23 research outputs found

    Unifying the Visible and Passive Infrared Bands: Homogeneous and Heterogeneous Multi-Spectral Face Recognition

    Get PDF
    Face biometrics leverages tools and technology in order to automate the identification of individuals. In most cases, biometric face recognition (FR) can be used for forensic purposes, but there remains the issue related to the integration of technology into the legal system of the court. The biggest challenge with the acceptance of the face as a modality used in court is the reliability of such systems under varying pose, illumination and expression, which has been an active and widely explored area of research over the last few decades (e.g. same-spectrum or homogeneous matching). The heterogeneous FR problem, which deals with matching face images from different sensors, should be examined for the benefit of military and law enforcement applications as well. In this work we are concerned primarily with visible band images (380-750 nm) and the infrared (IR) spectrum, which has become an area of growing interest.;For homogeneous FR systems, we formulate and develop an efficient, semi-automated, direct matching-based FR framework, that is designed to operate efficiently when face data is captured using either visible or passive IR sensors. Thus, it can be applied in both daytime and nighttime environments. First, input face images are geometrically normalized using our pre-processing pipeline prior to feature-extraction. Then, face-based features including wrinkles, veins, as well as edges of facial characteristics, are detected and extracted for each operational band (visible, MWIR, and LWIR). Finally, global and local face-based matching is applied, before fusion is performed at the score level. Although this proposed matcher performs well when same-spectrum FR is performed, regardless of spectrum, a challenge exists when cross-spectral FR matching is performed. The second framework is for the heterogeneous FR problem, and deals with the issue of bridging the gap across the visible and passive infrared (MWIR and LWIR) spectrums. Specifically, we investigate the benefits and limitations of using synthesized visible face images from thermal and vice versa, in cross-spectral face recognition systems when utilizing canonical correlation analysis (CCA) and locally linear embedding (LLE), a manifold learning technique for dimensionality reduction. Finally, by conducting an extensive experimental study we establish that the combination of the proposed synthesis and demographic filtering scheme increases system performance in terms of rank-1 identification rate

    Biometric Applications Based on Multiresolution Analysis Tools

    Get PDF
    This dissertation is dedicated to the development of new algorithms for biometric applications based on multiresolution analysis tools. Biometric is a unique, measurable characteristic of a human being that can be used to automatically recognize an individual or verify an individual\u27s identity. Biometrics can measure physiological, behavioral, physical and chemical characteristics of an individual. Physiological characteristics are based on measurements derived from direct measurement of a part of human body, such as, face, fingerprint, iris, retina etc. We focussed our investigations to fingerprint and face recognition since these two biometric modalities are used in conjunction to obtain reliable identification by various border security and law enforcement agencies. We developed an efficient and robust human face recognition algorithm for potential law enforcement applications. A generic fingerprint compression algorithm based on state of the art multiresolution analysis tool to speed up data archiving and recognition was also proposed. Finally, we put forth a new fingerprint matching algorithm by generating an efficient set of fingerprint features to minimize false matches and improve identification accuracy. Face recognition algorithms were proposed based on curvelet transform using kernel based principal component analysis and bidirectional two-dimensional principal component analysis and numerous experiments were performed using popular human face databases. Significant improvements in recognition accuracy were achieved and the proposed methods drastically outperformed conventional face recognition systems that employed linear one-dimensional principal component analysis. Compression schemes based on wave atoms decomposition were proposed and major improvements in peak signal to noise ratio were obtained in comparison to Federal Bureau of Investigation\u27s wavelet scalar quantization scheme. Improved performance was more pronounced and distinct at higher compression ratios. Finally, a fingerprint matching algorithm based on wave atoms decomposition, bidirectional two dimensional principal component analysis and extreme learning machine was proposed and noteworthy improvements in accuracy were realized

    A new approach for centerline extraction in handwritten strokes: an application to the constitution of a code book

    Get PDF
    International audienceWe present in this paper a new method of analysis and decomposition of handwritten documents into glyphs (graphemes) and their associated code book. The different techniques that are involved in this paper are inspired by image processing methods in a large sense and mathematical models implying graph coloring. Our approaches provide firstly a rapid and detailed characterization of handwritten shapes based on dynamic tracking of the handwriting (curvature, thickness, direction, etc.) and also a very efficient analysis method for the categorization of basic shapes (graphemes). The tools that we have produced enable paleographers to study quickly and more accurately a large volume of manuscripts and to extract a large number of characteristics that are specific to an individual or an era

    Biometrics & [and] Security:Combining Fingerprints, Smart Cards and Cryptography

    Get PDF
    Since the beginning of this brand new century, and especially since the 2001 Sept 11 events in the U.S, several biometric technologies are considered mature enough to be a new tool for security. Generally associated to a personal device for privacy protection, biometric references are stored in secured electronic devices such as smart cards, and systems are using cryptographic tools to communicate with the smart card and securely exchange biometric data. After a general introduction about biometrics, smart cards and cryptography, a second part will introduce our work with fake finger attacks on fingerprint sensors and tests done with different materials. The third part will present our approach for a lightweight fingerprint recognition algorithm for smart cards. The fourth part will detail security protocols used in different applications such as Personal Identity Verification cards. We will discuss our implementation such as the one we developed for the NIST to be used in PIV smart cards. Finally, a fifth part will address Cryptography-Biometrics interaction. We will highlight the antagonism between Cryptography – determinism, stable data – and Biometrics – statistical, error-prone –. Then we will present our application of challenge-response protocol to biometric data for easing the fingerprint recognition process

    Non-ideal iris recognition

    Get PDF
    Of the many biometrics that exist, iris recognition is finding more attention than any other due to its potential for improved accuracy, permanence, and acceptance. Current iris recognition systems operate on frontal view images of good quality. Due to the small area of the iris, user co-operation is required. In this work, a new system capable of processing iris images which are not necessarily in frontal view is described. This overcomes one of the major hurdles with current iris recognition systems and enhances user convenience and accuracy. The proposed system is designed to operate in two steps: (i) preprocessing and estimation of the gaze direction and (ii) processing and encoding of the rotated iris image. Two objective functions are used to estimate the gaze direction. Later, the off-angle iris image undergoes geometric transformations involving the estimated angle and is further processed as if it were a frontal view image. Two methods: (i) PCA and (ii) ICA are used for encoding. Three different datasets are used to quantify performance of the proposed non-ideal recognition system

    Recognizing Human Faces: Physical Modeling and Pattern Classification

    Get PDF
    Although significant work has been done in the field of face recognition, the performance of the state-of-the-art face recognition algorithms is not good enough to be effective in operational systems. Most algorithms work well for controlled images but are quite susceptible to changes in illumination, pose, etc. In this dissertation, we propose methods which address these issues, to recognize faces in more realistic scenarios. The developed approaches show the importance of physical modeling, contextual constraints and pattern classification for this task. For still image-based face recognition, we develop an algorithm to recognize faces illuminated by arbitrarily placed, multiple light sources, given just a single image. Though the problem is ill-posed in its generality, linear approximations to the subspace of Lambertian images in combination with rank constraints on unknown facial shape and albedo are used to make it tractable. In addition, we develop a purely geometric illumination-invariant matching algorithm that makes use of the bilateral symmetry of human faces. In particular, we prove that the set of images of bilaterally symmetric objects can be partitioned into equivalence classes such that it is always possible to distinguish between two objects belonging to different equivalence classes using just one image per object. For recognizing faces in videos, the challenge lies in suitable characterization of faces using the information available in the video. We propose a method that models a face as a linear dynamical system whose appearance changes with pose. Though the proposed method performs very well on the available datasets, it does not explicitly take the 3D structure or illumination conditions into account. To address these issues, we propose an algorithm to perform 3D facial pose tracking in videos. The approach combines the structural advantages of geometric modeling with the statistical advantages of a particle filter based inference to recover the 3D configuration of facial features in each frame of the video. The recovered 3D configuration parameters are further used to recognize faces in videos. From a pattern classification point of view, automatic face recognition presents a very unique challenge due to the presence of just one (or a few) sample(s) per identity. To address this, we develop a cohort-based framework that makes use of the large number of non-match samples present in the database to improve verification and identification performance
    corecore