6 research outputs found

    Reversible data hiding scheme based on 3-Least significant bits and mix column transform

    Get PDF
    Steganography is the science of hiding a message signal in a host signal, without any perceptual distortion of the host signal. Using steganography, information can be hidden in the carrier items such as images, videos, sounds files, text files, while performing data transmission. In image steganography field, it is a major concern of the researchers how to improve the capacity of hidden data into host image without causing any statistically significant modification. In this work, we propose a reversible steganography scheme which can hide large amount of information without affecting the imperceptibility aspect of the stego-image and at the same time, it increases the security level of the system through using different method for embedding based on distinct type of transform, called Mix Column Transform. Our experimental results prove the ability of our proposed scheme in balancing among the three critical properties: capacity, security, and imperceptibility

    Image compression with anisotropic diffusion

    Get PDF
    Compression is an important field of digital image processing where well-engineered methods with high performance exist. Partial differential equations (PDEs), however, have not much been explored in this context so far. In our paper we introduce a novel framework for image compression that makes use of the interpolation qualities of edge-enhancing diffusion. Although this anisotropic diffusion equation with a diffusion tensor was originally proposed for image denoising, we show that it outperforms many other PDEs when sparse scattered data must be interpolated. To exploit this property for image compression, we consider an adaptive triangulation method for removing less significant pixels from the image. The remaining points serve as scattered interpolation data for the diffusion process. They can be coded in a compact way that reflects the B-tree structure of the triangulation. We supplement the coding step with a number of amendments such as error threshold adaptation, diffusion-based point selection, and specific quantisation strategies. Our experiments illustrate the usefulness of each of these modifications. They demonstrate that for high compression rates, our PDE-based approach does not only give far better results than the widely-used JPEG standard, but can even come close to the quality of the highly optimised JPEG2000 codec

    Vector-valued image interpolation by an anisotropic diffusion-projection PDE

    No full text
    Abstract. We propose a nonlinear image interpolation method, based on an anisotropic diffusion PDE and designed for the general case of vector-valued images. The interpolation solution is restricted to the subspace of functions that can recover the discrete input image, after an appropriate smoothing and sampling. The proposed nonlinear diffusion flow lies on this subspace and its strength and anisotropy effectively adapt to the local variations and geometry of image structures. The derived model efficiently reconstructs the real image structures, leading to a natural interpolation, with reduced blurring, staircase and ringing artifacts of classic methods. This method also outperforms other existing PDE-based interpolation methods. We present experimental results that prove the potential and efficacy of the method as applied to graylevel and color images.

    Compression, pose tracking, and halftoning

    Get PDF
    In this thesis, we discuss image compression, pose tracking, and halftoning. Although these areas seem to be unrelated at first glance, they can be connected through video coding as application scenario. Our first contribution is an image compression algorithm based on a rectangular subdivision scheme which stores only a small subsets of the image points. From these points, the remained of the image is reconstructed using partial differential equations. Afterwards, we present a pose tracking algorithm that is able to follow the 3-D position and orientation of multiple objects simultaneously. The algorithm can deal with noisy sequences, and naturally handles both occlusions between different objects, as well as occlusions occurring in kinematic chains. Our third contribution is a halftoning algorithm based on electrostatic principles, which can easily be adjusted to different settings through a number of extensions. Examples include modifications to handle varying dot sizes or hatching. In the final part of the thesis, we show how to combine our image compression, pose tracking, and halftoning algorithms to novel video compression codecs. In each of these four topics, our algorithms yield excellent results that outperform those of other state-of-the-art algorithms.In dieser Arbeit werden die auf den ersten Blick vollkommen voneinander unabhängig erscheinenden Bereiche Bildkompression, 3D-Posenschätzung und Halbtonverfahren behandelt und im Bereich der Videokompression sinnvoll zusammengeführt. Unser erster Beitrag ist ein Bildkompressionsalgorithmus, der auf einem rechteckigen Unterteilungsschema basiert. Dieser Algorithmus speichert nur eine kleine Teilmenge der im Bild vorhandenen Punkte, während die restlichen Punkte mittels partieller Differentialgleichungen rekonstruiert werden. Danach stellen wir ein Posenschätzverfahren vor, welches die 3D-Position und Ausrichtung von mehreren Objekten anhand von Bilddaten gleichzeitig verfolgen kann. Unser Verfahren funktioniert bei verrauschten Videos und im Falle von Objektüberlagerungen. Auch Verdeckungen innerhalb einer kinematischen Kette werden natürlich behandelt. Unser dritter Beitrag ist ein Halbtonverfahren, das auf elektrostatischen Prinzipien beruht. Durch eine Reihe von Erweiterungen kann dieses Verfahren flexibel an verschiedene Szenarien angepasst werden. So ist es beispielsweise möglich, verschiedene Punktgrößen zu verwenden oder Schraffuren zu erzeugen. Der letzte Teil der Arbeit zeigt, wie man unseren Bildkompressionsalgorithmus, unser Posenschätzverfahren und unser Halbtonverfahren zu neuen Videokompressionsalgorithmen kombinieren kann. Die für jeden der vier Themenbereiche entwickelten Verfahren erzielen hervorragende Resultate, welche die Ergebnisse anderer moderner Verfahren übertreffen

    Roussos-Maragos Tensor-Driven Diffusion for Image Interpolation

    No full text
    Roussos and Maragos proposed a method for image interpolation in "Reversible interpolation of vectorial images by an anisotropic diffusion-projection PDE." An earlier version was also published in conference paper (Roussos and Maragos, "Vector-Valued Image Interpolation by an Anisotropic Diffusion-Projection PDE," 2007). Given a discretely sampled image v, the method finds an image u such that v(n) = (h * u)(n), for all n in Z2, where h is the (assumed known) point spread function and * denotes convolution. The method is inspired by tensor-driven diffusion works of Tschumperlé and Weickert. Roussos and Maragos propose interpolation by evolving a diffusion equation to steady state, dt u = P0(div(T gradient(u)), where T is a tensor determined from image structure tensor and the diffusion is orthogonally projected to agree with the observed data. This diffusion is based on the general anisotropic diffusion model proposed by Weickert. The method can be applied to grayscale, color, or general vector-valued images
    corecore