7,643 research outputs found

    Electromagnetic and thermal responses in topological matter: topological terms, quantum anomalies and D-branes

    Get PDF
    We discuss the thermal (or gravitational) responses in topological superconductors and in topological phases in general. Such thermal responses (as well as electromagnetic responses for conserved charge) provide a definition of topological insulators and superconductors beyond the single-particle picture. In two-dimensional topological phases, the Str\v{e}da formula for the electric Hall conductivity is generalized to the thermal Hall conductivity. Applying this formula to the Majorana surface states of three-dimensional topological superconductors predicts cross-correlated responses between the angular momentum and thermal polarization (entropy polarization). We also discuss a use of D-branes in string theory as a systematic tool to derive all such topological terms and topological responses. In particular, we relate the Z2\mathbb{Z}_2 index of topological insulators introduced by Kane and Mele (and its generalization to other symmetry classes and to arbitrary dimensions) to the K-theory charge of non-BPS D-branes, and vice versa. We thus establish a link between the stability of non-BPS D-branes and the topological stability of topological insulators.Comment: 16 pages, 2 figures; Submitted to a topical issue of the Comptes Rendus de l Academie des Sciences (CRAS

    Nonlocality, No-Signalling and Bell's Theorem investigated by Weyl's Conformal Differential Geometry

    Full text link
    The principles and methods of the Conformal Quantum Geometrodynamics (CQG) based on the Weyl's differential geometry are presented. The theory applied to the case of the relativistic single quantum spin 1/2 leads a novel and unconventional derivation of Dirac's equation. The further extension of the theory to the case of two spins 1/2 in EPR entangled state and to the related violation of Bell's inequalities leads, by an exact albeit non relativistic analysis, to an insightful resolution of all paradoxes implied by quantum nonlocality.Comment: arXiv admin note: text overlap with arXiv:1203.003

    Elements of F-ast Proton Decay

    Get PDF
    Gauge coupling unification in the Minimal Supersymmetric Standard Model (MSSM) strongly suggests the existence of a Grand Unified Theory (GUT), which could be probed by the observation of proton decay. Proton lifetime in the p \to (e+|mu+) pi0 dimension six mode is proportional in the fourth power to the GUT mass scale, and inversely proportional in the fourth power to the GUT coupling. We provide an updated dictionary of solutions for the relevant unification parameters with generic beta-function coefficients, significantly upgrading the level of detail with which second order effects are treated, and correcting subtle published errors. F-lipped SU(5) with strict MSSM field content is known to survive existing null detection limits for proton decay approaching 10^34 years, and indeed, the lifetime predicted by prior studies can be so long that successful detection is not currently plausible. Recently studied classes of F-theory derived GUT models postulate additional vector-like multiplets at the TeV scale which modify the renormalization group to yield a substantial increase in the SU(3)_C X SU(2)_L unified coupling. We find the conjunction of these models with the F-resh analysis employed to be comparatively F-ast proton decay, only narrowly evading existing detection limits, and likely falling within the observable range of proposed next generation detectors such as DUSEL and Hyper-Kamiokande. The TeV-scale vector multiplets are themselves suitable for cross correlation by the Large Hadron Collider. Their presence moreover magnifies the gap between the dual mass scales of Flipped SU(5), allowing for an elongated second stage renormalization, pushing grand unification to the doorstep of the reduced Planck mass.Comment: V2, As published in Nuclear Physics B; 57 pages, 7 figures, 12 table

    Ultra-high energy cosmic ray investigations by means of EAS muon density measurements

    Full text link
    A new approach to investigations of ultra-high energy cosmic rays based on the ground-level measurements of the spectra of local density of EAS muons at various zenith angles is considered. Basic features of the local muon density phenomenology are illustrated using a simple semi-analytical model. It is shown that muon density spectra are sensitive to the spectrum slope, primary composition, and to the features of hadronic interaction. New experimental data on muon bundles at zenith angles from 30 degrees to horizon obtained with the coordinate detector DECOR are compared with CORSIKA-based simulations. It is found that measurements of muon density spectra in inclined EAS give possibility to study characteristics of primary cosmic ray flux in a very wide energy range from 10^15 to 10^19 eV.Comment: 7 pages, 7 figures. Presented at CRIS-2006, Catania, Italy, May 29 - June 2, 2006. Accepted for publication in Nucl. Phys. B (Proc. Suppl.

    Discontinuities in the Electromagnetic Fields of Vortex Beams in the Complex Source/Sink Model

    Get PDF
    An analytical discontinuity is reported in what was thought to be the discontinuity-free exact nonparaxial vortex beam phasor obtained within the complex source/sink model. This discontinuity appears for all odd values of the orbital angular momentum mode. Such discontinuities in the phasor lead to nonphysical discontinuities in the real electromagnetic field components. We identify the source of the discontinuities, and provide graphical evidence of the discontinuous real electric fields for the first and third orbital angular momentum modes. A simple means of avoiding these discontinuities is presented.Comment: 10 pages, 4 figure
    • …
    corecore