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Abstract

This dissertation is dedicated to the development of new algorithms for biometric

applications based on multiresolution analysis tools. Biometric is a unique, measur-

able characteristic of a human being that can be used to automatically recognize an

individual or verify an individual’s identity. Biometrics can measure physiological,

behavioral, physical and chemical characteristics of an individual. Physiological char-

acteristics are based on measurements derived from direct measurement of a part of

human body, such as, face, fingerprint, iris, retina etc. We focussed our investigations

to fingerprint and face recognition since these two biometric modalities are used in

conjunction to obtain reliable identification by various border security and law en-

forcement agencies. We developed an efficient and robust human face recognition

algorithm for potential law enforcement applications. A generic fingerprint compres-

sion algorithm based on state of the art multiresolution analysis tool to speed up data

archiving and recognition was also proposed. Finally, we put forth a new fingerprint

matching algorithm by generating an efficient set of fingerprint features to minimize

false matches and improve identification accuracy.

Face recognition algorithms were proposed based on curvelet transform using ker-

nel based principal component analysis and bidirectional two-dimensional principal

component analysis and numerous experiments were performed using popular human

face databases. Significant improvements in recognition accuracy were achieved and

the proposed methods drastically outperformed conventional face recognition systems

that employed linear one-dimensional principal component analysis. Compression

vi



schemes based on wave atoms decomposition were proposed and major improvements

in peak signal to noise ratio were obtained in comparison to Federal Bureau of In-

vestigation’s wavelet scalar quantization scheme. Improved performance was more

pronounced and distinct at higher compression ratios. Finally, a fingerprint matching

algorithm based on wave atoms decomposition, bidirectional two dimensional princi-

pal component analysis and extreme learning machine was proposed and noteworthy

improvements in accuracy were realized.
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Chapter 1

Overview of Biometrics

Biometric refers to the process of establishing an individual’s identity based on physi-

cal, physiological, chemical or behavioral attributes of a person. The relevance of bio-

metrics in the 21st century is dictated by the need for large-scale identity management

systems that predominantly rely on accurate determination of an individual’s identity.

Examples of these applications include sharing networked computer resources, grant-

ing access to nuclear facilities, performing remote financial transactions. The advent

of web-based services (e.g., online banking, online shopping) and the deployment of

decentralized customer service centers (e.g., credit cards) have further emphasized

the need for consistent identity management systems that can accommodate a large

number of individuals.

The most vital task in an identity management system is the verification of an in-

dividual’s claimed identity. An individual’s authentication is extremely necessary for

a variety of reasons but the primary intention, is to prevent unauthorized users from

accessing protected/classified information. Traditional person identification methods

include knowledge-based (e.g., passwords) and token-based (e.g., ID cards) mech-

anisms, but these surrogate representations can be easily lost, shared, stolen and

manipulated thereby jeopardizing the intended security. Biometrics offer a natural

and reliable solution to several aspects of identity management through a complete
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and/or partial automated system to recognize individuals based on their biological

characteristics [1]. Biometrics enable us to establish an identity based on who you

are, rather than by what you possess, such as an ID card, or what you remember,

such as a password or a security question. In some applications, biometrics may be

used to supplement ID cards and passwords thereby imparting an additional level of

security.

Biometric systems use a variety of physical or behavioral characteristics that in-

clude fingerprint, face, hand/finger geometry, iris, retina, signature, palmprint, voice

pattern, gait, ear, hand vein, odor or the DNA information to establish an individ-

ual’s identity [3], [4]. These characteristics are commonly referred as modalities, traits

and indicators in literature. Biometric systems offer multiple benefits over traditional

security methods as they cannot be easily lost, stolen or shared. Besides bolstering

security, biometric systems also add to user’s convenience by alleviating the need to

remember passwords.

1.1 Outline of a Biometric System

A biometric system is typically a pattern recognition system that acquires biometric

data from an individual, extracts a set of salient features, compares the feature set

against the feature sets stored in the database, and executes an action based on

the results of the comparison. Therefore, a generic biometric system encapsulates

four main modules: a sensor module; a quality assessment and feature extraction

module; a matching module; and a database module. Each of these modules is briefly

described below.

1. Sensor Module. A suitable biometric reader or scanner is required to acquire

the raw biometric data of an individual. To obtain face images a digital still

camera or a video camera can be used where as for fingerprint images, an

optical fingerprint sensor may be used to image the friction ridge structure of
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Figure 1.1: Biometric modalities that can be used for person identification [2]
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the fingertip. The sensor module determines the human machine interface and

is, therefore, pivotal to the performance of any biometric system. A poorly

designed or noisy interface can result in a low matching accuracy. Since most

biometric modalities are acquired as images (except voice and odor), the quality

of the raw data is to a great extent impacted by the characteristics of the camera

technology used.

2. Quality Assessment and Feature Extraction. The quality of biometric

data sensed by the sensor is first assessed in order to determine whether it

meets the minimum standards required for the desired application. Typically,

the acquired data is enhanced in order to improve its quality. However, in some

cases, the quality of the data is poor and the user is asked to present the bio-

metric data again. In some situations it is indispensable that data is acquired at

varying displacements, orientations, atmospheric conditions, noise levels, image

acquisition sessions etc. in order to generate a dataset that takes into account

different challenges encountered in real world applications. The biometric data

is then processed to extract a set of salient discriminatory features.

3. Matching and Decision Making. The extracted features are compared

against the stored templates in order to generate match scores. The match score

is moderated by the quality of the presented biometric data. The matcher mod-

ule also encapsulates a decision making module that either validates a claimed

identity or provides a ranking of the enrolled identities in order to identify an

individual. The decision making module is dictated by the biometric system

architecture and the desired accuracy rates.

4. System Database Module. During the enrollment process, the extracted

features are stored in the database along with some biographic information

(such as name, address, birth date etc.) that distinguishes each individual. The

data captured during the enrollment process may or may not be supervised by a
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human depending on the application. The user template is either extracted from

a single biometric sample or generated by processing multiple samples. Thus,

in some fingerprint recognition systems the minutiae template is extracted after

mosaicing multiple samples of the same finger. Some systems, such as face

recognition systems store multiple templates in order to account for large intra-

class variations associated with each user. Depending on the application, the

template is either stored in the central biometric system database or recorded

on a token (e.g., smart card) issued to the individual.

1.2 Verification vs. Identification

In literature the terms verification and identification have been used interchangeably,

but there is some tangible distinction that sets them apart. Depending on the specific

application, a biometric system may operate as a verification module or an identifica-

tion module. These two modules are briefly explained below in the following section.

The basic processes involved in a fingerprint enrollment and recognition (verification

and identification) module are depicted in Figure 1.2.

In the verification mode, the system establishes an individual’s identity by com-

paring the captured biometric trait with his/her own biometric template(s) stored in

the system database. In such a system, an individual who claims an identity is recog-

nized via a PIN, a user name or a smart card, and the system conducts a one-to-one

comparison to determine whether the claim is true or not. Verification is typically

used for positive recognition and the aim is to prevent multiple people from using the

same identity.

In the identification mode, the system recognizes an individual by searching the

templates of all the users enrolled in the database. Therefore, the system conducts

a one-to-many search to establish an individual’s identity. The system, thus, fails

if the subject was not already enrolled in the database. Identification is essentially
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employed for negative recognition where the system establishes whether the person is

who he/she denies to be. The purpose of negative recognition is to prevent a single

person from using multiple identities. Identification may also be used in positive

recognition in some biometric applications.

1.3 Research Objectives

Establishing the identity of an individual with high confidence is becoming critical

in a number of applications in our vastly interconnected society. Questions like ”Is

he/she really who they claim to be?”, ”Is this person authorized to use this facility?”

or ”Is he/she a fugitive wanted by the government?” are often posed in a variety of

scenarios ranging from issuing a driver’s licence to gaining entry into a country. The

need for reliable user authentication techniques has increased in the wake of increased

security concerns, and rapid advancements in the field of networking, communication

and mobility. Thus, biometrics are being increasingly incorporated in several different

applications, categorized into three main groups.

• Commercial : Computer network login, electronic data security, e-commerce,

Internet access, ATM or credit card use, physical access control, mobile phone,

PDA, medical records management, distance learning, etc.

• Government : Identity cards, managing inmates in a correctional facility, driver’s

license, welfare-disbursement, border control, passport control, etc.

• Forensics : Corpse identification, criminal investigation, parenthood determina-

tion, etc.

In the context of this work we will focus our attention to two biometric traits,

namely, faces and fingerprints. These are the two most important biometric modali-

ties employed in various commercial, government and law enforcement applications.
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Figure 1.2: Enrollment, verification and identification stages of a fingerprint sys-
tem [2]

These biometrics are used in conjunction by various border security and law enforce-

ment agencies. Researchers are using these two traits in combination with other

biometrics to achieve improved recognition. For example at United Stages land, wa-
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ter and air crossings all visitors are imaged and their fingerprints acquired, these

biometric indicators are stored and matched against a criminal database to ensure

that criminals are barred from entering into the country and all fugitives arrested.

Figure 1.3 shows the percentage of generated revenues by different biometric tech-

nologies. ���������
�	
���
�	
����������� �����	�	��������	
������	������ ��	����� �	���������������
�  ��!���"����

Figure 1.3: Biometric revenues by technology, 2009 (AFIS revenues are not in-
cluded, source: International Biometric Group)

To acquire face images, cheap cameras and image capture devices offer sufficient

image resolution. Images generated using such image acquisition devices are often

stored using JPEG or similar compression format, therefore, image size is usually

small and no additional compression is required. Face recognition is not as accurate

as other biometrics, thus, fingerprints are used in conjunction with faces to enhance

accuracy.
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Fingerprints are often sensed using sophisticated and expensive image acquisition

devices that generate high resolution images. A single fingerprint card contains 14 dif-

ferent images: 10 rolled impression of each finger, duplicate (flat) impression of thumb

and simultaneous impression (slap) of all fingers together (see Figure 1.4). Rolled fin-

gerprints are captured by rolling the finger (tip to the first joint) from ”nail-to-nail”

on the sensing surface. It provides the largest fingerprint area and contains about

80 minutiae, on average, thus facilitating accurate classification and matching. Flat

fingerprints are acquired by pressing the thumb against the sensing surface, whereas

a slap fingerprint is achieved by pressing the four fingers (index, middle, ring and

little) simultaneously against the sensing surface. Fingerprint images are digitized

at a resolution of 500 dpi with 256 gray levels which entails approximately 10 MB

of storage. Therefore, an efficient compression algorithm that retains detailed finger-

print minutiae, ridges and other fingerprint features is needed to minimize storage

requirements, speed up data archiving and diminish transmission bandwidth.

1.4 Organization of Dissertation

The remainder of this thesis consists of 5 chapters which are organized as follows:

• Chapter 2. Multiresolution Analysis Tools: Covers the mathematical prop-

erties of wavelets, curvelets and wave atoms decomposition. It also discusses

several wavelets, including Haar, Daubechies and biorthogonal spline wavelets.

Two curvelet transform architectures are detailed and an implementation of

discrete digital wave atoms decomposition is also reviewed.

• Chapter 3. Human Face Recognition: This chapter includes a brief intro-

duction of face recognition, survey of existing approaches, and the individual

modules used in our face recognition system. A new technique for multidimen-

sional principal component analysis is proposed and explained. The proposed
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(6)              (7)              (8)             (9)              (10)     

(11)  (12)  (13)                              (14)

Figure 1.4: A fingerprint card containing rolls (1-10), slaps of left and right hand
(11,14), flat left and right thumb impression (12,13) [5]

face recognition algorithms are detailed along with comparative results on wide

ranging sets of face databases.

• Chapter 4. Fingerprint Compression: The chapter reviews some of the estab-

lished techniques for fingerprint compression, the proposed fingerprint compres-

sion schemes are also described and experimental results compared with other
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state-of-the-art techniques.

• Chapter 5. Fingerprint Matching: Basic concepts of fingerprints, their associ-

ated challenges, feature representation and fingerprint verification datasets are

reviewed. Our wave atoms based proposed fingerprint matching algorithm is

discussed and experimental findings compared with wavelet based fingerprint

matching methods.

• Chapter 6. Conclusions and Future Research: Some conclusions and consid-

erations on how to enhance the work in the future are included.
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Chapter 2

Multiresolution Analysis Tools

Fourier transform has been used as a principle tool for signal analysis since early 19th

century. It was developed by French mathematician, J. Fourier, who showed that any

periodic function can be expressed as a sum of periodic complex exponential function.

Later, this idea was generalized to non-periodic functions, periodic and non-periodic

discrete time signals. In frequency domain, Fourier transform constructs a sinusoidal

basis to describe energy distribution of a signal. However, Fourier transform is not

well suited to describe local changes in frequency since the frequency component has

infinite time support i.e. time (spatial) information is lost and it is impossible to

specify when a particular phenomenon took place. Most of the practical signals and

images contain non-stationary signal components and capturing them is a crucial step

in classification.

To alleviate the limitations of Fourier transform, the windowed Fourier transform

(Short Time Fourier Transform - STFT) was proposed. STFT works by dividing the

signal into small segments where each segment is assumed to be stationary. However,

STFT has several limitations i.e. if we use an infinite length window; we obtain

Fourier transform with perfect frequency resolution but no time information. On the

other hand, to acquire a stationary sample we have to use a small enough window

in which the signal is stationary. The narrower the window, the better is the time
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resolution and the assumption of stationarity, but poorer the frequency resolution [6].

Therefore to strike a balance between the time resolution and frequency resolution

we turn our focus to wavelet transform, which is based on multiresolution analysis.

2.1 Wavelet Transform

Wavelet transform is a widely accepted solution to overcome the shortcomings of the

Fourier transform and STFT. In wavelet analysis the fully scalable wavelet solves the

problem of time and frequency resolution. The flexible window is moved along the sig-

nal and the spectrum is calculated for every position. The process is repeated several

times with a variable window size and the collection of time-frequency representation

of the signal is obtained. In this manner, the big wavelets give an approximate image

of the signal, while the smaller wavelets zoom in on the details. Therefore, wavelets

adapt automatically to both the high-frequency and low-frequency components of a

signal by varying the window size. The wavelet transform is well suited for non-

stationary signals, brief signals and signals with interesting components at different

scales [7]. Wavelets are dilated and translated versions of a single function Ψ, which

is called mother wavelet.

Ψa,bx = | a |−1
2 Ψ

(x− b)

a
(2.1)

where Ψ satisfies the condition

∫ +∞

−∞
Ψ(t)dt = 0 (2.2)

The basic idea of the wavelet transform is to represent any arbitrary function f

as a decomposition of wavelet basis or write f as an integral over a and b. Where a

is the scale parameter and b is the position parameter.

When dealing with sampled data that is discrete in time we need to have a discrete

representation of time and frequency, which is called discrete wavelet transform. We
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will briefly discuss the concept of multiresolution analysis before we discuss about the

discrete wavelet transform.

2.1.1 Concept of Multiresolution Analysis

A signal/image can be viewed as combination of a smooth background and fluctua-

tions(fine details). The distinction between the smooth part and the detail part of

a signal is determined by the resolution. Image detail at one resolution will act as a

smooth background at higher resolution. At a given resolution, a signal is approx-

imated by ignoring all fluctuations below that scale. We can progressively increase

the resolution; at each stage of the increase in resolution finer details are added to the

coarser description, thus providing a successively better approximation of the signal.

A function f(t) at a resolution level j is denoted by fj(t) and the details are

denoted by dj(t). At the next higher resolution level j + 1; the new approximation

to fj(t) is

fj+1(t) = fj(t) + dj(t) (2.3)

The original function is recovered as the resolution approaches to infinity.

f(t) = fj(t) +
∞∑

k=j

dk(t) (2.4)

Multiresolution analysis involves decomposition of the function space into a se-

quence of subspaces Vj. The subspace Vj is contained in all the higher subspaces. If

the approximation of f(t) at a level j is denoted by fj(t) then fj(t) ∈ Vj. Since infor-

mation at resolution level j is a part of information at a higher resolution level j + 1,

mathematically Vj ∈ Vj+1(t) for all j. We can therefore decompose our subspaces

accordingly as

Vj+1 = Vj ⊕Wj (2.5)
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Where Wj is the detail space at a resolution level j and Vj is the approximation

at resolution level j. The space V is decomposed in order to obtain

Vj+1 = Wj⊕Vj = Wj⊕Wj−1⊕Vj−1 = · · · = Wj⊕Wj−1⊕Wj−2⊕· · ·⊕W0⊕V0 (2.6)

2.1.2 Discrete Wavelet Transform

Wavelet analysis is also based on a decomposition of a signal using an orthonormal

family of basis functions. A wavelet has its energy concentrated in time and is well

suited for the analysis of transient, time-varying signals. A wavelet expansion is

defined by a two-parameter family of functions

f(t) =
∑

j

∑

k

aj,kψj,k(t) (2.7)

Where j and k are integers and the function ψj,k(t) is the wavelet expansion

function which form an orthogonal basis. The two parameter coefficients aj,k(t) are

the Discrete Wavelet Transform (DWT) coefficients. The DWT coefficients aj,k(t) are

obtained using the following formula

aj,k =

∫
f(t)ψj,k(t)dt (2.8)

The wavelet basis functions are a two-parameter family of functions that are re-

lated to the function Ψ(t), the mother wavelet by

ψj,k(t) = 2j/2Ψ(2jt− k) (2.9)

k represents translation and j is the dilation parameter. Therefore wavelet basis

functions are obtained from a single wavelet by dilating and translating the single

mother wavelet Ψ(t).
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The concept of dilation and translation allows the wavelet transform to be local-

ized in both time and frequency (scale) domain. Wavelet reveals aspects of data that

other transform techniques overlook i.e. trends, breakdown points and discontinuities.

By analyzing the sine wave and wavelets depicted in Figure 2.1 and Figure 2.2 respec-

tively, we can clearly state that signals with sharp changes and peaks will be better

analyzed with an irregularly shaped wavelet rather than with a smooth sinusoid.

Figure 2.1: Sinewave

Figure 2.2: Wavelet
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DWT is implemented using the Mallat algorithm [8] known as two-channel sub-

band coder to obtain the discrete wavelet transform coefficients. A pair of Finite

Impulse Response (FIR) quadrature mirror filters known as scaling filter and wavelet

filter are used. The scaling filter h is a low-pass filter and the wavelet filter g is a high-

pass filter. h̃ is the low-pass reconstruction filter and g̃ is the high-pass reconstruction

filter. Both g and h are related by the following equation.

gn = (−1)nhN−1−n,−→ n = 0, 1, 2, · · · · · ·N − 1 (2.10)

Filter implementation of DWT using a two channel subband coder is shown in

Figure 2.3. Images are decomposed using 2D DWT which is applied by means of

separability approach along its rows and columns alternatively resulting into four

smaller subsets. The subband coder of Figure 2.3 is generalized for 2D signals as

shown in Figure 2.5.

Low pass

Decompos ition Filte r

High pass

Decompos ition Filte r

2↓
Approximation

Coefficient (cA 1)

De ta il

Coefficient (cD 1)2↓

Input

Down Sampling

Figure 2.3: 1D DWT implementation using subband coding

In wavelet analysis, a 1-Dimensional signal is split into approximation and detail

components. The approximation component is recursively decomposed into second

level approximation and detail coefficients and this process is repeated for the number

of required decomposition levels. A level 3 wavelet decomposition of a signal is illus-

trated in Figure 2.4, therefore for n level of decomposition there exists n + 1 possible

ways to decompose or encode a signal.
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Figure 2.4: Multilevel decomposition of 1D signal
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Figure 2.5: 2D DWT implementation using subband coding

Wavelet packet analysis is an extension of wavelet transform as both the approx-

imation and detail coefficients are recursively decomposed at each level of decompo-
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sition. This results in an increased range of possibilities for signal analysis. Wavelet

packet decomposition tree is as shown in Figure 2.6.

AAA3 DAA3

AA2 DA2

A1 D 1

Input Image

AD2 DD2

ADA3 DDA3 AAD3 DAD3 ADD3 DDD3

Figure 2.6: Wavelet packet transform: Generalization of wavelet transform

Figure 2.7 illustrates three levels of wavelet decomposition wherein HL1, LH1

and HH1 represent the finest/detail coefficient of the original image, HL2, LH2 and

HH2 represent the finest/detail coefficient of sub-band LL1 and similarly HL3, LH3

and HH3 represent the finest/detail coefficient of sub-band LL2. LL3 is the lowest

frequency term that represents all the coarser levels.

2.1.3 Wavelet Filter

Wavelet bases are constructed with certain desired properties and quite a bit of free-

dom is exercised in choosing the wavelet function to generate a particular wavelet

basis. Specific choice and method of construction of wavelet basis entirely depends on

the requirements and motivation for its construction. There are two important classes
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Figure 2.7: Three scale wavelet decomposition

of compactly supported wavelet bases, namely the compactly supported orthogonal

and the biorthogonal wavelet bases. These wavelet bases give rise to FIR linear phase

and FIR subband filtering schemes. Common examples of compactly supported or-

thogonal basis wavelets are the Haar wavelet basis and the Daubechies wavelet basis.

In this section, we will briefly discuss about the Biorthogonal spline wavelets and

finally compare the wavelet properties of Haar, Daubechies and Biorthogonal spline

wavelets.
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2.1.4 Biorthogonal Spline Filter

Most of the images are smooth and when dealing with images it is required that a

wavelet filter should not deteriorate the smoothness of the image. Biorthogonal spline

wavelets are a class of wavelet filters that use a smooth mother wavelet for image anal-

ysis. In addition to a smooth mother wavelet it is also required that mother wavelet is

symmetric so that the corresponding wavelet transform could be implemented using

mirror boundary conditions that reduce boundary artifacts. Except for the trivial

case of Haar wavelets none of the wavelet filters are both symmetric and orthogonal.

Therefore to achieve symmetric property we relax the orthogonality constraint

and construct a biorthogonal basis. Decomposition of an image is obtained using the

following equation.

cm,n(f) =
∑

k

g2n−kam−1,k(f) (2.11)

am,n(f) =
∑

k

h2n−kam−1,k(f) (2.12)

Where gl = (−1)lh−l+1 and hn = 21/2
∫

ψ(x− n)ψ(2)dx. The image is recon-

structed using the equation below:

am−1,f (f) =
∑

n

[h̃2n−lam,n(f) + g̃2n−lcm,n(f)] (2.13)

h̃, g̃ are different from h and g and the relationship between them is given by the

following equation

g̃n = (−1)nh−n+1 (2.14)

gn = (−1)nh̃−n+1 (2.15)
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∑
n

= hnh̃n+2k = δk,0 (2.16)

Define

φ(x) =
∑

n

hnφ(x− 2n) (2.17)

φ̃(x) =
∑

k

h̃nφ̃(x− 2n) (2.18)

ψ(x) =
∑

n

gnψ(x− 2n) (2.19)

ψ̃(x) =
∑

k

g̃nφ̃(x− 2n) (2.20)

Therefore we can rewrite am,n(f) and cm,n(f) as:

am,n(f) = 2−m/2

∫
φm,n(x)f(x)dx (2.21)

cm,n(f) = 2−m/2

∫
ψm,n(x)f(x)dx (2.22)

and the reconstruction equation thus becomes

f =
∑
m

, n < ψm,n, f > ψ̃m,n (2.23)

Figure 2.8 gives a relationship between filter structure and wavelet functions. For

symmetric filters, the condition of exact reconstruction on h and h̃ can be written as:

H(ξ) + H̃(ξ) + H(ξ + π) + H̃(ξ + π) = 1 (2.24)

Where

H̃(ξ) = 2−1/2
∑

n

h̃ne
−jnξ (2.25)
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Figure 2.8: Filter structure and associating wavelets

and

H(ξ) = 2−1/2
∑

n

hne
−jnξ (2.26)

2.1.5 Comparison of filter properties

A comparative study of wavelet filter properties of Haar wavelet, Daubechies wavelet

and Biorthogonal spline wavelet is included in Table 2.1. Amongst the three wavelets

only Haar and Daubechies wavelets possess orthogonality, which offers the following

advantages:

• Scaling and Wavelet functions are same for both forward and inverse transform.

• Correlation in the signal between different subspaces is removed.

Haar wavelet is the simplest and the most fastest wavelet to implement but the

major disadvantage of haar wavelet is its discontinuity, which makes it difficult to

simulate a continuous signal. Daubechies invented the first continuous orthogonal

compact support wavelet but this wavelet family is non-symmetric. The advantage of

the wavelet possessing symmetric property is that the wavelet transform can be imple-

mented using mirror boundary conditions that reduce boundary artifacts. Therefore

Biorthogonal spline wavelet filters are the best available wavelets for image compres-
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Table 2.1: Property comparison of different wavelet filters

Property Haar Daubechies Biorthogonal Spline

Explicit Function Yes No Yes

Orthogonal Yes Yes No

Symmetric Yes No Yes

Continuous No Yes Yes

Compact support Yes Yes Yes

Maximum regularity(order L) No No Yes

Shortest scaling function(order L) Yes No Yes

sion applications. The B-spline wavelets are smooth and since splines are piecewise

polynomial they are easy to manipulate.

2.2 Limitations of Wavelet Pyramid

Wavelets have had a wide impact, both in theory and in practice, and especially in

areas of data compression and signal restoration. The shrinking of wavelet coefficients

proved to be a very powerful tool for statistical estimation, from both a theoretical

and a practical standpoint. Therefore, wavelet based-coders have found wide applica-

tions in various data compression applications and have been included in JPEG-2000.

Meyer portrayed wavelet theory as a unifying mathematical language for describing

a set of connected ideas that arose in different areas. Researchers have proved that

a lot of claims regarding the applicability of wavelets to image processing problems

have been perhaps overstated and some of their limitations include:

• Inefficient Representations : From a theoretical viewpoint, wavelet series is not

optimal for representing objects with discontinuities along curves.
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• Directional Limitations : Wavelets have only a fixed number of directional ele-

ments, independent of scale.

• Scale Limitations : Wavelet pyramids are not anisotropic and contain elements

at fixed scales/locations.

Wavelet transform is a well known multiresolution analysis tool capable of convey-

ing accurate temporal and spatial information. Wavelet transform has been profusely

used to address problems in; signal and speech processing, data compression, pattern

recognition, image reconstruction, and biomedical engineering applications. Wavelets

better represent objects with point singularities in 1D and 2D space but fail to deal

with singularities along curves in 2D. Discontinuities in 2D are spatially distributed

which leads to extensive interaction between discontinuities and wavelet expansion

coefficients. Therefore wavelet representation does not offer sufficient sparseness for

image analysis. Following wavelets, research community has witnessed intense efforts

for development of better directional and decomposition tools, namely, curvelets [9],

ridgelets [15] and contourlets [16].

2.3 Curvelet Transform

Curvelet transform [9] belongs to the family of multiresolution analysis tool that is

designed and targeted to represent smooth objects with discontinuity along a general

curve. Curvelet transform overcomes shortcomings of existing multiresolution anal-

ysis schemes and offers improved directional capacity to represent edges and other

singularities along curves. Curvelets outperform wavelets in situations that require

optimal sparse representation of objects with edges, representation of wave propaga-

tors, image reconstruction with missing data etc. Let us assume that a function f

has a discontinuity across a curve, and is otherwise smooth as shown in Figure 2.9.

Approximating f from the best m-terms in the Fourier expansion at a specified error
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Figure 2.9: Wavelets vs. Curvelets [17]

rate in wavelet domain would require O(m−1) terms, whereas a curvelet expansion

demands only O(m−2) terms. Curvelet transform is a multiscale non-standard pyra-

mid with numerous directions and positions at each length and scale. Curvelets offer

anisotropic and a locally adaptive scaling unlike other pyramid schemes. Original

implementation of curvelet transform is based on the combination of Ridgelets, Mul-

tiscale ridgelets and Bandpass filtering.

• Ridgelets analyze objects with discontinuities across straight lines.

• Multiscale ridgelets renormalize and transport data to a wide range of scales

and locations.

• Bandpass filtering separates an object into a series of disjoint scales.

Analysis of curvelet transform based on its original implementation includes sub-

band decomposition, smooth partitioning, renormalization and ridgelet analysis. An

organizational outline of curvelet transform is also depicted in Figure 2.10.
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Figure 2.10: Overview of curvelet transform [9]

1. Subband Decomposition. A bank of subband filters P0, (∆s, s ≥ 0) are

defined and the object f is filtered into distinct subbands:

f 7→ (P0f, ∆1f, ∆2f, ∆3f, ...) (2.27)

The different subbands contains details about 2−2s wide.

2. Smooth Partitioning. A collection of smooth windows wQ(x1, x2) localized

around dyadic squares are defined

Q = [k1/2
s, (k1 + 1)/2s]× [k2/2

s, (k2 + 1)/2s] (2.28)

Multiplication of a function by the corresponding window function generates

a localized result, therefore different configuration of k1 and k2 with a fixed s

produces a smooth dissection of the function into ’squares’. Smooth windowing

dissection is applied to each of the filtered subbands.

∆sf 7→ (wQ, ∆sf)Q∈Qs (2.29)
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3. Renormalization. Renormalize each square generated in the previous stage

to unit scale.

gQ = (TQ)−1(wQ∆sf), Q ∈ Qs (2.30)

where TQ denotes the operator that transports and renormalizes f and is defined

as:

(TQf)(x1, x2) = 2sf(2sx1 − k1, 2
sx2 − k2) (2.31)

4. Ridgelet Analysis. Each ’square’ is analyzed in the orthonormal ridgelet

system with basis elements ρλ, thus making an orthobasis for L2(R2)

αµ = 〈gQ, ρλ〉, µ = (Q, λ) (2.32)

To better understand the spatial decomposition in curvelet transform; let us as-

sume that an object f that exhibits an edge as shown in Figure 2.11. Each fine-scale

subband filtered output ∆sf contains a map of the edge in f , widened to a width 2−2s

as per the scale of subband filter operator. Each subband appears as a collection of

smooth ridges, and when each subband is partitioned into ’squares’, an empty square

or a ridge fragment is observed. The ridge fragments are nearly straight at fine scales

and thus form the desired input for ridgelet analysis.

The image is synthesized using a reverse process order that includes; ridgelet syn-

thesis, renormalization, smooth integration and subband recomposition, as described

below.

1. Ridgelet Synthesis. Each ’square’ is reconstructed using the orthonormal

ridgelet system as:

gQ =
∑

λ

αλ,Qρλ (2.33)

2. Renormalization. Every individual ’square’ reconstructed in the previous

stage is renormalzied to its own proper square.

hQ = (TQ)gQ, Q ∈ Qs (2.34)
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Figure 2.11: Spatial decomposition of a single subband [9]
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3. Smooth Integration. Windowing dissection is reversed to each of the recon-

structed windows.

∆sf =
∑

Q∈Qs

wQ.hQ (2.35)

4. Subband Recomposition. The effect of the bank of subband filters in neu-

tralized using the following recomposition formula.

f = P0(P0f) +
∑
s>0

∆s(∆sf) (2.36)

2.3.1 Continuous Time Curvelet Transform

Since the introduction of curvelet transform researchers have developed numerous

algorithmic strategies [18], [19], [20], [21] for its implementation based on its original

architecture. Let us consider a 2D space, i.e. <2, with a spatial variable x and a

frequency-domain variable ω, and let r and θ represent polar coordinates in frequency-

domain. W (r) and V (t) are radial and angular windows respectively. Both windows

are smooth, nonnegative, real valued and supported by arguments r ∈ [1/2, 1] and

t ∈ [−1, 1] . For j ≥ j0, frequency window Uj in Fourier domain is defined as,

Uj(r, θ) = 2−3j/4W (2−jr)V (
2bj/2cθ

2π
), (2.37)

where bj/2c is the integral part of j/2. Thus, the support of Uj is a polar wedge

defined by the support of W and V , applied with scale-dependent window widths

in each direction. Windows W and V always obey the admissibility conditions as

follows:

+∞∑
j=−∞

W 2(2−jr) = 1, r ∈ (3/4). (2.38)

+∞∑

l=−∞
V 2(t− l) = 1, t ∈ (−1/2, 1/2). (2.39)
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Curvelets are defined (as function of x = (x1, x2)) at scale 2−j, orientation θl , and

position x
(j,l)
k = R−1

θl
(k12

−j, k22
−j/2) by ϕj,k,l(x) = ϕj(Rθl

(x− x
(j,l)
k )), where Rθ is an

orthogonal rotation matrix. A curvelet coefficient is simply computed by computing

the inner product of an element f ∈ L2(R2) and a curvelet ϕj,k,l

cj,k,l = 〈f, ϕj,k,l〉 =

∫

R2

f(x)ϕj,k,ldx. (2.40)

Curvelet transform also contains coarse scale elements similar to wavelet theory.

For k1, k2 ∈ Z , we define a coarse level curvelet as:

ϕj0,k(x) = ϕj0,k(x− 2−j0)k, ϕ̂j0(ω) = 2−j0W0(2
−j0|ω|). (2.41)

Curvelet transform is composed of fine-level directional elements (ϕj,k,l)j≥j0,k,l and

coarse-scale isotropic father wavelet (φj0,k)k. Key components of the construction are

summarized in Figure 2.12, left hand side represents the induced tiling of the Fourier

frequency plane and the image on the right shows the associated spatial Cartesian

grid at a given scale and orientation. The shaded region in Figure 2.12 represents

a parabolic wedge in the Fourier frequency plane. The wedges are the consequence

of the Fourier plane partitioning in radial (concentric circles) and angular divisions.

Concentric circles are responsible for decomposition of the image in multiple scales

(used for bandpassing the image) and angular divisions correspond to different angles

or orientation. Therefore, to address a particular wedge we need to define both its

scale and angle. Plancherel’s theorem is applied in equation (2.42) to express cj,k,l as

an integral over the entire frequency plane.

cj,k,l =
1

(2π)2

∫
f̂(ω)ϕ̂j,k,l(ω)dω =

1

(2π)2

∫
f̂(ω)Uj(Rθi

ω)ei〈x(j,l)
k ,ω〉dω. (2.42)
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Figure 2.12: Space frequency tiling in curvelet domain [20]

2.3.2 Fast Discrete Curvelet Transform

New implementations of Fast Discrete Curvelet Transform (FDCT) are ideal for de-

ployment in large-scale scientific applications due to their numerical isometry and

an utmost 10 folds computational complexity as compared to Fast Fourier Trans-

form (FFT) operating on a similar sized data. In our research work we used FDCT

via wrapping, proposed by authors in [20] for image analysis. Interested readers are

requested to refer to [20] for additional mathematical details.

• Compute 2D FFT coefficients and obtain Fourier samples f̂ [n1, n2] where

−n/2 < n1 and n2 < n/2.

• For each scale j and angle l, form the product Ũj,l[n1, n2]f̂ [n1, n2]

• Wrap this product around the origin and obtain f̃j,l[n1, n2] = W (Ũj,lf̂)

[n1, n2], where the range of n1, n2 and θ respectively are 0 < n1 < L1,j,

0 < n1 < L2,j and (−π/4, π/4).

• Apply inverse 2D FFT to each f̃j,l and save discrete curvelet coefficients.
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(a) Original (b) Wrapped

Figure 2.13: Wrapping a segment around the origin [22]

In the first two stages, Fourier frequency plane of the image is divided into radial

and angular wedges owing to the parabolic relationship between a curvelets length

and width, as demonstrated in Figure 2.12. Each wedge corresponds to curvelet

coefficient at a particular scale and angle. Step 3 is essentially required to re-index

the data around the origin as shown in Figure 2.13. Finally, inverse FFT is applied

to collect discrete curvelet coefficients in the spatial domain.

2.4 Wave Atoms Decomposition

Wave atoms are a recent addition to the collection of mathematical transforms for har-

monic computational analysis. They are a variant of 2D wavelet packets that retain an

isotropic aspect ratio, tender a sharp frequency localization that cannot be achieved

using a filter bank based on wavelet packets and offer a significantly sparser expansion

for oscillatory functions than wavelets, curvelets and Gabor atoms. Curvelets capture
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coherence only along oscillations whereas wave atoms capture coherence of pattern

both along and across oscillations. Wave atoms precisely interpolate between Ga-

bor atoms [6] (constant support) and directional wavelets [23] (wavelength is directly

proportional to diameter) in the sense that the period of oscillations of each wave

packet (wavelength) is related to the size of essential support by parabolic scaling i.e.

wavelength is directly proportional to diameter 2.

Two distinct parameters α, β represent decomposition and directional ability

and are sufficient for indexing all known forms of wave packet architectures namely

wavelets, Gabor, ridgelets, curvelets and wave atoms. The triangle formed by wavelets,

curvelets and wave atoms, as shown in the Figure 2.14, indicates the wave packet fam-

ilies for which sparsity is preserved under transformation. Wave atoms are defined

for α = β = 1/2, where α indexes the multiscale nature of the transform, from α =

0 (uniform) to α = 1 (dyadic). β measures the wave packet’s directional selectivity

(0 and 1 indicate best and poor selectivity respectively). Wave atoms represent a

class of wavelet packets where directionality is sacrificed at the expense of preserving

sparsity of oscillatory patterns under smooth diffeomorphisms. Essential support of

wave packet in space (left) and in frequency (right) is shown in Figure 2.15.

A function is considered to be an oscillatory pattern if it is the image under a

smooth diffeomorphism of a function that oscillates only in one direction, say along

the coordinate x1. For x = (x1, x2), we formulate our mathematical model as:

f = sin(Ng(x))h(x) (2.43)

Lets suppose that a function f exists with an arbitrary N , such that g and h

belong to the class C∞, and h is compactly supported inside the interval [0, 1]2.

Assume g has no critical points, then f can be represented to accuracy ε in L2 by

the largest CεN wave atom coefficients in absolute value, where for all M > 0, there

exists CM > 0 such that Cε ≤ CMε−1/M . In other words, O(N) wave atom coefficients

suffice to represent f to some given accuracy. In contrast, we would need O(N3/2)
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Figure 2.14: Comparison of different wave packets architectures with respect to mul-
tiscale nature and directional selectivity [24]
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Figure 2.15: Wave atoms tiling in space and frequency [24]
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curvelets coefficients; and O(N2) wavelet coefficients to represent f with the same

accuracy.

2.4.1 1D Discrete Wave Atoms Decomposition

Wave atoms are constructed from tensor products of adequately chosen 1D wave pack-

ets. Let ψj
m,n(x) represent a one-dimensional family of wave packets, where j, m ≥ 0

and n ∈ Z, centered in frequency around ±ωj,m = ±π2jm with C12
j < m < C22

j

and centered in space around xj,n = 2−jn. One-dimensional version of the parabolic

scaling states that the support of each bump of ψ̂j
m,n(ω) is of length O(2j) while

ωj,m = O(22j). Dyadic scaled and translated versions of ψ̂0
m in frequency domain are

combined and the basis function is written as:

ψj
m,n(x) = ψj

m(x− 2−jn) = 2j/2ψ0
m(2jx− n) (2.44)

The coefficients cj,m,n, for each wave number ωj,m,n, are obtained as a decimated

convolution at scale 2−j.

cj,m,n =

∫
ψj

m(x− 2−jn)u(x)dx (2.45)

By Plancheler’s theorem

cj,m,n =

∫
ei2−jnωψ̂j

m(ω)û(ω)dω (2.46)

If the function u is discretized at xk = kh, h = 1/N, k = 1, 2, 3.....N , then with a

small truncation error equation (2.46) is modified as:

cD
j,m,n =

∑

k=2π(−N/2+1:N/2)

ei2−jnkψ̂j
m(k)û(k) (2.47)

The data is supported inside two disjoint intervals of size 2j+1π which are sym-

metric about origin (2j + 1 points). Instead of an interval of length 2jx2π, sum in
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equation (2.47) is computed using a reduced inverse FFT inside an interval of size

2j+1π centered about origin as:

cD
j,m,n =

∑
k = 2π(−2j/2 + 1 : 2j/2)ei2−jnk

∑
p∈2πZ

ψ̂j
m(k + 2jp)û(k + 2jp) (2.48)

A simple wrapping technique similar to the one described for discrete curvelet

transform is used for the implementation of discrete wavelet packets. The main steps

involved are:

• Perform an FFT of size N on the samples of u(k)

• For each pair (j, m), wrap the product ψ̂j
mû by periodicity inside the interval

[−2j, 2j] and perform an inverse FFT of size 2j to obtain cD
j,m,n.

• Repeat step 2 for all pairs (j, m).

The overall complexity of the algorithm is O(NLogN) and the wavelet packets

are decomposed into positive and negative frequency components, represented by

ψ̂j
m,n(ω) = ψ̂j

m,n,+(ω) + ψ̂j
m,n,−(ω) (2.49)

Hilbert transform Hψ̂j
m,n(ω) of equation (2.49) represents an orthonormal basis

L2(R) and is obtained through a linear combination of negative and positive frequency

bumps weighted by i and -i respectively.

Hψ̂j
m,n(ω) = −iψ̂j

m,n,+(ω) + iψ̂j
m,n,−(ω) (2.50)

2.4.2 2D Discrete Wave Atoms Decomposition

A two-dimensional orthonormal basis function with 4 bumps in frequency plane is

formed by individually taking products of 1D wave packets. Mathematical formula-

tion and implementations for 1D case was presented in the previous section. 2D wave
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atoms are indexed by µ = (j, m, n), where m = (m1,m2) and n = (n1, n2). Construc-

tion is not a simple tensor product since there is only one scale subscript j. This is

similar to the non-standard multi-resolution analysis wavelet bases where the empha-

sis is to enforce same scale in both directions in order to retain an isotropic aspect

ratio. Equation (2.44) is modified in 2D as:

ϕ+
µ (x1, x2) = ψj

m1
(x1 − 2−jn1)ψ

j
m2

(x2 − 2−jn2) (2.51)

The Fourier transform of equation (2.51) is separable and its dual orthonormal

basis is defined by Hilbert transformed wavelet packets in equation (2.53).

ϕ+
µ (ω1, ω2) = ψ̂j

m1
(ω1)e

−i2−jn1ω1ψ̂j
m2

(ω2)e
−i2−jn2ω2 (2.52)

ϕ−µ (x1, x2) = Hψj
m1

(x1 − 2−jn1)Hψj
m2

(x2 − 2−jn2) (2.53)

Combination of equation (2.51) and equation (2.53) provides basis functions with

two bumps in the frequency plane, symmetric with respect to the origin and thus

directional wave packets oscillating in a single direction are generated.

ϕ(1)
µ =

ϕ
(+)
µ + ϕ

(−)
µ

2
, ϕ(2)

µ =
ϕ

(+)
µ − ϕ

(−)
µ

2
(2.54)

ϕ
(1)
µ and ϕ

(2)
µ together form the wave atoms frame and are jointly denoted by ϕµ.

Wave atoms algorithm is based on the apparent generalization of the 1D wrapping

strategy to two dimensions and its complexity is O(N2LogN).
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Chapter 3

Human Face Recognition

3.1 Introduction

Face recognition has attracted research community during the last few decades as they

are the most common visual patterns in our environment. Significant development in

this area has facilitated emergence of a wide range of commercial and law enforcement

face recognition and classification systems. Typical applications include driver’s li-

cense, passports, voter registration card, human-computer interaction, database secu-

rity, law enforcement, virtual reality to name a few. Face recognition is non-intrusive

i.e. images can be captured, identified or verified even without the knowledge and

physical interaction of the subject. Moreover, an expert is not required to analyze and

interpret the results and data can be easily collected with simple devices like camera.

Development of a reliable face recognition and classification system is an intricate

task since faces are complex, and belong to a class of natural objects that does not

lend themselves to simple geometric interpretations. In spite of these challenges the

human visual cortex does an excellent job in efficiently discriminating and recognizing

these images. A fully automated face recognition system must reliably perform three

subtasks: face detection, feature extraction and recognition/identification. However,

each of these subtasks itself represents a separate area of research and isolating the
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subtasks simplifies our job and also enhances the assessment and advancement of the

component techniques. Therefore, standard face databases have been used for the ex-

periments; and our principal focus has been on the development of new and efficient

feature extraction methods.

3.2 Challenges in Face Recognition

Faces belong to a class of natural objects that look similar but subtle features make

them different. Humans recognize faces with natural ease but automated face recog-

nition is very challenging. The advantage of computer-aided face recognition is its

ability to handle large number of faces, whereas a human brain has limited mem-

ory. Aging, changes in facial hair, illumination, viewpoint variations, and cluttered

background are some of the problems that need to be tackled by an automatic face

recognition system. Despite these massive challenges the human visual system effi-

ciently discriminates and recognizes faces.

• Head pose: Rotation or tilt of the head significantly affects the performance of

the recognition system.

• Aging : Images acquired in different sessions separated by long intervals may

seriously degrade the recognition rate.

• Facial expression: Facial expressions such as smiling, shouting, crying, frowning

etc., critically affect recognition accuracy.

• Occlusion: Partial occlusion of facial features with sunglasses, scarfs and other

objects further complication detection and identification.

• Hair style: Changes in hairstyle may affect performance.
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• Illumination: Amount and direction of light illuminating the subjects greatly

impacts the recognition accuracy. Inconsistent lighting causes shadowing effects

that significantly degrades the system’s performance.

• Frontal vs. Profile: Profile images can be difficult to recognize if the system

has only been trained using frontal faces.

Different challenges are associated with various face databases; some of the databases

used to rigorously test our proposed methods and to compare with existing approaches

are described in the following section.

3.2.1 Databases

FERET [28] was sponsored by the Department of Defense in order to develop a system

with automatic face recognition capability to be employed for assistance in security,

intelligence and law enforcement. The final corpus consists of 14051 8-bit grayscale

images of human faces with views ranging from frontal to left and right profiles.

Figure 3.1: Sample images of a subject from FERET database

Faces94 database [29] was generated at the University of Essex and contains a

series of 20 images per individual. Faces94 database is wide-ranging and encompasses

images of 152 distinctive individuals. The database contains images of people of

various racial origins, mainly first year undergraduate students, so the majority of

individuals are between 18-20 years old but some older staff member and students are

also included in the database. Some individuals are wearing glasses and/or beards.
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Figure 3.2: Sample images from Faces94 database

(a) Neutral (b) Surprise

 

(c) Happy (d) Disgust

(e) Sad (f) Anger

 

(g) Fear

Figure 3.3: Sample images of a subject from JAFFE database

The JAFFE database [30] includes 220 images of 10 Japanese female models cap-

tured in front of a semi reflective mirror. Each subject was recorded 3− 4 times with

six basic emotions and a neutral face. The camera trigger was controlled by the sub-

jects. The resulting images have been rated by 60 Japanese women on a 5-point scale

for each of the six adjectives. Figure 3.3 shows example image of one such subject

from JAFFE database with different facial expressions.

Georgia Tech database [31] contains images 15 color images of each of the 50
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people with different emotions. Majority of the images are captured in two sessions

to take into account the variations in illumination conditions, facial expression, and

appearance. Additionally, images are acquired at varying scales and orientations.

Figure 3.4 shows sample images from Georgia Tech database exhibiting various facial

expressions, scale variations and image acquisition at different sessions.

 

Figure 3.4: Sample images of a subject from Georgia Tech database

Figure 3.5: Sample images from Sheffield face database

Sheffield [32] consists of 564 images of 20 individuals. The database consist of

images of individuals with mixed race, gender and appearance. Each individual is

imaged in a range of poses from left/right profile to frontal view with small angular

rotations between successive images. The database has been pre-cropped so that the

image size is uniformly reduced to 112x92 pixels, thus, the background information

is eliminated from the images and only the central characteristics of the face are

retained.
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ORL database [33] contains 10 different images for each of the 40 distinctive sub-

jects. Images of some subjects are taken under varying lighting conditions, facial

expressions and details. All images are captured against a dark homogeneous back-

ground with the subjects in an upright, frontal position with a small tolerance for

side movement.

Figure 3.6: Sample images from ORL face database

Yale face database [34] contains 165 grayscale images of 15 individuals. There are

11 images per subject, one per different facial expression or configuration: center-

light, with glasses, happy, left-light, without glasses, normal, right-light, sad, sleepy,

surprised, and winking.

Figure 3.7: Sample images of a subject from Yale face database

AR face database [35] contains over 4000 color images corresponding to 126 indi-

viduals, i.e., 70 men and 56 women. Images feature frontal view faces with different

facial expressions, illumination conditions, and occlusions (sun glasses and scarf).

The pictures were captured under controlled conditions without any restrictions on

clothes, glasses, make-up, hair style, etc. Every person was imaged in two sessions

separated by a two week interval.
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Figure 3.8: Sample images of a subject from AR face database

3.3 Literature Review

Automatic face recognition systems are classified into two broad categories, namely,

geometric local feature based and holistic appearance based face recognition [36].

Local feature based face recognition extracts geometric relationship between human

facial features such as eyes, nose, mouth and facial boundary [40]. This approach

significantly relies on the accuracy of facial feature detection. Reliable extraction of

facial features is an extremely complicated task since human faces have similar fea-

tures with subtle changes in size and geometry that make them different from one

another. Due to aforementioned complications researchers prefer the use of holis-

tic appearance based face recognition systems [42] wherein a human face is treated

as a two-dimensional intensity variation pattern and recognition is achieved through

matching of statistical properties. In this work we focus on appearance based recogni-

tion systems and briefly discuss some of the well established techniques in literature.

In order to generate discriminative features, improve the speed and accuracy of a

face recognition system researchers have proposed the use of various dimensionality re-

duction techniques over the last two decades. Kirby et al. [43] represented human faces

as a linear combination of weighted eigenvectors using Principal Component Analysis

(PCA). Turk and Pentland [44] used PCA to represent the intensity pattern of human

faces in a lower dimensional feature space. PCA based face recognition systems suffer

from poor discriminatory power and high computational load, and therefore to elim-

inate the shortcomings of standard PCA based systems, Bartlett et al. [45] proposed

the use of Independent Component Analysis (ICA). In [46] authors utilized Linear
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Discriminant Analysis (LDA) to maximize the ratio of between-class scatter matrix

and the within-class scatter matrix for improved face recognition. An eigenspace

based adaptive approach that uses a specific kind of genetic algorithm called Evolu-

tionary Pursuit (EP) [47] and Elastic Bunch Graph Matching (EBGM) [48] have been

proposed to generate the best set of projection axes. Bach et al. [49] have proposed

the use of kernel Hilbert space for ICA to adaptively generate nonlinear functions

and to devise a robust algorithm with regards to variations in source density, degree

of non-Gaussianity, and presence of outliers. A kernel machine-based discriminant

analysis method [50] that deals with the nonlinearity of face pattern was proposed for

improved representation of nonlinear and complex distribution of faces under varying

viewpoint, illumination and facial expression. To enhance the discriminative power

of extracted features and to achieve superior face recognition researchers have also

proposed the use of bayesian [51], [52] and Support Vector Machine (SVM) [53], [54]

frameworks.

Multiresolution analysis based approaches have been proposed to improve the per-

formance of a face recognition system, deal with high image dimensionality, variations

in viewpoint, illumination and facial expression. Face images are transformed into

a new domain and later PCA and/or other dimensionality reduction techniques are

employed. Development of enhanced multiresolution analysis tools have encouraged

researchers to apply them for pattern recognition applications to achieve a high level

of accuracy and class separability. Some of the well known wavelet based face recog-

nition architectures include wavelet based PCA [55], wavelet based LDA [56], wavelet

based Kernel Association Memory (kAM) [57] and wavelet based modular weighted

PCA [58]. Emergence of a new multiresolution analysis tool, namely, curvelets with

enhanced directional and edge representation has prompted researchers to apply them

to several areas of image processing. Recent works in literature that are based curvelet

transform include curvelet based PCA [59], curvelet based LDA [60] and curvelet

based PCA+LDA [60]. Some of the limitations of existing face recognition algo-
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rithms include large sensitivity to viewpoint variations and number of prototypes

as well as slow classification speed. This chapter presents two curvelet based face

recognition algorithms;

• Recognition with Kernel Principal Component Analysis [61]: A face

recognition system based on curvelet transform and Kernel Principal Compo-

nent Analysis (KPCA) is developed. In earlier works features extracted from

curvelet subbands were dimensionally reduced using traditional PCA. KPCA

transforms data into a non-linear space using an integral kernel operator func-

tion and generates features that are more meaningful than the ones extracted

using a linear PCA.

• Recognition based on Multidimensional PCA and Extreme Learn-

ing Machine: In this work a new human face recognition algorithm based on

Bidirectional Two Dimensional Principal Component Analysis (B2DPCA) and

Extreme Learning Machine (ELM) is introduced. The proposed method is based

on curvelet image decomposition of human faces and utilizes its selected sub-

band for classification. Subband exhibiting a maximum standard deviation is

dimensionally reduced using an improved dimensionality reduction technique.

These feature sets are used for classification using an ELM classifier. Other

notable contributions of the proposed work include significant improvements

in classification rate, up to hundred folds reduction in classification time and

negligible dependence on the number of prototypes.

The following sections briefly describe the individual components used in our

recognition framework followed by a detailed overview of our proposed methods, ex-

perimental results and comparisons against existing techniques.
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3.4 Kernel Principal Component Analysis

Karhunen-Loeve expansion, also known as principal component analysis, is a power-

ful technique for extracting structural information from higher dimension data. PCA

is an orthogonal transformation of the coordinate system and is evaluated by diago-

nalizing the covariance matrix. Given a set of feature vectors x̄i ∈ RN, i = 1, 2, ....m̄

which are centered with zero mean, their covariance matrix is evaluated as:

C̄ =
1

m̄

m̄∑
j=1

x̄ix̄
T
j (3.1)

Eigenvalue equation, λv = C̄v is solved where v is the eigenvector matrix. To

generate data with Q dimensions, eigenvectors corresponding to Q largest eigenval-

ues are selected as basis vectors of the lower dimension subspace. KPCA [65] is a

generalization of PCA to compute the principal components of a feature space that is

nonlinearly related to the input space. Feature space variables are obtained by higher

order correlations between input variables. KPCA operates as a nonlinear feature

extractor by mapping input space to a higher dimension feature space through a non-

linear mapping function where the data is linearly separable. Cover’s theorem [63]

justifies the conversion of data into a higher dimensional space and formalizes the in-

tuition that the number of separation classes increase with dimensionality, thus more

views of the class and non class data become evident. Mapping achieved using a

kernel based technique solves the problem of nonlinear distribution of low level image

features and also acts as a dimensionality reduction step. Data is transformed from a

lower dimension space to a higher dimension using the mapping function φ̄ : RN → F,

and linear PCA is performed on F. The covariance matrix in the new domain is

calculated using equation (3.2).

C̄ =
1

m̄

m̄∑
j=1

φ̄(x̄i)φ̄(x̄j)
T (3.2)
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The modified eigenvalue equation, λv = C̄v is solved to reduce the data dimension.

The nonlinear map φ̄ is not computed explicitly and is evaluated using the kernel

function K(x̄i, x̄j) = (φ̄(x̄i)φ̄(x̄j)). The kernel function implicitly computes the dot

product of vectors x̄i and x̄j in the higher dimension space. Kernels are considered as

functions measuring similarity between instances. The kernel value is high if the two

samples are similar and zero if they are distant. Some of the commonly used kernel

functions are listed in Table 3.1.

Pairwise similarity amongst input samples is captured in a Gram matrix K and

each entry of the matrixKij is calculated using the predefined kernel functionK(x̄i, x̄j).

Eigenvalue equation in terms of Gram matrix is written as m̄λβ̄ = Kβ̄.

K represents a positive semi definite symmetric matrix and contains a set of

Eigenvectors which span the entire space. β̄ denotes the column vector with entries

β̄1, β̄2, .....β̄m̄. Since the Eigenvalue equation is solved for β̄ instead of eigenvector Vi

of KPCA, the entries of β̄ are normalized in order to ensure that the eigen values

have unit norm in the feature space. After normalization the matrix consisting of

eigenvector is computed as V = Dβ̄, where D = [φ̄(x̄1), φ̄(x̄2), .....φ̄(x̄m̄)] is the data

matrix in the feature space.

Table 3.1: Kernels and their associated mathematical functions

Kernel Type Mathematical Identity

Gaussian K(x̄i, x̄j) = exp
(−‖x̄i,x̄j‖2)

2ᾱ2

Polynomial K(x̄i, x̄j) = (x̄i.x̄j + ᾱ)d̄, d̄=1,2,3.....

Sigmoid tanh(K(x̄i, x̄j) + ᾱ)
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3.5 Face Recognition using Curvelets and KPCA

This method deals with recognition of face images using kNN based classification,

utilizing reduced dimension feature vectors obtained from curvelet space. Images from

each dataset are converted into gray level image with 256 gray levels. Conversion from

RGB to gray level format along with a two fold reduction in the image size are the only

pre-processing operations performed on the images. Our proposed method is based

on extraction of global image features. Though resizing will result in loss of some

of the localized image information it is assumed that the overall global information

extracted from the resized image will not degrade radically. We randomly divided

the image database into two non-overlapping sets, i.e., training and testing set. All

images within each datasets are of the same dimension, i.e. R×C. Similar image sizes

support the assembly of equal sized curvelet coefficients and feature vector extraction

with identical level of global content. Curvelet transform of every image is computed

and only coarse level coefficients are extracted. Vectorization is the next step to

convert our curvelet coefficients into U×V dimension vector, called as curvelet vector,

whereas U × V ¿ R× C.

Applying kNN on curvelet vectors could be computationally expensive due to

higher dimensionality of data originating from large images. Inclusion of outliers and

irrelevant image points into classification can also affect the algorithm’s performance,

hence, KPCA is applied to reduce the data dimension. Scholkopf et al. [65] proposed

KPCA, wherein principal components are computed in a higher dimensional feature

space that is non-linearly related to the input space. Thus, KPCA reliably extracts

non-linear principal components while maintaining global content of the input space.

A Polynomial function based KPCA is used in our proposed method for dimen-

sionality reduction of curvelet features. KPCA feature vectors retain the global struc-

ture of input space that facilitates accurate classification with lower computational

complexity, diminished outliers and irrelevant information. Next, kNN algorithm is
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Table 3.2: Overview of KPCA Based Face Recognition

INPUT: Randomly divide image database into two subsets TRι and

TEκ where ι = 1, 2, ..., µ and κ = 1, 2, ..., ν representing training and test

image sets respectively.

OUTPUT: Classifier - f(x)

1. Resize images from all database to R× C

2. Compute curvelet transform of every train and test image

3. Vectorize coarse level features into U × V dimension vector

4. Compute the kernel matrix KTRι and KTEκ where each entry of the

matrix is computed using a polynomial kernel function (see Table 3.1)

5. Solve eigenvalue equations:

m̄λβ̄TR = KTRβ̄TR

m̄λβ̄TE = KTEβ̄TR

′λ′ and ′β̄′x represent eigenvalue and eigenvector matrices respectively

6. Obtain kernel PCA based feature vectors by computing principal

component projections of each image into non-linear subspace using β̄x

7. Classify KPCA based feature vectors using kNN

trained using labeled KPCA feature vectors. We selected kNN based classification due

to its attractive properties and better performance in image-to-class scenario com-

pared with other parametric classification schemes as argued by Boiman et al. [66].

Finally, test feature vectors are classified using kNN scheme utilizing Euclidean dis-

tance to compute dissimilarity between input images. Table 3.2 presents step-by-step

procedure of our proposed techniques.
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Table 3.3: Average recognition rates (%) using Curvelet+PCA [59] and our KPCA
based recognition scheme

Number of FERET ORL GTech

Components Curvelet Proposed Curvelet Proposed Curvelet Proposed

+ PCA Method + PCA Method +PCA Method

5 47.9 66.7 45.5 81 76.6 96

10 56.5 82.3 69 91 79.7 96

15 57 86 72.5 93 80.3 97

20 54.3 88.7 71.5 95.5 81.3 97.6

25 52.2 88.7 74.5 96 81.7 97.6

3.5.1 Experimental Results

As described earlier, images are converted from RGB to gray level with a 2 fold

reduction in size. In the FERET database 50% of images from each subject are used

as prototypes and the remaining 50% for testing. Five images of each subject from

ORL database are randomly selected as prototype and the remaining 5 are used for

testing. Similarly 8 images of each subject of the Georgia Tech dataset are randomly

selected for training. Both the testing and training sets of images are decomposed

using curvelet transform at 5 scales and 8 different angles. Amongst the curvelet

coefficients only approximate coefficients are selected as feature vectors since they

closely represent an approximation of the input image. The selected feature vectors

are dimensionally reduced with KPCA using a 3rd degree polynomial kernel. kNN is

applied on dimensionally reduced feature vectors using a neighborhood size of 5. The

above process was repeated thrice for all databases and average results are tabulated.

The recognition accuracy for FERET, ORL and GTech databases using our pro-

posed method is listed in Table 3.5.1. Varying number of principal components are
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used to emphasize the recognition accuracy achieved using PCA and KPCA prior to

saturation. It is clearly evident that the proposed method outperforms curvelet+PCA

based technique. In this thesis the term ”number of components” refers to the di-

mensionality of the feature vectors.

3.6 Bidirectional Two-Dimensional Principal Com-

ponent Analysis

PCA is a data representation technique widely used in pattern recognition and com-

pression schemes. Pioneering work by Kirby and Sirovich [43] used PCA for enhanced

representation of face images, however PCA fails to capture even a minor variance

unless it is explicitly accounted in the training data. Wiskott et al. [48] proposed

a bunch graph matching technique to overcome limitations and weakness of linear

PCA. In [67] Yang et al. proposed two dimensional PCA (2DPCA) for image rep-

resentation. As opposed to PCA, 2DPCA is based on 2D matrices rather than 1D

vectors. Therefore, image matrix does not need to be vectorized prior to feature ex-

traction. Instead an image covariance matrix is directly computed using the original

image matrices.

Let X denote a q̌ dimensional unitary column vector. To project a p̌xq̌ image

matrixA toX; linear transformationY = AX is used which results in a p̌ dimensional

projected vector Y. The total scatter of the projected samples is determined to

measure the discriminatory power of the projection vector X. The total scatter is

characterized by the trace of Sx̌ i.e. covariance matrix of the projected feature vectors,

J(X) = tr(Sx̌), where tr() represents the trace of Sx̌.

Sx̌ = E[Y − E(Y)][Y − E(Y)]T = E[(A− EA)X][(A− EA)X]T (3.3)
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tr(Sx̌) = XT [E(A− EA)T (A− EA)]X (3.4)

Gť = E[(A− EA)T (A− EA)] is a nonnegative q̌xq̌ image covariance matrix. If

there are M training samples, the α̌th image sample is denoted by p̌xq̌ matrix Aα̌.

Gť =
1

M

M∑
α̌=1

(Aα̌ − Ǎ)T (Aα̌ − Ǎ) (3.5)

J(X) = XTGťX (3.6)

Where Ǎ represents an average image of all the training samples. The unitary

vector Xopt that maximizes the generalized total scatter criterion J(X) is called the

optimal projection axes. Xopt represents a collection of ď orthonormal eigen vectors

X1,X2, ......,Xď of Gť corresponding to ď largest eigen values. Hence dimensionality of

every image Aα̌ is reduced by post multiplying and pre-multiplying it by the optimal

projection axes as XT
optAα̌Xopt.

A limitation of 2DPCA based recognition is that it operates along row directions

only. Zhang and Zhou [68] proposed (2D)2 PCA based on the assumption that training

sample images are zero mean, and image covariance matrix can be computed from the

outer product of row/column image vectors. In [68] two image covariance matrices

GťRow and GťCol are calculated by representing equation (3.5) initially in terms of

row vectors of Aα̌ and Ǎ and later as column vectors of Aα̌ and Ǎ. The optimal

projection axes of GťRow and GťCol are evaluated and labeled as X1opt and Z1opt.

Since both Gť and GťRow are evaluated along rows, their projection axes are similar

and hence dimensionally reduced image of Aα̌ is evaluated as ZT
1optAα̌X1opt.

Our dimensionality reduction algorithm works along the row and column direc-

tions independently of one another in order to better preserve the neighborhood

relationship and to generate distinctive feature sets. Our proposed technique closely

follows the work of [67] and generates an image covariance matrix Gťα̌ and optimizes
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it. Once optimal projection axes Xoptα̌ is calculated, dimensionality of every image

Aα̌ is reduced along its columns to generate new image sets Aβ̌ using equation (3.7).

The process is repeated to further reduce row dimension of the newly generated image

sets by analyzing image covariance matrix Gťβ̌ and optimal projection axes Xoptβ̌ and

finally pre-multiplying every new image Aβ̌ with XT
optβ̌

using equation (3.8). Block

schematic diagram of our proposed B2DPCA algorithm is shown in Figure 3.9.

Aβ̌ = Aα̌Xoptα̌ (3.7)

AΘ̌ = XT
optβ̌
Aβ̌ (3.8)

N  x N  Image

2DPCA

Along Image

Rows

2DPCA

Along Image

Columns

N  x M  Image M  x M  Image

Vectorize

M 2  Vector

Figure 3.9: Block diagram of proposed B2DPCA algorithm

3.7 Extreme Learning Machine

Feedforward neural networks are ideal classifiers for non-linear mappings that utilize

gradient descent approach for weights and bias optimization. Important factors that
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influence the performance of traditional feedforward neural learning algorithm like

Back-Propagation (BP) include:

• A small value of learning parameter ρ̌ causes the learning algorithm to converge

slowly whereas a higher value leads to instability and divergence to local

minima.

• Neural network may be over-trained using BP and obtain inferior general-

ization performance.

• Gradient descent based learning is an extremely time consuming process for

most applications.

To overcome innate shortcomings of traditional learning techniques Huang et

al. [69] proposed ELM to train a Single-hidden Layer Feedforward neural Network

(SLFNN) as shown in Figure 3.10. A random selection of input weights and the hid-

den layer biases transforms the SLFNN into a linear system. Consequently, the output

weights (linking the hidden layer and output layer) can be analytically determined

through a simple generalized inverse operation of the hidden layer output matrices. In

an ELM an infinitely differentiable hidden layer activation function facilitates random

assignment of input weights and hidden layer biases. Consider a collection of N dis-

tinct samples (ẋi, ṫi) where ẋi = [ẋi1, ẋi2, ...ẋin]T ∈ <n and ṫi = [ṫi1, ṫi2, ...ṫim]T ∈ <m,

an ELM with L hidden nodes and an activation function ξ̃(ẋ) is modeled as:

L∑
i=1

γ̌iξ̃i(ẋn) =
L∑

i=1

γ̌iξ̃i(w̌iẋn + b̌i) = ȯn, n = 1, 2, ...N, (3.9)

where w̌i = [w̌i1, w̌i2, ...w̌in]T and γ̌i = [γ̌i1, γ̌i2, ...γ̌iL]
T represent input and hidden layer

weight vectors respectively. ELM reliably approximates N samples with minimum er-

ror.

L∑
i=1

γ̌iξ̃i(w̌iẋn + b̌i) = ṫn, n = 1, 2, ...N (3.10)
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Equation (3.10) is modified as δ̃γ̌ = τ̌ , δ̃ = (w̌1, ..., w̌L, b̌1, ..., b̌L, ẋ1, ..., ẋN), such

that ith column of δ̃ is the output of ith hidden node with respect to inputs ẋ1, ẋ2, ...ẋN.

If the activation function ξ̃(ẋ) is infinitely differentiable, it is proved that the number

of hidden nodes satisfy L¿ N. Training of ELM requires minimization of an error

function E.

E =
N∑

n=1

(
L∑

i=1

γ̌iξ̃i(w̌iẋn + b̌i)− ṫn)2 ⇒ E = ‖δ̃γ̌ − τ̌‖. (3.11)

In classical neural networks δ̃ is determined using gradient descent optimization

wherein the input weights w̌i, hidden layer weights γ̌i and bias parameters b̌i are iter-

atively tuned with a learning rate ρ̌. A small value of ρ̌ causes the learning algorithm

to converge slowly whereas a higher value leads to instability and divergence to local

minima. To avoid instability and divergence to local minima, ELM incorporates a

minimum norm least-square solution. Hence, the problem is transformed to a new

domain and an optimal solution in the simplified domain is evaluated using the least-

square solution. Instead of tuning the entire network parameters, input weights and

bias parameters are randomly allocated and the problem is curtailed to the least-

square solution of δ̃γ̌ = τ̌ . The hidden layer output matrix δ̃ is a non-square matrix

and the norm least-square solution reduces to γ̌ = δ̃∗τ̌ , where δ̃∗ is the moore-penrose

generalized inverse of δ̃. An infinitely small training error is achieved using the above

model since it represents a least-square solution of the linear system.

‖δ̃γ̄ − τ̌‖ = ‖δ̃δ̃∗τ̌ − τ̌‖ ≡ minγ̌‖δ̃γ̌ − τ̌‖. (3.12)
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Figure 3.10: Architecture of an extreme learning machine classifier

3.8 Face Recognition using Multi-Dimensional PCA

and ELM

The proposed method is based on image decomposition of curvelet transform and

uses dimensionally reduced coefficients for recognition and classification. Distinctive

feature sets generated using B2DPCA are used to establish recognition accuracy.

Block schematic diagram of our proposed algorithm with important steps is shown in

Figure 3.11.

Images from each database are converted into gray level image with a two fold

reduction in image size to extract global image features. Each database is randomly

divided into non-overlapping training and testing set so that 40-45% of images of

each subject are used as prototypes and the remaining images are used for testing.

Curvelet transform is applied to generate initial feature vectors since it offers superior

performance in presence of singularities in higher dimension, and enhances localization

of higher frequency components with minimized aliasing effects. Input images are
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Figure 3.11: Schematic diagram of proposed face recognition algorithm

resized to RxC, since analogous image sizes support generation of curvelet feature

vectors with identical level of global information. Furthermore, curvelet transform of

every image is computed at 3 scales and 8 angular orientations, thus, generating 25

distinct subbands.

Standard deviation of every subband is calculated and the subband that exhibits

the highest standard deviation is selected as initial feature vector, UxV , where UxV

<< RxC. In contrast to the most recent work in literature [60] that uses two sub-

bands, we select only one subband since the difference of standard deviation among

successive subbands is quite significant. This noteworthy disparity in standard de-

viation is consistent for all the tested databases as shown in Table 3.4, where l rep-

resents the orientations. The proposed approach based on selecting a subband with

the utmost standard deviation leads to momentous savings in computational cost

during dimensionality reduction and classification stages. It is noted that the ap-

proximate curvelet subband holds the maximum standard deviation from amongst

the 25 curvelet subbands. Figure 3.12 justifies our approach of selecting only one

subband, i.e., curvelet subband at scale=1 and is in agreement with the results pre-

sented in Table 3.4.

Dimensionality reduction techniques have been frequently applied for real-time,
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Table 3.4: Mean standard deviation of curvelet subbands in various databases

Database Scale=1 Scale=2

l1 l2 l3 l4 l5 l6 l7 l8

FERET 63.3 3.7 3.7 3.1 3.7 3.5 3.6 3.1 3.7

Faces94 74.6 4.9 4.3 3.6 3.9 5.0 4.5 3.4 3.4

JAFFE 87.2 6.7 6.9 3.7 4.4 6.7 6.9 3.7 4.3

GTech 68.9 3.0 2.8 4.9 4.6 3.3 3.3 5.5 5.4

ORL 56.1 5.1 3.9 6.1 5.9 3.9 3.5 5.4 5.3

Sheffield 51.0 5.2 3.4 4.0 5.1 7.8 4.4 3.6 4.8

     

(a) (b) (c) (d) (e)

     

(f) (g) (h) (i) (j)

 

Figure 3.12: (a) Original FERET image, (b) Curvelet subband at scale=1, (c-j)
Curvelet subbands at scale=2 and 8 angular orientations
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accurate and efficient processing. B2DPCA is used to achieve superior and unique

feature sets and minimize computational complexity of our framework. 2DPCA was

proposed in the seminal work of Yang et al. [67] wherein an image covariance ma-

trix is computed directly using the original image matrices. In our proposed work

features are extracted by initially reducing dimension of initial feature matrix, i.e.,

selected curvelet subband along its columns, called as intermediate features. Later

dimensionality of intermediate features is reduced along its rows so as to generate

final feature sets, each of size U ′xV ′, where U ′xV ′ << UxV . Our modified approach

preserves information between adjacent pixels and generates distinctive feature vec-

tors. An ELM classifier is trained and tested using labeled B2DPCA feature vectors

to ascertain accuracy.

3.8.1 Results and Discussion

All Images are resized with a 2 fold dimension reduction and converted from RGB

to gray level image. In all databases 40-45% of images of each subject are used

as prototypes and the remaining images for test purposes. Both the testing and

training image sets are decomposed using curvelet transform at 3 scales and 8 different

angles. Approximate curvelet coefficients are dimensionally reduced using B2DPCA,

vectorized, trained and tested using ELM. Fast learning and testing speed offered

by ELM enabled us to repeat the experiments several times; 100 experiments are

conducted for each database and average results are calculated. We have compared

our ELM based recognition scheme (50 hidden neurons) against methods utilizing

kNN of neighborhood size 5.

A comparative study of recognition performance is compared using ORL and Yale

face database. Results are obtained using various techniques with 60 principal compo-

nents. It is evident from the results presented in Table 3.5 that our proposed method

outperforms existing wavelet and/or curvelet based face recognition architectures. In

the following sections for simplicity we have only compared our results with a curvelet
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Table 3.5: Comparative Accuracy for YALE and ORL face database

Method YALE ORL

Standard Eigenface 76 92.2

Waveletface 83.3 92.5

Curveletface 82.6 94.5

Waveletface + PCA 84 94.5

Waveletface + LDA 84.6 94.7

Waveletface + Weighted Modular PCA 83.6 95

Curveletface + LDA 83.5 95.6

Waveletface + KAM 84 96.6

Curveletface + PCA 83.9 96.6

Curveletface + PCA + LDA 92 97.7

Curveletface + B2DPCA + ELM 99.7 99.9

based PCA+LDA [60] approach.

The recognition accuracy achieved for Sheffield and FERET database for varying

number of principal components is compared with curvelet based PCA+LDA ap-

proach [60] in Table 3.6, whereas results obtained for ORL and GTech database are

listed in Table 3.7. Results obtained using our proposed method consistently outper-

form PCA+LDA based approach for Sheffield, FERET, ORL and GTech datasets.

Comparative results obtained using the AR face database are plotted in Figure 3.13.

Improvements in recognition accuracy using the AR and the FERET database imply

that our proposed method is suitable for dealing with challenging face databases. It

is worth mentioning that increasing the number of principal components does not

necessarily increase accuracy and the use of localized information for face recognition

may be exploited to generate improved results.
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Table 3.6: Average recognition rates (%) for Sheffield and FERET database

Number of Sheffield FERET

Components PCA+LDA [60] Proposed PCA+LDA [60] Proposed

5 93.89 93.99 77.42 92.27

10 96.11 99.31 80.65 93.03

15 97.78 99.80 77.41 93.08

20 99.44 99.91 87.09 90.46

25 99.44 100 90.32 97.83

30 98.88 100 75.8 99.09

35 98.46 100 88.17 96.09

40 97.12 100 80.64 99.70

45 97.77 100 67.20 98.74

50 97.22 100 66.67 99.63

In addition to improved accuracy our proposed method is also independent of the

number of prototypes in comparison to other face recognition algorithms. Recognition

rates obtained for ORL database at 30%, 40%, 60%and 70% prototypes are plotted in

Figure 3.14 (y-axis denotes the accuracy and x -axis denotes the number of principal

components). In order to avoid within-scatter matrix singular cases, authors in [60]

extracted curvelet coefficients at 4 scales. Our proposed method is robust and free of

the singularity issues, i.e., independent of the scales of curvelet decomposition that

radically degrade precision of the PCA+LDA based method.

Table 3.8 compares Average Recognition Rate (AVR) and time complexity for

Faces94 database. Results clearly validate our claim that the proposed method

achieves superior recognition at hundred folds faster speed than state-of-the-art tech-

nique [60]. Our method is suitable for real-time applications. In addition to im-
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Table 3.7: Average recognition rates (%) for ORL and GTech database

Number of ORL GTech

Components PCA+LDA [60] Proposed PCA+LDA [60] Proposed

5 79.12 94.05 88.32 89.14

10 89.16 99.56 71 93.53

15 94.21 98.19 90.33 97.43

20 98.33 99.73 95.65 97.09

25 97.5 99.56 96.34 96.81

30 97.5 99.94 94.67 97

35 98.42 99.96 96 97.42

40 96.67 99.99 96 97.71

45 97.45 100 94 97.6

50 97.52 100 93 97.87

provements in classification time, our system also achieves significant computational

savings during dimensionality reduction stage since only one subband is utilized.

Table 3.8: Average recognition rates (%) and time complexity for Faces94 database

Number of PCA+LDA Proposed

Components AVR(%) Time(sec) AVR(%) Time(sec)

10 92.17 30.74 94.92 0.1329

20 97.28 30.67 98.91 0.1340

30 99.29 31.55 99.54 0.1343

40 99.29 33.17 99.55 0.1321

50 99.29 33.36 99.87 0.1348
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Figure 3.13: Average recognition rate (y-axis) vs. number of principal components
(x -axis) for AR face database

Table 3.9: Average recognition rates (%) for JAFFE database at varying number
of neurons

Neurons 35 40 45 50 55 60 STD

Components

5 92.56 92.92 92.97 92.95 92.62 92.55 0.2047

10 99.80 99.78 99.93 99.77 99.81 99.75 0.0641

15 99.01 99.07 99.01 98.98 99.04 98.94 0.0454

20 99.97 99.95 99.96 99.97 99.89 99.95 0.0299

25 100 100 100 100 100 100 0

Experiments are also carried out by varying number of hidden neurons from 35 to

60 in intervals of 5, however negligible variation in accuracy is observed, as indicated
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Figure 3.14: Average recognition rate (y-axis) vs. number of principal components
(x -axis) for ORL database at varying prototypes

by the recognition rates and standard deviation (STD) in Table 3.9. Results in Ta-

ble 3.9 represent a significant departure from traditional classification schemes where

correctness is greatly attributed to the classifier parameters, for example, neighbor-

hood size for a kNN classifier. To further investigate the advantages associated with

the use of an ELM classifier, we classified B2DPCA reduced feature vectors using

a kNN and ELM classifier with 5 neighbors and 50 neurons respectively. Improved

recognition accuracy is achieved using ELM in comparison with kNN at varying num-

ber of principal components, as presented in Figure 3.15.

In order to emphasize the benefits of our proposed dimensionality reduction tech-

nique, i.e., B2DPCA, we compared the accuracy achieving using Yang’s 2DPCA [67]
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Figure 3.15: Average recognition rate (%) for FERET database using kNN and ELM

Table 3.10: Average recognition rates (%) for FERET database using 2DPCA and
B2DPCA

Number of 2DPCA+ELM B2DPCA+ELM

Components AVR(%) AVR(%)

4 49.7 51.06

9 83.12 77.93

16 78.15 93.91

25 94.13 97.83

36 99.25 99.74

49 99.78 99.63

with our approach. In both situations we used an ELM classifier to train our sys-

tem and to ascertain recognition rate. Table 3.10 compares the average recognition
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rates obtained for FERET database at varying principal components. It is worth

mentioning that the number of principal components are represented in the form of

square of integers because of operational behavior of 2DPCA that simultaneously

reduces dimensions along rows and columns using a single set of optimized eigen vec-

tors (please refer to Chapter 3.6 for details). Improvements in accuracy using our

proposed dimensionality reduction technique are apparent from the results.

Table 3.11: Average recognition rates (%) for JAFFE database using ELM and
traditional BP based neural network

Number of ELM BP Network at Varying Iterations

Components 50 100 150 200 250 300 350 400

5 92.95 42.54 55.64 57.27 58 65.09 65.45 66.72 69.45

10 99.77 58.73 80.36 77.64 74.90 74.91 75.64 72.91 73.82

15 98.98 80 85.63 85.64 82.73 82.36 81.45 79.82 81.09

20 99.97 78.18 80.91 78 79.45 77.45 78.90 78 79.46

25 100 73.63 82.18 76.91 79.82 78.55 77.09 77.45 78

We also conducted tests to investigate the improvements in accuracy in comparison

to BP based neural network architecture with a single hidden layer. We classified

B2DPCA reduced feature vectors using ELM and the BP based neural network, in

both situations the hidden layer consisted of 50 neurons. To analyze the effect of

number of iterations on the BP based neural network, we varied it from 50 to 400 in

steps of 50 and the averaged results after 5 independent experiments are tabulated

in Table 3.11. As pointed out earlier, from the results it is clear that increasing

the number of principal components do not always guarantee an improved accuracy;

moreover, accuracy is directly related to the discriminative information contained

within the feature vectors. In a back propagation algorithm an increase in the number
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Figure 3.16: Mean square error vs. number of epochs for JAFFE face database

of epochs shrinks the mean square error between the actual and the target output

(demonstrated in Figure 3.16) but it does not ensure better classification accuracy.
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Chapter 4

Fingerprint Compression

4.1 Need for Image Compression

The advent of high speed computing devices and rapid developments in the field of

communication has created a tremendous opportunity for various image processing

applications. The amount of data required to store a digital image is continuously

increasing and overwhelming the storage devices. In addition to high storage re-

quirements, transmission of images through communication channels necessitates the

application of sophisticated compression techniques. An acutely designed data com-

pression system is required to alleviate these problems. Data compression is a key to

the rapid progress made in the field of information technology. It is highly impractical

to put in uncompressed images, audio and video on websites.

The fundamental goal of image compression is to represent an image in digital form

with as few bits as possible while maintaining an acceptable level of image quality [71].

A typical 4”× 4” image scanned at 300 dpi with 24 bpp (true color) corresponds to

more than 4 mega bytes. Thus, each image typically requires a high storage and a

transmission time of more than a minute through a typical ISDN channel. There are

two ways to solve this problem in a distributed environment, either to increase the

channel bandwidth or to compress the image. Towering costs associated with high
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bandwidth channels makes them less attractive when compared to image compression.

4.2 Compression techniques

Over the last two decades numerous image compression techniques have been pro-

posed. A compression algorithm incorporates a corresponding decompression algo-

rithm in order to reconstruct the original image. A compression algorithm takes an

input image U to generate an output image Uc with fewer bits, and a reconstruction

algorithm operates on the compressed image Uc to reconstruct V. Based on the re-

construction constraints either lossless compression or lossy compression is employed.

• Lossless compression belongs to a category of algorithms where the recon-

structed image V is identical to input image U. Such compression techniques

are employed in situations where any appreciable image degradation is highly

detrimental (example medical images). Therefore, lossless compression achieves

very limited compression rates. Widespread lossless compression techniques in-

clude run-length coding, huffman coding, Lempel-Ziv-Welch (LZW) algorithm

and arithmetic coding.

• Lossy compression refers to techniques that sustain loss of information and the

reconstructed image is dissimilar to the original one. Several applications ex-

ist where it is acceptable for a reconstructed image to be different from the

original as long as the differences do not result in visually annoying artifacts.

Most compression standards fall into one of the three broad categories: vector

quantization, predictive coding and transform coding [72], [73]. Vector quanti-

zation and predictive coding achieve inferior compression quality and are not

as competitive as transform coding techniques [74].
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4.2.1 Transform based compression

Transform based coding techniques statistically decor-relate the information con-

tained in the image so that redundant data can be discarded [75]. Hence, a dense

signal is converted to a sparse signal and most of the information is concentrated to

a few significant coefficients. Transform based compression techniques allow efficient

storage, display and transmission of images that would otherwise be impractical.

Discrete Cosine Transform (DCT) [77] is a popular transform coding method used

in JPEG standard for lossy compression of images. In JPEG, an image is divided

into series of blocks, converted from spatial domain to frequency domain using a 2D

DCT, quantized and sent to a lossless entropy encoder. Due to the blocked nature of

input, correlation across the block boundaries is not eliminated and thus noticeable

and annoying ”blocking artifacts” are encountered at low bit rates.

More recently, wavelet transform has emerged as a cutting edge technology, within

the field of image compression. Wavelet-based coding [78] provides substantial im-

provement in picture quality at higher compression ratio. Over the last decade, a

variety of powerful and sophisticated wavelet-based schemes for image compression

have been developed and implemented. Wavelet based techniques do not divide the

image into blocks, but analyzes the whole image at once. This prevents any block-

ing artifact within the reconstructed image and improves efficiency with respect to

compression ratio and Peak Signal to Noise Ratio (PSNR).

4.3 Literature Review

Law enforcement, border security and forensic applications are some crucial fields

where fingerprint image compression plays an important role. Emergence of protocols

and commercially available products has prompted law enforcement agencies to use

Automated Fingerprint Identification Systems (AFIS) during criminal investigations.

The US Federal Bureau of Investigation (FBI) deals with a massive collection of
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fingerprint database, comprising of more than 200 million cards, growing at the rate

of 30, 000-50, 000 new cards daily [80]. The archive consists of inked impressions on

paper cards. A single card contains 14 different images: 10 rolled impression of each

finger, duplicate (flat) impression of thumb and simultaneous impression of all fingers

together. Fingerprint images are digitized at a resolution of 500 dpi with 256 gray

levels which results into a fingerprint card requiring approximately 10 MB of storage.

The gray level images tender a refined natural appearance to humans than black

and white images and allow a higher level of subjective discrimination for fingerprint

examiners. This call for an efficient compression standard that can significantly reduce

the image size while retaining distinctive information, in conjunction with the size of

FBI fingerprint database.

Fingerprint images exhibit characteristic high energy in certain high frequency

bands resulting from the ridge-valley pattern and other structures. To account for

this property, the FBI Wavelet Scalar Quantization (WSQ) [81] standard for lossy

fingerprint compression uses a specific wavelet packet subband structure that em-

phasizes the important high frequency bands. This standard has been shown to

be clearly superior to JPEG compression in terms of psychovisual and PSNR qual-

ity [82]. Wavelet-based compression schemes have been subsequently investigated in

great number for their usefulness in fingerprint compression. The choice of filters in

classical pyramidal coding schemes specifically tuned for fingerprint compression is

an active area of research. Sherlock et al. [83], [84] have identified that biorthogonal

wavelet filters are superior to orthogonal wavelet filters.

Fingerprint compression standard developed for FBI [85], also known as Wavelet

Scalar Quantization (WSQ) has incorporated biorthogonal 9-7 filter pair for highly

reliable fingerprint compression and reconstruction. Discrete Wavelet Transform

(DWT) is widely used for image processing applications due to its improved space-

frequency decomposition [86], energy compaction of low frequency subbands, space lo-

calization of high frequency subbands and flexibility in time frequency tiling. Wavelet
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packets facilitate a flexible representation by allowing decompositions at every node

of the tree resulting in an explicit structure for specific applications. Image analy-

sis using DWT is performed using a pair of Quadrature Mirror Filter (QMF) and a

Dual Quadrature Mirror Filter (DQMF). These sets of filters are further decomposed

into four subsets of floating point coefficients: h(LoD), g(HiD), h̃(LoR) and g̃(HiD)

that define the wavelet and scaling functions for forward and inverse DWT respec-

tively. Fingerprint images are decomposed using a 2D DWT by means of separability

approach resulting into four smaller subsets. Subsets are selected based on energy

content, variance, their effect on reconstructed image, and are iteratively decomposed

until desired number of subbands are obtained. In FBI’s WSQ the fingerprint image

is recursively decomposed with a five level wavelet decomposition resulting in 64 dis-

tinct subbands as shown in Figure 4.1. These subbands are quantized and represented

using different coding techniques.

Table 4.1: Filter coefficients for 9-7 wavelet filter

Filter Type Filter Coefficients

h(LoD) 0.03783, −0.02385, −0.11062, 0.37740, 0.85270

0.37740, −0.11062, −0.02385, 0.03783

g(HiD) 0.06454, −0.04069, −0.41809, 0.78849, −0.41809

−0.04069, 0.06454

h̃(LoR) −0.06454, −0.04069, 0.41809, 0.78849, 0.41809

−0.04069, −0.06454

g̃(HiR) 0.03783, 0.02385, −0.11062, −0.37740, 0.85270

−0.37740, −0.11062, 0.02385, 0.03783

Inspired by the WSQ algorithm, a few wavelet packet based fingerprint compres-

sion schemes have been developed. An improved WSQ entropy coding stage using

lossless zerotree coding is proposed in [88]. A 73-Subband subband structure with
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Figure 4.1: FBI’s 64-subband structure with a 5-level wavelet decomposition [87]

subsequent lattice vector quantization [89] has been proposed by Kasaei et al.. As

shown in Figure 4.2, further decomposition is not applied to the diagonal subimage

of the first wavelet level due to its low energy content, low variance, and low effect of

this subimage on the reconstructed image, whereas the second wavelet level is further

decomposed due to its important innate characteristics. Hence, the 73-Subband is

computationally less expensive than the 64-Subband and offers superior performance

in comparison to JPEG, WSQ, EZW [90], and SPIHT [91].

The concept of adaptive subband structures to improve on the fixed structure

of WSQ was proposed in [92]. Khuwaja [93] adapts the wavelet packet filters and

the decomposition level in addition to the selection of subbands to better represent
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(a) Kasaei’s 73-Subband structure (b) FBI’s 64-Subband structure

Figure 4.2: 5-level decomposition subband structure

the actual frequency characteristics of the image. Some compression schemes exploit

the strong directional features in fingerprint images caused by ridges and valleys. A

scanning procedure following dominant ridge direction has shown to improve lossless

coding results as compared to JPEG-LS and PNG [94]. A wavelet footprint repre-

sentation characterizing efficiently singular structures (corresponding to ridges) [95]

that delivers better results as compared to the SPIHT algorithm was proposed by

Sudhakar et al.. Contourlets [96], [97], [98] and contourlet packets [99] are used to ex-

ploit directional information which also results in PSNR improvements as compared

to classical algorithms. Recently, fingerprint image compression schemes that use ge-

netic algorithm [100], [101], [102] to generate wavelet and scaling coefficients for each

level of decomposition have also been proposed. Multiresolution analysis tools have

been successfully applied to fingerprint image compression in the last two decades;

we propose two new fingerprint image compression techniques based on wave atoms

decomposition:

• Fingerprint Compression with Vector Quantization [103]: The pro-
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posed compression scheme is based upon linear Vector Quantization (VQ) of

decomposed wave atoms representation of fingerprint images. Later quantized

information is encoded with arithmetic entropy scheme.

• Compression using Mathematical Morphology and Multistage Vector

Quantization [104]: In this work, the compression scheme is based upon Mul-

tiStage Vector Quantization (MSVQ) of processed wave atoms representation

of fingerprint images. Wave atoms expansion is processed using mathemati-

cal morphological operators to emphasize and retain significant coefficients for

transmission. MSVQ quantized significance map and scalar quantized coeffi-

cients are encoded, and transmitted using arithmetic entropy scheme.

An approach similar to Chapter 3 is followed; individual components used in

our compression scheme are briefly described followed by a detailed outline of our

proposed method, experimental results and comparisons against existing techniques.

4.4 Vector Quantization

Quantization is a process that maps a signal p(m) into a finite series of K discrete

messages. For every Kth message, there exists a pair of thresholds tk and tk+1

and output value qk such that tk < qk < tk+1. Concept of scalar or one-dimensional

quantization is extended to vector data of any arbitrary dimension. Instead of output

levels, vector quantization employs a set of representation vectors and matrices for

one-dimensional and two-dimensional data respectively. The set of representation

vector is often referred to as a codebook and the entries within the codebook are

known as codewords. The thresholds are replaced by a decision surface defined by

a distance metric such as euclidean distance. In vector quantization high degree

of co-relation between neighboring pixels is exploited and the coding of vector can

theoretically improve performance.
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During coding the image is divided into blocks of fixed size m×m pixels. For

each block of input the codeword that results in a minimum euclidean distance is

found and transmitted. On reconstruction, the same codebook is used and a simple

look-up operation is performed and the image is reconstructed.

The classical method for codebook construction is by use of Linde, Buzo and Gray

(LBG) algorithm [105]. According to this method K codebook entries are initially

set to random values and on each iteration, each input space is classified based on

euclidean distance. Each codebook is replaced by the mean of its resulting class and

the iterations are continued until a minimum acceptable error is achieved.

4.5 Fingerprint Compression using Wave Atoms

and Vector Quantization

Wave atoms decomposition is used for sparse representation of fingerprint images

since they belong to a category of images that oscillate smoothly in varying directions.

Schematic block diagram of the proposed method is shown in Figure 4.3. Discrete

2D wave atoms decomposition is applied on the original image in order to efficiently

capture coherence of the fingerprint images along and across the oscillations. An

orthonormal basis ϕµ (ϕ
(1)
µ + ϕ

(2)
µ ) is used instead of a tight frame since each basis

function oscillates in two distinct directions instead of one. This orthobasis variant

property is significantly important in applications where redundancy is undesired.

Magnitudes of wave atoms decomposed coefficients, carrying low information con-

tent, are either zero or very close to zero hence these can be discarded without a

substantial degradation in image quality. An appropriate global threshold is used to

achieve desired transmission bit rate. After thresholding the wave atoms coefficients,

a significance map matrix and a significant coefficient vector is generated. Significance

map is a matrix of binary values that indicates the presence or absence of significant
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coefficient at a specific location. The significance map is divided into non-overlapping

blocks of 4x4. These non-overlapping blocks of significance map are vectorized and

quantized using a K-means vector quantization scheme with 64 code words. Small

blocks of data are used in order to minimize the error during vector quantization.

The significant coefficients are quantized using a uniform scalar quantizer with 512

distinct levels.

Quantized significance map and significant coefficients are encoded using an arith-

metic encoder. Arithmetic coding is a variable length entropy scheme that attempts

to minimize the number of required bits. It converts a string into another represen-

tation using more bits for infrequent characters and vice versa. As opposed to other

entropy encoding techniques that convert the input message into component symbols

and replace each symbol with a code word; arithmetic coding represents the entire

message into a single number thereby achieving optimal entropy encoding.

4.5.1 Results and Discussion

Various fingerprint images used in FBI’s WSQ standard are compressed using the pro-

posed method and substantial improvement in compression is achieved. The quality

of various image compression techniques depends upon how close is the reconstructed

image to the original one. Different metrics are proposed for investigating the quality

of compression algorithms. Some methods investigate similarity while others explore

the level of dissimilarity between reconstructed and the reference image. Mean Square

Error (MSE) and PSNR are two celebrated metrics used to examine the qualitative

performance. MSE is a distortion metric that provides a measure of dissimilarity

between two images. MSE and PSNR are calculated using the equations below:

MSE =
1

RC

R∑
i=1

C∑
j=1

| Oi,j − Ōi,j |2 (4.1)
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Figure 4.3: Block diagram of proposed fingerprint compression algorithm (WAVQ)

PSNR = 10 log10

2552

MSE
(4.2)

where R indicates the number of image rows and C refers to the number of

columns, O represents the original image and Ō refers to the reconstructed image.

Figure 4.4 demonstrates a sample fingerprint and the reconstructed image at 0.25

bpp using the proposed compression method. From the figure it is evident that the
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proposed method using wave atoms decomposition does an excellent job in preserving

the fine details in a fingerprint image i.e. the minutiae (ridges ending and bifurcations)

at lower bit rates. Table 4.2 compares the PSNR obtained using our proposed method

with the FBI’s WSQ compression standard at varying bitrates. As shown in Table 4.2

fingerprint compression based on wave atoms decomposition produces a significant

improvement in PSNR at high compression ratios (low bit rates) in comparison to

FBI’s WSQ fingerprint compression standard.

(a) (b)

Figure 4.4: (a) Original fingerprint image (b) Compressed image at 0.25 bpp

Table 4.2: Bit rate vs. PSNR for FBI’s WSQ and proposed method

Bit Rate FBI’s WSQ [85] Proposed WAVQ

(bpp) PSNR (dB) PSNR (dB)

0.1 23.72 28.62

0.2 26.25 31.21

0.3 27.96 31.68

0.4 29.36 32.42

0.5 30.37 32.65
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4.6 Mathematical Morphology Operators

Mathematical morphology is the analysis of signals/images in terms of their shape. It

is used in image processing applications so as to preserve edge information and create

clusters of significant coefficients [106]. The basic building blocks of mathematical

morphology are dilations and erosions.

The basic effect of dilation on a binary image is to gradually enlarge the boundaries

of regions of foreground pixels. Thus areas of foreground pixels grow in size while holes

within those regions become smaller. Dilation of a binary input image is computed by

superimposing the structuring element on top of the input image so that the origin of

the structuring element coincides with the input pixel position. If at least one pixel

in the structuring element coincides with a foreground pixel (white pixel i.e. 1) in

the image underneath, then the input pixel is set to the foreground value. If all the

corresponding pixels in the image are background (black pixel i.e. 0), the input pixel

is left at the background value. Erosion is the dual of dilation i.e. eroding foreground

pixels is equivalent to dilating the background pixels. Dilation and erosion of an

image S using a structuring element A are denoted by δA and εA respectively.

δA(s) = S⊕A (4.3)

εA(s) = S¯A (4.4)

Effect of dilation and erosion on a binary image using a 3× 3 square structuring

element is shown in Figure 4.6 and Figure 4.7.

In order to create clusters of significant coefficients using mathematical morphol-

ogy, in this work, the significance map was dilated twice and then eroded once using a

3× 3 square structuring element. In this sequence of operation [107], the first dilation

is used to generate clusters of significant coefficient whereas the closing operation (a

combination of dilation and erosion) is used to fill in small holes.
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Set of coordinate points =

{ (-1, -1),  (0, -1),  (1, -1),

(-1,  0),  (0,  0),  (1,  0),

(-1,  1),   (0,  1),  (1,  1),    }
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Figure 4.5: Square structuring element

Figure 4.6: Dilation of binary map using a square structuring element

Figure 4.7: Erosion of binary map using a square structuring element

4.7 Multistage Vector Quantization

VQ [105] is a quantization technique applied to an ordered set of symbols. The supe-

riority of vector quantization lies in its ability to partition vector space, its capability
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to exploit intra-vector correlations and most importantly the block coding gain it

achieves. MSVQ [108] divides the encoding stage into several smaller modules and

reduces encoding complexity and memory requirements for vector quantization, es-

pecially at high compression ratios. In the first stage, a low rate vector quantizer is

used to generate a relatively crude encoding of the input vector using a small code-

book. The coarse approximation in the form of output labels of the vector quantizer is

transmitted to the receiver. The error between the original input and the coarse rep-

resentation of the first stage is quantized by the second stage quantizer and the label

of the output point is transmitted to the receiver. Similarly the input to the Nth stage

vector quantizer is the difference between the original input and the reconstruction

obtained from the preceding N− 1 stages.

In vector quantization, an input vector is quantized by selecting the best matching

representation from amongst a codebook of 2lr stored code vectors each of dimension

l. Vector quantization is an optimal coding technique since other coding methods for a

specified number b = lr of bits are equivalent to special cases of VQ with suboptimal

codebooks. However, optimal VQ assumes single and possibly very large codebook

with no imposed constraints in its structure. The resulting encoding and storage

complexity, of the order of 2lr, may be prohibitive for many applications. Multistage

vector quantization is a structured VQ scheme that can achieve very low encoding

and storage complexity. In MSVQ, the lr bits are divided between N stages with bi

bits for stage i. The storage complexity of MSVQ
∑N

i=1 2bi vector is significantly less

than the complexity of an unstructured VQ that requires
∏N

i=1 2bi = 2lr. A sequential

quantization operation is performed in MSVQ where each stage quantizes the residual

of the previous stage. The structure of MSVQ encoder [108] consists of a cascade of

VQ stages as shown in Figure 4.8. For an N-stage MSVQ, each nth stage quantizer

Qn, n = 1,2, . . . ,N is associated with a stage codebook Cn that contains Ln stage

code vectors. The set of stage quantizers Q1,Q2, . . . ,QN are equivalent to a single

quantizer Q, referred as the direct-sum vector quantizer.
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Figure 4.8: Block diagram of an MSVQ encoder

In the MSVQ encoder shown in Figure 4.8, the input vector X, is quantized

with the first stage codebook producing the first stage code vector Q1X, a residual

vector is formed by subtracting Q1X from X. Later the residual vector is quantized

using the second stage codebook, with exactly the same procedure as in the first

stage. Therefore, in each stage except the last stage, a residual vector is generated

and passed to the next stage to be quantized independently of other stages. The

quantized error vector provides a refinement to the previous vector quantizer output

and the level of correlation decreases as the process continues. For a 3-stage MSVQ

quantizer the encoder and decoder equations are shown below.

Y1 = Q1(X)

Y2 = Q2(X−Q1(X))

Y3 = Q3(X−Q1(X)− (Q2(X−Q1X)))

(4.5)

The block diagram of an MSVQ decoder is shown in Figure 4.9, the decoder

receives for each stage an output label identifying the stage code vector selected and

the reconstruction vector X̂ is generated as:
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X̂ = Y1 + Y2 + Y3 (4.6)

The overall quantization error is equal to the quantization residual from the last

stage. Sequential searching of the stage codebooks reduces the encoding complexity

to the storage complexity, i.e.,
∑N

i=1 2bi .

Figure 4.9: Block diagram of an MSVQ decoder

4.8 Fingerprint Compression using Mathematical

Morphology and Multistage Vector Quantiza-

tion

Our proposed algorithm is an extension of our earlier work [109], wherein we used

mathematical morphology and SOFM to obtain improved PSNR values. Important

steps involved in our proposed scheme are outlined in Figure 4.10; we do not assume

any a priori information and acquisition constraints for the input data. Fingerprint

images are digitized using 256 gray levels, therefore, a color space transformation is
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not required. To retain fine details in an image no further pre-processing, contrast

enhancement and filtering etc., is performed. Similar to the VQ based algorithm an

orthonormal basis ϕµ (ϕ
(1)
µ +ϕ

(2)
µ ) is used instead of a tight frame to ensure that each

function oscillates in two distinct directions instead of one.
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Figure 4.10: Overview of the proposed MSVQ based compression algorithm

To achieve efficient compression, image data with low information content such as

smooth areas can be represented with fewer numbers of coefficients. The magnitudes

of wave atoms decomposed coefficients, carrying low information content, are either

zero or very close to zero hence they can be discarded without a substantial degrada-

tion in reconstructed image quality. An appropriate global threshold is used to define

each coefficient as either significant or not and this threshold is defined according to

the user’s need, and represents a tradeoff between quality and compression; a small

threshold results in a better quality reconstructed image with a small compression ra-

tio whereas a larger threshold attains reconstructed images with poor quality at high

compression ratios. The thresholding operation generates a significance binary map

whose values are selected as ′1′ if the magnitude of wave atoms decomposed coefficient

is greater than predefined threshold at that location and ′0′ otherwise. In significance

map, values of ′1′ and ′0′ indicate the presence or absence of significant coefficient
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at a specific location. Please note that the size of significance map is similar to the

dimension of the coefficients obtained after wave atoms decomposition. To corrobo-

rate improved image reconstruction, we apply morphological operators on significance

map to be used at later stage for extraction and quantization of actual coefficients.

The mathematical morphology procedure comprises of dilations and erosions to min-

imize the loss of potentially important coefficients because of thresholding thereby

ensuring a high peak signal to noise ratio of the reconstructed image. The AND

operation among significance map and original wave atoms decomposed coefficients

is used to extract coefficients carrying important and discriminative information of

oscillatory patterns in an input image. Such extracted coefficients, termed as sig-

nificant coefficients, are scalar quantized using a uniform scalar quantizer with 512

distinct levels.

Blocks of d×d elements of the significance map are non-uniformly vector quantized

using MSVQ. The quantization process tries to eliminate psycho-visual redundancy

which causes degradation in image quality. Additional loss of coefficient information

is attributed to thresholding. In our proposed method, the significance map is divided

into non-overlapping blocks of 4×4 elements and vectorized into small length vectors

of dimension 16× 1; small blocks of data are used in order to minimize error during

vector quantization. These vectors are quantized using MSVQ scheme, resulting into

a codebook representation termed as MSVQ quantized significance map.

The scalar quantized significant coefficients and MSVQ quantized significance map

are transformed using an arithmetic encoder. Arithmetic coding is a variable length

entropy scheme that attempts to minimize the number of bits by converting a string

into another representation using more bits for infrequent characters and vice versa.

As opposed to other encoding techniques which convert the input message into the

component symbols and replace each symbol with a code word; arithmetic coding

represents the entire message into a single number thereby achieving optimal entropy

encoding. For a communication setup, the computation of encoded information using
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entropy scheme is a last step at the senders end before information is being transferred

whereas decoding, un-quantization and inverse 2D wave atoms decomposition are

applied to reconstruct the transformed image.

4.8.1 Comparative Results

A sample fingerprint image used in evaluating the performance of the proposed com-

pression algorithm is shown in Figure 4.11(a). Compressed images at a Compression

Ratio (CR) of 12.9 using FBI’s Wavelet Scalar Quantization (WSQ), VQ on wave

atoms decomposition and the proposed MSVQ based wave atoms scheme are shown

in Figure 4.11(b), Figure 4.11(c) and Figure 4.11(d) respectively. It is evident from

Figure 4.11(d) that the proposed method using wave atoms decomposition performs

better and preserves fine fingerprint details and contains less blur in comparison with

FBI’s WSQ standard and VQ based wave atoms decomposition.

Table 4.3 compares the PSNR values obtained using our proposed method, for

different bit rates, against various methods. As shown in Table 4.3, fingerprint com-

pression based on wave atoms decomposition and multistage vector quantization pro-

duces a significant improvement in PSNR at low bit rates (high compression ratios).

We compare the performance of our proposed MSVQ based compression standard

with WSQ [85] and our VQ based compression algorithm [103]. In [103], we devel-

oped a compression scheme based on linear vector quantization of decomposed wave

atoms representation of fingerprint images; wave atoms decomposed coefficients were

thresholded and a significance map matrix and a significant coefficient vector gener-

ated. The significance map was divided into non-overlapping blocks, vectorized and

quantized using a K-means vector quantization scheme with 64 code words. Results

are compared at higher compression since most standards perform reasonably well at

lower compression rates but their performance drastically deteriorates at higher val-

ues. At a compression ratio of 19 : 1, genetic algorithm based multiresolution analysis

algorithm [102] achieves a maximum MSE improvement of 16.71% and a PSNR gain
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(a) (b)

(c) (d)

Figure 4.11: Performance comparison of various methods at CR = 12.9:1. (a) Origi-
nal fingerprint image (b) Compressed image using FBI’s WSQ (c) Com-
pressed image using wave atoms decomposition and VQ (d) Compressed
image using the proposed MSVQ based method

of 0.794 dB over FBI’s WSQ. However, our proposed algorithm offers a maximum

PSNR gain of 8.07 dB at a compression ratio of 16 : 1 compared to WSQ.

Additional experiments are performed to establish the improved performance of

our proposed method against state-of-the-art schemes. Two publicly available fin-

gerprint images, whorl and tented arch type [110], are used and compared against

contourlets [98] for varying combinations of filter banks. The subjective evaluations
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Table 4.3: Bit rate vs. PSNR for FBI’s WSQ and the proposed methods

Bit Rate FBI’s WSQ [85] WaveAtoms+VQ WaveAtoms+MSVQ

(bpp) PSNR (dB) PSNR (dB) PSNR (dB)

0.1 23.72 28.62 29.98

0.15 25.15 29.06 30.53

0.2 26.25 31.21 33.23

0.25 27.14 31.52 34.84

0.3 27.96 31.68 35.78

0.35 28.72 32.36 36.07

0.4 29.36 32.42 36.59

0.45 29.89 32.47 37.38

0.5 30.37 32.65 38.44

(a) (b) (c) (d)

Figure 4.12: Original and reconstructed images using our proposed method (a-b)
tented arch type image (c-d) whorl type image

for achieved compression using wave atoms decomposition for tented arch and whorl

type images are presented in Figure 4.12. It is clearly evident that the reconstructed

images at a rate of 1 bpp have close resemblance with the source images along with

all the minute details being precisely preserved.
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Figure 4.13: PSNR analysis for tented arch type fingerprint image using haar
wavelets, haar based contourlets and wave atoms

Figure 4.14: PSNR analysis for tented arch type fingerprint image using different
contourlets and wave atoms

For fair analysis we compared PSNR values obtained for various methods as pre-

sented in Figure 4.13 and Figure 4.14. The methods used for performance analysis

against our proposed scheme include Haar wavelets, contourlets based on varying
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combinations of Pyramidal and Directional filter banks (5-3, 9-7, Haar and pkva). It

is evidently clear that the PSNR values for compression based on wave atoms decom-

position is monotonically increasing and consistently higher against other methods

for rising compression rates. From Figure 4.13, it is noticeable that the performance

of Haar wavelets and contourlets is analogous however none of the above methods

visibly outperform the other.
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Chapter 5

Fingerprint Matching

5.1 Introduction

Fingerprints are the appearance of graphical ridge and valley patterns on the tips of

human fingers. Owing to their uniqueness and stability [111], [112], the use of fin-

gerprints is considered to be one of the most popular biometric modality for personal

verification. Automated recognition of an individual based on fingerprints is preferred

since they are less vulnerable to be copied, stolen and lost [113]. The growing needs

of law enforcement agencies and opportunities arising for civilian applications mean

that automated fingerprint matching systems are becoming increasingly prevalent.

Taking into account the nature of most civilian and criminal applications, the relia-

bility of a biometric system is particularity important since the consequences of false

matching can often lead to irreparable damage while false rejection may be highly

deplorable. Fingerprints are routinely used in forensic laboratories and identification

units around the world [114] and are accepted as witness in the courts of law for

nearly a century [115]. Despite significant development in automated recognition,

reliable automatic fingerprint verification is still a challenging problem [116].

A fingerprint is the pattern of friction ridges on a human finger that provides in-

creased friction for gripping. Scientists believe that the friction ridges are constructed
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Figure 5.1: Fingerprint image with the most common ridge characteristics

from small ridge units whose size, shape, density and alignment are remarkably unique

to individuals. During friction ridge formation, ridge units are merged into various

ridge characteristics, the most representative of which are ridge bifurcations and end-

ings. Fingerprints are extremely unique that no two persons, not even twins share

exactly the same location, shape and inter-relationship of these ridge characteris-

tics [117]. However, friction ridge formation is genetically controlled as statistically

significant familial correlation and high heritability estimates have been observed for

some of the ridge characteristics such as forks, endings and the total number of ridge

characteristics [118].

Various fingerprint acquisition techniques have been developed. Based on the

acquisition process, a fingerprint is either acquired as a latent or a tenprint. A

latent acquisition is one in which an accidental impression left behind by an unknwon

individual whereas a tenprint consists of a set of fingerprint impressions collected

with an individual’s consent. A complete tenprint is a collection of 14 fingerprint

images collected as rolls, plains and slaps from all the ten fingers.
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5.2 Typical Challenges

A fingerprint matching algorithm compares two given fingerprints and returns a de-

gree of similarity between the template and the test image. Few matching algorithms

operate directly on the grayscale values and most of them require that an interme-

diate fingerprint representation be derived through feature extraction. Fingerprint

matching is an extremely difficult task, mainly due to large intra-class variations in

different impressions of the same finger. The main factors responsible for intra-class

variations are:

• Displacement : The same finger may be placed at different sensor locations at

different time instances resulting in a global translation of fingerprint area.

• Rotation: Fingers may be rotated at different angles with respect to the sensor

surface during different acquisition sessions. Inspite of guides mounted in certain

commercial scanners, involuntary finger rotations of up to ±20 degrees have

been observed.

• Pressure and skin conditions : Ridge structure is accurately captured if uniform

contact is established between all the fingers and the sensor surface. However

due to variations in finger pressure, skin dryness, skin disease, sweat, humid-

ity, dirt and grease a non-uniform contact is established, which causes noisy

acquisition of fingerprint images.

• Partial overlap: Fingerprint displacement and rotation often cause part of the

fingerprint area to fall outside the sensor’s field of view thus resulting in a

small Region of Interest (ROI) overlap between the template and the input

fingerprints.

• Non-linear distortion: Sensing 3D shape of a fingerprint on a 2D sensor surface

results in non-linear distortion.
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• Noise: This is mainly introduced into the system due to the presence of left

over residues on the glass platen as a result of previous fingerprint capture.

• Feature extraction errors : Feature extraction algorithms are imperfect and often

introduce measurement errors. Errors include estimation of orientation and

frequency images, detection of the number, type and position of the singularities,

and segmentation of the fingerprint area from the background.

Figure 5.2 shows one pair of fingerprint image with high variability (large intra-

class variation) and another pair of fingerprint impressions with small intra-class

variation. To test the effectiveness of our proposed fingerprint matching algorithm

we used benchmark fingerprint verification competition (FVC) datasets, namely, FVC

2000, FVC 2002 and FVC 2004.

(a) (b) (c) (d)

Figure 5.2: (a-b) Impressions from the same finger look significantly different (large
intra-class variation). (c-d) Impressions from different fingers look sim-
ilar to an untrained eye (small interclass variation) [119]

5.2.1 FVC Datasets

FVC datasets are used to evaluate and compare emerging fingerprint matching al-

gorithms, and are not intended for performance evaluation in a real application. It
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attempts to track the state-of-the-art in fingerprint recognition and provide updated

benchmarks and a testing protocol for fair and unambiguous evaluation of fingerprint

verification algorithms. Each FVC collection of dataset contains four distinct fin-

gerprint databases (DB1,DB2,DB3,DB4) generated using different image acquisition

techniques. Each database contains 8 fingerprints of each of the 100 distinctive sub-

jects. Detailed description of the image acquisition techniques used for generating

a particular database, image size and resolution are given in Tables 5.1, 5.2 and 5.3

respectively . Sample images from each of the FVC2000, FVC2002 and FVC2004

dataset are also shown below.

Table 5.1: Image details of each of the four FVC2000 database

Sensor Sensor Model Image Size Resolution

Technology (Manufacturer)

DB1 Low-cost Secure desktop scanner 300× 300 500 dpi

Optical sensor (KeyTronic)

DB2 Low-cost TouchChip 256× 364 500 dpi

Capacitive sensor (ST Microelectronics)

DB3 Optical sensor DF-90 448× 478 500 dpi

(Identicator Technology)

DB4 Synthetic fingerprint generator 240× 320 500 dpi

5.3 Fingerprint Feature Representation

Fingerprint images are not directly compared in fingerprint matching. Instead, a

set of salient and discriminatory features that represent the underlying fingerprint

characteristics are extracted from the images before matching. Feature extraction is

extremely critical in reducing dimensionality of the data since a raw image is high
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DB1 DB2 DB3 DB4 

Figure 5.3: Sample fingerprint images from FVC 2000 dataset

Table 5.2: Image details of each of the four FVC2002 database

Sensor Sensor Model Image Size Resolution

Technology (Manufacturer)

DB1 Optical sensor TouchView II 388× 374 500 dpi

(Identix)

DB2 Optical sensor FX2000 296× 560 569 dpi

(Biometrika)

DB3 Optical sensor 100SC 300× 300 500 dpi

(Precise Biometrics)

DB4 Synthetic fingerprint generator v2.51 288× 384 500 dpi

dimensional and contains redundant information. Typically features are more robust

to noise and distortion than raw gray level pixel values. As a result, the performance

of a fingerprint matching algorithm greatly depends on the selection and extraction

of fingerprint features.

In manual feature extraction, a large variety of features have been established,
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Figure 5.4: Sample fingerprint images from FVC 2002 dataset

Table 5.3: Image details of each of the four FVC2004 database

Sensor Sensor Model Image Size Resolution

Technology (Manufacturer)

DB1 Optical sensor V300 640× 480 500 dpi

(CrossMatch)

DB2 Optical sensor U.are.U4000 328× 364 500 dpi

(Digital Persona)

DB3 Thermal sweeping FingerChip FCD4B14CB 300× 480 512 dpi

sensor (Atmel)

DB4 Synthetic fingerprint generator v3.0 288× 384 500 dpi

encoded and recorded based on their observed evidential value during decades of

forensic practice. These characteristic features are generally categorized into three

levels [120]. Level 1 features, or patterns, are the macro details of the fingerprint such
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Figure 5.5: Sample fingerprint images from FVC 2002 dataset

as ridge flow and pattern type (loop, arch, whorl etc.) [117] as shown in Figure 5.6.

Level 2 features occur on individual ridge paths, including the turns that each ridge

takes and the places where ridges terminate or split, such as ridge bifurcations and

endings [117]. Unlike Level 1 patterns, Level 2 features have individualization power

and contribute significantly to reliable fingerprint matching. On an average, a finger-

print generally contains 75-175 minutiae. However, at times only a small number of

minutiae are available in the captured fingerprint image and extraction of additional

Level 3 features may be necessary. Level 3 features include all dimensional attributes

of the ridge such as ridge width, shape, pores, incipient ridges, breaks, creases, scars,

and other permanent details [117]. Therefore, a higher feature level contains finer

details.

In automatic feature extraction, pre-compiled algorithms are used to determine

the strength of ridge-valley signals in order to determine the area where extractable

features are present. Later, a set of pre-defined features are extracted and encoded

for matching. Unlike manual matching, the features extracted in automatic matching

do not encompass a particular physical counterpart (e.g., local orientation map or

filter responses) as long as they lead to high matching accuracy.
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(a) Whorl (b) Plain Arch (c) Tented Arch (d) Twin Loop

(e) Central Pocket (f) Accidental (g) Right Loop (h) Left Loop

Figure 5.6: Fingerprint classes with marked core (red) and delta (blue) points [121]

5.4 Literature Review

Analogous to other pattern recognition problems, there are different approaches to

fingerprint matching. Correlation-based techniques utilize gray level information of

an image and take into account all dimensional attributes of a fingerprint, thereby

providing enough image resolution. Fingerprint images are superimposed and correla-

tion between corresponding pixels is computed for varying rotations and translations.

These techniques have been successfully applied for fingerprint matching [122] but

they suffer from extremely high computational cost.

Ridge bifurcations and endings are the most common minutiae that are found

in plenty in every individual’s fingerprint. The occurrence of other minutiae types,

such as islands, dots, enclosures, bridges, double bifurcations, trifurcations, are rela-

tively rare. Minutiae-based techniques that use minutiae points such as ridge endings

or bifurcations as features for matching are the most popular approaches in litera-
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ture [123], [124], [125], [126]. Minutiae based techniques [127] extract minutiae from

two fingerprints and store them as sets of points in a 2D plane. A match is es-

tablished by searching alignments between the template and the input minutiae set

that results in maximum pairings. Each minutiae is described by its location in the

fingerprint, orientation and type of minutiae either ridge ending or ridge bifurca-

tion. In minutiae based methods singularities i.e. core and delta points are used to

align the images. Despite their relative simplicity and storage efficiency, minutiae-

based fingerprint matching has its own limitations. Firstly, it is not always easy to

extract minutiae points accurately, especially for low-quality images and thus ridge

patterns [120] are reliably extracted for classification. Secondly, minutiae points do

not necessarily embody the most significant component of the rich discriminatory

information available in the fingerprints. In addition, there are difficulties related to

aligning the minutiae point patterns from the query and template fingerprints due

to the lack of knowledge about the correspondence between two point sets. Gener-

ally, finding the best alignment between two minutiae sets is an extremely difficult

problem [123].

Texture features such as orientation fields [128] and ridge patterns (ridge shape

and ridge density) [129], [130] have also been used for fingerprint matching. In com-

parison to minutiae, texture features are more robust with respect to the extraction

process and less sensitive to noise. However, these features do not adequate discrimi-

native information as fingerprints from different fingers may share similar orientation

fields and/or ridge patterns. Typically, matching two fingerprints using such features

requires a proper alignment of the query and template fingerprints. However, similar

to the alignment of minutiae point patterns, establishing an accurate alignment be-

tween two orientation fields or ridge patterns is a complex task. In [129], [130], the

ridge patterns are aligned based on a single reference point, however, such schemes

are not robust with respect to errors in the location of the reference point. Liu et

al. [128] aligned orientation fields using a steepest descent algorithm that is sensitive
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to initial alignment configurations and susceptible to local optima.

Different features available in fingerprint images have also been combined to im-

prove the performance of a fingerprint matching system [131], [132], [133]. The which

features are usually incorporated at the verification stage in the processing chain.

Ross et al. [132] merged minutiae with ridge flow information to verify fingerprints

by initially aligning images using minutiae information by the elastic string matching

technique [123]. The verification is then carried out using the minutiae set along

with ridge feature map matching. In [131], [133] fingerprint images are first aligned

based on minutiae points using Generalized Hough Transform (GHT) [134] and later

verification is performed by combining minutiae with text feature matching. These

schemes are essentially minutiae-based and their performance greatly depends on the

quality of minutiae information. Erroneous detections during minutiae extraction are

propagated to the alignment stage and may eventually lead to meaningless match

scores.

Researchers have also used fast Fourier transforms (FFT) and multi-resolution

analysis tools to extract global features from fingerprint images for classification.

Fitz and Green [135] used a hexagonal FFT to transform fingerprint images into fre-

quency domain and employed a wedge-ring detector to extract features. A fingerprint

classifier based on wavelet transform and probabilistic neural network was proposed

in [136]. Wilson et al. [137] developed a FBI fingerprint classification standard that

incorporates a massively parallel neural network structure. In [129], a Gabor filter

bank was used for fingerprint matching and Park et al. [130] proposed the use of Di-

rectional Filter Bank (DFB) for efficient fingerprint feature extraction and matching.

Parsons et al. [138] proposed a pore extraction method for 1000 dpi fingerprint images

using a Difference of Gaussian (DOG) filtering that approximates the Mexican-hat

wavelet [139]. Neural network schemes based on self organizing feature map, fuzzy

neural networks, Radial Basis Function Neural Network (RBFNN) and Ellipsoidal

Basis Function Neural Network (EBFNN) have also been proposed [140].
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5.5 Proposed Fingerprint Matching Algorithm

In this chapter, a fast and accurate fingerprint matching algorithm that extracts

sparse fingerprint representation using wave atoms decomposition is presented. The

generated coefficients are dimensionally reduced using bidirectional two-dimensional

principal component analysis. An ELM classifier is trained and tested using dimen-

sionally reduced extracted features. The proposed recognition algorithm requires

minimum human interventions and performs learning at multiple folds faster speed

than conventional neural networks. ELM determines network parameters analytically,

avoids trivial human intervention and makes it efficient for real-time applications.

The proposed scheme is independent of fingerprint patterns and is based on in-

dividual features and the number of trained fingerprint classes. Table 5.4 consists of

detailed steps that demonstrate our proposed technique. Our system classifies finger-

print images into one of the trained classes; therefore, only one verification process is

required per image. Our proposed scheme deals with recognition of fingerprint images

using ELM design and utilizes dimensionally reduced feature vectors generated using

wave atoms decomposition. Wave atoms decomposition is used for sparse represen-

tation of fingerprint images since they belong to a category of images that oscillate

smoothly in varying directions. Discrete 2D wave atoms decomposition is applied

on the original fingerprint image to efficiently capture coherence patterns along and

across the oscillations. Fingerprint images are digitized using 256 gray levels therefore

a transformation in color space is not required. Dimension of fingerprint images is

reduced to 64 × 64 prior to wave atoms decomposition. Image resizing is the only

pre-processing performed on all datasets to minimize computational cost and to guar-

antee uniformity with other methods used for comparison. An orthonormal basis is

used instead of a tight frame since each basis function oscillates in two distinct di-

rections instead of one. This orthobasis variant property is important in applications

where redundancy is undesired.
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Table 5.4: Outline of the proposed fingerprint matching algorithm

INPUT: Randomly divide image database into two subsets TRυ and

TEς where υ = 1, 2, ..., µ and ς = 1, 2, ..., ν representing training and test

image sets respectively.

OUTPUT: Classifier - f(x)

1. Resize images from all database to R× C
2. Compute the wave atoms decomposition of each training and test

images and extract feature sets. Each feature set is of dimension RxC
(Refer to Chapter 2.4 for details of wave atoms decomposition)

3. Calculate image covariance matrix of test and train images to obtain

intermediate feature matrix

GTRυ = 1
µ

∑µ
υ=1(Aυ − Ǎ)T (Aυ − Ǎ)

GTEς = 1
ν

∑ν
ς=1(Aς − Ǎ)T (Aς − Ǎ)

4. Evaluate the maximizing criteria using the image covariance matrix

according to the method described in Chapter 3.6 and generate B2DPCA

based feature vectors, each of size U × V
5. Vectorize the B2DPCA based feature vectors obtained in the previous

stage and train the ELM classifier

6. Classify images with test feature vectors using trained ELM

We randomly divide image database into two, namely, training set and testing

set. All images within each database have the same dimension, i.e. R × C. Similar

image sizes support the assembly of equal sized wave atoms coefficients and feature

vector extraction with identical level of global content. 2D wave atoms decomposi-

tion of every image is computed and coefficients are saved as initial feature matrix.

Wave atoms decomposition is a relatively new technique for multiresolution analysis

that offers significantly sparser expansion, for oscillatory functions, than other fixed
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standard representations like wavelets, curvelets and Gabor atoms.

Application of ELM based classification on original wave atoms coefficients is

computationally expensive due to higher dimensionality of data originating from large

image datasets. Outliers and irrelevant image points being included into classification

task can also degrade the performance of our algorithm; hence B2DPCA is employed

to reduce dimensionality of initial feature vectors. The optimal projection axes is

calculated and dimensionality of every image is reduced along its columns to generate

new image sets. An image covariance matrix of the new image sets is generated, its

optimal projection axes is evaluated and the row dimension of the newly generated

image is reduced to produce final feature matrix. Application of B2DPCA using

the modified approach retains better structure and correlation information amongst

neighboring pixel coefficients. Dimensionally reduced wave atoms coefficients are

vectorized into a U × V dimension vector, where U × V ¿ R × C. ELM is trained

using labeled B2DPCA feature vectors and recognition accuracy achieved using the

trained network.

5.6 Experimental Results

Extensive experiments are performed using standard and distinctive collections of fin-

gerprint datasets, i.e., FVC2000, FVC2002 and FVC2004 [111] to test the practicality

of our proposed method. All images are resized to 64 × 64 in our experiments and

5 images from each database are used as prototypes and the remaining 3 for testing

to ensure consistency with other methods used for comparison. Experiments were

also performed on original fingerprint images and consistently better results were ob-

tained since detailed fingerprint information was incorporated at the expense of large

feature vectors. Both the testing and training sets of images are decomposed using

2D wave atoms transform using an orthonormal basis function and dimensionally

reduced through application of B2DPCA. Dimensionally reduced features are vector-
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ized and classification is performed by using ELM. The above process was repeated

10 times for all the databases and averaged results of few experiments are docu-

mented in the paper. The recognition accuracy for Db1 database from FVC2000,

FVC2002 and FVC2004 is compared with Wavelet Transform (WT) based RBFNN

and EBFNN fingerprint recognition algorithms. Results, obtained with the proposed

method (only 6 principal components are used for consistency with other methods),

are compared with the accuracy reported in [140] using WT-2DPCA-RBFNN and

WT-2DPCA-EBFNN.

Table 5.5: Comparative results for various methods

Database WT-2DPCA- WT-2DPCA- Proposed

RBFNN EBFNN Method

FVC2000 91 91 93.25

FVC2002 87 87 92.63

FVC2004 86.5 87 89.62

We conclude from the results in Table 5.5 that our proposed fingerprint classifi-

cation algorithm performs significantly better than the wavelet based RBFNN and

EBFNN fingerprint classification algorithms. In addition to the improved classifica-

tion accuracy, our proposed ELM based scheme performs training and testing thou-

sands folds faster than conventional neural network based classification algorithms[69].

Classification accuracy for various databases from each of the three FVC datasets

are plotted in Figures 5.7, 5.8, 5.9, 5.10 for varying number of principal components.

It is evident from the Figures that several factors influence classification accuracy,

namely, fingerprint acquisition techniques, climatic and environmental conditions and

most notably the number of principal components. Dataset Db4 from each of the

databases is generated using a synthetic fingerprint generator; consequently the effects

of environment and other irrepressible conditions are trifling and are substantiated
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Figure 5.7: Recognition accuracy for DB1 database
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Figure 5.8: Recognition accuracy for DB2 database

by improved classification accuracy at low principal components. It is also worth

noting that increasing the number of principal component does not always lead to an

improved classification.
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Figure 5.9: Recognition accuracy for DB3 database
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Figure 5.10: Recognition accuracy for DB4 database
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Chapter 6

Conclusions and Future Research

Security applications like user authentication for access to physical and virtual spaces

provide and ensure higher security. Now days, Robust face recognition systems are

in great demand to deal with crime and terrorism. However, identifying a person by

taking an input face image and matching with the images present in the database is

still a very challenging problem. This is due to the variability of human faces under

different operational scenarios such as: illumination, rotation, expression, occlusion,

camera view point, aging, makeup, and eyeglasses. These conditions immensely af-

fect the performance of a face recognition system especially, when a match is to

be established against large scale databases. This under performance of automated

face recognition system prevents their deployment in real applications. Therefore,

additional biometrics i.e., fingerprints are incorporated to improve the system per-

formance and to facilitate its application to real world problems. Fingerprints are

the manifestation of interleaved ridge and valley patterns on the tips of human fin-

gers. Fingertip ridges have evolved over the years to allow humans to grasp and grip

objects. Similar to other body parts, fingerprint ridges are also formed through a

combination of genetic and environmental factors. In fact, fingerprint formation is

similar to the growth of capillaries and blood vessels in angiogenesis. The genetic

code in DNA gives general instructions on the way skin should form in a developing
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foetus. This is the most important reason why even fingerprints of identical twins

are different. Consequently, human faces are used in conjunction with fingerprints

by various law enforcement agencies and border security forces to track suspects and

criminals. Automatic human identification systems have played a major role in com-

mercial, governmental and forensics applications. However, these systems have not

yet completely eliminated the need for manual examination, especially in matching

latent fingerprints. Automatic systems utilize a limited feature set compared to hu-

man experts and are not able to easily adapt to handle variations in image quality

and resolution. In this thesis, we proposed an enhanced and robust human face

recognition algorithm for potential law enforcement applications. We also developed

a generic fingerprint compression algorithm based on state of the art multiresolution

analysis tools, i.e., wave atoms to speed up data archiving and recognition. Finally,

we proposed an improved fingerprint matching algorithm to overcome some of the

challenges associated with traditional fingerprint recognition algorithms. A summary

of the thesis is given below.

Chapter 1 provided a brief introduction of biometrics as a tool for security and

identification. We reviewed some of the important biometric modalities being used

for various commercial, governmental and forensic applications and briefly described

the architecture of a typical biometric system. As mentioned earlier, we focused

our discussion on two important biometric traits ; namely, face and fingerprint. We

commented on the differences between a verification module and the identification

module. Lastly, we laid down the research objectives and included a brief outline of

the thesis.

Chapter 2 included a summary of the history of mathematical analysis tools,

their limitations and multiresolution concept. We discussed in length about the im-

plementation and mathematical details associated with DWT. We also included a

thorough discussion of curvelet transform and provided a brief discussion highlight-

ing the key implementation issues of FDCT using the wrapping technique. Finally, we
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compared various multiresolution tools and reviewed the wave atoms decomposition

including its application to both 1D and 2D signals.

Chapter 3 proposed two algorithms for automatic face recognition using curvelets.

Firstly, we developed a novel human face recognition system using curvelet transform

and KPCA. In the past features extracted from curvelet subbands were dimension-

ally reduced using PCA for obtaining an enhanced representative feature set. In this

work we used KPCA to generate a comprehensive feature set. kNN based classifi-

cation scheme was employed for ascertaining accuracy. Experiments were performed

using popular human face databases and significant improvement in recognition ac-

curacy was achieved. The proposed method considerably outperformed conventional

face recognition systems using standard PCA.

Secondly, we proposed an efficient human face recognition technique based on

B2DPCA and ELM. Curvelets are used for image decomposition and subband exhibit-

ing a highest standard deviation was selected. A B2DPCA algorithm was proposed

to achieve superior and unique feature sets and minimize computational complexity

of our framework. The feature sets were trained and tested using a fast and accurate

ELM classifier. Extensive experiments were performed using 7 challenging databases

and results substantiated our claim that the proposed method achieves improved

recognition rate with a considerably smaller time complexity. In addition, our pro-

posed method was also independent of the number prototypes used for training, scales

of curvelet decomposition and the number of hidden neurons. Border security, video

surveillance and database security are some areas where face categorization plays a

very critical role and these applications can potentially benefit from our proposed

recognition scheme.

Chapter 4 thoroughly discussed two fingerprint compression algorithms based

on orthobasis variant of wave atoms decomposition. They have been specifically

designed for enhanced representation of oscillatory patterns and to convey temporal

and spatial information. Wave atoms efficiently captured coherence of the fingerprint
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images along and across the oscillations. Initially, we proposed a compression scheme

based upon linear vector quantization of decomposed wave atoms representation of

fingerprint images. Later quantized information was encoded with arithmetic entropy

scheme. The proposed image compression standard significantly outperformed the

FBI fingerprint image compression standard.

We also proposed a compression scheme based upon multistage vector quanti-

zation of processed wave atoms representation of fingerprint images. Wave atoms

expansion was processed using mathematical morphological operators to emphasize

and retain significant coefficients for transmission. The scalar quantized significant

coefficients and MSVQ quantized significance map are transformed using an arith-

metic encoder. The proposed image compression standard outperformed other well

established methods and achieved a PSNR gain of 8.07 dB in comparison to FBI’s

wavelet scalar quantization. The results obtained drastically outperformed genetic

algorithm based fingerprint compression methods that generated a maximum MSE

improvement of 16.71% and a PSNR gain of 0.794 dB over the FBI fingerprint com-

pression standard. We also compared our proposed algorithm to a contourlet based

fingerprint compression algorithm and improved results were achieved. Law enforce-

ment and forensic applications can potentially benefit from our compression scheme.

Chapter 5 discussed a fast and accurate technique for fingerprint matching based

on wave atoms decomposition. B2DPCA was used to obtain improved feature sets

and the system was classified using ELM. The foremost contribution of our method

is the application of 2D wave atoms decomposition on original fingerprint images

to obtain sparse and efficient coefficients. Secondly, distinctive feature sets were

extracted using our dimensionality reduction technique. ELM eliminated limitations

of classical training paradigm and trained our network at a considerably fast speed.

Our algorithm combined optimization of B2DPCA and the speed of ELM to put

together a superior and efficient algorithm for fingerprint classification. Experiments

were performed on twelve distinct fingerprint databases and results compared against
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wavelet based fingerprint matching techniques.

6.1 Summary of Contributions

In conclusion, the main contributions of this thesis are outlined below:

1. Two curvelet based algorithms were proposed for improved human face recog-

nition. The proposed methods were tested using challenging face databases and

significantly improved performance was achieved.

2. A new dimensionality reduction technique, i.e., B2DPCA was developed to gen-

erate distinctive feature vectors. The proposed dimensionality reduction tech-

nique is mathematically plausible since it first reduces dimensionality along the

column dimension. Later, the transformed image sets are dimensionally reduced

along the row direction to eventually achieve the desired data dimension.

3. Wave atoms based fingerprint compression schemes were put forth. To the best

of my knowledge there is no other work in literature that has dealt with finger-

print compression using wave atoms decomposition, therefore, this represents

the most significant contribution of my research.

4. Finally, we proposed a fingerprint matching algorithm using wave atoms de-

composition and compared results with existing wavelet based approaches.

In future, I would like to exploit dependency amongst wave atoms coefficients

at various scales and orientations to facilitate automated threshold computation for

improved compression and to further improve the PSNR gains for fingerprint images.

With regards to fingerprint matching, specific information regarding local features is

completely lost at the expense of global features. Researchers are actively working on

matching fingerprints in situations where the degree of overlap is quite low and it is

only feasible if local features are stored and matched. Research has also shown that
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using key point alone for detection sacrifices shape information available in smooth

portions of object contours thus approaches based on extracting edge points are not

universally applicable. Therefore, I would like to develop a correlation based finger-

print matching algorithm using local brightness and texture gradients to generate

oriented edge channels. It is perceived that the use of localized fingerprint informa-

tion would boost accuracy in situations where partial overlap exists among fingerprint

images.
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