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Although significant work has been done in the field of face recognition, the

performance of the state-of-the-art face recognition algorithms is not good enough to

be effective in operational systems. Most algorithms work well for controlled images

but are quite susceptible to changes in illumination, pose, etc. In this dissertation,

we propose methods which address these issues, to recognize faces in more realistic

scenarios. The developed approaches show the importance of physical modeling,

contextual constraints and pattern classification for this task.

For still image-based face recognition, we develop an algorithm to recognize

faces illuminated by arbitrarily placed, multiple light sources, given just a single

image. Though the problem is ill-posed in its generality, linear approximations

to the subspace of Lambertian images in combination with rank constraints on

unknown facial shape and albedo are used to make it tractable. In addition, we

develop a purely geometric illumination-invariant matching algorithm that makes

use of the bilateral symmetry of human faces. In particular, we prove that the



set of images of bilaterally symmetric objects can be partitioned into equivalence

classes such that it is always possible to distinguish between two objects belonging

to different equivalence classes using just one image per object.

For recognizing faces in videos, the challenge lies in suitable characterization

of faces using the information available in the video. We propose a method that

models a face as a linear dynamical system whose appearance changes with pose.

Though the proposed method performs very well on the available datasets, it does

not explicitly take the 3D structure or illumination conditions into account. To

address these issues, we propose an algorithm to perform 3D facial pose tracking

in videos. The approach combines the structural advantages of geometric modeling

with the statistical advantages of a particle filter based inference to recover the

3D configuration of facial features in each frame of the video. The recovered 3D

configuration parameters are further used to recognize faces in videos.

From a pattern classification point of view, automatic face recognition presents

a very unique challenge due to the presence of just one (or a few) sample(s) per

identity. To address this, we develop a cohort-based framework that makes use of the

large number of non-match samples present in the database to improve verification

and identification performance.
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Chapter 1

Introduction

1.1 Overview

Humans make use of face as an important cue for identifying people. In fact,

a photograph showing subject’s face is an integral part of most state-issued iden-

tifying documents. Though humans have unmatched abilities to recognize familiar

faces under arbitrary external (illumination, pose, etc.) or internal (expression,

deformation, etc.) transformations, we are not so efficient when given the task of

memorizing and matching a large number of unfamiliar faces. This makes automatic

face recognition very crucial from the point of view of wide range of commercial and

law enforcement applications. Moreover, automatic face recognition is probably one

of the most well-defined problems in the field of computer vision and image analysis.

These reasons justify the kind of attention, it has received from academic researchers

and corporate vendors in the past decade. In spite of the large amount of work that

has been done in this area, there are quite a few important issues which prevent the

current algorithms to be effective in real conditions. Though current algorithms are

able to recognize faces from images/videos taken under controlled conditions, they

struggle to generalize across variations in illumination condition, pose, expression,

aging, etc. Such variations, though difficult to model algorithmically, occur com-

monly in real life. In this dissertation, we address some of these issues to bring face
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recognition closer to being useful for in real world applications. In this endeavor,

our efforts have been directed towards the following issues

1. Illumination-invariant recognition of faces,

2. 3D facial tracking in uncalibrated videos,

3. Recognizing faces in low resolution videos,

4. Cohort analysis to improve matching (both verification and identification)

performance, and

5. Privacy issues concerning face recognition.

1.2 Biometric perspective

‘Biometrics’ refers to the measurement and analysis of physical or behavioral

traits of humans. More often than not, such an analysis is directed towards the

goal of verifying or determining personal identity. Though identity can be estab-

lished using means like PINS or passwords, such cues can be forgotten, stolen and

passed on to others fairly easily. Thus having the secret code/PIN cannot safely

be used to validate the identity of the person. A biometric characteristic should

have the following characteristics for it to be truly useful in authentication related

applications

• Universality (every person should have the biometric),

• Uniqueness (every person’s biometric signature should be different from oth-

ers),
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• Permanence (the biometric should be invariant over time),

• Collectibility (there should exist an easy, quick, inexpensive, non-intrusive way

to acquire the biometric),

• Acceptability (it should be acceptable to people),

• Difficult to circumvent (it should be spoof-proof), and

• low underlying system errors (it should result in low False Accept Rate (FAR),

False Reject Rate (FRR), etc).

No matter how good a matching algorithm is, it may not be possible for a single

biometric to have all the mentioned desirable properties. This has led to the rise of

research in multi-biometric systems that rely on fusing information from multiple

biometric evidences.

The advancement and popularity of biometric systems has brought concerns

of biometric-theft. Unlike PINs or passwords, which can be changed at will when

compromised, biometric traits are unique and permanent. This leads to the obser-

vation that though biometrics are authentic, they are not secure (or private like

passwords). If compromised, biometric signatures cannot be revoked or canceled. It

allows for rogue establishments to track subjects across databases and institutions

without consent.
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1.2.1 Why face as a biometric?

A strong requirement of coming up with secure and user-friendly ways to iden-

tify people to safeguard their rights and interests has probably been the guiding force

behind biometrics research. The various physical and behavioral human character-

istics that have been explored to achieve this goal include fingerprints, faces, voice,

gait, irises, retinas and hand geometry. These human traits can be further charac-

terized based on their universality, uniqueness, permanence, collectability, perfor-

mance, acceptability and circumvention. Though biometrics like fingerprints, irises

and retinas invariably outperform the rest in terms of permanence, performance and

circumvention, they are not only intrusive but also expect cooperation on the part

of the user. Ease of collectability and acceptability are probably the reasons that

face has emerged as a popular biometric. Another factor that has contributed to

popularity of face recognition research is the fact that face recognition algorithms

find use in non-critical applications like automatic tagging and indexing of personal

albums and videos.

1.3 Challenges in automatic face recognition

The excitement/concerns masses have about the deployment of automatic face

recognition systems in public arena probably justifies the kind of attention these

problems have received in the field of computer vision. Face images show a great

deal of variability. Interestingly, no two captured face images are exactly identical

to each other. The variations in two face images of the same person may arise due
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to facial appearance changes or differences in imaging environments. Human faces

appear different at different instants due to the following factors

• Facial deformation: Human faces being non-rigid undergo deformations due

to changes in stress, mood, facial expressions, etc. Though the deformations

are not arbitrary and are guided by the underlying muscle and tissue structure,

it is very difficult to analyze or model these variations from normal images.

• Aging: Human faces undergo considerable variation in appearance due to

aging. Faces of different individuals age differently depending on health, stress,

habits, race, climate, etc., that makes the task of recognizing faces across age

progression very difficult.

• Cosmetic changes: Other than the mentioned natural variations, facial ap-

pearance can deliberately be changed by makeup, surgery, growing or shaving

facial hair, etc. Sometimes even humans find it difficult to generalize across

these variations.

In addition to changes in physical appearance of faces, images may appear different

due to changes in conditions under which the images are captured. First of all,

images may appear different due to difference in capturing device. Other than

that, photometric and geometric characteristics of the environment affect image

appearance. Photometric characteristics describe the illumination conditions like

number, size, strength (intensity), color, placement, etc. of light sources. Geometric

characteristics pertain to the geometry of the capturing device with respect to the
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face being captured including distance and orientation. Fig. 1.1 illustrates how face

appearance changes with variations in pose and illumination.

A lot of work has been done on the problems of constrained and unconstrained

face based human identification. By constrained face recognition we mean recogniz-

ing faces from images captured in controlled canonical pose and lighting conditions

with neutral facial expression. The performance of the current state-of-the-art algo-

rithms is very good [98] as far as recognition in controlled conditions is concerned.

On the other hand, a lot still needs to be done to achieve similar performance in

more realistic scenarios with not much control over the environmental conditions

or/and hardly any co-operation from the user.

Figure 1.1: Effect of pose and illumination variations on face images from the PIE

dataset [79].
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Given a face image, a face recognition algorithm aims at determining the iden-

tity of the person. It either generates a set of features or transforms it to a desirable

form and then compares it with the images in the database of enrolled subjects. If

the goal was to return the most similar looking images from the database, a sim-

ple correlation-based measured would have sufficed. Such a measure will probably

assign higher similarity score to two face images of different persons in the same

pose and illumination as compared to two images of the same person in different

pose and/or illumination conditions. In identification tasks, one needs to determine

facial similarity independent of these external nuisance factors that makes the prob-

lem hard. In most practical scenarios, there is just one image (or a few images)

to generalize across these nuisance factors making the problem of automatic face

recognition even more difficult.

1.4 Contributions of this dissertation

In this section, we highlight the main contributions of this dissertation. In this

dissertation, we propose algorithms to 1) recognize faces across illumination varia-

tions, 2) improve verification and identification performance using cohort analysis,

3) perform cancelable face matching, and 4) track and recognize faces in low quality

videos. Note that unless otherwise stated, we address the most difficult scenario of

recognizing faces using just a single image (or video) throughout this dissertation.
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1.4.1 Illumination-insensitive matching of faces

Given two images taken under different illumination conditions, there always

exists a family of physically realizable objects which is consistent with both the

images. In fact, Jacobs et al. [42] show that the ambiguity exist even under the

hard constraints of Lambertian reflectance and known single point light sources

placed at infinity. The lack of information about the geometry and reflectance of

the scene makes the problem of illumination-invariant matching in its generality, ill-

posed. The result, though a setback to the goal of achieving illumination-invariant

matching, has not been too devastating for the task of illumination-insensitive face

recognition. For example, given two face images, the physically realizable object

that can account for the two, need not be face-like at all. In other words, the class-

specific constraints present in the task of face recognition, makes the problem of

face matching across lighting variations, somewhat tractable.

Following are a few constraints that can be used to address the intractability

of the problem of illumination-invariant matching of faces

• Geometric constraints (e.g., bilateral symmetry of faces)

• Modeling constraints (e.g., linear Lambertian object, morphable model, etc.)

• Photometric constraints (e.g., low-dimensional linear subspace constraint for

Lambertian reflectance)

• More samples (e.g., photometric stereo)

In this dissertation, we use geometric, statistical and photometric constraints
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as described in the following subsections.

1.4.1.1 Face recognition in the presence of multiple light sources

The susceptibility of traditional face recognition algorithms to changes in pose

and illumination has led to the rise of analysis-by-synthesis approaches. Though

these approaches are reasonably successful in achieving this goal, most of them

assume that the given face is illuminated by a single distant light source which is

usually not true in realistic conditions. In contrast, we propose an algorithm to

perform recognition using faces illuminated by multiple illumination sources. The

following two assumptions are the backbone of our algorithm in addressing this

otherwise intractable problem:

• The human face belongs to the class of linear Lambertian objects which means

that it is linearly spanned by basis objects; and its surface obeys the Lamber-

tian reflectance model.

• The subspace of Lambertian images is well represented using linear approxi-

mation based on fixed distant light sources.

The linear Lambertian property imposes a rank constraint on the shape and albedo

of each face which allows one to model it as a linear combination of basis faces.

The linear approximation to Lambertian subspaces aids in handling faces illumi-

nated by multiple light sources without any prior knowledge about their number or

placement. The algorithm models a face as a Lambertian surface. Therefore, we

address the issue of significance of the often ignored hard nonlinearity in Lambert’s
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law. The nonlinearity accounts for the formation of attached shadows but is easily

ignored (under single light source assumption) by eliminating the near-zero pixels

from analysis. We show that the nonlinearity can be crucial even for a relatively

simple task of estimating dominant illuminant direction. Moreover, multiple illumi-

nation scenario degenerates to that of single light source one for Lambertian surfaces

if linearized Lambert’s law is used.

1.4.1.2 Symmetry and illumination-invariance

Given any two images taken under different illumination conditions, there

always exist a physically realizable object which is consistent with both the images

even if the lighting in each scene is constrained to be a known point light source at

infinity [42]. In this work, we show that images are much less ambiguous if objects

are constrained to be bilaterally symmetric with Lambertian reflectance. In fact,

set of bilaterally symmetric objects can be partitioned into equivalence classes such

that it is always possible to distinguish between any two images of any two objects

belonging to different equivalence classes.

Though we focus mainly on faces, the algorithm is applicable to any ob-

ject/scene as long as the symmetry assumption is satisfied. The images are not

required to be frontal though correspondence is assumed to be known. Similar

to [97] [28], the unknown arbitrarily varying albedo is initially eliminated from the

formulation using 3D bilateral symmetry. This leads to a linear relation involving

light source direction and surface gradients. Though this is not sufficient to recover
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the surface gradients, one can use this formulation for matching images across illu-

mination variation. Given two linear relations from two different images, we solve

for the surface gradients. The veracity of the gradients can be checked by substi-

tuting them back in the original irradiance equations and computing albedos for

the two images separately. We show that the two albedos are identical if the cor-

responding pixels represent the same physical reality (same shape and albedo). If

the points differ physically, the computed albedos almost always differ. The rare

condition under which they are same is derived. In fact, this condition partitions

the set of symmetric Lambertian objects into equivalence classes such that it is not

possible to distinguish between different objects belonging to the same equivalence

class based on just one image per object.

In case of multiple light sources, we do not know the correspondence between

pixels and the light sources which illuminate those pixels (as a light source may not

lie in front of a surface point to have any effect on the intensity of the corresponding

pixel). We introduce class-specific information in the form of average shape to

estimate this correspondence. Though this light source assignment can potentially

be wrong for a few points, it will not affect the similarity analysis as long as most

of the surface points are assigned correctly. This is usually the case for objects like

faces, where an average shape represents the class well.
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1.4.2 Cohort analysis for biometric matching

The performance of modeling approaches (like the ones proposed in this dis-

sertation to perform illumination-insensitive face matching) depends heavily on how

accurately data follows these models. For example, in Chapter 2, it is shown that the

single light source assumption leads to very poor recognition performance on images

lit by multiple light sources. The proposed multiple light source algorithm performs

almost flawlessly on those images. Though one can improve performance by making

sure that model fits the data closely, it is often not easy. More often than not, there

are inexplicable factors not modeled by the approach, that can negatively affect the

performance of a recognition algorithm. It is often difficult to take account of these

factors specially with just one sample (here, image) per class (here, identity). In this

dissertation, we propose a cohort analysis-based approach that makes use of a large

number of non-match samples present in the database to improve verification and

identification performance. The following paragraph provides a brief description of

the proposed approach.

Most biometric matching approaches make verification or identification deci-

sions based purely on the similarity of the query with the enrolled biometric samples

of the claimed identity The similarity is usually determined based on the distance

of the query from the enrolled biometrics as determined by matching algorithm. To

perform well, such approaches expect the biometric classes to be reasonably com-

pact (around the available sample for each enrolled identity) with respect to the

inter-class distances, and similarly distributed. When the class distributions vary
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across identities, the verification threshold may turn out to be too stringent for a

few classes while too lenient for others. Additionally, biometric classes may not be

isotropically distributed around the available sample(s) in feature space, making it

difficult to even set a good threshold separately for each class. The performance of

biometric systems gets particularly affected in situations when there are significant

nuisance factors that are not modeled by the matching algorithm. These can occur

in the form of illumination or pose variations in face, scanner quality in fingerprint,

phone/microphone quality for speaker verification, etc. If the matching algorithm

is unable to factor out these factors effectively, the raw similarity scores obtained

are dependent on these factors. This increases inter-class similarity scores while

decreasing the intra-class ones.

Potentially these situations can be dealt with if the knowledge of class dis-

tributions is available. In most practical scenarios, learning these distributions is

infeasible with just a few (often just one) samples per enrolled identity. It is in these

situations that one can make use of large number of non-match biometric samples

already present in the database. Normalizing the raw similarity score of the query

with the claimed identity using its similarity with the neighbors of the claimed

identity provides a sense of class distributions and normalizes for any unwanted

peculiarities involved in raw similarity computation. Such a score normalization

using neighbors of the claimed identity is termed as cohort analysis. The unimodal

framework is also extended to perform biometric fusion to reap the benefits of the

availability of multiple evidences and the non-match templates in the database for

improved matching performance.
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1.4.3 Cancelable face matching

The concern of biometric privacy has led to research efforts to secure biomet-

rics. Unlike PINs or passwords, which can be changed at will when compromised,

biometric traits are unique and relatively permanent. One popular way to secure

biometrics is to combine biometrics with user-provided keys or passwords. The

user-specific private key is used to encrypt biometric template which is stored in

the database. The encrypted template stored in the database is used for further

matching. For matching purposes, the same encryption scheme is used to transform

the query template to compare it with the stored secure template. Quite clearly,

such an approach combines the advantages of biometric based authentication and

password-based privacy and revocability.

One of the main problems in encryption-based biometric authentication ap-

proaches is that they tend to be sensitive to variability/noise in the input biometric

space. Inherently, biometrics show a great deal of intra-class variability either due

to natural causes or external imaging conditions. It is difficult to design an encryp-

tion scheme that can suitably transform features extracted from such input data

minimizing within-class scatter as compared to the between-class scatter. Unlike

input biometric space, in which one can perform some sort of learning to account

for such intra-class variabilities, such learning is not easy in the encrypted space.

Another drawback of encrypting feature extracted from the input biometrics is that

such approaches tend to be specific to the features used. Therefore, it may not al-

ways be easy for such approaches to take advantage of the new developments in the
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field of biometric matching. In this dissertation, we propose a physics-based face

reconstruction approach that addresses these issues for cancelable face matching.

Given an input face image, the proposed technique reconstructs a transformed face

image that can be matched using any publicly available matcher. Depending on the

capability of the face matcher used to compare the reconstructed face images, the

variability/noise in the input biometric can be accounted for even though matching

is performed in the transformed domain.

1.4.4 Face recognition and tracking in videos

Traditionally face recognition has been limited to still images. Though great

leaps have been made in recognizing faces from still images, more needs to be done

to achieve the goal of recognizing faces in uncontrolled scenarios. Still image-based

approaches often struggle to truly generalize across variations in pose, expression,

illumination, etc., leading to a not so satisfactory performance on real images. The

advent of inexpensive cameras and increased processing power has made it possible

to capture and store videos in real time. Videos have the advantage of providing

more information in the form of multiple frames making it relatively easier to gen-

eralize across variations that has been difficult with still images. Video input allows

to capture temporal signatures that can be used to characterize and hence identify

faces. Moreover, video makes it is easier to track (or segment) faces which can then

be fed into a recognition system. Importantly, psychological evidence indicates that

dynamic information contributes to face recognition especially under non-optimal
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viewing conditions [64]. These reasons form the basis of the recent interest in using

videos for recognizing faces [36] [29]. Though video provides extra information, the

video feeds are almost always uncontrolled making it challenging to track and hence

recognize faces. In this dissertation, we develop two approaches to recognize and

track faces in videos as described in the following subsections.

1.4.4.1 A system identification approach to recognize faces in videos

This work treats video-to-video face recognition as a dynamical system identifi-

cation and classification problem. Video-to-video means that both gallery and probe

consists of videos. We model a moving face as a linear dynamical system whose ap-

pearance changes with pose. An autoregressive and moving average (ARMA) model

is used to represent such a system. The choice of ARMA model is based on its ability

to take care of changes in appearance while modeling dynamics of the face. Recogni-

tion is performed using the concept of subspace angles to compute distances between

the estimated ARMA models corresponding to gallery and probe video sequences.

The results obtained are quite promising given the extent of pose, expression and

illumination variations in the video data used for the experiments.

1.4.4.2 3D facial pose tracking

One of the main drawback of the proposed ARMA model based approach

is that it does not explicitly takes the 3D structure and motion of the face into

account. Therefore, the ARMA model-based representation will probably not work
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when there is no/limited pose overlap between gallery and probe videos. What

is desired here is an approach that can assist recognition of faces in videos even

when there is hardly any overlap of poses. To address this, we propose a method to

recover the 3D configuration of a face in each frame of a video. The 3D configuration

consists of the three translation parameters (recoverable up to a scale factor) and the

three orientation parameters which correspond to the yaw, pitch and roll of the face.

The approach combines the structural advantages of geometric modeling with the

statistical advantages of a particle-filter based inference. The face is modeled as the

curved surface of a cylinder with an elliptic cross-section which is free to translate

and rotate arbitrarily. The recovered 3D translation and rotation parameters are

used to obtain a pose-invariant textural characterization of faces from the input

video frames to perform recognition.

1.5 Organization of the dissertation

The rest of the dissertation is organized as follows. The first part of the

dissertation describes the algorithms proposed to perform illumination-insensitive

matching of face images. The details of the algorithm to recognize faces illuminated

by arbitrary number of unknown light sources are provided in Chapter 2. Chapter 3

describes the role bilateral symmetry plays in disambiguating images taken under

different illumination conditions. The developed theoretical formulation is backed

by experimental results on real images to show the usefulness of the formulation

when the assumptions are not strictly satisfied. The proposed cohort framework to
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account for unmodeled nuisance parameters that affect the matching performance

of a verification/recognition system, is described in Chapter 4. Chapter 5 describes

the developed physics-based revocable face reconstruction algorithm to address the

privacy issues concerning face recognition. Chapter 6 details the proposed system

identification approach to recognize faces in low quality videos. A robust particle-

filter based algorithm for 3D tracking of faces is also described in Chapter 6. The

dissertation concludes with a summary, discussion and concluding remarks in Chap-

ter 7.
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Chapter 2

Face Recognition in the Presence of Multiple Light Sources

There are quite a few problems in computer vision like Shape-from-Shading

(SFS), illumination-invariant image matching, etc. that are inherently ill-posed in

their full generality. Quite often the intractability of the problem can be reduced

significantly by restricting the domain of the problem and using appropriate con-

straints. For example, the symmetry constraint reduces the inherent ambiguities in

the traditional SfS solution to a large extent [97]. In this chapter, we deal with such

an intractable problem of illumination-invariant matching with a focus on human

faces. In particular, we propose a solution to this problem for a class of objects

under the assumption that the class consists of linear Lambertian objects. The case

of multiple light sources is handled by combining the linear Lambertian assumption

with a linear approximation to the subspace of Lambertian images. This aids in

recognizing faces illuminated by multiple unknown light sources using just a single

image.

2.1 Organization of the chapter

The following section provides a survey of the existing approaches that address

the problem of illumination-insensitive matching of images. Section 2.3 illustrates

the importance of the nonlinearity in Lambert’s law. Section 2.4 describes the con-
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cept of linear Lambertian object. The importance of the nonlinearity is further

highlighted in Section 2.5 by showing improvements in the recognition accuracy

when the nonlinearity is taken into account. The face recognition algorithm to han-

dle faces illuminated by multiple light sources is presented in Section 2.6. Section 2.7

describes several challenging experiments performed to rigorously test the approach.

The chapter concludes with a brief summary and discussion in Section 2.8.

2.2 Literature survey

Recent improvements in the accuracy of the face recognition algorithms for

images taken under controlled conditions has shifted the focus to more challenging

tasks of achieving the same performance for uncontrolled scenarios. A detailed sur-

vey of various face recognition algorithms is presented in [98]. Several researchers

attempt to achieve invariance to illumination by using image processing techniques

like histogram equalization [82]. Some subspace based methods try to counter il-

lumination variations by discarding the first few principal components [8]. These

techniques do improve the accuracies of the respective algorithms but are usually

ineffective in the case of a non-trivial change in illumination conditions.

The inability of such heuristics to handle illumination variation has led to the

rise of generative (or analysis-by-synthesis) approaches for face recognition [13, 99,

94, 33, 77]. Broadly speaking, these techniques try to model the physical process of

image formation by taking into consideration quantities like surface albedo, surface

normals and illumination source direction. Though the recovery of shape and surface
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properties (reflectivity or albedo) from image(s) has been studied for a long time,

its application to the problem of face recognition is fairly recent. An example in

this category is the application of SFS algorithms. SFS research typically assumes

a constant albedo across an object which is usually not true and thus limits the use

of the approach. Since then, there have been several advances which have led to the

application of SFS for face recognition and rendering. Zhao et al. [97] present an

SFS approach to recover both shape and albedo for a symmetric object from a single

image. [94] uses singular value decomposition (SVD) to learn generative models of

objects from a set of images taken under different, and unknown illuminations.

Shashua et al. [77] perform recognition across varying illumination under an ideal-

class assumption. All objects belonging to the ideal class are assumed to have

the same shape. [33] uses illumination cone models for illumination-invariant face

recognition. They require a small number of training images of each face under

different illuminations to recover the shape and albedo of the face. Basri et al. [6]

propose methods for recovering surface normals in a scene using images taken under

general illumination conditions. Their work is based on [7, 68] which prove that the

set of all Lambertian reflectance maps obtained with arbitrary distant illumination

sources approximately lie in a 9D linear subspace. In [13], Blanz et al. perform

face recognition across pose and illumination by fitting a 3D morphable model to

images. They use a set of textured 3D scans of heads for learning the model. [95]

uses harmonic image exemplars to perform face recognition under varying lighting.

Zhou et al. [99] generalize the traditional photometric approach to handle all the

appearances of all the objects in a class. They impose a rank constraint on shapes
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and albedos in a class to separate the two from illumination using the factorization

approach.

Despite the advances made, most of the cited approaches have not been applied

for the face recognition problem using a large database. This might be because many

techniques require multiple, independently illuminated images of each face which

are usually not present in most face datasets. Moreover, most of the approaches

make single light source assumption which does not hold in most real conditions.

The assumption might be driven by the unavailability of suitable datasets to test

approaches which can potentially handle images illuminated by multiple number of

light sources.

In this chapter, we propose an algorithm to perform face recognition across

varying illumination (using a single face image) for images illuminated by multiple

number of light sources. The algorithm does not need any prior information about

the number or placements of the light sources. We are not aware of any standard

controlled dataset containing faces illuminated by two or more number of light

sources, which can be used to study the effect of the single light source assumption

on face recognition algorithms. We generate such data using faces from PIE [79]

and Yale Face Database B [33]. Experimental results are presented to confirm the

efficacy of the approach. The proposed algorithm performs much better than its

counterpart that makes the single light source assumption.
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2.3 How important is the nonlinearity in Lambert’s law?

The algorithm models a face as a Lambertian surface. Therefore, it is worth-

while to address the issue of the often ignored nonlinearity in Lambert’s law before

explaining the algorithm. In fact the performance of the algorithm can get ad-

versely affected if the nonlinearity is ignored (thereby allowing pixel intensities to

take negative values).

The diffuse component of the reflection of a surface is often modeled using the

popular Lambert’s Law [41]. For example, Blanz and Vetter[13] use the following

equation to model the diffuse component

Lr,k = Rk.Lr,dir. < nk, l >, (2.1)

where Rk is the red component of the diffuse reflection coefficient, Lr,dir is the red

channel of the directed light, nk is the surface normal and l is the light source

direction. Similarly, the generalized photometric stereo method [99] uses

h = ρnT s, (2.2)

where ρ is the surface albedo, n is the surface normal, and s is the light source

direction (multiplied by the intensity), as the rule for image formation. A close

look at these equations reveals that a linear approximation to the Lambert’s law

is assumed in both these models. If used in its pure form, the nonlinearity in the

Lambert’s law would have made (2.2) to be

h = ρmax(nT s, 0) (2.3)
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Quite clearly, the linearity assumption is perfectly valid as long as the directed light

source is in front of the surface for all its points. In general, objects like faces do

not have all the surface points facing the illumination source which leads to the

formation of shadows (commonly known as form/attached shadows). The cast and

attached shadows are often ignored from the analysis to keep the subspace of the

observed images in a three [76] or with the addition of an ambient component [94],

four dimensional linear subspace. Therefore, several generative approaches either

ignore this nonlinearity completely or try to somehow ignore the shadow pixels.

Here we present a simple illustration to highlight the importance of the nonlinearity

in the Lambert’s law.

2.3.1 Illustration 1

Suppose the goal is to estimate the illumination source direction from a single

face image given the shape and albedo of the face (assuming the image has been

illuminated by a single distant illumination source). We explore three approaches

for this task: the first approach ignores the nonlinearity completely, the second one

uses the linear rule but ignores the shadow pixels and the last one uses the Lambert’s

law in its pure form. The accuracy of the global minimum and its ambiguity on the

error surface is taken as the criterion for the goodness of the method. The analytical

expressions for the error function using the three options can be written as :

Completely linear: E(s) =‖ h − ρnT s ‖2 (2.4)

Shadow pixels ignored: E(s) =‖ τ ◦ (h − ρnT s) ‖2 (2.5)
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Figure 2.1: The error surfaces for the estimation of the light source direction for

a given face image. The plots correspond to the three approaches described in

Illustration 1. The lower the error is for a particular illumination direction, the

darker the error sphere looks at the point corresponding to that direction. The true

and estimated values of the illumination direction are listed along with the plots.

Non-linear rule: E(s) =‖ h − max(ρnT s, 0) ‖2 (2.6)

where, E(s) is the error with s as the illumination source direction, hd×1 is the

vectorized input image, ρd×1 is the albedo vector, n3×d contains the surface normals,

and τ d×1 is the shadow indicator vector which is 0 for the shadow pixels and 1 for

the rest. Clearly, the linear method penalizes the correct illumination at the shadow

pixels by having non-zero error values for those pixels. On the other hand, when

shadows are ignored, the illuminations which produce wrong values for the shadow

pixels do not get penalized there. As the set of all possible normals lies on the

surface of a unit sphere, we use a sphere to display the computed error functions.

Figure 2.1 shows the error surfaces for the three methods for a given face image. The

lower the error is for a hypothesized illumination direction s, the darker the surface

looks at the corresponding point on the sphere. The global minimum is far from
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the true value using the first approach but is correct up to a discretization error for

the second and third approaches. In fact, the second and third methods will always

produce the same global minimum (assuming τ is correct), but the global minimum

will always be less ambiguous in the third case because several wrong hypothesized

illumination directions do not get penalized enough in the second approach due to

the exclusion of the shadow pixels (Figure 2.1).

2.3.2 The case of multiple light sources

The analysis in Illustration 1 implicitly assumes that there is only one distant

light source illuminating the face. Though the assumption is valid for datasets like

PIE, it does not hold for most realistic scenarios. We now explore the impact of using

the linear Lambert’s law for images illuminated by multiple light sources. Using the

linear Lambert’s law, an image illuminated by k light sources can be represented as:

h =
k

∑

i=1

ρnT si = ρnT

k
∑

i=1

si = ρnT s⋆ (2.7)

where, s⋆ =
∑k

i=1 si. This shows that under the linear assumption, multiple light

sources can be replaced by a suitably placed single light source without having any

effect on the image. This is a bit counter-intuitive as can be seen in a simple two

source scenario where s1 = −s2

h = ρnT (s1 − s2) = 0 (2.8)

Thus the linear assumption can make the effect of light sources interfere in a de-

structive manner and give bizarre outcomes. Quite clearly, the harm done by the

26



linearity assumption is proportional to the angle subtended by the light sources at

the surface.

Though the discussion in Illustration 1 suggests that Lambert’s law in its pure

form is better suited for illumination estimation than the other variants, it is only of

academic interest if inclusion of the nonlinearity does not improve the recognition

results. The following sections describe the proposed algorithm for illumination-

insensitive matching of faces that incorporates the often ignored nonlinearity in Lam-

bert’s law. The improvement in the recognition accuracy over existing approaches

highlights the importance of including the attached shadows in the analysis.

2.4 Linear Lambertian object

Definition: A linear Lambertian object is defined as a visual object simulta-

neously obeying the following two properties:

• It is linearly spanned by basis objects.

• It follows the Lambertian reflectance model with a varying albedo field.

While each of the above two properties has been widely studied in the literature

for various tasks, the concept of linear Lambertian object which captures both the

characteristics, is effective for illumination-invariant matching as shown in this chap-

ter. An example of linear Lambertian object is human face1, which is the focus of

1One may argue that specular properties of skin and eyes and the reflectance properties of

hair violate the Lambertian assumption. However, the hair is excluded by preprocessing and the

pixels in specular regions, unless significantly large, do not have disastrous effect on the results as

27



this work. The linearity [86, 8, 88] characterizes the appearances of an image en-

semble for a class of objects. It assumes that an image h is expressed as a linear

combination of basis images hi, i.e.,

h =

m
∑

i=1

fihi, (2.9)

where fi’s are blending coefficients. In other words, the basis images span the image

ensemble. Typically, the basis images are learned using the images not necessarily

illuminated under the same lighting condition. This forces the learned basis images

to inadequately cover variations in both identity and illumination.

The Lambertian reflectance model [38, 76, 7] with a varying albedo field is

widely used in the literature to depict the appearance of certain matte objects such

as faces. It assumes that a pixel h is represented as

h = max(ρnT
3×1s3×1, 0) (2.10)

where [.]T denotes the transpose, ρ is the albedo at the pixel, n is the unit surface

normal vector at the pixel, and s (a 3 × 1 unit vector multiplied by its intensity)

specifies a directional light source. When the pixel is not directly facing the light

source, the attached shadow is generated, i.e., the zero intensity is achieved. Another

kind of shadow is the cast shadow that is generated when the light source is blocked

by other pixel due to object geometry.

An image h is a collection of d pixels {hi, i = 1, ..., d} 2. By stacking all the

observed in the experiments.
2The index i corresponds to a spatial position x = (x, y). We will interchange both notations.

For instance, we might also use x = 1, ..., d.
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pixels into a column vector, we have

hd×1 = [h1, h2, . . . , hd]
T = max([(ρ1n

T
1 )s, . . . , (ρdn

T
d )s]T , 0) = max(T d×3s3×1, 0),

(2.11)

where the T = [ρ1n1, ρ2n2, . . . , ρdnd]
T matrix encodes the product of the albedos

and the surface normal vectors for all d pixels. Evidently, the Lambertian model is

specific to the object and consequently, we call the T matrix as an object-specific

albedo-shape matrix.

The process of combining the above two properties is equivalent to imposing

the restriction of the same light source on the basis images, with each basis image

expressed as hi(s) = max(T is, 0). Therefore, Eq. (2.9) becomes

h =

m
∑

i=1

fi max(T is, 0). (2.12)

This is the generative model for the linear Lambertian object. It is evident that the

key difference between linear Lambertian object and conventional subspace analysis

is in the basis image hi: For a linear Lambertian object, it is now a function of

the light source s through the matrix T i. We denote all the matrices T i compactly

by W = [T 1,T 2, . . . ,T m]. Since the W matrix encodes all albedos and surface

normals for a class of objects, we call it a class-specific albedo-shape matrix.

The linear Lambertian object concept provides a unique opportunity to study

the appearances of an image ensemble for a class of objects under illumination

variations and opens the door to many applications like generalized photometric

stereo [99] and illumination-insensitive matching of faces.
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2.5 Face recognition across varying illumination (single light source)

In this section, we use the linear Lambertian assumption on human faces

to devise an approach to perform face recognition across illumination variations.

Though the main focus of our research is to recognize faces illuminated by multiple

unknown light sources, we start with single light scenario to show the importance of

incorporating the nonlinearity in Lambert’s law in addition to the usefulness of the

proposed linear Lambertian formulation for the task of illumination-insensitive face

matching. From the linear Lambertian generative model in (2.12), if the nonlinearity

is ignored, one can omit the max function as follows

hd×1 = Ts =

m
∑

i=1

fihi (2.13)

=
m

∑

i=1

fiT is = W d×3m[fm×1 ⊗ s3×1], (2.14)

where ’⊗’ denotes the Kronecker (tensor) product. Because s is a free parameter,

Eq. (2.14) is equivalent to imposing a rank constraint on the T matrix: any T matrix

is a linear combination of some basis matrices {T 1,T 2, . . . ,T m} coming from some

m basis objects.

T d×3 =

m
∑

j=1

fjT j . (2.15)

Obviously, the blending coefficients fj characterize the identity of the object and

are invariant to illumination by construction. Note that the difference between

these relations and linear Lambertian model is that these relations ignore the hard

nonlinearity in Lambert’a law that accounts for the formation of attached shadows
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by omitting the max function.

Given shape-albedo matrix W , the recovery of the identity vector f and illu-

mination s can be posed as an optimization problem as follows [99]

[Problem A] min
f ,s

E(f , s) = ‖τ ◦ (h − W (f ⊗ s))‖2 + (1T f − 1)2, (2.16)

Here τ denotes the shadow indicator variable. Such a variable is useful to omit

shadow pixels from the analysis when nonlinearity responsible for attached shadow

formation is not incorporated in the formulation. On the other hand, if the nonlin-

earity is incorporated in the analysis, the recovery of the identity vector f can be

posed as the following optimization problem

[Problem B] min
f,s

E(f , s) =‖ h −
m

∑

i=1

fi max(T is, 0) ‖2 +(1T f − 1)2 (2.17)

As the formation of attached shadows is already accounted for, there is no need

of any shadow indicator variable. As shown later, such a strategy significantly

outperforms the one that ignores the nonlinearity in Lambert’s law. The second

term is included in the error function to take care of scale ambiguity between f

and s. Please note that s is not a unit vector as it contains the intensity of the

illumination source also.

The formulation in [99] follows a similar approach solving Problem A that uses

the linear version of Lambert’s law. Given n different objects under different (and

unknown) illumination conditions, Zhou et al. [99] estimate W (up to an invert-

ible matrix) by solving a rank 3m problem using the factorization approach. The

ambiguity is resolved using symmetry and integrability constraints. The interested

reader is referred to [99] for the complete derivation. The average recognition results
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reported in [99] improve from 67% to 93%, when the W matrix is estimated from

Vetter’s 3D dataset [13] instead of the approach mentioned above.

Our goal here is to highlight the importance of the nonlinearity in Lambert’s

law in addition to usefulness of the linear Lambertian formulation for the task of face

recognition across illumination variations. Therefore, we generate the shape-albedo

matrix W using Vetter’s 3D dataset for all our experiments. As opposed to [99],

we take into account the inherent hard nonlinearity present in Lambert’s law.

The minimization in Problem B is performed using an iterative approach,

fixing f for optimizing E w.r.t. s and fixing s for optimization w.r.t. f . In each

iteration, f can be estimated by solving a linear least-squares (LS) problem but

a non-linear LS solution is required to estimate s. The non-linear optimization is

performed using the lsqnonlin function in MATLAB which is based on the interior-

reflective Newton method. For most faces, the function value did not change much

after 4-5 iterations. Therefore, the iterative optimization was always stopped after

5 iterations. The whole process took about 5-7 seconds per image on a standard

desktop.

We perform recognition experiments across illumination using the frontal faces

from the PIE dataset. The correlation coefficient of the identity vectors is taken as

the measure of the similarity between face images. Table 2.1 shows the recognition

results obtained using this approach. Recognition is performed across illumina-

tion with images from one illumination condition from the PIE dataset forming

the gallery while images from another illumination condition forming the probe set.

Each gallery/probe set contains one frontal image per subject taken in the presence
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of a particular light source (there are 68 subjects in each gallery/probe set). Each

entry in the table shows the recognition rate achieved for one such choice of gallery

and probe set. The averages from [99] are shown for comparison. For fair compar-

ison, we show results only across the illumination scenarios displayed in [99]. The

recognition performance with the inclusion of the non-linearity in Lambert’s law is

almost always better or same. The overall average performance is up from 93% to

96%. The improvement is significant in cases involving difficult illumination condi-

tions (with lots of shadows) like the flash f17 in the PIE dataset. This shows that

though the estimation becomes slightly more difficult, the recognition rate improves

with inclusion of the non-linearity.

2.6 Illumination-insensitive face recognition in the presence of mul-

tiple light sources

One of the issues in handling multiple illumination case is the prior knowledge

of the number of light sources. In the absence of this knowledge, one can hypothesize

several different cases and choose the one with minimum residual error. This can

potentially be done in a manner very similar to the approach described for the single

illumination source case with the following change in the objective function

[Problem C] min
f ,s

E(f , s) =‖ h −
m

∑

i=1

fi

k
∑

j=1

max(T isj, 0) ‖2 +(1T f − 1)2 (2.18)

where k is the hypothesized number of light sources. The objective function can be

minimized repeatedly for different values of k and the one with minimum error can

be taken as the correct hypothesis. Figure 2.2 shows the variation of the error with
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Gallery f08 f09 f11 f12 f13 f14 f15 f16 f17 f20 f21 f22 Avg Avg

from [99]

Probe

f08 - F F F 96 97 81 72 50 F 97 84 90 88

f09 F - F F F 99 97 96 75 F F 97 97 94

f11 F F - F F 97 94 78 63 F 99 94 94 93

f12 F F F - F F F 99 90 F F F 99 97

f13 97 F F F - F F F 96 F F F 99 99

f14 94 F F F F - F F 99 F F F 99 99

f15 88 97 97 F F F - F F 97 F F 98 96

f16 74 90 81 93 F F F - F 76 97 F 93 89

f17 59 74 63 87 99 99 F F - 71 94 F 87 75

f20 99 F F F F 99 96 82 71 - F 97 95 93

f21 97 F F F F F F 99 96 F - F 99 98

f22 93 F 99 F F F F F 99 99 F - 99 98

Average 92 97 95 98 100 99 97 94 87 95 99 98 96 -

Average

from [99] 89 93 92 96 98 99 96 91 80 91 96 98 - 93

Table 2.1: Recognition results on the PIE dataset. The averages from [99] that

ignores the nonlinearity in Lambert’s law, are included for comparison. f i denotes

images taken with a particular flash ON as labeled in PIE. Each (i, j)th entry in the

table shows the recognition rate obtained with the images from f j as gallery while

from f i as probes. F denotes perfect recognition score.

k, for an image illuminated by three different light sources. As can be seen, the error

more or less stabilizes for k ≥ 3. As the parameter spaces are nested, ideally the

error plot should be a non-increasing function of k, but the increase in complexity

of the non-linear optimization can make the plot behave otherwise. Please note that

for the linear Lambert’s law, such a curve will look more or less horizontal due to

the equivalence of the single and multi-light source scenarios (Equation 2.7) under

the linear assumption.
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Figure 2.2: The error obtained for different hypothesized number of light sources.

The face was illuminated using three light sources.

Though one can use this approach by varying k, it is not elegant and computa-

tionally intensive. In our approach, we avoid the extra computations by making the

following assumption. We assume that an image of an arbitrarily illuminated face

can be approximated by low dimensional linear subspace [7] that can be generated

by a linear combination of the images of the same face in the same pose, illuminated

by nine different light sources placed at pre-selected positions. Lee et al. [49] show

that this approximation is quite good for a wide range of illumination conditions.

Hence, a face image can be written as

h =
9

∑

i=1

αihi (2.19)

where, hi = max(ρnT ŝi, 0) = max(T ŝi, 0) (2.20)

{ŝ1, ŝ2, . . . , ŝ9} are the pre-specified illumination directions. As proposed in [49],
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we use the following directions for {ŝ1, ŝ2, . . . , ŝ9}:

φ = {0, 49,−68, 73, 77,−84,−84, 82,−50}◦

θ = {0, 17, 0,−18, 37, 47,−47,−56,−84}◦ (2.21)

Under this formulation, (2.18) changes to

[Problem D] min
f,s

E(f , s) =‖ h−
m

∑

i=1

fi

9
∑

j=1

αj max(T iŝj, 0) ‖2 +(1T f−1)2 (2.22)

This way one can potentially recover the illumination-free identity vector f without

any prior knowledge of the number of light sources or any need to check different

hypotheses for the same.

Now the objective function is minimized with respect to f = [f1, f2, . . . , fm]

and α = [α1, α2, . . . , α9]. This gives us the illumination-free identity vector f which

is used for recognition. The optimization is done in an iterative fashion by fixing

one parameter and estimating the other and vice-versa as shown below.

By Defining a d×m matrix W f as

W f =

[ 9
∑

j=1

αj max(T 1ŝj, 0),

9
∑

j=1

αj max(T 2ŝj , 0), . . . ,

9
∑

j=1

αj max(T mŝj, 0)

]

d×m

,

(2.23)

it is easy to show that

f =

[

W f

1T

]†[
h

1

]

. (2.24)

where hd×1 is the vectorized input face image, [.]† is the Moore-Penrose inverse,

and 11×m is the m-dimensional vector of ones, included to handle scale ambiguity

between f and α.
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Looking carefully at the objective function (2.22), one can easily observe that

α too can be estimated by solving a linear LS problem (as {ŝ1ŝ2 . . . ŝ9} is known).

This avoids the need for any nonlinear optimization here. Recall that a nonlinear

LS method was required to estimate s in the approach proposed for the single light

source case. The expression for α can be written as:

α = W †
αh (2.25)

where,

W α =

[ m
∑

i=1

fi max(T iŝ1, 0),
m

∑

i=1

fi max(T iŝ2, 0), . . . ,
m

∑

i=1

fi max(T iŝ9, 0)

]

d×9

.

For most of the face images, the iterative optimization converged within 5-6

iterations. As there is no non-linear optimization involved, it took just 2-3 seconds

to recover f and α from a given face image on a normal desktop. As the identity

variable is estimated from an image by separating the effect of all the light sources in

the form of α, it is used as the illumination-invariant representation for recognition

across varying illumination. The correlation coefficient of the identity vectors is

used as the similarity measure for recognition experiments.

2.7 Experiments and results

To begin with, we test this algorithm by running the same experiment as we

do for the single light source approach. Though the PIE dataset is not suited to

test the ability of this algorithm to handle arbitrarily illuminated images, a good

performance here can be considered as a proof of concept. The overall average
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Figure 2.3: The per-gallery and per-probe set average recognition rates on the 210

doubly-illuminated scenarios generated from the PIE dataset. The blue curve (the

darker one on the top for monochrome version) shows the performance of the pro-

posed approach while the red curve (the lighter one for monochrome version) corre-

sponds to the linear single light source approach [99].
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recognition rate for the experiment obtained using this algorithm is 95% which is

higher than [99].

Due to the unavailability of a standard dataset containing face images with

multiple light sources ON at a time, we generate such a dataset using the PIE and

Yale datasets. Due to the controlled nature of the datasets, multiple images of a

subject under different illuminations but same pose, are more or less aligned. If we

ignore any camera gain, this allows us to add multiple images of a person taken

under different illuminations to get one with the effect of an image captured with

multiple lights ON. The images generated this way look reasonably realistic (see

Figure 2.4).

We perform experiments on the dataset created by adding images from two

illumination conditions from PIE at a time. As PIE has 21 different illumination

scenarios, we get a total of 21C2 = 210 different doubly-illuminated scenarios. Recog-

nition was done across all 210 scenarios by taking one as the gallery and another

one as the probe set at a time to get 210 × 209 recognition scores. As it is difficult

to show the recognition scores by drawing a 210 × 210 table, we show only the ag-

gregated per-gallery and per-probe set recognition rates (similar to the averages in

Table 2.1) in Figure 2.3. The blue curve (the darker one on the top for monochrome

version) on the top shows the averages obtained by the proposed approach. For

comparison, we show the recognition rates obtained on this dataset using Zhou et

al.’s linear method [99] that ignores shadow pixels under the single light source as-

sumption (red curve - the lighter one for monochrome version). For ease of use, we

will call this method as ISP-SLS (Ignores Shadow Pixels under Single Light Source
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Figure 2.4: The doubly-illuminated images of a subject from the Yale database.

Each image is generated by adding 2 images of the same subject illuminated by

different light sources.

Assumption). There exist a zero in the red curve because for one gallery/probe set,

the method ended up ignoring most of the pixels as shadows and thus was unable

to recover the identity variable. The recognition rates obtained using the proposed

approach are always better or same as compared to ISP-SLS. The increase in the

recognition accuracy is more prominent for the cases where the two illumination

sources combined to generate the doubly-illuminated scenario were far apart. This

happens because the destructive interference of two light sources (due to the lin-

earity assumption in ISP-SLS) increases with an increase in the angle between the

two.

We further test the algorithm by generating a similar doubly-illuminated data

using Yale Face Database B [33]. Figure 2.5 shows the six challenging illumina-

tion conditions used to generate fifteen different scenarios (shown in Figure 2.4) by

pairing two at a time. The average recognition rate achieved on this difficult data

(Figure 2.4 shows images of one subject under the 15 illumination conditions) us-

ing our algorithm is 77%. This is up by more that 25% compared to the accuracy

achieved both by ISP-SLS method and the method which takes the non-linearity

into account under the single light source assumption.
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Figure 2.5: The 6 illumination conditions from the Yale face Database B used to

generate the doubly-illuminated data.

All the above experiments implicitly assume that the faces in the gallery and

probe set are illuminated by the same number of light sources. Clearly, the proposed

algorithm does not impose any such restriction. Therefore, we perform another

experiment to test the ability of the proposed approach to generalize across varying

number of light sources. We generate five illumination scenarios using the PIE

dataset with the number of light sources (added to create each scenario) ranging

from 1-5. To avoid any bias, the combinations of the light sources are selected

randomly from the 21 illumination sets in the PIE dataset. Recognition is performed

across the five scenarios by considering one among them as the gallery and another

one as the probe set at a time. As before, each gallery/probe set contains one

image for each of the 68 subjects present in the PIE dataset. While the ISP-SLS

approach performs badly in this experiment, the proposed approach does a perfect

job as shown in Table 2.2. Figures 2.6 and 2.7 show the reconstructed surfaces

for a face illuminated in the presence of the five illumination scenarios using the

two approaches. The quality of the reconstructions explains the difference in the

recognition accuracy obtained using these two methods.

The difference between the ISP-SLS and the proposed multiple light source
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Figure 2.6: The reconstructed shapes of a face using the ISP-SLS approach. Each

column displays the 3 components of the reconstructed surface normals. Columns

1-5 correspond to the five illumination scenarios with the number of light sources

varying from 1-5, respectively. The quality of the reconstructed surface degrades as

the number of light sources increase.

method can also be highlighted using image relighting examples as shown in Fig-

ure 2.8, where there are five illumination scenarios with increasing number of light

sources from top to bottom. To confirm the authenticity of the results, we perform

another similar experiment with 10 different scenarios with the number of randomly

selected light sources (added to generate the 10 scenarios) ranging from 1-10. Here,

the proposed approach achieves average recognition accuracy of 99.7% (The average

recognition rate achieved by ISP-SLS here is 54%).

2.8 Summary and conclusion

In this chapter, we proposed an algorithm to recognize multiply-illuminated

faces from just one image. The algorithm has the capability to generalize across
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Gallery {f20} {f05, f22} {f20, f06, f18} {f21, f06, f07, f03} {f03, f15, f06, f19, f05}

Probe

{f20} - / - 100 / 100 100 / 66 100 / 26 100 / 26

{f05, f22} 100 / 100 - / - 100 / 62 100 / 28 100 / 25

{f20, f06, f18} 100 / 93 100 / 91 - / - 100 / 72 100 / 74

{f21, f06, f07, f03} 100 / 62 100 / 66 100 / 90 - / - 100 / 93

{f03, f15, f06, f19, f05} 100 / 66 100 / 66 100 / 93 100 / 93 - / -

Table 2.2: Recognition results on the multiply-illuminated data generated from the PIE dataset. The various scenarios differ

in the number of light sources. The flash Ids from PIE randomly selected to generate each scenario are shown in curly braces.

The 1st number shows the recognition rate obtained using our approach while the 2nd number shows the performance of the

ISP-SLS method.
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Figure 2.7: The reconstructed shapes of a face using our approach. As in Figure 2.6,

each column shows the 3 components of the reconstructed surface normals. There

is hardly any difference in the reconstructed surfaces across different illuminations

scenarios.

face images taken in the presence of varying number of unknown light sources.

The approach performs well and outperforms the ISP-SLS approach which uses the

linear version of the Lambert’s law. Though the comparison with the ISP-SLS

approach might not seem fair as it does not try to model multiple light sources, the

comparison does reflect the effect, the single light source assumption might have, for

recognizing faces in real conditions. Moreover, we illustrated that if the Lambert’s

law is assumed to be linear, the single and multiple light scenarios are equivalent.

Therefore, one can infer that the relaxation of the non-linearity in the Lambert’s law

is harmful for recognizing faces illuminated by an arbitrary number of light sources.

Almost perfect performance of the proposed approach in experiments involving large

number of light sources conforms to the belief that face recognition gets easier with

an increase in number of light sources.
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(a)

(b)

Figure 2.8: Image relighting/rendering results using (a) ISP-SLS and (b) multiple

light source algorithms. For each row, the left image is the reference image used

for estimating the surface normals and albedos and the remaining nine images are

rendered ones corresponding to the nine lighting conditions in Eq. (2.21).
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Chapter 3

Symmetric Objects are Hardly Ever Ambiguous

Given any two images taken under different illumination conditions, there al-

ways exist a physically realizable object which is consistent with both the images

even if the lighting in each scene is constrained to be a known point light source at

infinity [42]. In this work, we show that images are much less ambiguous for the class

of bilaterally symmetric Lambertian objects. In fact, the set of such objects can be

partitioned into equivalence classes such that it is always possible to distinguish be-

tween two objects belonging to different equivalence classes using just one image per

object. The conditions required for two objects to belong to the same equivalence

class are very restrictive, thereby leading to the conclusion that images of symmetric

objects are hardly ambiguous. The observation leads to an illumination-invariant

matching algorithm to compare images of bilaterally symmetric Lambertian objects.

Experiments on real data are performed to show the implications of the theoreti-

cal result even when the symmetry and Lambertian assumptions are not strictly

satisfied.

3.1 Introduction

The problem of matching images of an arbitrary scene/object under differ-

ent illumination conditions has been quite elusive. Lack of information about the
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geometry and reflectance map makes this problem in its generality, ill-posed. In

fact, Jacobs et al. [42] show that this problem cannot be solved even under hard

constraints of Lambertian reflectance and known single point light sources placed

at infinity.

Quite often in vision problems, the intractability of the problem can be re-

duced significantly by restricting the domain of the problem and using appropriate

constraints. In this chapter, we analyze the problem of matching symmetric objects

across illumination variations. In particular, we show that unlike general objects, it

is almost always possible to distinguish between two bilaterally symmetric objects

using just one image per object.

The symmetry assumption eliminates the unknown albedo in the SFS formu-

lation, thereby allowing us to deal with arbitrarily varying albedo maps. Moreover,

symmetry leads to a linear constraint on the values of the unknown surface gradi-

ents for each point of the object. Though the constraint makes the SFS problem

more tractable, it is still not sufficient to recover the surface gradients for general

unknown albedo maps.

Unlike the existing work on symmetric SFS, our goal here is illumination-

invariant matching rather than shape recovery. We use the linear constraint provided

by symmetric SFS to prove the well-posedness of the matching problem for the class

of bilaterally symmetric objects. Given two linear constraints from two different

images, we solve for the surface gradients. The correctness of the gradients can be

checked by substituting them back in the original image irradiance equations for

the images and independently computing albedos from the two images. We show
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that the two albedo estimates are identical if the corresponding pixels represent the

same physical reality (same shape and albedo). If the points differ physically, the

computed albedos almost always differ. We derive the rare condition under which

they are same. In fact, the condition partitions the set of symmetric Lambertian

objects into equivalence classes such that it is always possible to distinguish between

two different objects belonging to different equivalence classes based on just one

image per object.

The theoretical analysis leads to an algorithm that can be used to match

images of real objects where the symmetry and Lambertian assumptions are not

strictly satisfied. Given an image, an illumination-invariant representation is derived

that can be used for matching. If the assumptions are strictly satisfied, the algorithm

is provably correct (up to the described ambiguity). Experimental results show the

usefulness of the approach on real images.

3.2 Organization of the chapter

The rest of the chapter is organized as follows. Section 3.3 discusses the related

work. The SFS formulation utilizing the 3D bilateral symmetry is described in

Section 3.4. The theoretical analysis to prove that the images of symmetric objects

are hardly ambiguous is outlined in Section 3.5. In Section 3.6, we propose an

algorithm to perform illumination-invariant matching of such objects. Experiments

performed to evaluate the performance of the matching algorithm are described in

Section 3.7. The chapter concludes with a summary and discussion in Section 3.8.
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3.3 Related work

There has been a lot of work on the problem of illumination-invariant matching

and recognition. Brooks et al. [16] discuss the existence and uniqueness of shapes

consistent with a given intensity pattern. In [40], a given image is filtered to sup-

press the lighting effects in order to recover the object reflectance. A method to

recover intrinsic properties of an object using multiple images is proposed in [76].

Jacobs et al. [42] describe a matching algorithm based on the observation that the

ratio of two images of the same object is simpler than that of two different ob-

jects. Chen et al. [19] utilize the insensitivity of the direction of image gradients

to changes in illumination direction in a probabilistic framework to recognize faces

across illumination.

Other than these generic methods, a lot of research has been directed towards

recognizing faces across illumination variations. Quite often face-specific methods

physically model the image formation process which involves illumination sources,

albedo and shape. Class specific properties of faces have been utilized to perform

reliable reconstruction or recognition in spite of the ill-posed nature of the problem.

[13][99][94][33][77][6] are a few remarkable works in this direction.

Yuille et al. [94] use singular value decomposition (SVD) to learn generative

models of objects from a set of images taken under different unknown illuminations.

Shashua and Raviv [77] perform recognition across varying illumination under an

ideal-class assumption. All objects belonging to the ideal class are assumed to have

the same shape. [33] uses illumination cone models for illumination-invariant face
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recognition. They require a small number of training images of each face under dif-

ferent illuminations to recover the shape and albedo of the face. Basri and Jacobs [6]

propose methods for recovering surface normals in a scene. Result in [7] and [68]

forms the basis of their work, which proves that the set of all Lambertian reflectance

maps obtained with arbitrary distant illumination sources approximately lie in a 9D

linear subspace. In [13], Blanz and Vetter perform face recognition across pose and

illumination by fitting a 3D morphable model to the images. Zhou et al. [99] gener-

alize the traditional photometric approach to handle all appearances of all objects

in a class. They impose a rank constraint on shape and albedo in a class to separate

the two from illumination.

Though SFS approaches for the recovery of shape and albedo have been studied

for a long time, it is only recently that attempts have been made to use them for real

matching problems. Due to the ill-posed nature of the problem, the SFS research

typically makes uniform albedo assumption which often limits the applicability of the

approaches. In a recent work [96][97], Zhao and Chellappa present an SFS approach

to recover both shape and albedo for a symmetric object from a single image under

piecewise constant constraint on albedo. In [96], they use the same approach for

generating frontally illuminated prototype images to perform face recognition. They

use partial gradient information from a generic 3D model to perform this task. Using

the same formulation, Dovgard and Basri [28] make use of class-specific constraints

by writing the unknown surface gradients as a linear combination of the surface

gradients of a set of known 3D face models to recover the shape.

Though our work is partly motivated by Zhao and Chellappa’s work [96][97],
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we differ in the following aspects

1. We derive precise conditions under which images of two different objects are

ambiguous.

2. Our approach for illumination-invariant matching is provably correct for sym-

metric Lambertian objects.

3. We do not use any class-specific information like generic 3D model as used

in [96].

3.4 Symmetric shape from shading

Under the assumptions of orthographic projection and Lambertian reflectance,

the perceived intensity of a surface point of an object can be written as

I = Lρ
1 − pl − qk

√

p2 + q2 + 1
√
l2 + k2 + 1

(3.1)

where ρ is the surface albedo, (p,q,1)√
p2+q2+1

is the surface normal, L is the intensity of

the light source and (l,k,1)√
l2+k2+1

is the illuminant direction. As done normally in SFS

formulations, we assume that the image intensity I is normalized by the known light

source intensity to eliminate L from the expression.

The albedo ρ− and surface normals {p−, q−} of the bilaterally symmetric point

are characterized as follows

ρ− = ρ {p−, q−} = {−p, q} (3.2)

Therefore, its intensity I− can be written in terms of the albedo and surface normals
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of its symmetric counterpart as follows

I− = ρ
1 + pl − qk

√

p2 + q2 + 1
√
l2 + k2 + 1

(3.3)

Using (3.1) and (3.3), the albedo can be eliminated leading to the following linear

constraint on the surface gradients

I−
I

=
1 + pl − qk

1 − pl − qk
(3.4)

(I− − I) − (I− + I)pl − (I− − I)qk = 0 (3.5)

Slp+Dkq = D (3.6)

where S = I−+I is the sum of the intensities of the symmetric points andD = I−−I

is the difference of the two. The linear relation implies that the set of possible surface

gradients {p, q} lie on a straight line in the pq-space, parameterized by the perceived

intensity and the lighting condition. Note that the regular reflectance map provides

a quadratic constraint on the values surface gradients can take, given the pixel in-

tensity, albedo and illumination conditions. Figure 3.1 shows the regular quadratic

reflectance map and the corresponding linear constraints (3.6). Even if the albedo is

known, there are two possible solutions for the unknown surface gradients. Though

enforcing integrability [32] helps in removing the ambiguity completely for constant

and piece-wise constant albedo maps, the problem is still ill-posed for the more gen-

eral case of unknown arbitrary albedo map [97]. However, the formulation is quite

useful for illumination-invariant matching as discussed in the following sections.
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Figure 3.1: Regular and symmetric reflectance maps [97].

3.5 Role of symmetry in illumination-invariant matching

In this section, we use the symmetric SFS formulation to analyze the problem

of illumination-invariant matching for the class of bilaterally symmetric objects.

Given an image of a bilaterally symmetric object, each pair of symmetric points

results in a linear constraint of the form (3.6). Given a second image of the same

surface, we obtain another linear relation for each corresponding point pair which

leads to the following Lemma.

Lemma 3.5.1 The linear relations for a point with surface gradients {p0, q0}, de-

rived from images taken under different light sources, are concurrent with {p0, q0}

as the point of concurrence.

Proof Line Slp+Dkq = D in the pq-space has to pass through the point {p0, q0}.

This is true for all such lines derived from all possible images of the point under

various illumination conditions. As two lines can intersect at only one point, the
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lines are concurrent with {p0, q0} as the point of concurrence, which proves the

lemma.

Therefore, if two images come from the same object, the corresponding lines

intersect at their true surface gradient. Interestingly, even if the two points are

not physically same (i.e., they have different surface gradients), the two lines still

intersect in the pq-space unless they are parallel. As the points have different surface

gradients, the point of intersection can not be the true surface gradient for both of

them. These observations help us prove that it is possible to distinguish between

two symmetric Lambertian objects using just one image per object as described in

the following subsection.

3.5.1 The ambiguity in matching

In a matching scenario, the goal is to determine if the two images come from

the same physical object or not. Given two images taken under different illumina-

tion conditions, we get an intersection point in the pq-space for each corresponding

symmetric point pair, which is a possible solution for the unknown surface gradients.

For each pair of corresponding points from the two image, we get two linear

constraints as follows

S1l1p+D1k1q = D1 (3.7)

S2l2p+D2k2q = D2 (3.8)

where the subscripts 1 and 2 distinguish the quantities corresponding to the two

images. Unless they are parallel, the two lines intersect at a point (say {p̄, q̄}) in the
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pq-space. Substituting the intersection point back in the image irradiance equations

(3.1) for the two images, following two albedo estimates are obtained

ρ̂1 =

√

p̄2 + q̄2 + 1
√

l21 + k2
1 + 1

1 − p̄l1 − q̄k1
I1 (3.9)

ρ̂2 =

√

p̄2 + q̄2 + 1
√

l22 + k2
2 + 1

1 − p̄l2 − q̄k2
I2

From Lemma 3.5.1, if the two points have same surface gradients and albedo,

then the two lines intersect at their true surface gradient. Substituting the true

surface gradient back in the irradiance equation will always produce the same true

albedo. Though not intuitive, it is possible to get ρ̂1 = ρ̂2 even when the two points

are physically different (i.e., they differ either in surface gradients or albedo). The

condition on the two points for this to happen is derived in the following theorem.

Theorem 3.5.2 The two albedos ρ̂1 and ρ̂2 are same if the following condition is

satisfied

ρ1

ρ2
=
p2

√

1 + p2
1 + q2

1

p1

√

1 + p2
2 + q2

2

(3.10)

where ρ1 and ρ2 are the true albedos for the two points and (p1,q1,1)√
1+p2

1+q2
1

and (p2,q2,1)√
1+p2

2+q2
2

are the corresponding true surface normals.

Proof Suppose (l1,k1,1)√
l21+k2

1+1
and (l2,k2,1)√

l22+k2
2+1

are the illuminant directions for image 1

and 2 respectively. For image 1, the true surface gradients {p1, q1} satisfy (3.7), i.e.,

S1l1p1 +D1k1q1 = D1 (3.11)

Using (3.11) and (3.7), we get

q =
1

k1

− 1 − k1q1
k1p1

p (3.12)
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Similarly, for image 2, we have

q =
1

k2
− 1 − k2q2

k2p2
p (3.13)

These lines intersect at the following point {p̄, q̄} in the pq-space

p̄ =
p1p2(k1 − k2)

p1k1(1 − k2q2) − p2k2(1 − k1q1)
(3.14)

q̄ =
p1(1 − k2q2) − p2(1 − k1q1)

p1k1(1 − k2q2) − p2k2(1 − k1q1)
(3.15)

Now the two albedos obtained by substituting {p̄, q̄} back in the image irradiance

equations for the two points are same if

√

p̄2 + q̄2 + 1
√

l21 + k2
1 + 1

1 − p̄l1 − q̄k1
I1 (3.16)

=

√

p̄2 + q̄2 + 1
√

l22 + k2
2 + 1

1 − p̄l2 − q̄k2

I2

i.e.,

1 − p̄l1 − q̄k1

1 − p̄l2 − q̄k2

.

√

l22 + k2
2 + 1

√

l21 + k2
1 + 1

=
I1
I2

(3.17)

Substituting p̄ and q̄ from (3.14) and (3.15), the left hand side of (3.17) simplifies

to

p2

p1
.
1 − l1p1 − q1k1

1 − l2p2 − q2k2
.

√

l22 + k2
2 + 1

√

l21 + k2
1 + 1

(3.18)

Also, the right hand side of (3.17) can be written in terms of the true surface

gradients and albedos as follows

ρ1

ρ2

.
1 − l1p1 − q1k1

1 − l2p2 − q2k2

.

√

l22 + k2
2 + 1

√

p2
2 + q2

2 + 1
√

l21 + k2
1 + 1

√

p2
1 + q2

1 + 1
(3.19)

From (3.18) and (3.19), the condition in (3.17) is true if

p2

p1
=
ρ1

ρ2
.

√

p2
2 + q2

2 + 1
√

p2
1 + q2

1 + 1
(3.20)

which proves the theorem.
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Theorem 3.5.2 leads to a few interesting observations which are described in

the following corollaries.

Corollary 3.5.3 The condition in Theorem 3.5.2 is trivially satisfied if the two

points have the same surface gradients and albedo.

Corollary 3.5.4 The condition in Theorem 3.5.2 can be true for points even if

they differ either in surface gradients or albedo. This essentially means that the

point characterized by surface gradients {p̄, q̄} and albedo ρ̂1 = ρ̂2 can account for

both the images, i.e., it is not possible to distinguish between the two points using

just one image (of each point) even under hard constraints of bilateral symmetry,

Lambertian reflectance and known distant point light sources.

Corollary 3.5.4 establishes the ambiguity on a per-point basis. If this is true

for all visible points of the two objects, then the two objects are indistinguishable

given just one image per object taken under different illumination conditions. As

chances of such a condition being satisfied by all the corresponding points of two

objects are low, it can be concluded that symmetry helps in disambiguating images

across illumination. Note that the condition is on the surface gradients and albedo

maps of the objects and not on their particular images.

3.5.2 Equivalence classes of bilaterally symmetric objects

We consider the condition in Theorem 3.5.2 as a relation R(i, j) relating two

objects i and j (assuming the condition is satisfied for all corresponding point pairs).
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Hence, R(1, 2) means that the condition is satisfied for all corresponding points of

objects 1 and 2. It is interesting to see that relation R is

1. reflexive, i.e., R(i, i) holds,

2. symmetric, i.e., R(i, j) implies R(j, i), and

3. transitive, i.e., R(i, j) and R(j, k) implies R(i, k).

Therefore, the condition in Theorem 3.5.2 induces an equivalence relation on the

set of all possible bilaterally symmetric objects. In other words, such a set can

partitioned into equivalence classes such that any two objects belonging to the same

equivalence class cannot be distinguished using just one image per object. This

follows directly from Corollary 3.5.4. On the other hand, two objects belonging to

two different equivalence classes do not satisfy the condition in Theorem 3.5.2 and

thus can always be distinguished using just one image per object.

3.6 Illumination-invariant Matching

If the assumptions of Lambertian reflectance and bilateral symmetry are rea-

sonably adhered to, the formulation in Section 3.5.1 can directly be used to reliably

match images across illumination. As the chance of getting images of two different

objects that belong to the same equivalence class is very low, the algorithm should

not make any error in matching.

Unfortunately, in most practical applications, the objects are neither Lam-

bertian nor perfectly symmetric. From Section 3.5.1, two images are recognized as
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belonging to the same physical object, if the two estimated albedos ρ̂1 and ρ̂2 are

same. ρ̂1 and ρ̂2 depend non-linearly on the estimated surface gradients {p̄, q̄}. Es-

timation of surface gradients {p̄, q̄} in turn depends on how strictly the assumptions

are adhered to. Deviations from the assumptions make the estimation of surface gra-

dients {p̄, q̄} and hence ρ̂1 and ρ̂2 quite unstable. The instability in the estimation

makes the scheme unsuitable for real data.

Here, we propose a novel algorithm to match images of symmetric objects

across illumination which follows naturally from Theorem 3.5.2. The algorithm does

not involve estimation of {p̄, q̄} or ρ̂1 and ρ̂2, and thus degrades quite gracefully when

the assumptions are not strictly satisfied.

From Theorem 3.5.2 and Corollaries 3.5.3 and 3.5.4, two objects appear similar

(given one image per object) iff

ρ1

ρ2
=
p2

√

1 + p2
1 + q2

1

p1

√

1 + p2
2 + q2

2

(3.21)

That is, iff

p1
ρ1

√

1 + p2
1 + q2

1

= p2
ρ2

√

1 + p2
2 + q2

2

(3.22)

From the given images, we have the following image irradiance relation for each

point on the object

I = ρ
1 − pl − qk

√

p2 + q2 + 1
√
l2 + k2 + 1

(3.23)

Substituting for ρ1 and ρ2 from the image irradiance equations for the two objects

in (3.22)

I1

√

1 + l21 + k2
1

1 − p1l1 − q1k1

p1 = I2

√

1 + l22 + k2
2

1 − p2l2 − q2k2

p2 (3.24)
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For each image, symmetry provides a linear constraint of the form (3.7) which has

to be satisfied by the true surface gradients {p1, q1}, i.e.,

S1l1p1 +D1k1q1 = D1 (3.25)

For pixels with D1 6= 0,

S1

D1
l1p1 + k1q1 = 1 (3.26)

From (3.26) and (3.24), the condition for the corresponding points of the two objects

to appear similar becomes

I1

√

1 + l21 + k2
1

l1(
S1

D1
− 1)

= I2

√

1 + l22 + k2
2

l2(
S2

D2
− 1)

(3.27)

Interestingly, the condition in (3.27) involves only light source directions and image

intensities. Thus, given two images, one can use this simple condition for each

corresponding pixel to decide whether they come from the same object or not. If

the symmetry and Lambertian assumptions are strictly adhered to, the matching

decision is provably correct up to the ambiguity in Corollary 3.5.4. As the condition

in (3.27) does not involve any unstable estimation of surface gradients or albedo,

the algorithm degrades gracefully with deviations from the assumptions.

The two sides of the condition in (3.27) can be treated separately as the

illumination-invariant representation of the respective objects as follows

I1r = I1

√

1 + l21 + k2
1

l1(
S1

D1
− 1)

(3.28)

I2r = I2

√

1 + l22 + k2
2

l2(
S2

D2
− 1)

(3.29)

Two images can be easily compared by generating these virtually relighted images.
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3.7 Experiments

The main contribution of this work is the theoretical statement that unlike gen-

eral objects, it is possible to distinguish between bilaterally symmetric Lambertian

objects using just one image. In this section, we present the results of experiments

performed on simulated and real data to evaluate the practical implications of the

work.

3.7.1 Experiments on simulated data

First, we use simulated data to verify the correctness of the proposed theoret-

ical result. We use the 3D face models used by Blanz and Vetter in their morphable

model [13]. We generate several images of 100 subjects in the database under ran-

domly selected illumination conditions. Here, the faces are made bilaterally symmet-

ric and the images are generated using Lambertian reflectance. As the assumptions

made in the theoretical formulation are strictly adhered to, the matching algorithm

does not make any error.

3.7.2 Experiments on real data

We also test the performance of the algorithm on PIE dataset [79]. The PIE

dataset has 68 subjects with images of each subject in 21 different illumination con-

ditions. The images show deviations from Lambertian and symmetry assumptions.

Moreover, the light source direction needs to be estimated which involves some er-

ror. Figure 3.2 shows the virtually relighted images obtained from different images
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of a subject in the dataset. The light source direction in an image is estimated using

a simple algorithm recently proposed by Lee and Moghaddam [51]. The relighted

images look like flattened frontally illuminated images. As desired, the illumination

effects in the original images mostly disappear in the relighted images.

Though the relighted images are not perfect (as the assumptions are not

strictly satisfied), they seem promising to be used for matching images across il-

lumination variations. We perform a face recognition experiment using the PIE

dataset. A set of commonly used challenging illumination conditions from the PIE

dataset is chosen to test our simple relighting based scheme (see Figure 3.3). In

this setting, all images in one illumination scenario are used to form the gallery and

another one to form the probe set. Thus, both the gallery and the probe set have

one image per subject. The recognition experiment is repeated for all combinations

of gallery and probe sets. Similarity between a gallery and a probe image is mea-

sured using a simple cross correlation between the corresponding relighted images as

follows. Suppose fg and fp are two vectorized relighted images, then the similarity

of the images is given by

S(g, p) =
< fg, fp >

|fg||fp|
(3.30)

where < fg, fp > denotes the scalar product of the two vectors. This is a very simple

measure and fits well with the goal of stress testing the practical usefulness of the

theoretical results. Table 1 shows the recognition results obtained in the experi-

ment. The proposed approach using the relighted images works quite well even with

such a simple distance measure. Unlike most face recognition methods, we do not
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make use of any face-based statistics (like Eigenfaces, 3D morphable models, etc.).

Recognition performance using the intensity images directly is also shown for com-

parison. Intensity images are normalized before computing the similarity. For most

gallery-probe scenarios, relighted images perform better than the normalized inten-

sity images. The improvement is quite significant when the illumination conditions

for the gallery and probe scenarios are very different.

Figure 3.2: Virtually relighted image examples using images from the PIE dataset.

3.8 Summary and discussion

We showed that two bilaterally symmetric objects can almost always be dis-

tinguished using just one image per object taken under different illumination con-

ditions. The condition under which they cannot be distinguished, partitions the set

of symmetric Lambertian objects into equivalence classes. In practice, it is difficult

for two objects to satisfy the condition leading to the conclusion that bilaterally

symmetric objects are hardly ambiguous.

Based on the theoretical formulation, we proposed a virtual relighting algo-
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Probe f09 f12 f13 f14 f15 f16 f17 f21 f22

Gallery

f09 -/- 99/99 97/97 97/94 75/63 60/44 56/34 99/99 85/84

f12 99/99 -/- 99/99 100/99 81/74 62/46 59/31 100/100 85/96

f13 99/94 100/97 -/- 100/100 100/100 94/78 81/54 100/100 100/100

f14 99/91 100/97 100/100 -/- 99/100 94/79 82/59 100/100 100/100

f15 94/35 100/49 100/100 100/100 -/- 99/100 99/96 100/68 100/100

f16 97/38 100/49 100/94 100/96 100/100 -/- 100/100 100/65 100/99

f17 85/37 91/44 97/63 99/71 100/100 100/100 - 94/50 100/90

f21 99/99 100/100 100/100 100/100 87/79 76/51 69/44 -/- 100/97

f22 97/54 100/81 100/100 100/100 100/100 97/96 97/72 100/96 -/-

Table 3.1: Recognition results on the PIE dataset. fi denotes images taken with ith

flash ON as labeled in the PIE dataset. Each (i, j)th entry in the table shows the

recognition rate obtained with the images from fi as gallery and from fj as probes.

The first number is the rank-1 recognition performance using the relighted images

while the second number is the performance using the intensity images directly.

rithm to recognize real objects that do not strictly satisfy the assumptions made.

The algorithm is provably correct for symmetric Lambertian objects up to the am-

biguity described in Theorem 3.5.2. The relighted images obtained on real images

seem to be free of any illumination effects. Face recognition experiments using

the relighted images showed excellent performance without using any sophisticated

classifier or class-based statistics.

There exist a few specific cases where symmetric SFS analysis may not be
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Figure 3.3: Illumination conditions from the PIE dataset used in the face recognition

experiment.

effective. Shadow pixels do not reveal much information about the surface gradi-

ents and have to be excluded from the formulation. Moreover, if l = 0 or p = 0,

two symmetric points have same image intensity, thereby providing no additional

information due to symmetry.
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Chapter 4

Cohort Analysis for Biometric Matching

Most biometric matching algorithms make decisions based solely on a score

that represents the similarity between the query biometric and enrolled biometric

of the claimed identity. Though there have been attempts to perform score-level

fusion, the emphasis has been on multi-classifier and multi-sample fusion. The com-

monly adopted fusion techniques, however, rarely make use of the large number of

non-match biometric samples present in the enrollment database. In this chapter,

we describe algorithms that make use of these often ignored non-match biometric

samples to improve biometric verification and identification performance. For each

enrolled subject, a cohort (set of similar biometric samples) is identified from the

available non-match samples based on a simple match score-based criterion. The

final (consolidated) similarity score of a query biometric is estimated using its sim-

ilarity not only with the claimed identity but also with the cohort of this identity.

The similarity scores are fused using two different approaches: a likelihood ratio

based normalization scheme and a Support Vector Machine based classifier. Exper-

iments on face and fingerprint biometrics using multiple match algorithms show the

performance of the approaches. The FVC 2002 data set and a private IBM data set

are used for fingerprint experiments; while the PIE illumination data set is used for

face recognition experiments. The results show that the cohort-based algorithms
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significantly improve the verification and identification performance at the expense

of estimating a few extra matches. Incidentally, any existing biometric matcher can

be used.

4.1 Introduction

By definition, verification (or authentication) is the confirmation of a claimed

truth. In the context of biometrics, verification amounts to validating if a given

query biometric is similar to the enrolled biometric of the claimed identity. On

the face of it, this appears to be a straight-forward binary classification problem

based on a similarity score s between the query biometric and that of the claimed

identity. The claim of the query is validated if the similarity is greater than a pre-set

threshold T . Figure 4.1 shows a typical verification system. To perform well, such a

system expects the classes to be reasonably compact with respect to the inter-class

distances, i.e., samples from the same class are much closer to each other than the

ones from different classes.

In an identification task, given a query biometric, the goal is to return the most

similar biometric from the enrolled database. Unlike the verification task, the query

needs to be compared against all enrolled biometrics to rank-order them and return

the most similar ones (Figure 4.2). The decision is made based on the similarity of

the query biometric with the enrolled biometrics. As in the verification task, the

similarity score of the query biometric with an enrolled biometric is often purely a

measure of how close the query is from the enrolled samples (usually just one) of
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Figure 4.1: A typical verification system. A matcher determines the similarity score

s between two biometrics. The decision is made by comparing the similarity score

with a suitable pre-set threshold T .

the identity in terms of similarity.
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biometric
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Represen-
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Biometric

Database

Sampling Matching

Figure 4.2: A typical identification system. A matcher determines the similarity of

the given query with the enrolled identities to rank-order them and return the most

similar ones.

4.1.1 Issues in using raw similarity scores

A verification system based on a fixed threshold on the raw similarity scores

works well when the classes have similar distributions and the intra-class expanse

(spread) is smaller than the inter-class distances. When classes are non-identically
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distributed in the feature space, the threshold may turn out to be too stringent for a

few classes while too lenient for others. This results in many false accepts and false

rejects, adversely affecting the overall verification performance of the system. Such

situations are more realistic than the ones where classes are identically distributed

and spread apart. In theory, one could set class-specific thresholds to avoid such

errors. This requires the system to have a priori knowledge about the distribution

of each class in the feature space. More often than not, very few (usually just one)

samples per identity (class) are available in the database which provide hardly any

information about the class distributions.

Figure 4.3 illustrates a distribution of classes in a feature space. Typically

biometric classes will not have similar distributions. The classes may not even be

isotropically distributed about their centers. Moreover, as the number of classes

increases, they tend to overlap leaving no choice of threshold that achieves error-

free verification. In addition, when dealing with realistic noisy images, the similarity

score of even a genuine query may be lower than normal, making it difficult to set a

single threshold to validate both noisy and noiseless images as shown in Figure 4.4.

Quality assessment as a pre-processing step could help choose a different threshold

depending on the amount of noise in the query input, this may not always be

possible. Most verification systems have to deal with such situations, irrespective of

the features they use.

In an identification system, the raw similarity scores of the query biometric

with the available samples of the enrolled biometrics are directly used to rank-order

the enrolled identities and to identify the query biometric. However, if the class
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Figure 4.3: The figure illustrates a typical feature space containing overlapping

classes with different distributions.

distributions differ greatly, direct ranking of the enrolled identities based on the raw

similarity of their available samples with the query biometric may not be optimal.

Though there is no threshold used here as in the verification case, the rank-ordering

does depend on how the similarities are computed. Raw similarity scores computed

using the few available (usually just one) enrolled biometric samples for each identity

do not take into account the variations in class distributions because of the lack of

training samples.

4.1.2 Class neighborhoods in feature space

In most realistic scenarios, there is a large number of enrolled (and training)

biometrics other than the biometric of the claimed identity. The large number of
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non-match biometrics (the biometrics that do not belong to the claimed identity)

are almost always ignored by the traditional verification systems while validating the

claim of a given query biometric. Though reasonable when treating each enrolled

subject in isolation, such strategies do not utilize the possibly useful class distri-

bution information present in the form of the large number of biometrics present

in the database. The neighboring, nearby biometric classes can provide informa-

tion about the class distributions of biometric representations in the neighborhood

of the claimed biometric. The information can potentially be useful to determine

class-specific thresholds that has proved elusive, especially with just one example

biometric per class. For example, the similarity scores of the query biometric with

the neighbors of the claimed biometric can help in reducing false accepts and rejects.

The neighborhood information even has the potential to provide resilience to noise

in validating a genuine query to a certain extent (Figure 4.4).

This motivates us to look beyond the raw similarity score between the query

biometric and just the claimed biometric. We show how one can effectively utilize

the similarity of the query biometric with the preselected neighbors of the claimed

biometric in validating the identity claim. From a pure machine learning point

of view, inclusion of multiple similarity scores increases the dimensionality of the

features used to perform verification. Note that the traditional verification schemes

use a one-dimensional feature in the form of raw similarity score between the query

and the claimed identity. Suitably selected higher dimensional features may result

in greater class separation (genuine vs. impostor) leading to increased verification

performance.
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Figure 4.4: An illustration to highlight the effectiveness of the proposed cohort-

based normalization scheme. As the raw similarity score of the genuine biometric is

lower than that of the impostor biometric, the traditional raw similarity score-based

threshold strategy is bound to make an error. In contrast, the proposed approach

increases the score of the genuine query.
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For identification scenarios, though each query is compared to all enrolled

biometrics, the variations in the class distributions are often not taken into account.

It is not possible to learn class distributions with the limited number of samples

available per biometric. As with the verification task, neighborhood information of a

biometric can be useful when the classes are differently distributed. From a machine

learning point of view, addition of neighborhood scores to characterize the similarity

of a query with an enrolled biometric increases the chance of better separation of

biometric classes. We propose to use such information to normalize the variations

in class distribution and to improve identification performance. This is achieved

by comparing the query against the cohort (neighbors) of the claimed identity and

using those similarity scores to account for differences in class distributions.

The unified fusion method makes use of mated and non-mated samples to

improve performance. Figure 4.5 illustrates the advantage of using neighborhood

information as proposed in this chapter. The correct match is the top match using

the proposed approach that accounts for variations in class distributions. In con-

trast, directly using the raw similarity scores, the correct match is not present in the

top five matches. In this example, variations are due to differences in illumination

conditions under which the images are captured.

These intuitions are the basis for the cohort-based matching schemes described

in this chapter. We use cohort as the term to denote a compact set of neighboring

biometric samples. For each enrolled class, its cohort is selected to get an idea about

how crowded the feature space is around that class. The proposed algorithms utilize

the similarity of the query biometric with the cohort (of the enrolled biometric) to
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Figure 4.5: The top row shows the top five matches obtained using the proposed

cohort-based approach; the bottom row shows the top five matches obtained using

the raw similarity scores. The correct match is encircled in the top row while it is

missing from the bottom row.

normalize for the variations in class distributions, thereby improving the verification

and identification performance.

The main contributions of this work are as follows–

1. We propose a novel score-based cohort selection strategy to address cohort

analysis for matching biometrics. In contrast, most earlier attempts to cohort

selection (normally done for speaker verification) depend on some sort of sta-

tistical model. To the best of our knowledge, no such attempt has been made

for other biometrics (face, fingerprint, etc.) for which such a model is not

known (or learning such a model is not easy).

2. A machine learning approach is developed to effectively utilize cohort scores.

A Support Vector Machine (SVM) based classifier is used that fuses cohort
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scores with the raw similarity score of the query biometric and the enrolled

biometric. This returns a final cohort-based similarity measure, which is used

to perform verification and identification tasks. Most earlier works view this

as a score-normalization problem instead of classifier training.

3. The approach is generalized to scenarios where multiple biometric samples

per identity are present in the database. The similarity scores of the query

biometric with the biometric of the claimed identity and its cohort are fed into

an SVM-based classifier to arrive at the final decision.

4.2 Organization of the chapter

The rest of the chapter is organized as follows. The following section briefly

reviews related published work. Section 4.4 provides a theoretical justification for

the proposed approaches, which are described in detail in Section 4.5. Section 4.5.1

describes the score-based approach for cohort selection. Two techniques proposed to

utilize cohort information to improve biometric matching performance are described

in Section 4.5.2. A useful extension of the approach for fusing multiple biometrics

per enrolled identity in the cohort framework is also discussed. Results of extensive

experiments performed to evaluate the usefulness of the proposed algorithms are in

Section 4.6. Section 4.7 concludes with a brief summary and discussion.
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4.3 Related work

Much research has been done on the problem of biometric matching [14], but

for most popular biometrics, little has been done to look beyond the raw similarity

scores to improve the matching performance. Here we group the related works

into three categories to summarize the progress made so far to normalize for the

variations in class distributions for the task of biometric matching. Most earlier

techniques address the problem as one of score normalization using some appropriate

score-based statistics. Unlike our work, most of them concentrate mainly on the

verification task.

4.3.1 Score normalization for speaker verification

Score normalization for text-independent speaker verification is popular prac-

tice [53][5][62][57][61][72][39][21][24]. Li and Porter [53] propose normalization tech-

nique that improve speaker recognition accuracy using short uncontrolled speech

samples. The normalization depends on the mean and variance of the scores of

the query samples with the enrolled biometric. Auckenthaler et al. [5] review the

world model and use the zero normalization techniques using Bayes’ theorem. They

propose a novel normalization technique called ”test normalization,” which shows

an improvement over other standard techniques. Normalization involves calculating

impostor log-likelihood scores for a test utterance to estimate mean and variance

parameters. Bengio and Mariethoz [57] introduce various score normalization tech-

niques applied to text-independent speaker verification systems.
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A second approach to score normalization is cohort normalization [39][72] that

uses a set of cohort speakers close to an enrolled speaker. The cohort selection is

done during training by comparing the speaker model to cohort models. Ariyaeeinia

and Sivakumaran [4] propose an approach that finds a cohort set of speakers dur-

ing operation. Higgins et al. [39] propose using cohort speakers to use a likelihood

ratio as the basis for verification. The authors suggest that the denominator like-

lihood is dominated by the density of the nearest reference speakers called cohort.

Reynolds [71] shows that a speaker-independent universal background model pro-

vides better normalization as compared to a speaker-dependent one for the task of

speaker verification. Both the speaker and background are modeled using Gaussian

Mixture Models (GMMs). A fruitful extension of such an approach to other bio-

metrics like fingerprints and faces has not been discussed before. Estimation of the

background distribution in the absence of a suitable statistical model to represent

these biometrics makes the problem hard.

4.3.2 Score normalization for other biometrics

Fierrez-Aguilar et al. [31] discuss the advantages of score normalization for

signature verification. They conclude that class-dependent thresholds improve the

verification performance. This happens because the enrolled and query biometric

distributions are not aligned for various enrolled biometrics. Appropriate score

normalization not only implicitly assigns different thresholds for different classes

but also accounts for other non-biometric variations, leading to better verification
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performance. In [85], Tulyakov and Govindaraju combine the top two scores for each

query in an identification framework. The authors point out the benefit of using a

combination of scores, instead of only the best score. They draw parallels of such

a technique with the score normalization for speaker verification and identification.

Zorita et al. [80] use a global fingerprint population to form a universal cohort

set for all enrolled fingerprints. The normalization is done using the maximum

score attained by the query biometric against the cohort set. A large population of

fingerprints is required to form a useful global cohort set. As the query fingerprint

needs to be matched with all the fingerprints in the cohort set, the technique requires

considerable computation. In contrast, we propose to select separate small cohort

sets for each enrolled biometric. This provides the benefits of using non-match

examples in performing the verification task at little extra computational cost.

4.3.3 Other fusion-based approaches for biometric matching

Cohort or neighborhood-based normalization schemes are relatively unexplored

for more general class of biometrics that are hard to model statistically. Instead,

attempts have been made to fuse multiple biometrics per subject in the enrolled

database. Uludag et al. [87] propose a similarity score-based approach to select and

fuse multiple biometrics for each enrollee to improve the performance of a finger-

print authentication system. Verification is done based on the mean (or minimum)

of the similarity scores of the query with the biometrics of the claimed identity. Ryu

et al. [73] propose to generate a super-fingerprint by incorporating only the highly
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reliable minutiae based on multiple fingerprint images. A successive Bayesian esti-

mation approach is applied on a sequence of prints to determine the highly likely

minutiae. Online improvement of the enrolled biometrics during the verification

process has also been proposed [46]. These methods utilize only positive exam-

ples (available biometric samples of the enrolled identity) to improve the enrolled

biometrics. In contrast, we investigate the usefulness of incorporating non-match

samples for verification and identification tasks.

4.4 A probabilistic perspective

The matcher used in most authentication systems estimates a similarity mea-

sure to evaluate the hypothesis that the query x belongs to the class of an enrolled

biometric w. In probabilistic terms, this can be written as follows

s(x, w) = ψ(p(x|w)) (4.1)

Here, p(x|w) denotes the likelihood that x comes from the distribution of w and ψ(.)

is an increasing function that maps this likelihood into a similarity score. Matchers

differ in the choice of ψ(.) and the way the likelihood is computed but the underlying

concept remains the same.

For tasks in which each enrolled biometric w is represented using a statistical

model, computing the score s(x, w) in (4.1) is quite straight-forward. Unfortunately,

for most biometrics it is not easy to do so. For example, no such statistical repre-

sentation is known for fingerprint and face biometrics. In such situations, matchers

estimate the similarity of the query with the available samples of the enrolled bio-
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metric. The hypothesis that the query belongs to the class w is evaluated based on

a suitable function of the similarity score (distance) of the query with the available

samples of class w. Such a scheme is reasonable if a large number of samples (that

represent the overall distribution of the class) per enrolled identity are present in the

database. Clearly, this is not the optimal basis to make verification or identification

decisions when only a few (or just one) samples per class are available because the

similarity of the query with the available sample(s) do not account for the variations

in class distributions of the enrolled biometrics.

4.4.1 Similarity ratio

One can treat the problem of estimating the similarity of the query with an

enrolled biometric as a basic hypothesis testing problem between the following two

hypotheses

• H1: The query x belongs to the claimed identity w.

• H0: The query x does not belong to the claimed identity w. In other words, x

belongs to the complement (or background) class w̄ = (U − w), with U being

the universal set of biometrics.

The optimal test to decide between the two hypotheses is the following likelihood

ratio test

ψ(p(x|w))

ψ(p(x|w̄))















> θ accept H1

≤ θ accept H0 (or reject H1)
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The similarity ratio

S(x, w) =
s(x, w)

s(x, w̄)
=
ψ(p(x|w))

ψ(p(x|w̄))
(4.2)

takes into account the similarity of the query with the rest of the classes along with

the samples of the claimed identity. Such a score has a much better potential as

compared to raw similarity s(x, w), to normalize for the variations in class distri-

butions even when only one sample per class is present in the database. A fixed

threshold θ on the similarity ratio S(x, w) can be seen as a dynamic threshold in

terms of the raw similarity score for verification tasks. For identification tasks, the

similarity ratio based approach essentially transforms the raw similarity scores to a

space in which the differences in class distributions have been accounted for.

4.4.2 Noise resiliency

Interestingly, the idea of likelihood ratio based measure is useful even to handle

noise in queries. This follows from the observation that such a measure normalizes

for the prior p(x) on the query. The prior on the query essentially encodes its

quality or some sort of bias not accounted for in the raw similarity score. It can be

mathematically written as follows

p(x) = p(x|w)p(w) + p(x|w̄)p(w̄) (4.3)

The prior p(x) is much lower for noisy queries than the good quality ones. For

example, a random image claiming to be a fingerprint will have a very low value of

p(x). Assuming there are lots of classes in the database, we get p(w̄) ≫ p(w). Hence,

p(x) ≈ p(x|w̄). Therefore, the similarity ratio based measure implicitly accounts for
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the quality of the query, making it desirable for the matching tasks.

Interestingly, one can consider noise to be another aspect of accounting for class

distributions during the matching process. Presence of noisy samples, essentially

leads to non-isotropic expansion of identity classes in the feature space. Note that

noise can be anything that does not contribute to the identity as seen by a matching

algorithm. For example, in case of face matching, bad illumination or extreme pose

can be considered noise when the matching algorithm is not capable of modeling such

variations. Fig. 4.5 shows an example in which the similarity score based measure

is able to correct the mistakes made by a face matcher due to extreme illumination.

4.4.3 Background modeling

An issue in using a similarity ratio-based measure is the choice of the back-

ground model w̄ = (U−w) for each class w. Again, U is the universal set representing

the database of biometrics. Given a reasonable model for the background, comput-

ing the similarity ratio is quite straightforward. Even if there are good models to

represent individual biometrics, the development of a universal background class

is a challenge for most biometric modalities. This has led to speaker verification

approaches that attempt to normalize the raw similarity scores using a chosen set of

impostors (cohort) for each enrolled identity [39]. The complement likelihood in the

denominator (4.2) is replaced by a suitable function (e.g., mean or maximum) of the

likelihood that the query template belongs to an impostor class. One can potentially

choose all the available (enrolled or not) biometrics to be the impostors; however,
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that will increase the computational complexity of processing each query when the

database is large. Therefore, only those biometrics that have good resemblance with

the claimant biometric are chosen as impostors to represent the complement class

w̄.

The idea that the denominator of the likelihood ratio is dominated by the

nearest biometric was suggested by Higgins et al. [39] in the context of speaker

verification. The goal is to approximate the conditional density of the given query

in the neighborhood of the claimed biometric. Even doing this requires a good

representative model for each biometric. In this work, we focus on biometrics for

which such models are either not known or not easy to learn from just a few samples.

For such biometrics, we propose a very simple similarity based method to select a

set of impostors (cohort) to represent the background class.

4.5 Proposed approach

We propose to use mated and non-mated biometric samples effectively to im-

prove biometric verification and identification performance. Given a query, its sim-

ilarity with an enrolled biometric is based not only on the similarity score with the

available samples of the enrolled biometric but also the neighborhood set (cohort) of

the enrolled biometric. This requires determining the neighbors of each enrolled bio-

metric in the database. Note that neighbors can either be other enrolled biometrics

or can belong to a training set representative of the biometric.

Neighboring classes can easily be determined if one can establish a suitable
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generative/statistical model given the biometrics of the enrolled entity. For most

biometrics (like face, fingerprint, etc.), learning such models, given a single (or a

few) biometric samples is not easy. We propose an extremely simple (yet effective)

scheme where the neighbors of each biometric are selected based on the raw similarity

scores. The approach does not assume anything about the biometric modality or the

way a matcher computes similarities. Though the matcher can be used to robustly

determine similarity, this is not the focus of this work. In fact, we show that even

a simple score-based scheme provides the benefits of cohort analysis.

Given a query, we use the available matcher to determine the similarity scores

with the claimed identity and its cohort1. The scores are fused using two different

algorithms for verification and identification. In the first algorithm, the raw simi-

larity score is normalized using the maximum cohort score. Though simplistic, the

method performs quite well across biometrics using several different matchers. In

the second method, the feature vector comprising of the raw similarity score and

the cohort scores is fed to a standard SVM classifier that validates the genuineness

of the claim. For the identification task, the output of the SVM (distance from

the separating hyper-plane) is used as the final similarity measure to rank-order

the enrolled entities. The proposed cohort-based approach is further extended for

situations when multiple templates per identity are enrolled in the database. Su-

perior performance is observed for different biometrics using raw similarity scores

from several different matchers in both verification and identification tasks.

1 Cohort is plural in itself and refers to the entire set of neighbors of an enrolled identity
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4.5.1 Cohort selection

Selecting close-by impostors (cohort set) for each enrolled biometric is a cru-

cial step in cohort analysis. In the speaker verification case, individual or universal

background speaker sets are often modeled using Hidden Markov Models (HMMs)

or a mixture of Gaussians. Given just one (or a few) fingerprint or face samples,

learning statistical models is hard. This makes the derivation of a universal back-

ground of face background quite difficult to realize in practice. The task of choosing

subject-dependent sets of impostor fingerprints/faces seems equally impregnable in

the absence of a model. Here we propose a simple similarity score-based strategy for

selecting a cohort. As shown later in the experiment section, though simple, such

a strategy does very well in improving the overall verification and identification

performance.

A cohort is selected for each enrolled biometric from other biometrics available

in the database. The biometric samples can either belong to the enrolled set or a

separate training set. No assumption about the training set is made, though it is

expected to be a good representative of the biometrics at hand. In the absence of

such a training set, one can choose cohort from the target (enrolled) set itself as is

done in most experiments described in this chapter. Given a biometric matcher, we

compute the (raw) similarity of each enrolled target subject with the templates in

the training set. The training templates with high similarity scores are chosen to

form its cohort. Intuitively, these training samples constitute the neighborhood of

the enrolled identity in the class space.
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4.5.1.1 Effectiveness of the cohort selection scheme

Biometric descriptors are multi-dimensional. Therefore, a purely score-based

approach to choose similar biometric samples that lie in a high-dimensional space

may seem hard. It is worthwhile to note that traditionally, these raw similarity

scores are used to make the final verification/identification decisions. So these scalar

scores do indicate something about the proximity of the biometrics even though

the biometrics themselves lie in a high-dimensional feature space. For example,

in the context of fingerprint verification, matchers often produce the number of

paired minutiae as the similarity score which should be a reasonable measure of

the similarity of the fingerprints for cohort selection. There is little doubt that one

may be able to choose better impostors by comparing the feature vectors instead of

depending purely on the similarity score of a matcher. However such a simple score-

based technique helps us in evaluating the effectiveness of incorporating impostor

scores in matching tasks without going into the details of the biometric, feature

extraction process or matcher. Moreover, this allows us to easily demonstrate the

usefulness of our fusion strategy across different matchers and biometrics.

Fig. 4.6 shows a few cohort sets selected using the proposed approach. A set of

68 face images (one random image per identity in the PIE data set [79]) is used as the

training set. The matching algorithm in [1] is used to compute the similarity scores.

It is quite interesting to see that the cohort images share resemblance with the

target face image. In a few cases, it is because of the facial features like mustache

or skin color. In others, the resemblance is purely because of the illumination
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Figure 4.6: Cohort selection for face images. In each row, columns 2-6 show the

automatically chosen cohort set for the face in the first column. The matching

algorithm in [1] is used to compute the similarity scores. The selected cohort images

seem to share some resemblance with the corresponding claimant images in the form

of mustache, illumination conditions, etc.
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conditions. This happens because most matchers are unable to completely separate

the external factors like illumination effects of the facial features, often resulting in

higher similarity scores for two different faces with similar illumination conditions as

compared to two face images of the same person under different lighting. When such

a cohort set is used to make the verification decision (as described in the following

section), it has the potential to normalize for these nuisance external factors and

produce similarity scores that are better correlated to the true identity.

Fig. 4.7 shows the selected cohorts for a few fingerprints. A set of 100 finger-

prints from the FVC 2002 [56] data set is used as the training set. The Bozorth

3 matcher [89] is used to generate raw similarity scores. In spite of the small size

of the training set, the cohort fingerprints seem to share some resemblance with

the corresponding target fingerprints (first fingerprint in each row). As the Bozorth

matcher is a minutia-based matcher, the members of the cohort sets need not always

share perceptual similarity with the target fingerprint.

4.5.1.2 Issues

Given the cohort for each enrolled subject, the following issues need to be

addressed to judge its usefulness and effectiveness for the task of biometric matching.

1. Can the cohort information be used to improve the verification and identifica-

tion performance?

2. Can the background class be modeled effectively using a small cohort for each

enrolled biometric?
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Figure 4.7: Cohort selection for fingerprints. In each row, columns 2-4 display

the automatically selected cohort sets for the fingerprint in the first column. The

Bozorth 3 matcher [89] used to generate raw similarity scores is a minutiae-based

matcher. Therefore, the cohort fingerprints are not always perceptually similar to

the corresponding enrolled fingerprint.
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3. How large a cohort do we need to improve matching performance? How does

the performance vary as the cohort size is increased?

4. How effective is the proposed simple approach in selecting a compact cohort?

5. Is the selection strategy general enough to work seamlessly across different

biometrics and matchers?

6. Is cohort-based matching effective in scenarios with multiple enrolled samples

per identity?

7. How should the cohort scores be fused with raw similarity scores?

4.5.2 Cohort analysis for biometric verification and identification

In this section, we describe algorithms that utilize cohort sets to improve bio-

metric verification and identification performance. Rigorous experiments are per-

formed to show how the proposed techniques utilize the neighborhood class informa-

tion present in the form of a cohort for improving the performance. The score-based

strategy proposed in the preceding section, is used for cohort selection which in a

way stress-tests the proposed cohort-based biometric matching algorithms.

4.5.2.1 Normalization-based cohort analysis

Here we propose a technique that is motivated by the similarity score ratio

described in Section 4.4. The similarity of a query with the claimed identity is

computed as the ratio of its (raw) similarity with the claimed identity divided by

90



the (raw) similarity with the complement class w̄, i.e.,

S(x, w) =
s(x, w)

s(x, w̄)
. (4.4)

Here s(x, w̄) is the similarity score of the query with the complement class. The raw

similarity with the claimed identity can directly be determined using the available

matcher. In the absence of a statistical model, the likelihood score to represent

the complement class needs to be computed based on a suitable function of the

raw similarity scores of the query with the similarities of the cohort of the claimed

identity. Assuming the cohort set to be of size k, this is achieved using the following

max-rule

s(x, w̄) = max{s(x, w1), s(x, w2), . . . , s(x, wk)}, (4.5)

where s(x, w̄) is the similarity score with the background and

{s(x, w1), s(x, w2), . . . , s(x, wk)} (4.6)

is the set of similarity scores of the query with the cohort wj’s for the enrolled

biometric w.

The cohort set for each enrolled class is pre-computed off-line using the pro-

posed cohort selection approach. For the verification task, the claim of the query

is validated through an appropriate threshold on the normalized similarity score.

For identification, the enrolled templates are rank-ordered based on the normalized

scores as opposed to the raw similarity scores as done traditionally.
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4.5.2.2 SVM-based cohort analysis

As motivated in Section 4.4, a cohort set is selected to represent the back-

ground class. Given the cohort, the likelihood of the query biometric generated by

the background class has to be evaluated. Though collectively the cohort represents

the background class, there is no obvious optimal way to compute the required like-

lihood measure s(x, w̄) or to compute the score ratio S(x, w) in (4.4). The approach

based on max-rule based is quite effective (as empirically shown in Section 4.6), but

it is not clear if this is the best way to utilize the additional information provided

by the cohort. This has motivated us to look for ways that are more effective in

using the cohort scores.

In this section, we propose a machine-learning approach to fuse cohort scores.

Experiments show that this novel strategy significantly outperforms the proposed

max-rule based scheme. The usefulness of this approach does not end at just fusing

the cohort scores. We extend this approach in the following section for scenarios

when multiple biometrics samples per identity are available in the database.

Given the raw similarity scores of a query with the enrolled identity and its

cohort, we need a suitable function to combine these scores to obtain a consolidated

similarity score that appropriately takes the class distributions, biometric quality,

etc. into account. This is viewed as a binary classification problem in the sense that

the goal is to separate the genuine and impostor classes as far apart as possible. We

use a linear SVM to perform this task. The SVMs are learning systems that use a

hypothesis space of linear functions in a (usually high-dimensional) feature space,
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trained with a learning algorithm from optimization theory [22]. Note that the

two classes here are the genuine (similar) biometrics and the impostor (dissimilar)

biometrics and not the identity classes themselves.

The raw similarity scores of the query with the available sample of an enrolled

identity and its cohort form a feature vector as follows

F (x, w) =
[

s(x, w), s(x, w1), s(x, w3), . . . , s(x, wk)
]

, (4.7)

where s(x, w) is the raw similarity score of the query with the enrolled biometric

w, while s(x, wj) are the raw similarity scores of the query with the members of its

cohort. Fig. 4.8 illustrates the essence of cohort analysis in the SVM framework. In

this illustration, the raw similarity score s(x, w) between the query and the enrolled

identity is essentially a vector in the input space while the vector F (x, w) consisting

of both raw and cohort similarity scores belongs to the feature space. As shown in

the figure, the input space may not be linearly separable leading to poor match-

ing performance. A suitable transformation to the feature space has the potential

to separate the two classes better, resulting in improved matching performance.

Interestingly, the traditional way of using raw similarity scores for verification is

equivalent to using a linear SVM with one-dimensional feature vector consisting of

the raw similarity of the query with the enrolled biometric.

For data in an n-dimensional space, the SVM tries to find the maximum-

margin hyper-plane separating the two classes during training. Though an SVM is

normally used as a classifier, we use it here to compute the similarity of the query

with the enrolled biometrics taking the cohort information into account. Therefore,
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Figure 4.8: SVM framework for cohort-based verification. The raw similarity scores

form the input space where the genuine and impostor classes are not linearly sepa-

rable. The feature vectors F (x, w) form the feature space where the classes tend to

be linearly separable.

the distance of each query feature vector from the separating hyperplane (learnt

during training) is used as the (dis)similarity measure that it belongs to the genuine

class or not. These consolidated similarity scores are used to authenticate queries

in the verification scenarios. For identification, these final similarity scores are used

to rank-order the biometrics.

4.5.2.3 SVM-based biometric fusion in the cohort framework

The algorithms presented so far in this chapter have implicitly assumed that

there is just one biometric sample for each enrolled identity in the database. Though

the proposed approaches work well in this verification setting, they will definitely be

more valuable if they can be extended to more general scenarios in which multiple
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samples are present to characterize each identity.

In this section, we extend the proposed SVM cohort analysis to maximize the

benefit when there are multiple enrolled samples per subject. Traditionally such a

sample fusion has been restricted to either—

1. score-based cold fusion [87] that uses simple functions (max,min, etc.) to fuse

the similarity scores of the query with all the available samples of the enrolled

identity in the database.

2. feature-level biometric fusion schemes [73] in which multiple samples are fused

to generate a more reliable template which is used for matching.

The fusion algorithm we propose here belongs to the first category of score-based

fusion with the following two major differences from the traditional schemes. First,

there is no need to select a function to fuse scores. Instead this is automatically

learnt from the training data during the SVM learning phase. Second, cohort scores

are also fused with raw similarity scores of the query with the database biometrics

to perform verification.

The formulation we propose here is inspired by the one proposed for cases

when just one biometric per enrolled identity is present. A linear SVM, as described

in the previous section, is used to fuse the multiple (raw) similarity and cohort

scores. The only difference lies in the feature vector used to train the SVM and

perform verification. Here the feature vector consists of the raw similarity scores

of the query with available (multiple) samples of the claimed identity and with the

members of its cohort set. Assuming there are m biometrics per identity enrolled in
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the database, the feature vector is of the following form

F (x, w) =
[

s(x, w1), s(x, w2) . . . s(x, wm),

s(x, w1)s(x, w2) . . . s(x, wk)
]

, (4.8)

where s(x, wi) represent the similarity score of the query with the ith biometric of the

claimed identity while s(x, wj) represent the query similarity with the jth member

of the cohort set of the claimed identity. The final similarity measure is derived

based on the distance of such a feature vector from the hyper-plane separating the

two SVM classes (genuine and impostor). Verification is performed by selecting a

suitable threshold on the final similarity score while in identification scenarios, the

final consolidated score is used to rank-order the enrolled identities.

4.6 Experiments

We present the results of rigorous experiments performed to evaluate the pro-

posed cohort analysis. The experiments are designed to address the issues described

in Section 4.5.1.

4.6.1 Database and matcher description

For fingerprint experiments, we use FVC 2002 [56] DB1 (Set A) database.

The data set consists of eight fingerprints each of 100 different subjects. There is a

significant variation in the quality of the eight copies of the same print. For most

experiments, the raw similarity scores are computed using the NIST Fingerprint

Image Software 2 [89]. The Bozorth 3 matcher included in the software is a minutiae-
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based matcher that computes the similarity of the fingerprints using the similarity

of their minutiae and their relative positions in the fingerprint. Such a matcher

depends on the reliable extraction of fingerprint minutiae and therefore, produces

low scores when minutiae points are missed or incorrectly located due to noise.

Experimental results show that the proposed cohort-based matching algorithms are

able to correct a few of such mistakes made by the Bozorth matcher.

For most experiments, one fingerprint per subject is randomly selected and

enrolled (out of the eight copies available) to form the enrolled set. The remaining

700 fingerprints are used as queries leading to 700 mated pairs and 700 × 99 non-

mated pairs in verification experiments. Identification performance often degrades

with an increase in the number of enrolled identities. Therefore we also use a private

IBM dataset consisting of 1000 unique fingerprints with 2 copies each to test the

proposed cohort-based identification approaches.

For verification and identification experiments on faces, we use the PIE data

set [79]. The PIE database consists of 68 subjects with variations in illumination,

pose and expression. We use only the illumination part of the PIE dataset in

our experiments. There are 21 images of each subject in 21 different illumination

conditions. Figure 4.9 shows the 21 images of a subject from the PIE dataset. In each

experiment, one randomly chosen image per subject is enrolled. The remaining 68×

20 images are used as queries leading to 68×20 matching pairs and 68×67×20 non-

matching pairs. Two different illumination-insensitive techniques [99] [1] are used to

generate the similarity scores. The algorithms in [99] and [1] model a face as a Linear

Lambertian Object. Given a face image, its illumination-invariant representation in
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the form of shape-albedo information is obtained. Though [99] deals mainly with

single light scenarios, [1] incorporates the inherent non-linearity in Lambert’s law to

handle more general lighting scenarios. Illumination-invariant matching being an

extremely ill-posed problem, there are cases in which these algorithms are unable

to output similarity scores that are truly invariant to changes in illumination. We

show examples in which the proposed cohort-based methods are able to correct the

mistakes made by these matchers.

Figure 4.9: The 21 illumination conditions in the PIE dataset.

4.6.2 Performance metrics

For verification experiments, we use Receiver Operator Characteristic (ROC)

curves to evaluate performance. The ROC curve consists of the system False Reject

Rate (FRR) plotted against False Accept Rate (FAR) obtained for various verifica-

tion thresholds (e.g., Figure 4.10). We use logarithmic scale along both FRR and

FAR axes to highlight the performance difference between different ROC curves.

Other than the visual difference between different ROCs, we also use Equal Error
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Rate (EER) and FRR at low FAR to compare different approaches. The EER indi-

cates the point on an ROC at which FRR becomes equal to FAR. FRR at low FAR

measure is particularly interesting for high security scenarios.

For identification experiments, we use standard Cumulative Match Character-

istic (CMC) curves to evaluate performance. A CMC curve plots the cumulative

distribution of rank at which a correct match occurs for a query set. Often perfor-

mance at rank 1 is used to judge the goodness of the approach.

4.6.3 Max-normalization approach

4.6.3.1 Fingerprint verification performance

Figure 4.10 shows the improvement in verification performance obtained using

the proposed normalization scheme. The cohort is of size 10 for each enrolled fin-

gerprint in this experiment. From the available eight fingerprints per subject in the

data set, we randomly select one per subject to form the database. The remaining

7 prints per identity are used for querying. Therefore, there are 700 genuine and

700×99 impostor comparisons. The normalization scheme reduces the FRR at 0.001

FAR by about 25% (from approximately 0.062 to 0.045) as compared to the FRR

obtained using the traditional raw similarity score based verification. The reduction

in FRR at 0.1 FAR using the proposed scheme is around 40% (from approximately

0.023 to 0.014).
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Figure 4.10: The ROC plot shows the verification performance on the FVC 2002

data set. The proposed normalization scheme reduces the False Reject Rate (FRR)

by about 25% at 0.001 False Accept Rate (FAR).

4.6.3.2 Statistical significance

To show that this is not a chance improvement in performance because of a

peculiar selection of the database, we repeat the experiment using several random

choices of enrolled set (again having just one enrolled fingerprint per subject). As

before, there are 700 genuine and 700×99 impostor comparisons. Figure 4.11 shows

the improvement in the performance using the EER and FRR at low FAR (useful for

high-security scenarios). Though the amount of improvement varies with the choice

of enrolled set, the proposed approach consistently performs much better than just

using the raw similarity scores. On average, there is a reduction of over 25% in both

FRR at 0.001 FAR and EER.
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We further use the t-test to evaluate the statistical significance of the im-

provement in performance. The t-value computed to evaluate the significance is

essentially the ratio of difference in mean to the variability of the two sets of perfor-

mances obtained using raw similarity scores directly and the proposed cohort-based

normalization. The expression for t-value is as follows

t =
X̄1 − X̄2

√

σ2
X1

+σ2
X2

n

. (4.9)

Here n is the number of samples (here, trials), X̄1 and X̄2 are the means while σ2
X1

and σ2
X2

are the variances of the two performance distributions obtained using the

traditional raw similarity score and the cohort scheme. Using the expression, we

obtain t-value of 10.3 for EER while 15.4 for FRR at FAR=0.001, both of which

pass the test of significance by large margins.
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Figure 4.11: The plots show improvement in the FRR at 0.001 FAR and EER using

the cohort-based normalization for various random selections of the target set. The

variation in performance across various sets is because of the difference in similarity

and/or quality of the chosen biometrics with respect to the query ones.
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4.6.3.3 Face verification performance

To evaluate the portability of the proposed scheme to other biometrics and

matchers, we test the approach on the PIE (face) data set using two different algo-

rithms to compute the raw similarity scores. One face image per subject is randomly

chosen to form the data set of face images (gallery). The remaining 20× 68 images

are used as queries. There are 68 × 20 genuine and 68 × 20 × 67 impostor compar-

isons. Figure 4.12 shows the performance on the face data set using the matcher

proposed in [1]. The cohort scheme significantly outperforms the traditional raw

similarity score based approach. In this experiment, cohort-based normalization

reduces the FRR by around 45% (from approximately 0.38 to 0.21) at 0.1 FAR.

Similar improvement in verification is observed using the other matcher [99].
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Figure 4.12: The ROC plot shows the improvement in verification performance

achieved by normalizing the similarity scores using the selected cohort sets on the

PIE data set.
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Figure 4.13: The CMC plot shows the improvement in identification performance

on the PIE data set.

4.6.3.4 Face identification performance

Figure 4.13 shows the improvement in performance obtained in an identifica-

tion experiment. The experiment is performed on the images from the PIE data set

with one randomly selected face image for each of the 68 subjects enrolled forming

the gallery. The remaining 20 × 68 images taken under different challenging illu-

mination conditions form the query set. The raw similarity scores are computed

using the approach in [99]. The cohort approach compares favorably to using raw

similarity scores.

In Figure 4.14, we show the top five matches for 5 queries to illustrate the

reason for the improved identification performance. Using the raw similarity scores

directly, there seems to be a strong correlation in the query illumination condi-

tion and the illumination conditions of the top matches. In contrast, the pro-
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posed normalization-based cohort analysis does much better in returning the correct

match, even when the illumination conditions are quite different.

4.6.3.5 The choice of cohort

Though we notice improvement in the performance using the automatically

selected cohort sets, so far it is not clear if the chosen set is compact and is better

than any other set. To investigate this issue, we conduct an experiment to observe

the verification performance by varying the cohort size. The FVC 2002 DB1 data

set is used to analyze the trend. As shown in Figure 4.15, the performance improves

till the cohort size is about 20 but does not change much by increasing the cohort

size beyond 20. Compared to the raw similarity based verification, the proposed

normalization scheme reduces the ERR and FRR at 0.001 FAR by more than 25%

using 20 cohorts for each enrolled identity. This shows that one can get good per-

formance using the proposed approach without having to compare the query with a

large universal set of fingerprints.

Figure 4.16 compares the performance of the proposed approach with random

selection of the cohort sets. For each enrolled subject, a cohort is chosen at random

and is used to perform the normalization. As one random selection may not illus-

trate the true picture, we repeat this experiment 100 times, using a new random

cohort set (for each subject) in each run. The distribution of EER and FRR for

0.001 FAR obtained on the FVC 2002 data set using the random cohort selection

is shown in Figure 4.16. The EER and FRR obtained with cohort sets selected
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Figure 4.14: Top matches returned in an identification experiment on the PIE data

set. Each pair of rows compares the top matches obtained for a given query, using

the cohort scheme and raw similarity scores. The correct match is encircled. The

matches obtained using the raw similarity show strong correlation with the query

in terms of illumination conditions. In contrast, cohort-normalized scores do quite

well in returning the correct match.
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Figure 4.15: The variation of EER and FRR at 0.001 FAR with the size of cohort

set to compute the normalized score. As desired, the performance improvement

saturates around cohort of size 20. The proposed normalization technique reduces

the EER and FRR at 0.001 FAR by over 25%.
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Figure 4.16: The plots show the usefulness of including cohort scores for the verifi-

cation task. The left plot shows the ERR distribution while the right one shows the

FRR at 0.001 FAR. The vertical starred line (green) shows the performance using

the cohort selected using the proposed score-based scheme while the vertical circled

line (red) shows the performance using the traditional way of using raw similarity

scores. Normalization using random cohort sets makes the performance worse.
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using the proposed approach are significantly lower than the ones obtained using

random selection. In fact, even using raw similarity scores for verification gives

better performance as compared to normalization using random cohort sets.

The observation illustrates the importance of the cohort selection process to

perform verification. As illustrated earlier, a cohort is chosen to gain some knowledge

about the class distribution in the vicinity of the class at hand. A random cohort

selection is not the best way to model the background class effectively. Therefore,

the normalization using a randomly selected cohort, randomly boosts or reduces

the genuine and impostor scores leading to a performance that can potentially be

even worse than using the raw similarity scores. This justifies the poor performance

obtained using randomly selected cohort sets in all 100 trials of the experiment.

4.6.4 SVM-based approach

4.6.4.1 Fingerprint and face verification performance

Figure 4.17 shows the verification performance on the FVC 2002 fingerprint

data set achieved using the SVM-based approach. We use the free SVM toolbox [83]

for this task. During training, the classifier tries to capture the relationships between

the raw similarity scores and the cohort scores to determine the maximum-margin

hyper-plane that separates the genuine and impostor classes. Therefore, it can be

trained using an unrelated dataset.

Figure 4.18 shows the verification performance on the PIE face data set. The

two plots correspond to the two different algorithms [99] [1] used to generate the

108



10
−3

10
−2

10
−1

10
−2

10
−1

False accept rate

F
al

se
 r

ej
ec

t r
at

e

Normalization using max rule
Using raw similarity scores
Using SVM

Figure 4.17: The ROC plot shows the improvement in the verification performance

on the FVC 2002 data set using the proposed cohort-based schemes.

similarity scores. For each subject, the size of the cohort is five. As before, there

are 68×20 genuine and 68×20×67 impostor scores. The expected improvement in

the performance shows that the strategy is generalizable across different biometrics

and matchers.

4.6.4.2 Fingerprint and face identification performance

We perform an identification experiment on the PIE data set with one ran-

domly selected image per subject in the gallery set and 68 × 20 queries. The cardi-

nality of the cohort sets for each subject is five. Figure 4.19 shows the recognition

performance obtained in this experiment. As in the verification scenario, the cohort-

based approaches perform significantly better than using the raw similarity scores

directly. The rank-10 performance of the SVM-based cohort approach is 90% which
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Figure 4.18: The ROC plots show the improvement in verification performance

obtained using the proposed cohort-based approaches on the PIE (face) dataset.

The matcher in [99] is used to generate the similarity scores for the left plot while

the one in [1] is used for the right plot.

is up by 20% as compared to 70% obtained using just the raw similarity scores.
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Figure 4.19: The CMC plot shows the improvement in the identification performance

using the proposed cohort techniques on the PIE (face) data set.
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Another identification experiment is performed using the fingerprints from a

private IBM database. The data consists of 1000 fingerprints with two copies of

each fingerprint. The similarity scores are computed using the approach in [70].

One fingerprint per identity is enrolled in the gallery and 200 randomly chosen

fingerprints from the remaining set are taken as the probes. This is a standard

open set identification setting considered to be much more difficult than a closed-

set one. Figure 4.20 compares the cohort-based recognition performance against

the performance of the raw similarity score based approach. Though the rank-1

performance for all the methods are quite similar, the proposed methods outperform

the raw similarity score-based performance at higher ranks.

4.6.5 SVM-based biometric fusion in the cohort framework

Figure 4.21 (left) shows the performance of the cohort-based fusion approach

to fuse the scores obtained by comparing the query fingerprint with the multiple

enrolled samples of the claimed identity. The experiment is performed on the FVC

2002 [56] data set. For each identity, three randomly selected copies of the fingerprint

are enrolled in the database, while the remaining five are used as queries. The

cohort set for each identity in such a multi-sample scenario is determined based on

the raw similarity scores of the training samples with all the enrolled samples of

that identity. The comparison is shown with approaches that use minimum [43],

mean [87], and max of the three mated scores (similarity scores with the copies

of the claimed identity) as the final score for matching. As shown, the proposed
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Figure 4.20: The CMC plot shows the improvement in identification performance

using the proposed algorithms on a private fingerprint data set. The gallery con-

sists of one randomly selected fingerprint for 1000 subject. 200 randomly chosen

fingerprints from the rest of the database are used as queries. Though the rank-

1 performance is more or less the same using the three methods, the proposed

cohort-based approaches outperform the traditional one at higher ranks. Such an

improvement in performance is useful for indexing and retrieval tasks.

approach comfortably outperforms the other popular fusion strategies. Figure 4.21

(right) shows the results of a similar experiment on the PIE face data set. Again,

three face images per identity are enrolled and the remaining 18 per subject are

used as queries.

Figure 4.21 and Figure 4.17 illustrate the advantages of including non-match

samples in validating a query. The inclusion of non-match samples improves the

performance even when just a single sample per identity is in the database. However,
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Figure 4.21: The ROC plots show the improvement in fingerprint (left) and face

(right) verification performance using the proposed SVM-based approach when there

are multiple enrolled samples per identity. The comparison is done with the tradi-

tional approaches of taking the max, min, or mean of the similarity scores of the

query with the samples of the claimed identity.

the combination of multiple enrolled samples, cohort analysis and the SVM-based

fusion strategy performs the best. Therefore, the proposed cohort analysis does not

obviate the advantages of having multiple enrolled samples in the database, instead

it complements such information to further improve the matching performance.

Table 4.1 illustrates this point by comparing the verification performance obtained

at specified FAR with and without multiple mated/non-mated samples.

4.7 Summary and discussion

We discussed the limitations of using likelihood-based raw similarity scores for

the task of biometric matching. It is shown that much more can be achieved using

the large number of non-match biometric samples often present in the database.
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FRR at 0.01 FAR FRR at 0.001 FAR FRR at 0.1 FAR

(Fingerprint) (Fingerprint) (Face)

Single enrolled (without cohort) 0.045 0.07 0.41

Single enrolled (cohort-MAX rule) 0.033 0.057 0.23

Single enrolled (cohort-SVM) 0.02 0.04 0.17

Multiple enrolled (without cohort) 0.014 0.022 0.12

Multiple enrolled (cohort-SVM) 0.004 0.006 0.06

Table 4.1: Effect of multiple mated and non-mated samples on verification perfor-

mance. The performance numbers are taken from Fig. 4.21 and Fig. 4.17.

A simple score-based approach is used to select cohort sets for biometrics with no

suitable statistical model. The approach makes use of the raw scores returned by

a matching algorithm to select the cohort sets. We make no assumption about the

biometric or matcher. Neighborhood information in the form of the selected cohort

is further used to perform biometric matching. Two different approaches are devel-

oped to fuse cohort scores with the raw similarity score of the query with the true

biometric. The first one is a simple likelihood ratio-based normalization technique.

Experiments show that such a simple approach leads to a significant improvement in

both verification and identification performance. In the second approach, the cohort

scores are incorporated in the final similarity using a linear SVM. The SVM-based

cohort analysis for biometric matching significantly outperforms even the proposed

score normalization approach. The approach is further extended to address multiple-
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template scenarios. The performance improvement obtained using the cohort-based

approaches is significant and consistent across multiple biometrics, data sets, and

matching algorithms. It is the combination of multiple enrolled samples, non-match

samples and SVM-based fusion that gives the best matching performance.

In all the experiments, the cardinality of the selected cohort set has been the

same for each enrolled identity. In theory, this should depend on the individuality

of the biometric and therefore should vary across biometric classes and also the

quality of query and reference templates. It would be an interesting exercise to

examine the impact of variable size cohort. Though the max-normalization scheme

can potentially handle variable size cohort sets, the same is not true for the SVM-

based approaches. We would like to address this in our future work.

The proposed cohort analysis framework does not assume anything about the

data or matching algorithms. Therefore, it should be useful for any pattern match-

ing/classification task. It will be interesting to explore its usefulness for such tasks

in completely different domains.
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Chapter 5

Physics-based Revocable Face Matching

We present a face reconstruction approach for revocable face matching. The

proposed approach generates photometrically valid cancelable face images by follow-

ing the image formation process. Given a face image, the approach estimates facial

albedo followed by a subject-specific key based photometric deformation to generate

a cancelable face image. The proposed approach allows for using any available face

matcher to perform verification or recognition in the transformed domain, a capa-

bility missing from most existing works on cancelable face matching. Experiments

are performed to evaluate the performance, privacy and cancelable aspects of the

face images reconstructed using the approach. Results obtained are very promising

and make a strong case for such backward compatible cancelable face representa-

tions that can seamlessly make use of advancements in automatic face recognition

research.

5.1 Introduction

The advancement and popularity of biometric systems has brought concerns

of biometric-theft. Unlike PINs or passwords, which can be changed at will when

compromised, biometric traits are unique and permanent. This leads to the obser-

vation that though biometrics are authentic, they are not secure (or private like
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passwords). If compromised, biometric signatures cannot be revoked or canceled. It

allows for rogue establishments to track subjects across databases and institutions

without consent.

The concern of biometric privacy has led to research efforts to secure biomet-

rics [69]. One popular way is to combine biometrics with user-provided keys or

passwords to make them secure. The user-specific private key is used to encrypt

biometric template which is stored in the database. The encrypted template stored

in the database is used for further matching. For matching purposes, the same

encryption scheme is used to transform the query template to compare it with the

stored secure template. Quite clearly, such an approach combines the advantages of

biometric based authentication and password-based privacy and revocability.

Ratha et al. [69], in their pioneering work, present several one way (non-

invertible) transforms for constructing multiple secure identities from a fingerprint.

They show that a user can be given as many biometric identifiers as needed by

issuing a new transformation key which can be canceled and replaced when com-

promised. Savvides et al. [74] extend their earlier work on correlation filter based

face matching to produce cancelable biometric representations. They show that con-

volving the training images with any random convolution kernel before building the

filter does not change the resulting correlation output peak-to-sidelobe ratios, thus

preserving the authentication performance while maintaining privacy. Boult [15]

introduces robust biometric transform that can be used for revocable face authenti-

cation. The transformed feature vector is separated into a fractional and an integral

part where the integral part is encrypted while the other is left unsecured. Teoh
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et al. [84] present a biometric-hash framework by integrating biometric and user-

specific password using Random Multispace Quantization (RMQ). The process is

carried out by first obtaining a fixed length feature vector from the input biometric

followed by a non-invertible random subspace projection and quantization.

One of the main problems in encryption-based biometric authentication ap-

proaches is that they tend to be sensitive to variability/noise in the input biometric

space. Inherently, biometrics show a great deal of intra-class variability either due

to natural causes or external imaging conditions. It is difficult to design an encryp-

tion scheme that can suitably transform features extracted from such input data

minimizing within-class scatter as compared to the between-class scatter. Unlike

input biometric space, in which one can perform some sort of learning to account

for such intra-class variabilities, such learning is not easy in the encrypted space.

Another drawback of encrypting feature extracted from the input biometrics is that

such approaches tend to be specific to the features used. Therefore, it may not

always be easy for such approaches to take advantage of the new developments in

the field of biometric matching.

In this chapter, we propose a physics-based face reconstruction approach that

addresses these issues for cancelable face matching. Given an input face image, the

proposed technique reconstructs a transformed face image that can be matched us-

ing any publicly available matcher. Depending on the capability of the face matcher

used to compare the reconstructed face images, the variability/noise in the input bio-

metric can be accounted for even though matching is performed in the transformed

domain.
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Figure 5.1: A schematic of the proposed approach.

5.2 Organization of the chapter

The chapter is organized as follows. The proposed face reconstruction ap-

proach is described in Section 5.3. Results of extensive experimental evaluations

performed to validate the usefulness of the approach in terms of privacy, security

and matching performance are shown in Section 5.4. The chapter concludes with a

brief summary and concluding remarks in Section 5.5.

5.3 Physics-based face reconstruction

An input face image is the result of an interplay between the physical charac-

teristics of a real 3D face, external imaging environment (illumination, view, etc.),
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capturing device, etc. Our goal is to create another face image from the input image

that can be used as a cancelable representation of the face, that can be matched us-

ing any available face matcher. One of the critical components of such an approach

is appropriateness of the transformation from the input face to the desired cance-

lable face image such that the output is photometrically valid. Quite clearly, direct

manipulation of the image intensity values may lead to images which are physically

unrealizable.

In this work, we first estimate albedo from a single input face image. This is

followed by user-specific key based transformation of albedo. Due to the absence of

real 3D shape information of the input face and the difficulty in estimating shape

from a single image, we use a transformed (distorted) version of the average facial

3D shape. As with albedo, the kind and amount of shape distortion is guided by

the user-specific key. Once we have the distorted albedo and shape, we render a

face image that does not reveal the identity of the subject in the input image. The

vast range of possible transformations (or distortions) on estimated albedo and 3D

facial shape provides cancelability to the approach for scenarios when the template is

compromised. Figure 5.1 shows a schematic of the proposed approach. The various

steps of the proposed approach are described in the following sections.

5.3.1 Albedo estimation

The first step of our approach is to estimate surface albedo from the input face

image. Without loss of generality, face images are assumed to be pre-cropped and
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Figure 5.2: Examples of transforms applied to a few images from the PIE dataset.

pose-normalized to be in the frontal pose. Albedo estimation is performed using the

non-stationary stochastic filtering framework proposed by Biswas et al. [11]. Given

a coarse albedo map (obtained using the average facial 3D shape of humans), the ap-

proach estimates a more robust albedo map by accounting for the statistics of errors

in surface normal and light source estimation in an image restoration framework [3].

Readers are encouraged to read [11] for technical details.

5.3.2 Albedo and shape transformation

In this step, the estimated albedo and the average facial 3D shape is trans-

formed using the user-provided secure key. From the large number of available

choices for such a transformation, we use one based on mixture of Gaussians. Albedo

is transformed by multiplying it with a mixture of Gaussian image. The number,

peak locations, and variance of the Gaussian distributions is determined using the

key. For shape transformation, we generate another mixture of Gaussians surface

and linearly combine it with the average 3D facial shape. As with albedo, the
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user-specific key determines the specifics of the mixture of Gaussians surface.

5.3.3 Image reconstruction

The transformed albedo and shape are used to reconstruct a photometrically

valid face image. Assuming Lambertian reflectance model, the desired image can

easily be generated using the following relation

Ir = ρr max(nr · s, 0) (5.1)

where Ir is the reconstructed transformed face image, ρr is the transformed albedo

map, nr is the transformed surface normal map and s is the light source direction

which is taken to be [0, 0, 1]T for frontal lighting. Figure 5.2 shows a few images

generated using this approach.

5.4 Experimental evaluation

In this section, we describe the experiments performed to evaluate the use-

fulness of the proposed backward-compatible cancelable face reconstruction. In our

implementation, the user-defined keys are generated using a random number genera-

tor that defines the number (5-10), location and variance of Gaussian peaks required

to generate distorted images. The experiments are performed on illumination part

of the PIE face dataset [79] that consists of face images of 68 subjects under 21 chal-

lenging illumination conditions (Figure 5.3). Each experiment consists of matching

images in one illumination scenario against another. This results in 68 genuine and

68×67 impostor pairs. All the verification results and score distributions presented
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in this chapter are obtained by repeating the experiment for all
(

21
2

)

pairs of illumi-

nation conditions, thereby resulting in
(

21
2

)

×68 genuine and
(

68
2

)

×68×67 impostor

pairs. In addition to evaluating privacy and revocability, experiments also reflect

the illumination-invariance property of the approach. Illumination-invariance is a

byproduct of using albedo images as opposed to direct intensity images for trans-

formed face reconstruction. In all the experiments, similarity scores are computed

using Principal Component Analysis (PCA). The PCA bases are learnt from the

FRGC training data [66] that consists of 366 training face images.

5.4.1 Performance

Figure 5.4 shows the genuine and impostor score distributions obtained using

the reconstructed faces. In this experiment, every subject has a different transfor-

mation key. The plot shows the distributions obtained in two different runs of the

experiment using different sets of keys for each identity. The genuine/impostor dis-

tributions hardly overlap leading to almost flawless performance. Note that the pro-

posed approach is able to account for illumination variations present in the original

images, a capability missing in most previous cancelable face matching approaches.

5.4.2 Lost key scenario

We now evaluate the performance of the approach by using the same trans-

formation key for all the subjects. This simulates the stolen/lost key scenario when

an adversary somehow gets hold of a user’s key and tries to break into the system
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Figure 5.3: The 21 illumination conditions in the PIE dataset.

using that key. Figure 5.5 shows that the separation between the genuine/impostor

distributions is preserved even when the same transformation key is used for all the

subjects. In fact, the reconstructed faces perform better in a verification setting as

compared to the original input images even when same transformation key is used

for reconstruction (Figure 5.6).

5.4.3 Privacy and revocability

We first compare the genuine and impostor score distributions obtained while

matching the reconstructed images against the original input images , i.e., using orig-

inal images in the gallery while the reconstructed images as queries. The experiment

is repeated by replacing the original images with another set of transformed images

generated using a different set of keys. Figure 5.7 shows that the genuine and impos-

tor score distributions have hardly any separation indicating that the reconstructed

faces reveal hardly any identifying information when compared against the original
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Figure 5.4: Impostor and genuine score distributions obtained using the generated

face images. The plot shows results obtained in two different runs of the proposed

algorithm using different set of keys.
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Figure 5.5: Lost key scenario: Genuine/impostor score distributions obtained in

matching experiments on the face images reconstructed using the same key for all

identities (left) and the original input images (right). The genuine/impostor sepa-

ration is preserved even when same key is used to transform all identities.

or (differently) transformed images. To further evaluate the privacy/revocability

of the proposed approach, we also compare the mated score distributions obtained

while matching 1) original images against transformed images (should be low for

privacy), 2) transformed images against other transformed images generated using

the same key (should be high for good performance), and 3) transformed images

against other transformed images generated using a different key (should be low for

revocability). Figure 5.8 shows that the genuine score distributions are in fact as

desired proving the privacy and revocability aspects of the proposed approach.
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Figure 5.6: Lost key scenario: Comparison of Receiver Operator Characteristic

(ROC) curves obtained in a verification experiment with the original images in the

gallery while the transformed faces (generated using same key for all identities) as

queries.
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Figure 5.7: Privacy/revocability test: 1) Genuine/impostor score distributions ob-

tained using the transformed image set 1 as the gallery and transformed image set

2 as queries (left), and 2) Genuine/impostor score distributions obtained using the

original images in the gallery and the transformed ones as the queries (right).

5.5 Summary

Unlike inter-operable fingerprint templates, there is no common format for face

features other than the image itself. In order to achieve backward compatibility, we

proposed a physics-based face reconstruction approach for cancelable face matching.

Given an input face image, the proposed technique reconstructs a new transformed

face image that can be matched using any available matcher. We tested our ap-

proach using a standard database with several different transforms. The results are

extremely encouraging. We will test the scalability of our approach using larger

databases and publicly available face matchers in future. Note that though it is

impossible for an adversary to get the original image back from just a transformed

image and the corresponding key, the transform is invertible if he/she has access to
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Figure 5.8: Privacy/revocability test. Comparison of distributions of mated scores:

1) Original image against transformed image (should be low for privacy), 2) Trans-

formed image against other transformed image generated using the same key (should

be high for good performance), 3) Transformed image against other transformed im-

age generated using a different key (should be low for revocability).
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the exact distortion algorithm used to obtain the transformed images.
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Chapter 6

Face Recognition and Tracking in Videos

Traditionally, face recognition research has been limited to recognizing faces

from still images. The advent of inexpensive high-resolution video cameras and in-

creased processing power makes it viable to capture, store and analyze facial videos.

Videos have the advantage of providing more information in the form of multiple

frames. Moreover, video input allows to capture any temporal signature present

that can be used to characterize and hence, identify a person. Video-based face

recognition (VFR) is particularly useful in surveillance scenarios in which it may

not be possible to capture a single good frame as required by most still image based

methods.

6.1 Challenges in automatic video-based face recognition

Effective utilization/fusion of the information (both spatial and temporal)

present in a video to achieve better generalization (for each subject) and discrim-

inability (across different subjects) for improved identification is one of the biggest

challenges faced by a VFR system. The fusion schemes can range from simple se-

lection of good frames (which are then used for recognition in a still-image based

recognition framework) to estimation of the full 3D structure of a face which can

then be used to generalize across pose, illumination, etc. The choice may depend pri-
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marily on the operational requirements of the system. For example, in a surveillance

setting, the resolution of the faces may be too small for reliable shape estimation.

The choice also limits the recognition capability of the system. A simple good frame

selection scheme will not have the capability to generalize appearance across pose

variations and thus requires the test video to have some pose overlap with the gallery

videos. Effective modeling of subject-specific facial characteristics from video data

can only be achieved if the changes in facial appearance during the course of the

video are appropriately attributed to different factors like pose changes, lighting,

expression variations, etc. Unlike still image based scenarios, these variations are

inherent in a VFR setting and must be accounted for to reap the benefits of extra

information provided by the video data. In addition, due to the nature of the input

data, VFR is often addressed in conjunction with tracking problem which is a chal-

lenging problem by itself. In fact, more often than not, tracking accuracy depends

on the knowledge of reliable appearance model (depends on the identity provided

by the recognition module) while recognition result is dependent on the localization

accuracy of the face region in input video.

In this chapter, we propose two approaches to address the problem of VFR.

In the first, we learn the appearance and dynamics of a moving face given its video

without explicit 3D reconstruction of the face. Face is modeled using an autore-

gressive and moving average (ARMA) model. Subspace angles between the learnt

models are used to measure the similarity of faces. Though the results obtained us-

ing this approach are very promising, one of the main limitation of the algorithm is

that it does not take the 3D shape of the face into account. This makes the approach
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sensitive to the extent of pose overlap across gallery and probe videos. To address

this, we propose a particle-filter based algorithm to recover 3D configuration of face

in each frame of the video. The recovered 3D configuration is used to normalize for

pose variation. This allows us to perform VFR even when there is limited/no pose

overlap across gallery and probe videos.

6.2 Organization of the chapter

The rest of the chapter is organized as follows.

The first part of the chapter describes the proposed ARMA model-based ap-

proach. Section 6.3.1 describes a few related works on VFR. We provide an intuition

for the proposed ARMA-based approach in Section 6.3.2 . This is followed by the

details of the approach in Section 6.3.3. Section 6.3.4 describes various distance

metrics used for comparing the generated ARMA models to estimate the degree of

similarity between two face videos. We present the details of our experiments and

their significance in Section 6.3.5.

The second part of the chapter describes the proposed facial tracking algo-

rithm. Section 6.4.1 describes a few existing approaches for facial tracking. In

Section 6.4.2, we discuss the geometric modeling of the face. Section 6.4.3 presents

the features used for tracking. In Section 6.4.4 we discuss our particle filter-based

tracking algorithm. Section 6.4.5 presents experiments on tracking and recognition.

The chapter concludes with a summary and discussion in Section 6.5.
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6.3 ARMA model-based approach for VFR

6.3.1 Related work

Recently, methods based on multiple images/video sequences that do not in-

volve creating an explicit 3D model have been suggested. Such an approach is

supported by many psychophysics works like [17], where authors argue that a 3D

object is represented as a set of 2D images (instead of a 3D model) in our brains.

Leaving out the algorithms based on simple voting, most of these methods make

use of either the natural variability in a face (due to variation in pose or expres-

sion) or the information present in the temporal variation of face. In [12], Biuk

et al. recognize a face from a sequence of rotating head images by computing the

Euclidean distances between trajectories formed by face sequences in PCA feature

space. The Mutual Subspace Method (MSM) proposed in [92], considers the angle

between input and reference subspaces formed by the principal components of the

image sequences (not necessarily ordered) as the measure of similarity. This ap-

proach discounts the inherent temporal coherence present in a face sequence that

might be crucial for recognition. In [75], face recognition is cast as a statistical

hypothesis testing problem, where a set of images is classified using the Kullback-

Leibler divergence between the estimated density (assumed to be Gaussian) of the

probe set and that of gallery sets. This method is based on the underlying assump-

tion that face recognition can be performed by matching distributions. However,

two such distributions for the same subject might look very different depending on

the range of poses and expressions covered by the two sets. Moreover, this approach
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is sensitive to illumination changes. In [54], Liu et al. learn temporal statistics of a

face from a video using adaptive Hidden Markov Models to perform video-based face

recognition. In [91], kernel principal angles, applied on the original image space and

a feature space, are used as a measure of similarity between two video sequences.

Zhou et al. [101] propose a tracking-and-recognition approach by resolving uncer-

tainties in tracking and recognition simultaneously in a probabilistic framework.

Lee et al. [50], in their recent work, represent each person by a low-dimensional

appearance manifold, approximated by piecewise linear subspaces. They present a

maximum a posteriori formulation for recognizing faces in test video sequences by

integrating the likelihood that the input image comes from a particular pose mani-

fold and the transition probability to this manifold from the previous frame. Among

the methods mentioned, Lee et al. [50] method seems to be the one most capable of

handling large 2D and 3D rotations.

Although many previous methods make use of temporal information present

in face videos to improve recognition, there has been no attempt to model a moving

face as a dynamical system. Our work can be seen as an attempt to explore this.

We present a method for modeling a moving face as a linear dynamical system to

perform recognition. Each frame of a video is, therefore, assumed to be the output

of the dynamical system particular to the subject. Our work follows [25] and [81],

where Soatto et al. used a very similar idea to characterize dynamic textures. In [10],

they use the same approach for recognizing different types of human gait. As in [81],

we also use a first order ARMA model. The difference is that here we try to capture

the varying appearance (due to pose and expression variation) and dynamics of
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face using this framework. Once the models are estimated, recognition is performed

by computing distances between ARMA models corresponding to probe face and

gallery faces. We use several distance metrics based on subspace angles between the

ARMA models.

6.3.2 Motivation

Suppose we want to model a point constrained to move in xy-plane (Fig-

ure 6.1). The position of the point at any time instant is guided by its position at

the previous time instant. The point has an attribute, say color, that varies with

time depending on the position of the point. In this framework, color of the point
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(Current state)

(Previous state)

Point at time t+1Point at time t

Figure 6.1: Motivation: modeling the dynamics of a moving point where color is the

only observable attribute.

is the only thing that is visible to the outside world. Modeling such a phenomenon

essentially requires two mappings viz.,

Positiont+1 = φ(Positiont) (6.1)

Colort = ψ(Positiont) (6.2)
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where the subscript denotes time instant. Given a sequence of observations (colors),

if we can estimate φ and ψ, we are done. This is quite similar to the case of face

videos if we think of the pose of the face as the position of the point and the 2D

appearance of the face as the color of the point. The dependence of the appearance

on the pose is analogous to that of the color on the position. The degree of goodness

of such a model is limited by the choice of the forms of the mappings φ and ψ and the

accuracy of their estimation. In general, these mappings can be arbitrarily complex

but methods to estimate them are often not known. In our work, we get promising

results by assuming them to be linear.

6.3.3 Framework for modeling

In this section, we develop a mathematical formulation that helps us in esti-

mating the unknown parameters of the model, we use, to characterize a moving face

sequence.

If the mappings φ and ψ are some linear operators, (6.1) and (6.2) can be

written as:

x(t+ 1) = Ax(t) + v(t) (6.3)

I(t) = Cx(t) (6.4)

where, I(t) is appearance of the face at time instant t, x(t) is a state vector that

characterizes the pose of the face, A and C are matrices representing the linear

mappings and v(t) is an IID realization from some unknown density q(.), that takes

care of the implicit assumption that the dynamical system is driven by an IID
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process.

Suppose at each time instant t, we can measure only a noisy version of I(t) i.e.,

y(t) = I(t) + w(t) where w(t) is an IID sequence drawn from a known distribution.

This leads to a first order ARMA model as follows:

x(t+ 1) = Ax(t) + v(t) (6.5)

y(t) = Cx(t) + w(t) (6.6)

This formulation has similarities with the pioneering work by Ali [2], where he

addresses the problem of estimation and prediction for stationary spatial-temporal

processes. He too uses a simultaneous linear model to represent spatial-temporal

processes.

At this stage, we use the closed-form solution as described in [81], where x(t) ∈

R
n, y(t) ∈ R

m, v(t) ∼ N (0, Q) and w(t) ∼ N (0, R). This makes our model a linear

dynamical system driven by zero-mean Gaussian noise. Given a video sequence (i.e.,

a sequence of observation vectors y(1), . . . , y(τ)), we need to estimate the parameters

A, C, Q and R to model the face in the video.

6.3.3.1 Closed-form solution to estimate the parameters

Let Y τ = [y(1), . . . , y(τ)] ∈ R
m×τ with τ > n, then for {t = 1 . . . τ}, (6.6) can

be written as

Y τ = CXτ +W τ ; C ∈ R
m×n (6.7)

whereX andW are defined in a manner similar to Y . If singular value decomposition

(SVD) of Y τ is Y τ = UΣV T , where Σ is a diagonal matrix, U ∈ R
m×n, UTU = I,
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V ∈ R
τ×n and V TV = I, then

Ĉ(τ) = U (6.8)

X̂(τ) = ΣV τ (6.9)

Â(τ) = ΣV TD1V (V TD2V )−1Σ−1 (6.10)

where D1 =









0 0

Iτ−1 0









and D2 =









Iτ−1 0

0 0









, and

Q̂(τ) =
1

τ

τ
∑

i=1

v̂(i)v̂T (i) (6.11)

where v̂(t) = x̂(t + 1) − Â(τ)x̂(t), give a closed-form solution (suboptimal in the

sense of Frobenius).

6.3.4 Framework for recognition

Given gallery and probe face videos, the model parameters (as explained in

Section 6.3.3) for each one of them are estimated. The gallery model, which is

closest to the probe model, is assigned as the identity of the probe. We here discuss

the metrics used to measure this degree of similarity.

Computing the L2-norm of the difference between corresponding model ma-

trices as a measure of distance will not suffice as it implicitly ignores the underlying

geometry of the subspaces which can be non-Euclidean. We make use of subspace

angles between ARMA models for this cause. We follow the mathematical formula-

tion given in [20] to compute these angles. The subspace angles are defined as the

principal angles between the column spaces generated by the observability matrices

of the two matrices extended with the observability matrices of the corresponding
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inverse models. Principal angles between two subspaces are the angles between their

principal directions.

Cock et al. [20] convert the ARMA model as represented in (6.5) and (6.6)

into a forward innovation model:

x̂t+1 = Ax̂t +Ket (6.12)

yt = Cx̂t + et (6.13)

where K ∈ R
n is the Kalman gain as described in [65]. The problem of computing

the subspace angles between the two models can be transformed into an eigenvalue

problem involving the system parameters of forward and inverse innovation models.

In order to estimate the distance between two models, we need certain distance

measures based on the computed subspace angles. There are several distance metrics

based on subspace angles between ARMA models. The first one is due to Martin [58]

and can be written as:

dM(M1,M2)2 = ln

n
∏

i=1

1

cos2θi

(6.14)

where M1 and M2 are two ARMA models and θi’s are the subspace angles between

them. Other distance measures include gap and Frobenius norm based distances

defined as:

dg(M1,M2) = sinθmax and (6.15)

df(M1,M2)
2 = 2

n
∑

i=1

sin2θi (6.16)

There is another distance described in [90] which is the largest principal angle be-

tween the two models. In our experiments, all these metrics give similar recognition
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performance.

6.3.5 Experiments, results and discussion

We conducted face recognition experiments using the proposed framework on

two datasets. The first one is same as the one used by Li et al. [52]. It has face

videos for 16 subjects with 2 sequences per subject. In these sequences, the sub-

jects arbitrarily move their heads and change their expressions. The illumination

conditions for 2 sequences of each subject were quite different. For each subject,

one sequence was put in the gallery while the other formed a probe. A few example

images from this dataset are shown in Figure 6.2.

Figure 6.2: Few cropped faces from a video sequence in the first dataset.

The second dataset (obtained from UCSD/Honda) is the one used by Lee et

al. [50]. With this dataset, we had a gallery of size 15 and probe containing 30 video

sequences. In each video, subject moves his/her face in an arbitrary sequence of 2-D

and 3-D rotations while changing facial expression and speed. There is even partial
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occlusion in a few frames of several video sequences. The illumination conditions

vary significantly among the various sequences. Although the datasets used are

small, we consider them good tests for our algorithm because of the extreme pose

and expression variations and varying illumination as is evident from Figures 6.2

and 6.3.

Figure 6.3: Few cropped faces from a video sequence in the UCSD/Honda dataset.

Our experiment broadly consists of three steps: preprocessing, model estima-

tion and recognition. The preprocessing step involves cropping out the face from

each frame of the video sequence. We use a variant of KL tracker [78] to track the

nose tip location and an edge-based rough pose estimator. The nose tip location

gives an idea about the location of the face while the pose information helps in

getting the expanse of the face image relative to the nose. Figures 6.2 and 6.3 show

few of the images cropped using this automatic method. Model identification in-

volves estimating A, C and K for each face sequence using the closed form solution

explained in Section 6.3.3 while recognition involves computing the principal angles
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between probe and gallery models and using them to compute the distances between

the models.

With both the data sets, we got recognition performance of more than 90%

(15/16 for the first dataset and 27/30 for the second). These numbers are very

promising given the extent of pose and expression variations in the video sequences.

The results reported in [50] are on per-frame basis and are not directly comparable

even though one of the datasets used is the same.

6.3.5.1 Independent evaluation

In [36], Hadid and Pietikainen present an experimental evaluation of integra-

tion of facial dynamics in video-based face recognition. The factors like sequence

length and image quality are considered in the analysis. The experiments are per-

formed on two face video datasets: MoBo (Motion of Body) [35] and Honda/UCSD [50].

The Mobo dataset consists of 96 face sequences of 24 subjects walking on a treadmill

while the considered subset of Honda/UCSD dataset consists of 40 sequences of 20

subjects. The complete details of the experiment settings are described in [36].

Table 6.1 summarizes the performance obtained using spatio-temporal repre-

sentations (HMM and ARMA) and their static image counterparts (PCA and LDA).

All 300 frames present in each probe video are considered in this experiment. As

shown in the table, HMM and ARMA-based approaches perform slightly better than

PCA and LDA.

In a real application, a subject may not be in front of a camera for such a long
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MoBo Dataset Honda-UCSD dataset

PCA 87.1% 89.6%

LDA 90.8% 86.5%

HMM 92.3% 91.2%

ARMA 93.4% 90.9%

Table 6.1: Recognition rates using all 300 probe frames using MoBo and UCSD-

Honda dataset as reported in [36].

duration. Therefore, Hadid and Pietikainen [36] perform an experiment to evaluate

the effect of sequence length on the four approaches. Figure 6.4 and Figure 6.5 show

the results obtained in this experiment for the two datasets. As shown in the figures,

the proposed ARMA model based approach performs consistently well for a large

range of sequence lengths. In another experiment, the authors analyze the effect of

image resolution on the recognition rates using Mobo dataset. Table 6.2 shows the

results obtained in this experiment. As shown, the proposed ARMA-model based

approach compares favorably against other approaches and shows least degradation

in performance as image resolution is reduced.

6.4 3D facial pose tracking and recognition

Face tracking is a crucial task for several applications in computer vision. It

serves as the first step in several applications like face recognition, lip reading, human
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Figure 6.4: Effect of sequence length on recognition rates on MoBo dataset [36].

computer interaction and animation. Most of these applications require that actual

3D parameters of the motion of the head, like the orientation of the head, to be

recovered. In this section, we describe an approach for reliable tracking of position

and orientation of the face under illumination changes, occlusion and extreme poses.

The usefulness of the recovered 3D configuration for the VFR problem is also shown.

6.4.1 Prior work

There has been significant work on facial tracking using 2D appearance based

models. [47] [60] [93] use 2D face models based on splines or deformable templates.

[100] [37] use affine and planar models, respectively to track a face. Quite clearly,

such approaches based on the 2D appearances usually do not explicitly solve the
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Figure 6.5: Effect of sequence length on recognition rates on Honda-UCSD

dataset [36].

correspondence problem. Rather, more often than not they are interested in finding

just the image region containing the object (face in this case). Estimation of the 3D

orientation of the head is extremely difficult using these approaches. Therefore when

such 2D approaches are used as a front-end for tasks such as recognition, multiple

view based exemplars [101] are sometimes used in the gallery. While, such a system

might improve over the performance of single image based face-recognition systems,

such view based exemplars do not capture the structure of the object.

Recently, several methods have been developed for 3D face tracking. [44] uses

a closed loop approach that utilizes a structure from motion algorithm to generate
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Resolution 40 × 40 20 × 20 10 × 10

PCA 87.1% 81.3% 60.6%

LDA 90.8% 79.5% 56.5%

HMM 92.3% 85.2% 71.2%

ARMA 93.4% 84.1% 74.2%

Table 6.2: Effect of image resolution on recognition rate as reported in [36].

a 3D model of the face. The model is then used to constrain the features in the next

frame. The tracking is based on a Kalman filter. In [67], techniques from continuous

optimization are applied to a linear combination of 3D face models. They are able to

automatically recover the face position and expression for each frame. [55] proposes

a hybrid sampling solution using both RANSAC and particle filters to track the pose

of a face. Some researchers have proposed using active appearance models for face

tracking and/or pose recovery and expression recognition [26][48]. A cylindrical face

model for face tracking has been used in [18]. In their formulation, the inter-frame

warping function is assumed to be locally linear. In addition, they also assume

that the inter-frame pose change occurs only in one of the six degrees of freedom

of the rigid cylindrical model. In our approach, we do not have to make any such

assumptions. This improves both tracking accuracy and robustness.
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6.4.2 The geometric model

The choice of the model to represent the facial structure is very crucial for

the problem of face tracking. Several geometric models have been proposed for

facial analysis. More often than not, the choice depends on the goal of the analysis.

There are several algorithms that do not assume an explicit structural model. They

track salient points, features or 2D image patches [63] to recover the 2D or 3D head

configuration. On the other extreme, there are algorithms like [44] that use a set of

3D laser-scanned heads represented in a parameterized eigenspace to constrain the

structural estimation. A few other focus mainly on 2D tracking (e.g., [101], [9], [23],

[30], [37], [93]) which makes a planar model (elliptic, rectangular, etc.) suitable for

them.

We would like to restate here that in our work, we aspire to estimate the 3D

configuration of the face in each frame. Though a planar model will probably be the

simplest one to use, it does not have the capability to handle out-of-plane rotations

due to the involved self-occlusions. Moreover the parameters recovered using such

a model do not contain information required to estimate the 3D configuration of

the face. On the other hand, using a complicated face model (e.g., 3D range data

model of an average face), makes the initialization and registration process difficult.

In fact, [18] shows experiments where perturbations in the model parameters affect

the tracking performance using a complex rigid model (generated by averaging the

Cyberware scans of several people), while the simple cylindrical model is robust to

such perturbations.
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Similar to [18], we use a cylindrical model, though with an elliptical cross-

section, to represent a face. The choice of the elliptic cylinder was based on the

observation that for most people, the cross section of the head is more elliptic than

cylindrical. The choice of the ellipticity does not affect the tracking performance

in general but it does make a difference when the face is turned about the vertical

axis by a large angle (i.e., high yaw value). Assuming that our cylindrical model

reasonably approximates the 3D structure of a face, the problems related to pose

and self-occlusion (usually due to pose changes) get automatically taken care of.

From the point of geometrical modeling, the next important issue is the choice

of projection. Due to the absence of the calibration parameters, people usually

assume orthographic projection. The use of orthographic projection is restrictive

and can potentially introduce confusion between scale and pitch. These reasons

motivate us to use the perspective projection model. Since we do not know the

camera focal length for uncalibrated videos, we show that our approach for pose

recovery is fairly robust to the errors in focal length assignment as far as this face

tracking is concerned.

Let us assume that the true focal length of the camera imaging a cylinder

centered at (X0, Y0, Z0) with height H and radius R be f0. Let us assume that we

erroneously set the focal length to kf0 (without loss of generality k ≥ 1). The true

projections of feature points on the cylinder are given by

xf =
f0Xf

Z0 + zf

yf =
f0Yf

Z0 + zf

where, Zf = Z0 + zf (6.17)

The projection of feature points of another cylinder with same dimensions but
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placed at (X0, Y0, kZ0) and imaged by a camera of focal length kf0 are

x̂f =
kf0Xf

kZ0 + zf

= xf

[

1 +
(k − 1)zf

kZ0 + zf

]

= xf [1 + δf ] (6.18)

ŷf =
kf0Yf

kZ0 + zf

= yf

[

1 +
(k − 1)zf

kZ0 + zf

]

= yf [1 + δf ] (6.19)

If δf ≪ 1, the feature positions for the cylinder at (X0, Y0, Z0) imaged by

camera f0 is equivalent to a cylinder at (X0, Y0, kZ0) imaged by a camera with focal

length kf0. Therefore, when δf is small, our estimates of yaw, pitch and roll are

reasonably accurate.

If the depth variations in the object (cylinder in our case) are smaller than the

distance of the object from the camera center (i.e., zf ≪ Z0) and the field of view

is reasonably small, then

δf =
(k − 1)zf

kZ0 + zf

<
kzf

kZ0 + zf

<

zf

Z0

1 +
zf

kZ0

≪ 1 (6.20)

6.4.2.1 Model initialization

The model is initialized using the first frame of the video. Initialization essen-

tially involves finding the parameters for the cylinder (the radius and the height).

In the current implementation, we assume that the face is roughly frontal during

initialization. We use the optimal edge-based shape detection algorithm [59] to de-

tect the face in the first frame. This algorithm looks for ellipses containing facial

features for face detection using the optimal shape operator.
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6.4.3 Features

The choice of features is extremely important for the task of 3D pose estimation

of a moving face, probably second only to that of the structural model. More than

anything else, the features should be easy to detect. In addition, ideally they should

be robust to occlusions, and changes in pose, expression and illumination. Humans

detect and track faces (known or unknown) effortlessly using features like eyes,

nose, mouth, hair etc. For machines, this might not be easy. In a monocular video,

only input the machines have is an image which is a 2D projection of the current

appearance of the face. The appearance of the features used by humans changes a

lot with variations in pose, expression etc. In fact sometimes, few of the features

are not even visible in the image. This makes the automatic detection and thereby

tracking of these features very difficult.

As stated previously, ours is a hybrid approach which tries to make use of the

advantages of a purely geometric approach (useful when partial/complete informa-

tion about the geometric structure of the object is available) and that of statistical

inference. In this work, we stress-test this approach using an extremely simple and

easily computable feature. We superimpose a rectangular grid all around the curved

surface of our elliptical cylinder. Then mean intensity is computed for each of the

visible grids which forms the feature vector. Note that many of the mean values

will be undefined which correspond to the the part of the face which is not visible

in the frame.

Though quite simple, the feature vector is not all that bad when viewed from
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the point of view of our framework. First of all, it is easily computable. Given the

current configuration of the face, the grids can be projected onto the image frame

and the mean can be computed for each of them. This might seem suspect as the

current configuration of the face is not available! Rather that is what we are trying to

estimate. Crudely speaking, we first predict the current configuration based on the

past configuration and then test its likelihood using the current feature vector. This

will become clear once we present the particle-filter framework where each particle

represents a configuration of the face. The mean vector, by itself, is not invariant to

pose but pose is not an issue in our framework as long as the cylindrical assumption

is fine. Mean is definitely not invariant to illumination changes. We use robust

statistics to make the approach robust to illumination. The fact that the mean is

computed for lots of small regions makes it appropriate for robust statistics. The

basic idea here is that illumination does not affect the algorithm as long as many

of the means remain unaffected. The same idea works even for handling partial

occlusions and expression changes.

6.4.4 Tracking framework

Once the structural model and the feature vector are fixed, the goal is to

estimate the configuration (or pose) of the moving face in each frame of a given video.

Breaking this down to each frame, one can see that only information available to

perform the desired estimation is the face configurations in the previous frames and

the current observation (the current frame). This can be viewed as a dynamic state
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estimation problem. Here the state consists of the six configuration parameters:

three for the translation and three for the orientation of the face. The Bayesian

approach to handle this problem is to gather the available information to come up

with the probability density function (pdf) of the state. This estimation can be

done recursively for each frame using particle filters.

6.4.4.1 Particle filter

Particle filtering [27][34] is an inference technique for estimating the unknown

dynamic state θ of a system from a collection of noisy observations y1:t. Quite often,

a state space model is used to perform this estimation. The two components of this

approach are the state transition model which models the state evolution, and the

observation model which specifies the state-observation dependence:

State transition model: θt = f(θt−1, ut), (6.21)

Observation model: yt = g(θt, vt), (6.22)

where ut is the system noise while vt is the observation noise. In general, the

functions f and g can also be time-dependent. The particle filter approximates the

desired posterior pdf p(θt|y1:t) by a set of weighted particles {θ(j)
t , w

(j)
t }N

j=1, where N

denotes the number of particles. The state estimate θ̂t can be recovered from the

pdf as the maximum likelihood (ML) estimate or the minimum mean squared error

(MMSE) estimate or any other suitable estimate based on the pdf.

153



To keep the tracker as generic as possible, we use a simple first order motion

model:

θt = θt−1 + ut, (6.23)

where ut is a Gaussian distribution with zero mean. Based on the domain knowledge,

one can come up with a motion model that will be capable of estimating the pdf

better with fewer particles. For example, if the task is to track the face of a spectator

in a tennis match, a motion model heavily biased towards yaw might be a better

choice than a generic model.

The observation model involves the feature vector described in the previous

section. In our framework, we can rewrite the observation equation as:

zt = Γ{yt; θt} = Ft + vt, (6.24)

where yt is the current frame (the grayscale image), Γ is the mapping that com-

putes the feature vector given an image yt and a configuration θt, zt is the computed

feature vector and Ft is the feature model. The feature model is used to compute

the likelihood of the particles (which correspond to different proposed configura-

tions of the face). For each particle the likelihood is computed using the average

sum of square differences (SSD) between the feature model and the mean vector zt

corresponding to the particle.

On one extreme, the feature model can be a fixed template (say, the feature

vector corresponding to the first frame i.e., Ft = F0) while on the other hand one can

use a dynamic template e.g, the feature vector belonging to the best particle at the

previous frame i.e., Ft = ẑt−1. Similar to [45], we refer to the fixed template Ft = F0

154



as the lost model while the dynamic component Ft = ẑt−1 as the wander model. It

is worthwhile to note that though the lost component should be credible (assuming

initialization is good), quite often it is not capable of handling the appearance

changes due to illumination, expression, etc. as the face translates/rotates in the

real world. On the other hand, the dynamic nature of the wander component makes

it suitable to take care of appearance changes but it is susceptible to drifts. This

means that if we have a bad estimation for a frame, it becomes very difficult for the

tracker to correct itself in subsequent frames. We use a combination of both which

provides resiliency to our tracker. Resiliency is a very important property of any

tracker as however good a tracker is, it can always loose track due to an unexpected

change in conditions. In the current implementation, the likelihood of a particle is

computed as the maximum of the likelihoods using the lost model and the wander

model. The prior is biased towards the lost model by 0.52 : 0.48. We take the

maximum of the two likelihoods instead of mixing the two to avoid boosting up

the probability of a bad particle accidentally. This gives us the capability both to

handle appearance changes and to correct the estimation even if the wander model

drifts. The number of particles used were typically in the range 200-500.

6.4.4.2 Robust statistics

The performance of the filtering method described is limited by the appropri-

ateness of the likelihood model. If the feature vector or the method of likelihood

computation is not good enough to distinguish between different configurations of
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the face, tracking can not be expected to be good. Furthermore, we use the mean

of grids as the feature vector which by itself is not robust to occlusions, illumina-

tion, expression etc. The fact that lots of means are computed over small local

regions makes the scenario suitable for the application of robust statistics in the

likelihood computation. In the current implementation, we trust only the top half

of the means and treat the rest as outliers. The robustified likelihood computation

can be represented as:

p(yt|θ(j)
t ) = e−λdist (6.25)

where, dist =

∑

m,n η(m,n)d(m,n)
∑

m,n η(m,n)
(6.26)

where η(m,n) is 1 if the (m,n)th grid is visible in both the model and the particle

and 0 otherwise, while d(m,n) is computed as:

d(m,n) =















(Ft(m,n) − z
(j)
t (m,n))2 if d(m,n) < c

c otherwise

where, c = median({d(m,n)}) (6.27)

6.4.5 Experiments and results

We conducted three different experiments to show the efficacy of our tracking

approach. The experiments are designed to display the ability of the tracker to

handle occlusion, expressions and extreme poses. The comparison with the ground

truth is also done. In addition, we show how maintaining 3D correspondences help

in other problems like recognition.
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6.4.5.1 Tracking extreme poses

We conducted tracking experiments on 3 datasets (Honda/UCSD dataset [50],

BU dataset [18] and Li dataset [52]). These datasets have numerous sequences in

which there are significant illumination changes, expression variation and people are

free to move their heads arbitrarily. Figure 6.6 shows few of the frames from several

videos with grid points on the estimated cylinder overlaid on the image frame. The

first row shows the ability of the tracker to accurately estimate the pose even under

extreme poses. Most 2D approaches would not be able to maintain tracks under

such severe poses. The second row shows some frames in which the tracker was able

to maintain tracks in spite of severe occlusion. The subject waved his hand across

his face while simultaneously turning his head. The robust statistics employed in

the likelihood computation enables the tracker to maintain track under occlusion.

Moderate expressions do not affect our feature since it is the mean intensity within

a small surface patch on the face. During certain severe expression changes, robust

statistics helps us maintain the track. The third and fourth rows show more tracking

results from the BU dataset and the Li dataset, respectively. In the fourth row,

the subject is removing his glasses while rotating his head. Our tracker is able to

maintain the track in the entire sequence.

6.4.5.2 Ground truth comparison

The BU dataset [18] provides us with ground truth values for the pose of

the face in each frame. We conducted tracking experiments on the BU dataset
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Frame # 73    −   (−5, −70, −5) Frame # 127    −   (−3, −2, 32) Frame # 93    −   (5, 9, −37 ) 

Frame # 20    −   (0, −1, 3) Frame # 32   −   (2, 0, −4) Frame # 114   −   (5, −17, −1) 

Frame # 48    −   (1, −35, 4) 

Frame # 433   −   (4, −2, −3) Frame # 445   −   (7, −4, 16) Frame # 448   −   (4, 1, 6) 

Frame # 113   −   (1, 8, 2) Frame # 149    −   (−3, 21, −1) 

Figure 6.6: Tracking results on different datasets under severe occlusion, extreme

poses and different illumination conditions. The cylindrical grid is overlaid on the

image plane to display the results. Each frame is labeled with its frame number in

the video. The 3-tuple shows the estimated orientation (roll, yaw, pitch) in degrees

for each of the frames.
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Figure 6.7: Comparison with the ground truth. Each row corresponds to one

video displaying the three orientation parameters. The red/dashed curve depicts

the ground truth while the blue/solid curve depicts the estimated values.

and compared yaw, pitch and roll estimated by our tracker to the ground truth.

Figure 6.7 shows the comparison between the estimated pose of the face and ground

truth for six different sequences in the dataset. We see that the tracker accurately

estimates the pose of the face in most of these frames.
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6.4.5.3 Recognition across non-overlapping poses

Most methods for recognition require that the gallery contains an instance of

a face with a pose very similar to the one in the probe. Since our tracking method

maintains explicit pose of the face during each frame, we do not need to have the

same poses seen in the gallery and the probe. In this experiment we show this by

performing recognition on non-overlapping poses. The gallery consists of a video

sequence of about 10-15 frames in which the individual turns his head left from

about 15 degrees away from frontal to extreme left. The probe consists of a video

sequence in which the individual turns his head right from 15 degrees away from

frontal all the way to the right. Therefore, there is no pose overlap between the

gallery and the probe. In fact, the closet poses in the gallery and the probe differ by

at least 30 degrees. We used 10 subjects from the Honda/UCSD dataset [50] for this

experiment. For each frame we build a texture mapped cylinder using the tracked

pose. We used the minimum sum of squared distance between a gallery model

and a probe model as the distance between two videos. This is a very challenging

experiment since the poses exhibited by the gallery videos and those exhibited by

the probe videos are very different. Therefore, the similarity matrix obtained in this

experiment was weakly diagonal. In spite of this, we obtained 100% recognition rate

in this experiment, i.e., all the 10 probe videos were recognized correctly. This is

very promising and we hope to extend the results to a larger dataset for arbitrary

uncontrolled videos of individuals.
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6.5 Summary and discussion

In this chapter, we presented two approaches to recognize faces in videos. In

particular, we dealt with the problem of tracking and recognizing faces when both

gallery and probe consists of face videos.

In the first framework, a moving face is represented as a linear dynamical sys-

tem (ARMA) whose appearance changes with time. Subspace angles based distance

metrics are used to get the measure of similarity between ARMA models repre-

senting moving face sequences. The experiments conducted show that the system

performs well even in case of extreme 2D and 3D pose variations, expression changes

and ordinary illumination conditions.

In the second part of the chapter, we presented a method for tracking facial

pose in a video. The tracker is robust to occlusions and illumination changes and

maintains track even during extreme poses. We have also shown, how such 3D pose

tracking can help in problems like face recognition from videos.
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Chapter 7

Summary and Discussion

In this chapter, we summarize the contributions of this dissertation. One of

the main objectives of this dissertation is to address the limitations of the existing

face recognition algorithms that prevent them from being successful in real systems.

Automatic face recognition is an very unique problem in itself due to the very

nature of the problem. Unlike other objects like chair, trees, etc., human face (as

a class consisting of all faces in the world) shows relatively small variation across

identities. On one hand, this small variation makes it difficult to separate millions

of faces from each other, while on the other, it makes it much easier to use or learn

generic face-specific properties (geometric, statistical, etc.) to aid in the recognition

task. Additionally, in most real scenarios, there are just a few (often just one)

samples per identity to perform matching. This makes it quite difficult for systems

to recognize faces across variations like illumination, expression, aging, etc.

In this dissertation, we proposed algorithms that take into account these in-

teresting aspects of the problem of automatic face recognition to improve the recog-

nition performance. Specifically, we developed algorithms to perform

• illumination-insensitive matching (Chapter 2 and Chapter 3),

• cohort-based score analysis to improve recognition performance (Chapter 4),

• physics-based revocable face matching (Chapter 5),
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• video-based face recognition (Chapter 6), and

• tracking faces in uncalibrated videos (Chapter 6).

Here we provide a brief description of all these algorithms.

In Chapter 2, we modeled face as a linear Lambertian object to perform

illumination-insensitive recognition of faces illuminated by single or multiple light

sources. Albedo-shape statistics of face as a class are used to address this otherwise

ill-posed problem. The low-dimensional linear subspace property of Lambertian re-

flectance is used to perform this task without any knowledge of number or placement

of light sources.

In Chapter 3, we use bilateral symmetry of faces to perform illumination-

invariant matching. In particular, we show that illumination-invariant matching is

much more tractable for the class of bilaterally symmetric objects. The theoretical

analysis leads to an extremely simple illumination-invariant signature of face images

used to perform matching. The algorithm is shown to be flawless (modulo a rare

condition described in the chapter) if the symmetry and Lambertian assumptions

are satisfied.

As mentioned earlier, automatic face recognition presents a very unique chal-

lenge from pattern classification point of view due to the presence of just one or a

few images per identity. In Chapter 4, we address this issue by making use of the

large number of non-match samples to normalize for the differing class distributions

thereby improving matching performance

The advancement of biometric in real world applications has led to the concerns
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of biometric theft. In Chapter 5, we address these concerns by developing a physics-

based approach to generate secure, cancelable and photometrically valid face images

to perform matching.

In Chapter 6, we proposed algorithms to perform tracking and recognition

of faces in videos. We follow a system identification approach and model mov-

ing face using ARMA model. As shown by independent evaluations, the proposed

ARMA-based approach compares favorably against other video-based approaches.

For tracking, we model face as a cylinder and use particle filter-based inference to

recover 3D configuration of face in each frame of the video. The recovered param-

eters are used to normalize for pose allowing us to recognize faces in video without

the need of any pose overlap.

Though the algorithms proposed in the dissertation successfully address vari-

ous issues, there is still a long way to go before we have commercial face recognition

systems which have the generalization capabilities of humans.
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