; 

thereby helping in road surface condition evaluation by inspecting the defective area within an image.  

References 

Abbasi, A., S. Sarker and R. H. Chiang (2016). “Big Data Research in Information Systems: Toward an 

Inclusive Research Agenda.” Journal of the Association for Information Systems 17 (2). 

Abella, A., M. Ortiz-de-Urbina-Criado and C. De-Pablos-Heredero (2017). “A Model for the Analysis 

of Data-driven Innovation And Value Generation In Smart Citie’s Ecosystems.” Cities 64, 47-53. 

Achanta, R., A. Shaji, K. Smith, A. Lucchi, P. Fua and S.Susstrunk (2012). “Slic Superpixels Compared 

to State-Of-The-Art Superpixel Methods.” IEEE Transactions on Pattern Analysis and Machine In-

telligence 34(11), 2274–2282. 

Banker, R. and R. Kauffman (2004). “The Evolution of Research on Information Systems: A Fifti-

eth-Year Survey of the Literature.” Management Science, 281-298. 
BASt. (2008). Road Monitoring and Assessment (ZEB - Verfahrensbeschreibung). Report. Federal 

Highway Research Institute (Bundesanstalt für Straßenwesen - BASt). http://www.bast.de. 

Breiman, L. (2001). "Random Forests." Machine Learning 5(1), 5-32. 

Canny, J. A. (1986).”Computational Approach to Edge Detection.” IEEE Trans. Pattern Analysis and 

Machine Intelligence 8(6), 679–698. 

Chambon, S. and J. Moliard (2011). “Automatic Road Pavement Assessment with Image Processing: 

Review and Comparison.” International Journal of Geophysics. 1–20. 

Chatterjee, S., B. Hildebrandt, L.M. Kolbe (2017). “Understanding the Scene Data – Pavement Area 

Grouping in Images.” In: Proceedings of the 38th International Conference on Information Systems 

(ICIS). South Korea: Seoul. 

http://www.bast.de/


Chatterjee et al. /Machine Learning Based Defect Detection 

Twenty-Sixth European Conference on Information Systems (ECIS2018), Portsmouth,UK, 2018 14 

 

Cortes, C. and V. Vapnik (1995). "Support-vector Networks." Machine learning, 20(3), 273-297. 
Dalal, N. and B. Triggs (2005). “Histograms of Oriented Gradients for Human Detection.” In: Proceed-

ings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 

(CVPR'05).  USA: Washington, DC. Volume 1, pp. 886-893. 

Daugman, J.G. (1985). “Uncertainty Relation for Resolution in Space, Spatial Frequency, and Orienta-

tion Optimized by Two-dimensional Visual Cortical Filters.” JOSAA 2(7), 1160-1169. 

Day, D., A. McGath and B. Natarajan (2012). “Image Based Detection of D-cracking In Pavements.” 

In: Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern 

Recognition. The Steering Committee of The World Congress in Computer Science, Computer Engi-

neering and Applied Computing (WorldComp). 

FHWA. (2016). Long-Term Pavement Performance Program - Pavement Performance Measures and 

Forecasting and the Effects of Maintenance and Rehabilitation Strategy on Treatment Effectiveness. 

Report No: FHWA-HRT-16-046. 

Fink, D. (2010). “Road Safety 2.0: Insights and Implications for Government.” In: 23rd Bled eConfer-

ence eTrust: Implications for the Indivitual, Enterprises and Society. Slovenia. 

Friedman, J. (1999). Greedy Function Approximation: A Gradient Boosting Machine. IMS 1999 Reitz 

Lecture. 

Gabor, D. (1946). “Theory of communication. Part 1: The analysis of information.” Journal of the In-

stitution of Electrical Engineers-Part III: Radio and Communication Engineering 93(26), pp.429-

441. 

Galliers, R., S. Newell, G. Shanks and H. Topi (2015). “Call for papers for the special issue: The Chal-

lenges and Opportunities of ‘Datification’; Strategic Impacts of ‘Big’(and ‘Small’) and Real Time 

Data–for Society and for Organizational Decision Makers.” Journal of Strategic Information Systems 

24 (3). 

Gavilán, M., D. Balcones, O. Marcos, D.F. Llorca, M.A. Sotelo, I. Parra, M. Ocana, P. Aliseda, P. Yarza 

and A. Amirola (2011). “Adaptive Road Crack Detection System by Pavement Classification.” Sen-

sors 11(10), 9628–9657.  

Gholami, R., R. Watson, H. Hasan, A. Molla, Alemayehu and N. Bjorn-Andersen (2016). "Information 

Systems Solutions for Environmental Sustainability: How Can We Do More?" Journal of the Asso-

ciation for Information Systems 17 (8), Article 2. 

Gleave, S. D. (2014). EU Road Surfaces: Economic and Safety Impact of the lack of Regular Road 

Maintenance–Study. Report- Policy Department Structural and Cohesion Policies. European Parlia-

ment. 

Goes, P.B. (2014). “Big Data and IS Research.” MIS Quarterly 38 (5), 3–8. 

Gonzales, R. C. and  R. E. Woods (2002). Digital Image Processing. 2nd. Edition. New Jersey: Pearson 

Education.  

Günther, W. A., M. H. R. Mehrizi, M. Huysman and F. Feldberg (2017). “Debating Big Data: A Liter-

ature Review on Realizing Value from Big Data.” The Journal of Strategic Information Systems. 

Haralick, R.M (1979). “Statistical and Structural Approaches to Textures.” Proceedings of the IEEE 

67(5), 786–804. 

Hastie, T., R. Tibshirani and J. Friedman (2009). "Boosting and additive trees." The elements of 

statistical learning, 337-387. 
Henfridsson, O. and R. Lindgren (2005). “Multi-contextuality in Ubiquitous Computing: Investigating 

the Car Case through Action Research.” Information and Organization 15, 95–124. 

Huidrom, L., L.K. Das and S.K. Sud (2013). “Method for Automated Assessment of Potholes, Cracks 

and Patches from Road Video Clips.” Procedia- Social and Behavioral Sciences 104, 312-321. 

Kitchin, R. (2014). “Big Data, New Epistemologies and Paradigm Shifts.” Big Data and Society 1(1). 

Koch, C., K. Georgieva, V. Kasireddy, B. Akinci and P. Fieguth (2015). “A Review on Computer Vision 

Based Defect Detection and Condition Assessment of Concrete and Asphalt Civil Infrastructure.” 

Advanced Engineering Informatics 29, 196-210. 



Chatterjee et al. /Machine Learning Based Defect Detection 

Twenty-Sixth European Conference on Information Systems (ECIS2018), Portsmouth,UK, 2018 15 

 

Laubis, K., V. Simko and A. Schuller (2016). “Road Condition Measurement and Assessment: A Crowd 

Based Sensing Approach.” In: Proceedings of the 37th International Conference on Information Sys-

tems (ICIS). Ireland: Dublin. 

Laubis, K., V. Simko, A. Schuller and C. Wienhardt (2017). “Road Condition Estimation Based on 

Heterogeneous Extended Floating Car Data.” In: Proceedings of the 50th Hawaii International Con-

ference on System Sciences (HICSS). Hawaii. 

Lee, A., M. Thomas and R. Baskerville (2015). “Going Back to Basics in Design Science: From the 

Information Technology Artifact to the Information Systems Artifact.” Information Systems Jour-

nal, 25, 5-21. 
Li, L., L. Sun, G. Ning and S. Tan (2014). “Automatic Pavement Crack Recognition Based on BP Neural 

Network.” Swarm Intelligence in Transportation Engineering, PROMET - Traffic and Transporta-

tion 26(1),11-22. 

Li, R., Y. Yuan, W. Zhang and Y. Yuan (2018). “Unified Vision‐Based Methodology for Simultaneous 

Concrete Defect Detection and Geolocalization.” Computer‐Aided Civil and Infrastructure Engi-

neering. 

Melville, N. (2010). “Information Systems Innovation for Environmental Sustainability.” MIS Quarterly 

34 (1), 1-21. 

Mertz, C. (2011). “Continuous Road Damage Detection Using Regular Service Vehicles.” In: Proceed-

ings of the ITS World Congress. 

MnDOT. (2009). Pavement Condition Executive Summary. Report No. MnDOT/OMRR-PM--2009-01. 

Minnesota Department of Transportation. 

Mohan, A. and S. Poobal (2017). “Crack Detection Using Image Processing: A critical Review and 

Analysis.” Alexandria Engineering Journal. 

Moon, H. and J. Kim (2011). “Intelligent Crack Detecting Algorithm on the Concrete Crack Image 

Using Neural network.” In: Proceedings of the 28th Int. Symposium on Automation and Robotics in 

Construction. South Korea: Seoul, pp.1461-1467. 

Nejad, F.M., H. Zakeri (2011). “An Expert System Based on Wavelet Transform and Radon Neural 

Network for Pavement Distress Classification.” Expert Systems with Applications 38(6), 9442–9460. 

Nitsche, P., C. Van Geem, R. Stüt., I. Mocanu and L. Sjögren, (2014). “Monitoring Ride Quality on 

Roads with Existing Sensors in Passenger Cars.” In: Proceedings of the 26th ARRB Conference. 

Sydney. 

Oliveira, H. and L. Correia (2009). “Supervised Crack Detection and Classification in Images of Road 

Pavement Flexible Surfaces.” Recent Advances in Signal Processing, 159-184. 

Pauly, L., H. Peel, S. Luo, D. Hogg and R. Fuentess (2017). “Deeper Networks for Pavement Crack 

Detection.” In: Proceeding of 34th Int. Symposium on Automation and Robotics in Construction. 

Taepei, pp. 479-485. 

Prasanna, P., K. Dana, N. Gucunski and B. Basily (2012). “Computer-vision Based Crack Detection and 

Analysis.” In: Proceedings of SPIE Smart Structures and Materials, Nondestructive Evaluation and 

Health Monitoring, International Society for Optics and Photonics, pp.834. 

Rababahh, H., D. Vrajitoru and J. Wolfer (2005). “Asphalt Pavement Crack Classification: A compari-

son of GA, MLP, and SOM.” In: Proceedings of Genetic and Evolutionary Computation Conference. 

Rabari, C. and M. Storper (2014). “The Digital Skin of Cities: Urban Theory and Research in the Age 

of the Sensored and Metered City, Ubiquitous Computing and Big Data.” Cambridge Journal of 

Regions, Economy and Society 8, 27–42. 

Radopouluo, S., I. Brilakis, K. Doycheva and C. Koch (2016). “A Framework for Automated Condition 

Monitoring.” In: Proceedings of Construction Research Progress. Puerto Rico: San Juan.  

Rojas, R. (1996) Neural Networks. Springer-Verlag, Berlin. 

Salari, E. (2012). Pavement Distress Evaluation Using 3d Depth Information from Stereo Vision. Report 

No: MIOH UTC TS43 2012-Final. Michigan Ohio University Transportation Centre. 

Shmueli, G. and O. R. Koppius (2011). “Predictive analytics in information systems research.” MIS 

Quarterly, 553–572. 



Chatterjee et al. /Machine Learning Based Defect Detection 

Twenty-Sixth European Conference on Information Systems (ECIS2018), Portsmouth,UK, 2018 16 

 

Silva, C., T. Bouwmans and C. Frelicot (2015). “An Extended Center-symmetric Local Binary Pattern 

for Background Modeling and Subtraction in Videos.” In: Proceedings of the 10th International Joint 

Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. Ger-

many: Berlin, pp. 1-9. 

Sinha, S. and P. Fieguth. (2006) “Automated Detection of Cracks in Buried Concrete Pipe Images.” 

Automation in Construction 1, 58–72. 

Staniek, M. (2014). “Neural Networks in Stereo Vision Techniques of Road Pavement Evaluation.” In: 

Proceedings of the International Symposium- Non Destructive Testing in Civil Engineering. Ger-

many: Berlin. 

Stilgoe, J. (2017). “Machine Learning, Social Learning and the Governance of Self-Driving Cars.” 

Social Studies of Science, 48(1). 
Tang, J. and B. Sun (2012). “An Integrated Digital Image Processing Pavement Management Infor-

mation System.” ICLEM 2012: Logistics for Sustained Economic Development—Technology and 

Management for Efficiency. 

Teomete, E., V: Amin, H. Ceylan, O. Smadi (2005). “Digital Image Processing for Pavement Distress 

Analyses.” In: Mid-continent Transportation Research Symposium. Iowa. 

Varadharajan, S., S. Jose, K. Sharma, L. Wander and C. Mertz (2014). “Vision for Road Inspection.” 

In: Proceedings of the IEEE Winter Conference on Application of Computer Vision (WACV). USA: 

Colorado, pp.115-122. 

Wu, L., S. Mokhtari, A. Nazef, B. Nam (2016). “Improvement of Crack Detection Accuracy with Novel 

Crack Defragmentation Technique in Image-based Road Assessment.” Journal of Computing in Civil 

Engineering 30 (1). 

Yang, C.C. and J.D. Lin (2013). “Establishment of Pavement Information Decision Management Plat-

form via Cloud Computing Technology.” Advanced Materials Research 723, 829–837. 

Yoo, Y. J. (2010). “Computing in Everyday Life: A Call for Research on Experiential Computing,” MIS 

Quarterly 34 (2), 213–231. 

Zakeri, H., F. M. Nejad and A. Fahimifar (2016). “Image Based Techniques for Crack Detection, Clas-

sification and Quantification in Asphalt Pavement: A Review.” Archives of Computational Methods 

in Engineering 24 (4), 935-977. 

Zalama, E., J. Gómez‐García‐Bermejo, R. Medina and J. Llamas (2013). “Road Crack Detection Using 

Visual Features Extracted By Gabor Filters.” Computer‐Aided Civil and Infrastructure Engineering 

29 (5), 342-358.  

Zhang, L., F. Yang, Y.D. Zhang and Y.J. Zhu (2016). “Road Crack Detection Using Deep Convolutional 

Neural Network.” In: Proceedings of IEEE Int. Conf. on Image Processing (ICIP), pp. 3708-3712. 

Zuiderveld, K. (1994). Contrast limited adaptive histogram equalization. Graphics gems IV. USA: Ac-

ademic Press Professional, Inc. pp. 474-485. 

 

 

 

 
 

 

 

 

 

 

 

 


	Association for Information Systems
	AIS Electronic Library (AISeL)
	11-28-2018

	INTELLIGENT ROAD MAINTENANCE: A MACHINE LEARNING APPROACH FOR SURFACE DEFECT DETECTION
	sromona chatterjee
	Pouya Saeedfar
	Schahin Tofangchi
	Lutz Kolbe
	Recommended Citation


	tmp.1543843681.pdf.Do_uL

