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We discuss the thermal (or gravitational) responses in topological superconductors and
in topological phases in general. Such thermal responses (as well as electromagnetic re-
sponses for conserved charge) provide a definition of topological insulators and super-
conductors beyond the single-particle picture. In two-dimensional topological phases, the
Strěda formula for the electric Hall conductivity is generalized to the thermal Hall conduc-
tivity. Applying this formula to the Majorana surface states of three-dimensional topological
superconductors predicts cross-correlated responses between the angular momentum and
thermal polarization (entropy polarization). We also discuss a use of D-branes in string
theory as a systematic tool to derive all such topological terms and topological responses.
In particular, we relate the Z2 index of topological insulators introduced by Kane and
Mele (and its generalization to other symmetry classes and to arbitrary dimensions) to
the K-theory charge of non-BPS D-branes, and vice versa. We thus establish a link be-
tween the stability of non-BPS D-branes and the topological stability of topological insula-
tors.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous traitons des réponses thermiques (ou gravitationnelles) des supraconducteurs topo-
logiques et, plus généralement, des phases topologiques. Ces réponses thermiques (tout
comme les réponses électromagnétiques pour la charge électrique conservée) fournissent
une définition des isolants et supraconducteurs topologiques, qui reste valable au-delà du
modèle à une particule. Pour les phases bidimensionnelles, la formule de Streda de la
conductivité de Hall de charge est généralisée à la conductivité de Hall thermique. Ap-
pliquée aux états de surface de Majorana des supraconducteurs topologiques, cette formule
conduit à des fonctions de réponse croisées entre le moment angulaire et la polarisation
thermique. Nous discutons également de la théorie des cordes (D-branes) comme outil
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systématique pour obtenir ces réponses topologiques. En particulier, nous relions l’inva-
riant topologique Z2 des isolants topologiques introduit par Kane et Mele (ainsi que ses
généralisations à d’autres classes de symétrie en dimensions arbitraires) à la charge de cer-
taines D-branes (celles qui ne saturent pas la limite de Bogomol’nyi–Prasad–Sommerfield),
et vice versa. Nous établissons ainsi un lien entre la stabilité de ces D-branes et celle des
isolants topologiques.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

A vital role of topology in quantum transport phenomena in solids has been recognized as a driving force of a dissipa-
tionless current. The Berry curvature [1] in momentum and real spaces induces the velocity of Bloch electrons [2], resulting
in various effects, such as the anomalous Hall effect [3] and the spin Hall effect [4]. Even the heat current can be induced
by the Berry curvature, as observed in the anomalous Nernst effect [5] and the thermal Hall effect [6]. These quantum
transport phenomena of topological origin (or topological currents) are regarded as a promising candidate for spintronics
with low energy cost.

In metallic systems, the usual transport currents with dissipation are dominant over these topological currents, and
hence it is rather difficult to identify the latter. A topological current, however, can be non-vanishing even in insulating
systems – such systems on general ground are called topological insulators. This is so since it is the topological properties
of electronic wavefunctions, rather than a band structure of energy levels in solids, that are responsible for generation of a
topological current.

The quantum Hall effect (QHE) is a canonical example of topological insulators characterized by a topological (i.e.,
quantized) transport law [7–9]. Recently topological insulators realized by strong spin–orbit interactions in two and three
dimensions have been discovered [10–17]. In particular, the three-dimensional (3d) topological insulator is characterized by
the topological magnetoelectric effect [18,19] (the axion electrodynamics [20]). (See below for more details.) As a conse-
quence of non-trivial electrical wavefunctions in the bulk, these topological insulators support anomalous boundary (edge
or surface) modes, whose gapless nature is topologically protected.

Analogously, for superconductors (SCs) and superfluids, one can consider topological properties associated with the wave-
functions of fermionic quasi-particles; Within the BCS mean-field theory, the Bogoliubov–de Gennes (BdG) Hamiltonian is
a fermion bilinear in the Nambu spinor. The case where we have a quasi-particle gap everywhere in the momentum space
is an analogue of the band insulator. A topological SC is a SC with a full gap and topologically non-trivial quasi-particle
wavefunctions. Canonical examples of topological SCs include, e.g., the 2d chiral p-wave SC [21,22].

In three dimensions, the B phase of superfluid 3He was recently identified as a new topological SC (superfluid) [23–27].
A recent surface transverse acoustic impedance measurement reported in Refs. [28,29] revealed a signature of the surface
Majorana fermion mode on the surface of 3He–B. A copper-doped topological insulator (CuxBi2Se3) has been discussed as a
candidate of a 3d topological SC [30–32].

The purpose of this article is to describe the response theory of topological phases with a special focus on their ther-
mal, rather than electrical, transport. A motivation for the thermal response is that it is well-defined even for phases in
which the electrical charge is not conserved, such as topological SCs, or topological phases in spin systems. While topolog-
ical SCs (as well as topological insulators) can be defined in terms of a topological invariant built out of, within the BCS
mean-field theory, quasi-particle wavefunctions, the response theory gives a physically measurable definition of topological
phases, which can be largely insensitive to microscopic details – a lesson we have learned from the physics of the QHE,
or the topological magnetoelectric effect in the 3d topological insulator. In particular, formulating the thermal response as
a response to an external gravitational field, we will derive a thermal analogue of the topological magnetoelectric effect,
which uncovers an interesting cross-correlation between thermal and mechanical responses, in terms of the temperature
gradient, and an applied angular velocity, respectively (Section 3).

For the bulk of this article, we will focus on topological SCs in two and three dimensions, such as the 2d chiral p-wave
SC or 3He–B. However, we will also briefly describe how such response theory can be systematically constructed for a
wider class of topological insulators and SCs in the “periodic table” [23,33,34] (Section 4). In fact, we will illustrate that
responses in topological phases are closely related to quantum anomalies in field theories. Such characterization of topo-
logical phases in terms of anomalies is expected to incorporate arbitrary strong interactions as far as a bulk gap is not
destroyed.

Interestingly, such considerations lead to a natural link to topological objects in string theory – D-branes. We will
demonstrate, by considering a particular configuration of D-branes, that we can realize a field theory model of topologi-
cal insulators and superconductors with desired discrete symmetries (Section 4). The stability criterion of D-branes against
Tachyon condensation is in one-to-one correspondence with the classification of topological insulators and superconductors
(i.e., the periodic table [23,33,34]). From condensed matter point of view, the D-brane construction can be thought of as a
convenient tool that bridges K-theory classification of fermionic Hamiltonians, and linear response theory.
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2. Electromagnetic response in the QHE and 3d topological insulator

2.1. The QHE in two dimensions

Let us start this review by first illustrating the usefulness of the effective field theory of linear response, by taking the
QHE as an example. The electromagnetic response of the quantum Hall fluid is described by the effective Chern–Simons
action:

Ieff = e2k

4π h̄

∫
dt d2xεμνλ Aμ∂ν Aλ, k ∈ Z (1)

where Aμ is an external electromagnetic gauge field. The Chern–Simons action can be derived by considering a coupling of
the (topological) insulator in question to the external (background) electromagnetic field Aμ , and then by integrating out
fermions to derive the effective action for Aμ .

The Chern–Simons action encodes all types of topological responses in the QHE. (i) The current δ jk(t, x) induced by Aμ

is computed, for a time-independent vector potential, as

δ jk(t, x) = δ Ieff

δAk(t, x)
= e2k

2π h̄
εki0∂i A0 (2)

This is the QHE, J x = σH E y , with the Hall conductivity σH = ke2/(2π h̄). (ii) Similarly, one can compute the charge δρ(t, x)
induced by Aμ as

cδρ(t, x) = δ j0(t, x) = δ Ieff

δA0(t, x)
= e2k

2π h̄
ε0i j∂i A j (3)

where c is the speed of light. This means that a (solitonic) flux tube binds k units of charge, which is, in cylinder geometry,
nothing but charge-pumping in Laughlin’s thought experiment. For uniform magnetic field Bz , the change in the total
electron charge is

cδQ e = σHδBz ⇒ c
δQ e

δBz
= ce

δNe

δBz
= σH (4)

where Ne is the total electron number. This is nothing but the Strěda formula [35,36]. (iii) The Chern–Simons term can be
written, for static configurations of Aμ , as Ieff = σH

∫
dt d2xε0i j A0∂i A j = (σH/c)

∫
dt d2xφBz , where A0 =: φ/c. If we define

(the change in) magnetization by δMz = δ Ieff
δBz = (σH/c)δφ, then

ec
δMz

δμ
= σH (5)

where μ = eφ is the chemical potential [μNe = (μ/e)eNe = φQ e].

2.2. Topological insulator in three dimensions

Similarly, for the 3d topological insulator, the electromagnetic response is encoded in the effective action [18–20]:

Ieff = θe2

32π2h̄c

∫
dt d3xεμνκλ Fμν Fκλ = θe2

4π2h̄c

∫
dt d3x E · B (6)

This “axion” term can be derived, similarly to the Chern–Simons action, by integrating out fermions in the presence of
the background electromagnetic field. The Dirac quantization condition and time-reversal symmetry (TRS) restrict θ to be
quantized, θ = 0,π (mod 2π ); θ = 0 for trivial insulators or vacuum, whereas θ = π inside topological insulators.

As inferred from the axion term, the topological insulator features the topological magnetoelectric (ME) effect:

M = δ Ieff

δB
= θ

π

e2

2hc
E = θ

π

α

4π
E (7)

P = δ Ieff

δE
= θ

π

e2

2hc
B = θ

π

α

4π
B (8)

or, quantized electromagnetic polarizability,

δPi

δB j
= δMi

δE j
= δi j

θ

π

α

4π
(9)

where α = e2/(h̄c) is the fine structure constant. Eqs. (8) and (7) are the 3d analogues of Eqs. (4) and (5), respectively.
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Fig. 1. The three-dimensional topological insulator in cylindrical geometry; (a) the induced magnetization follows the direction of the applied electric field;
(b) the induced polarization follows the direction of the applied magnetic field. In both cases, time-reversal symmetry is broken on the surface, by putting,
say, magnetic impurities, as indicated by red arrows. In (a), the magnetization is caused by the surface Hall current jH. In (b), the polarization is caused
by an excess or a deficit charge on the top or bottom surface [see Eq. (4)]. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

The magnetization M in Eq. (7), which follows the direction of the external electric field E , is generated by the surface
QHE (Fig. 1(a)); when a topological insulator is in contact with a topologically trivial insulator (or simply vacuum), the
θ -angle in the axion term jumps by π at the interface. As the axion term is the total derivative of the Chern–Simons term,
such interface (where TRS is weakly broken) is accompanied by the half quantized surface Hall current with σH = ±e2/(2h),
which generates a bulk magnetization M . Similarly, when an external magnetic field B is applied, according to Eq. (4), it
induces an excess or a deficit of charge on the surfaces that are orthogonal to B – this is the source of a bulk electric
polarization P in Eq. (8) (Fig. 1(b)).

3. Gravitational response in topological superconductors

3.1. Gravitoelectromagnetism

Energy–gravity coupling We now develop the thermal response theory of topological phases, with an eye, in particular, on
applications to topological SCs. Our strategy here is, based on Luttinger’s idea [37], to follow as closely as possible the
linear response theory for the electric charge: when we study the charge response, we consider a small external probe
field for the charge density, H I ∼ ∫

ddxφ(x)ρ(x). The same strategy can be adopted since energy is conserved; as in the
charge response, we can consider an external (fictitious) source term that couples to the energy (Hamiltonian) density ε(x),
H I ∼ ∫

ddxφg(x)ε(x)/v2, where we have introduced v , which has the dimension of velocity to assign a proper dimension
to φg (see below).

The external source φg can be thought of as a fictitious gravitational field in the presence of the Lorentz invariance,
as it allows us to identify the energy as the mass, ε(x) = m(x)v2, where m(x) is the mass density. For the gravitational
theory of nature (not for Luttinger’s fictitious gravity, which is a mere device to develop a linear response theory), v should
be replaced by the speed of light c, whereas in condensed matter systems with emergent Lorentz symmetry, v is the
“Fermi” velocity (see below for more discussion). The coupling of the system to the potential φg can then be written as
H I ∼ ∫

ddxφg(x)m(x), where, from the analogy with electromagnetism, mass can be thought of as a “charge” coupled with
a gravitational field.

With the Lorentz invariance, in more covariant language (in the Lagrangian language), the gravitational coupling with
the (thermal) energy current is introduced as follows: the energy density ε and the energy current jE are components
of the energy–momentum tensor T μν , ε = T 00 and ji

E = vT 0i . They are thus coupled with the variation of space–time
metric gμν as −(1/2)

∫
dt ddx

√−gT μνδgμν in the Lagrangian, where g = det gμν – in a way analogous to the way the
charge current jμ couples with the external electromagnetic potential as − ∫

dt ddx jμ Aμ .

Gravitoelectric field A spatial gradient in energy density inevitably causes a temperature gradient, as one can infer from
the thermodynamic equality dU = T dS as follows. (Here, U is the internal energy, S the entropy, and T the temperature.)
Let us divide the total system into two subsystems (subsystems 1 and 2). The equilibrium between the two is achieved
when the total entropy is maximized: dS = dS1 + dS2 = 0. Since energy is conserved, dE2 = −dE1, and hence dS1/dE1 −
dS2/dE2 = 0, i.e., T1 = T2. Let us now turn on a gradient in the gravitational potential, so that the gravitational potential
felt by subsystems 1 and 2 differs by δφg. In this case, we have dE2 = −dE1(1 + δφg/v2). This suggests the generation
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of a temperature difference T2 = T1(1 + δφg/v2). In other words, we can view the “electric” field Eg associated with the
gradient of φg, which we call “gravitoelectric field”, as a temperature gradient:

Eg := −∇φg = v2T −1∇T (10)

Gravitomagnetic field The analogy with electromagnetism can be further put forward – such formalism is called gravitoelec-
tromagnetism [38]. For our purpose to develop a linear response theory for thermal transport, we put an external gravity
field which is infinitesimally small. We can thus write the metric as gμν = ημν +hμν where ημν is the metric of flat space–
time. In the presence of matter, in the post Newtonian limit, we keep only h00, hii , and h0i [which are of order O(v−2)],
whereas hij =O(v−4) (i �= j) are neglected [38]:

ds2 = v2(−1 + 2φg/v2) dt2 − 4

v
Ag · dx dt + (

1 + 2φg/v2) dx · dx (11)

where we have introduced the gravitomagnetic potential, Ag,i := −(v2/2)h0i . For small hμν , the Einstein equation can be
linearized up to these non-zero components of hμν kept in Eq. (11), and the resulting equation looks structurally identical
to the Maxwell equation. (However, note that we are considering an external gravity field as a source that does not have its
own dynamics.) As we have seen, the gravitoelectric field Eg corresponds to temperature gradient. What does the gravita-
tional analogue of the magnetic field, the gravitomagnetic field, Bg, correspond to? It turns out that Bg can be understood
as the angular velocity vector of rotating systems:

Bg := ∇ × Ag = vΩ (12)

For a system rotating with the frequency Ω = Ω z z, this can be understood by making a coordinate transformation from
the rest frame to the rotating frame in which the metric in the polar coordinates (t, r,ϕ, z) takes the form ds2 � −v2 dt2 +
2Ω zr2 dϕ dt + r2dϕ2 + dr2 + dz2. One can then read off, from the definition of the gravitoelectromagnetic field, the non-zero
gravito gauge potential Aϕ

g = (v/2)Ω zr. In Cartesian coordinates, Ag = (v/2)Ω z ẑ × x, and Bg = ∇ × Ag = vΩ z ẑ.

3.2. Thermal Strěda formula for 2d topological SCs

We now use the formalism described above to study the thermal transport of topological SCs in two and three dimen-
sions. The goal here is to establish a gravitational analogue of the Strěda formula (4)–(5) and the topological ME effect
(7)–(8) [39].

Let us start with a 2d topological fluid that does not have time-reversal symmetry. To draw a parallelism with the charge
response, we introduce the moment of the thermal current MT as MT = ME − (μ/e)M , where Mμν

E = 〈xμT 0ν − xν T 0μ〉, and
Mz

E = M12
E . (Similarly, the thermal current can be decomposed into jT = jE − (μ/e) j, where j is the electric charge current.)

Here the average has to be taken at finite temperature: 〈· · ·〉 ≡ ∑
n f (εn)〈n| · · · |n〉, where εn and |n〉 are the eigenvalue and

the eigenstate of the Hamiltonian H, and f (εn) is the Fermi distribution function.1,2 We can then obtain

κH = v

2

∂Mz
T

∂T
(13)

from the Kubo formula for the thermal Hall conductivity3 [39].
To see the physical meaning of ME, note that the definition of Mμν

E is similar to the orbital angular momentum: Lμν =
(1/c)〈xμT ν0 − xν T μ0〉. Indeed, when there is a relativistic invariance, the energy–momentum tensor can be symmetrized
so that T μν = T νμ , and thus Mμν

E = cLμν . While this is not the case in condensed matter systems in general, the (pseudo)
Lorentz invariance can emerge in solids at low energies, such as in graphene or in topological superconductors where
electrons or quasi-particles obey the Dirac or Majorana equation. In these systems, the Fermi velocity v plays a role of c, and
the Mμν

E tensor is related to the orbital angular momentum as ME = v L. Thus, κH = (v2/2)(∂Lz/∂T ). This is an analogue of
the electromagnetic Strěda formula (5).

To derive “the other half ” of the Strěda formula [a thermal analogue of Eq. (4)], we note that the variation of the free
energy is given by dF = −S dT − L · dΩ , where S is the entropy. In terms of the gravitoelectric and gravitomagnetic fields,

1 Below, we will consider the part of the thermal current carried by jE (and hence ME) specializing to the case of μ = 0. This is valid in discussing
topological SCs.

2 Our convention for φg, Ag, and ME in this review differs from the one employed in Ref. [39]; there is a factor-of-two difference in defining φg and Ag

[see Eq. (11)]. Accordingly, there is a similar factor of 1/2 difference in defining ME. These factors are due to the spin 2 nature of gravitons, and are
convenient, since the resulting linearized Einstein equation does not have such factors of two, and the similarity with the Maxwell equation is clearer. Also,
in the definition of φg, we have put an extra factor of v2.

3 While in the bulk, in the absence of interactions, the Kubo formula gives us one of the most direct ways to get the Strěda formula for σH and κH, the
applicability of the Strěda formulas is not limited to non-interacting systems, as they can be also derived assuming the presence of chiral edge states. See
Ref. [39] for details.
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this can be written as dF = −(T S/v2)(v2T −1 dT ) − (L/v) · d(vΩ) = −(Q T/v2)(dφg) − (ME/v2) · dBg, where Q T = T S is the
thermal energy density, which couples with φg/v2. From the Maxwell relation, we thus obtain

κH = v3

2T

(
∂Mz

E

∂φg

)
Bz

g

= v3

2T

(
∂ Q T

∂ Bz
g

)
φg

(14)

This is the thermal analogue of the Strěda formula for the charge Hall conductivity, in that Q T is the zeroth component of
the energy current as eNe is in the charge current. With the pseudo-relativistic invariance, this can be written as

κH = v2

2

(
∂Lz

∂T

)
Ω z

= v2

2

(
∂ S

∂Ω z

)
T

(15)

3.3. Cross-correlated response of 3d topological SC

The thermal Strěda formula derived above for 2d topological fluid can be used to study the response of 3d topological
SCs to the temperature gradient and the rotation; given that the fermionic quasi-particles are fully gapped in the bulk, all
(topological) transport phenomena, in the presence of a boundary (surface), can essentially be discussed by looking at the
surface transport. For the sake of simplicity, one can consider a cylindrical geometry (as in Fig. 1), apply the temperature
gradient ∂z T or external rotation Ω z , and discuss the responses, which are mediated by the surface. (As in the electromag-
netic responses, we weakly break TRS at the surface and hence the surface is gapped.) Such thought experiments lead to,
for the (induced) thermal polarization P E defined by δQ T = −∇ · P E, and for the moment of the energy current ME,

ME = (
TκH/v3)Eg (16)

P E = (
TκH/v3)Bg (17)

δME,i

δEg, j
= δPE,i

δBg, j
= δi j

θ

π

TκH

v3
(18)

The parallel between the electromagnetic and gravitational cases are obvious. Observe, however, that the gravitational
response is not quantized as in the charge response, because of the presence of the velocity v . The situation is somewhat
similar to the detection of the conformal anomaly (central charge) from specific heat in 1d quantum systems at criticality;
while the central charge C for a given quantum critical system in 1d is a dimensionless universal parameter, it shows up in
specific heat CV together with the velocity v as CV = Cπ T /(3v).

Possible experiments The thermal (gravitational) analogue of the Strěda formula [Eq. (15)] and of the topological ME effect
[Eq. (18)] can be tested experimentally. An external angular velocity Ω z results in the change in temperature (in 2d topo-
logical SCs) and thermal polarization (in 3d topological SCs). If the heat capacity of the system is sufficiently small, these
may not be difficult to measure.

In three dimensions, the “dual” response, i.e., the response to the applied temperature gradient [Eq. (17)], can be detected
by making use of the Einstein–de Hass effect. Let us assume a cylindrical 3d topological SC is suspended by a thin string
and apply thermal gradient (as in Fig. 1(a)). This induces surface energy current with angular momentum Lz , according
to Eq. (17). By the conservation law of the total angular momentum, it must be compensated by a mechanical angular
momentum of the material, which can be directly measured in principle.

Note that in both responses to Ω z and to temperature gradients, the part of the responses of our interest are contribu-
tions from the fermionic quasi-particles. They should be distinguished from the contributions from bosonic excitations such
as vortices. If Ω z is larger than the critical angular velocity Ωc1 above which vortices are introduced in the bulk of the
sample, an extra contribution to thermal polarization would be generated.

4. Anomaly ladder and D-branes

4.1. Integrating out fermions and chiral anomaly

We have constructed the response theory of 3d topological SCs starting from the thermal Strěda formula of 2d topological
SCs. We now discuss the response of topological SCs (and insulators) to an external gravitational field from a field theoretical
point of view [40,41]. Our goal here is to derive a gravitational analogue of the axion term in the electromagnetic response,
and show that it is related to quantum anomaly (chiral anomaly). In this section, we will use natural units e = c = h̄ = 1,
and set the Fermi velocity v to be unity for simplicity.

Let us work with an example; A canonical example of the 3d topological SC is the B phase of 3He, which is de-
scribed, in the momentum space, by the following BdG Hamiltonian: H = (1/2)

∫
d3k Ψ †(k)H(k)Ψ (k), where Ψ †(k) =

(c†
↑,k, c†

↓,k, c↑,−k, c↓,−k) is the Nambu spinor composed of fermionic creation/annihilation operators (c†
s,k/cs,k) of a 3He atom

with spin s and momentum k, and the kernel H(k) takes the following form:
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H(k) =
(

ξ(k) �(k)

�†(k) −ξ(−k)

)
, ξ(k) = k2

2M
− μ, �(k) = |�|k · s(isy) (19)

where M is the mass of a 3He atom, μ is the chemical potential, and |�| is the amplitude of the pair potential. With the
d-vector pointing parallel to momentum, d(k) = |�|k, there is an isotropic gap everywhere on the 3d Fermi surface. The
critical point at μ = 0 separates topologically trivial (μ < 0) and non-trivial (μ > 0) phases, which are characterized by
an integral topological invariant of symmetry class DIII (the winding number) ν = 0 and ν = 1, respectively [23]. We will
henceforth set |�| = 1 and drop the O(k2) term in ξ(k), ξ(k) → −μ ≡ m. With a suitable unitary transformation, the BdG
Hamiltonian is written in terms of the 4 × 4 Dirac matrices {αi=1,2,3, β} as H = −i

∑3
i=1 αi∂i + mβ. Upon this linearization,

μ can be thought of as a “Dirac mass term”.
We introduce an external gravity field which couples to the Dirac Hamiltonian (Lagrangian) as, S[ψ̄,ψ, e] =∫

dt d3x
√−gL,

L = ψ̄ea
μiγ a

(
∂μ − i

2
ωμ

cdΣcd

)
ψ − mψ̄ψ (20)

where μ,ν, . . . = 0,1,2,3 is the space–time index, and a,b, . . . = 0,1,2,3 is the flat index; ea
μ is vielbein, and ωμ

ab is
a spin connection; Σab = [γa, γb]/(4i). The effective action Ieff[m, e] for the gravitational field is then obtained from the
fermionic path integral Ieff[m, e] = −i ln

∫
D[ψ̄,ψ] exp(i S[ψ̄,ψ, e]).

Below, we are interested in the topological term of the effective action, which is, in the imaginary time path integral,
an imaginary part of the Seff[m, e]. This part can be computed by making use of the chiral anomaly as follows [42]. We
first observe that the continuum Hamiltonian H enjoys a continuous chiral symmetry: we can flip the sign of mass, in
a continuous fashion, by the following chiral rotation ψ → ψ = eiφγ5/2ψ ′ , ψ̄ → ψ̄ = ψ̄ ′eiφγ5/2, under which the mass is
rotated as

m′(φ) = meiφγ5 = m(cosφ + iγ5 sinφ) (21)

so that m′(φ = 0) = m and m′(φ = π) = −m. Since m can continuously be rotated into −m, one would think, naively,
Ieff[m] = Ieff[−m]. This naive expectation is, however, not true, because of the chiral anomaly. The chiral transformation that
rotates m continuously costs the Jacobian J of the path integral measure,

D[ψ̄,ψ] = JD
[
ψ̄ ′,ψ ′] (22)

This chiral anomaly (the chiral Jacobian J ) is responsible for the gravitational analogue of the axion term (the θ -term). The
Jacobian J can be computed explicitly by the Fujikawa method [43] as

Iθeff = − lnJ = 1

2

1

2

θ

384π2

∫
d4x

√−gεcdef Ra
bcd Rb

aef (23)

where R = dω + ω ∧ ω (Ra
bμν = ∂μωa

νb − ∂νω
a
μb + [ωμ,ων ]a

b) is the Riemann curvature tensor; as in the electromagnetic
response, the θ -angle is fixed to either θ = 0 or θ = π by time-reversal symmetry. The former corresponds to a topologically
trivial state, and θ = π to a topologically non-trivial state. The theta term in the gravitational effective action (23) (“the
gravitational instanton term”) is an analogue of the axion term ∝ θ E · B in the electromagnetic effective action; there is an
obvious structural parallelism between the electromagnetic and gravitational cases [44].

To make the connection with the existence of topologically protected surface modes, we note, when there are boundaries
(say) in the x3-direction at x3 = L+ and at x3 = L− , the gravitational instanton term Iθeff, at the non-trivial time-reversal
invariant value θ = π of the angle θ , can be written in terms of the gravitational Chern–Simons terms at the boundaries,
Iθeff = ICS|x3=L+ − ICS|x3=L− , where (i, j,k = 0,1,2)

ICS = 1

2

1

4π

c′

24

∫
d3xε i jk tr

(
ωi∂ jωk + 2

3
ωiω jωk

)
(24)

with c′ = 1/2. This value of the coefficient of the gravitational Chern–Simons term is one-half of the canonical value
(1/4π) × (c′/24) with c′ = 1/2. As discussed by Volovik [45] and by Read and Green [21] in the context of the 2d chi-
ral p-wave SC, the coefficient of the gravitational Chern–Simons term is directly related to the thermal Hall conductivity,
which in our case is carried by the topologically protected surface modes.

4.2. Anomaly ladder and periodic table

All types of responses we have discussed so far (the QHE, the topological ME, and their gravitational (thermal) ana-
logues) are related to the quantum anomaly; the Chern–Simons term in the QHE (both electromagnetic and gravitational)
is a manifestation of the parity anomaly; the axion term can be derived, as we have seen above, from the chiral anomaly.
In fact, a wider class of topological insulators and SCs in the periodic table (Table 1) can be related to quantum anoma-
lies.
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Table 1
Periodic table of topological insulators and superconductors for the 10 symmetry classes in
various spatial dimensions. Topological insulators (superconductors) in the complex symmetry
classes (A and AIII) are related to the chiral U(1) anomaly. The primary series of the topological
insulators (superconductors) with an integer (Z) classification in the eight real symmetry classes
are located on the diagonal in the table. In even space–time dimensions (odd space dimensions)
they are predicted from the chiral anomaly in the presence of background gravity ( ), and
from the chiral anomaly in the presence of both background gravity and U(1) gauge field ( ).
The topological response of topological phases in odd space–time dimensions ( and )
follows from their higher-dimensional ancestor ( and ), respectively. (For interpretation
of color symbols in this table, the reader is referred to the web version of this article.)

Symmetry class\d · · ·
A Z 0 Z 0 Z 0 Z 0 · · ·
AIII 0 Z 0 Z 0 Z 0 Z · · ·
AI 0 0 0 2Z 0 Z2 Z2 · · ·
BDI Z2 0 0 0 2Z 0 Z2 · · ·
D Z2 Z2 0 0 0 2Z 0 · · ·
DIII 0 Z2 Z2 0 0 0 2Z · · ·
AII 2Z 0 Z2 Z2 0 0 0 · · ·
CII 0 2Z 0 Z2 Z2 0 0 · · ·
C 0 0 2Z 0 Z2 Z2 0 · · ·
CI 0 0 0 2Z 0 Z2 Z2 · · ·

Let us consider topological insulators and SCs with an integer topological invariant located on the diagonal of the periodic
table (Table 1), which we call the “primary series”. (The Z2 topological phases which “descend” from the primary series can
be called 1st and 2nd descendants [34].) For the primary series, the effective action for the electromagnetic and gravitational
response can be derived essentially by repeating the procedure discussed above; taking a Dirac representative in D = d+1 =
even, coupling it to the background electromagnetic and gravitational fields, and then integrate out fermions; the chiral
anomaly in D = d + 1 = even dimensions allows us to calculate the imaginary part of the action (i.e., the part that encodes
topological part of the response). The result is summarized as follows:

δ ln Z = 2π i
∫

MD

δθ ch(E) Â(R)

∣∣∣∣
D

(25)

δ ln Z represents the change in the effective action under the infinitesimal chiral transformation δθ ; by integrating it one
gets the topological action for the linear response. ch(E) denotes the Chern character of the vector bundle E , which is
explicitly given by ch(E) = tr[eF/(2π)] in terms of its field strength F . Â(R) is the A-roof genus and takes the form:

Â(R) = 1 + 1

192π2
tr

[
R2] + · · · (26)

where R is the curvature two-form on the manifold MD . Since (25) measures the number of chiral fermion zero modes
minus that of anti-chiral ones as follows from the chiral rotation, (25) is equivalent to the index theorem in mathematics.

Topological terms for d = even can be derived from the topological terms in d + 1 dimensions considered above: they
are all Chern–Simons type and obtained as a boundary contribution from a (d + 1)-dimensional topological term.

One could check that the topological response derived from the chiral anomaly is fully consistent with the periodic table;
(i) the topological terms derived in this way preserve correct discrete symmetries for primary series; (ii) for symmetry
classes that are realized as topological SC (i.e., no charge conservation), the anomaly polynomial predicts that there is no
topological response for the EM field; only a gravitational (thermal) response exists.

One could think of this as an alternative “derivation” of the periodic table (for the primary series).

4.3. Topological phases and D-branes

Introduction We would now like to point out an interesting connection between topological phases in condensed matter
and D-branes. D-branes are topologically stable objects in string theory; at the level of classical (super)gravity, which is a
low-energy effective field theory of string theory, D-brane can be visualized as a (p+1)-dimensional solitonic solution to the
10d Einstein equation (such D-brane is called Dp-brane). Besides such geometrical attribute in gravity theory, an important
property of D-branes for our purposes is the fact that open string excitations on D-branes give rise to a gauge field theory.
This dual nature of D-branes has been proved to be a useful tool to understand non-perturbative phenomena in gauge field
theories, such as monopoles, Seiberg–Witten theory [46], etc. (Such dual nature of D-branes also plays a key role in AdS/CFT
or holography. For our discussions in this article, however, we will not use AdS/CFT.)

We will describe below what D-branes are, how we can construct topological phases from D-branes, and why they give
us an insight on the periodic table. In fact, the opposite is also true; topological phases deepen our understanding of the
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Table 2
Dp-brane charges from K-theory, classified by K(S9−p), K−1(S9−p) and KO(S9−p). A Z2 charged
Dp-brane with p even or p odd represents a non-BPS Dp-brane or a bound state of a Dp and
an anti-Dp-brane, respectively.

D(−1) D0 D1 D2 D3 D4 D5 D6 D7 D8 D9

Type IIB Z 0 Z 0 Z 0 Z 0 Z 0 Z

Type IIA 0 Z 0 Z 0 Z 0 Z 0 Z 0
O9− (type I) Z2 Z2 Z 0 0 0 Z 0 Z2 Z2 Z

Fig. 2. A typical D-brane configurations that realize a topological insulator (superconductor).

stability of D-branes. As we will argue below, the stability of the so-called “non-BPS” D-branes is directly related to the Z2
topological index of topological insulators.

K-theory charge of D-branes As mentioned above, D-branes are a topologically stable object in sting theory; Dp-brane is a
(p + 1)d solitonic object in 10d space–time of classical (super)gravity theory. What is behind the stability of D-branes is the
fact that there is a “charge” associated with them. These charges are quantized, and hence they cannot change for a smooth
deformation of field configurations; D-branes are thus stable.

The charge of a stable D-brane can be either integer- or Z2-valued, depending on the types of D-branes and sting theory.
This is summarized in Table 2. Observe that for type-IIA and -IIB string theory, “0” and “Z” appear in an alternating fashion.
On the other hand, for type-I sting theory, the way K-theory charges “0”, “Z” and “Z2” appear closely follows the Bott
periodicity. Compare entries “type IIB” and “type IIA” in Table 2 with “complex” symmetry classes (A and AIII) in Table 1,
and entries “type I” in Table 2 with eight “real” symmetry classes in Table 1. In fact, it was argued that D-brane charges
are classified by K-theory [47–49]; one then cannot help speculating on a possible connection between D-branes and the
periodic table of topological phases.

For some cases where a D-brane has an integral charge, D-branes are an electric or a magnetic source of an Abelian
p-form gauge field C(p) = (1/p!)C

μ1μ2···μp

(p) dxμ1 dxμ2 · · ·dxμp , the so-called “Ramond–Ramond” (RR) gauge field. An integral

of the RR-gauge flux generated by a magnetic D-brane,
∫

S dC(p) , measures the charge of the D-brane, where S is a hyper-
surface that encloses the D-brane. For D-branes with a Z2 charge, while we do see K-theory charge exist, it is not possible
to write it down as a quantized integral of the RR flux.

D-brane configurations for topological phases For our purposes, we consider D-brane configurations that consist of two types
of D-branes, a Dp-brane and a Dq-brane. They are located in parallel and do not intersect (Fig. 2) [50–52]. One can then ask
what kind of (gauge) field theory is realized in such D-brane configuration. In string theory, quantum fields are realized as
a vibration of a fundamental string.

In our configuration, an open string can have its end points on D-branes. Let us first consider a string which has one
end on a Dp-brane and the other on a Dq-brane. Analyzing the vibrations of such string, one finds a massive fermion in the
string spectrum. The mass of the fermion is proportional to the distance between the D-branes. For a relativistic fermion
which is fully gapped by a mass term, following the periodic table of topological phases, one can discuss (under a suitable
set of discrete symmetries) its topological stability against adiabatic deformation; one can “compute” its topological invariant
or topological charge. On the other hand, for the D-brane configuration at hand, if it is stable, one can assign a topological
(K-theory) charge to it, following the K-theory charge of D-branes. One can check that these two types of topological charges
agree precisely. This is the first implication of the correspondence between the periodic table and D-branes.

The Dirac fermion is not the only quantum field realized in the D-brane configuration. Let us now turn our attention to
a string that has its both ends on the Dp-brane. Such string vibration gives rise to a gauge field Aμ living on the D-brane.
(Its gauge group depends on the type of sting theory and D-branes.) What is the dynamics of such gauge field on the
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D-brane? This is answered by the effective action of D-branes. The topological part (the so-called “Wess–Zumino term”) of
the effective action for a Dp-brane in a flat space is4

SWZ =
∑

q

∫
X

C(q+1) ∧ ch(E) Â(T X) (27)

where integration (
∫

X ) is over the (p + 1)d world-volume X of the Dp-brane.5 In this action, C(q+1) is the background

(q + 1)-form RR-gauge field (which is, in our situation, sourced by the Dq-brane). On the other hand, ch(E) and Â(T X)

depends on the field configuration on the Dp-brane; the U(1) gauge bundle on the brane is denoted by E; T X and N X
are the tangent bundle and normal bundle. Plugging the RR-field generated by the Dq-brane, whose integral

∫
dC(q+1) is

quantized as it measures the topological charge of the Dq-brane, the Wess–Zumino term of the Dp-brane recovers precisely
the response theory that we discussed in terms of anomaly.

As an example, let us consider the case with p = q = 56,7; this D-brane configuration realizes the 2d QHE. The vibration
of an open sting stretching between the D-branes gives rise to a (2 + 1)d massive Dirac fermion, H = ψ†(−i

∑
i=x,y σi∂i +

mσz)ψ where ψ is the two-component complex Dirac fermion field. On the other hand, the WZ action of Dp-brane is given
by the Chern–Simons term:

SWZ = 1

2(2π)2

∫
X

C(2) ∧ F ∧ F = 1

2(2π)2

∫
Y ×Z

C(2) ∧ d(A ∧ F )

= −1

8π2

∫
Z

dC(2)

∫
Y

A ∧ F = ±m

8π |m|
∫
Y

A ∧ dA (28)

Here, the integral is over the 6d world volume of the Dp-brane, which we split into the common directions of the Dp-
and Dq-branes (Y ) and the compliment thereof (Z ), and we noted that the Dq-brane couples magnetically to the RR two-
form C(2) , and hence the integral (2π)−1

∫
dC(2) = ±1/2 measures the RR-charge of the Dq-brane. (We have done a partial

integration.) The sign ± in front of the Chern–Simons term corresponds to sgn �x = ±1 (see Fig. 2). Similarly, from the WZ
coupling SWZ = ∫

X C(2) ∧ Â(R) = 1
12

∫
X C(2) ∧ iR

4π ∧ iR
4π , we obtain the gravitational Chern–Simons term ∼ ω ∧ dω + 2

3 ω3, as
expected from the responses.

Observe the structural parallelism between the topological terms in the response theory of topological phases, and
the Wess–Zumino action of D-branes. In the former, the effective action looks, typically, as Ieff ∝ (topological invariant) ×∫

dd+1x (topological term in gauge theory), where the “(topological invariant)” is the topological invariant of the topological
phase in question, and the “(topological term in gauge theory)” is the term of topological origin in gauge theories such as
the Chern–Simons term, or the axion term. For example, Ieff ∝ Ch × ∫

d3xεμνρ Aμ∂ν Aρ in the QHE, where Ch is the TKNN
integer. In the D-brane construction of topological phases, the coefficient in front of the topological term is given by the
integral of the RR-field, and measures the K-theory charge of the Dq-brane [54,55].

5. Conclusion

We have described, in the order of increasing spatial dimensions, from two, three, and to arbitrary dimensions, the theory
of thermal response in topological phases. Emphasized is a close analogy to electromagnetic responses of topological insu-
lators by adopting the language of gravitomagnetism, which revealed a cross-correlation between thermal and mechanical
(rotational) responses.

Let us close with a discussion on the effects of interactions. The fact that topological currents (either in electromagnetic
or thermal response) are related to anomalies in field theories suggests that topological phases with topological currents
should be stable against interactions. This can be seen simply by observing that a term of topological origin in the effective
action, once it exists, has its coefficient which is quantized (in some case in the presence of some discrete symmetry). Thus,
small interactions should not destroy topological properties of a given topological phase.8

We have computed the theta term (both electromagnetic and gravitational ones) by making use of chiral anomaly (which
arises as a Fujikawa Jacobian). Let us imagine repeating the same calculations in the presence of interactions such as ϕψ̄ψ

(a coupling to a bosonic scalar field ϕ), or electromagnetic interactions. The Adler–Bardeen theorem says that the anomaly
(the Fujikawa Jacobian) will not be altered, even in the presence of such interactions. (Historically, this non-renormalization

4 For the discussion below, we will focus on the situation where the topological charge of D-branes is an integer, for presentational simplicity.
5 This is obtained from a more general expression (29) by noting that in our situation T X ⊗ N X is a trivial bundle, and hence Â(T X ⊗ N X) = Â(T X) ∧

Â(N X) = 1.
6 Since we can apply the T-duality equivalence which shifts the value of p and q by one [53], we can fix the values of p, say p = 5.
7 This configuration has 6 ND directions.
8 An alternative derivation of the electrical/thermal Strěda formula mentioned in Footnote 3 also provides another link between topological currents and

anomalies, suggesting the stability of topological currents against interactions.
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of the chiral anomaly was important to predict the number of quark colors, even at the time when the details of the strong
interaction were not known.)

Insensitivity of anomalies to interactions can further be illustrated by the “anomaly matching condition” proposed by
’t Hooft; an anomaly (i.e., topological current) can be computed in terms of either the infra-red (IR) or ultra-violet (UV)
degrees of freedom, and the results should be the same. For example, the degrees of freedom in solids at UV are of “free-
fermion” type, while deep in the IR region such description can be replaced by quasi-particles (such as excitons) that arise
due to interactions.

The discussion above naturally echoes in the D-brane construction of topological phases; the field theories realized by
Dp–Dq systems come with, in addition to massive fermions we discussed, other fields and interactions among them. As we
can understand more or less geometrically, the topological phases are nevertheless stable.

While we have discussed the stability of non-interacting topological phases against interactions, it remains largely an
open problem what is the nature of strongly interacting topological phases that arise solely because of interactions, if they
exist at all beyond the fractional quantum Hall effect. The existence of a topological current, however, should be a hallmark
that we can use to characterize even for these putative “fractional topological insulators”.
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Appendix A. A short course for D-branes

A.1. What is a D-brane?

In string theory [53], we consider a string as a fundamental object instead of an elementary particle. The vibration of a
closed string produces, among others, the gravitational field at low energies. On the other hand, the vibration of an open
string, which looks topologically like an interval with two ends, produces, among others, gauge fields in the low-energy
limit.

A D-brane is defined as an object where open strings can end on it [53,56]; a D-brane can be considered as an object
giving a boundary condition to string vibrations – the name D-brane originates from “Dilchlet” brane.

In terms of the 10d gravity theory, which is the low-energy limit of string theory, D-branes are a stable solitonic object,
which is quite massive. A Dp-brane extends in p-spatial directions and in time-direction; i.e., its world volume is (p + 1)d.
For example, a D0-brane and a D1-brane look like a particle (called D-particle) and a string (called D-string), respectively.

For our purposes, we will note the following properties (see Ref. [56]): (i) On a D-brane, an Abelian gauge theory is
realized. The fluctuations of the gauge field correspond to the fluctuations of the end points of open string. If we have N
coincident Dp-branes, we obtain a non-Abelian U(N) gauge theory. (ii) An intersection of two D-branes realizes massless
fermions. (iii) D-branes are characterized by a K-theory charge. The last point will further be discussed below.

A.2. K-theory classification of stable D-branes

Gravitons and gauge fields are not the only fields that arise in superstring theory. In addition to them, the vibration of
a closed string generates Abelian p-form gauge fields, the Ramond–Ramond (RR) gauge fields. (Here, we are focusing for
a moment on a particular type of superstring theory, type-IIA and -IIB superstring theory (with or without orientifolds).)
Supersymmetric (or BPS) Dp-branes are charged under these gauge fields; they have the RR-charges, and hence are stable.
A Dp-brane directly (electrically) couples to the (p + 1)-form RR-field C(p+1) . An anti-Dp-brane is defined to be the one
with a negative RR-charge. In type IIA superstring, p takes only even integer values i.e., p = 0,2,4,6,8 and in type IIB,
p takes only odd ones p = −1,1,3,5,7,9.

Moreover, a Dp-brane couples to other RR q-forms with q < p in the presence of the gauge flux on the brane. This is
clearly described by the following formula of the RR couplings of a Dp-brane [57]:

SRR =
∑

q

∫
X

C(q+1) ∧ ch(E D)

√
Â(T X)

Â(N X)
(29)

where T X and N X are the tangent bundle (i.e., the vector bundle tangent to the D-brane world-volume X ) and normal
bundle (i.e., the vector bundle which is normal to T X ). The U(1) gauge bundle on the brane is denoted by E D . This for-
mula (29) means that if there is a non-trivial gauge bundle on the Dp-brane, it is possible that there exist charges which
correspond to lower-dimensional D-brane charges. Such a configuration can be interpreted as a bound state of a Dp-brane
and the lower-dimensional D-branes.
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In fact, there are D-branes that do not have any RR-charges and are nevertheless stable. They are not supersymmetric
and are called non-BPS D-branes [58]. Also a system of a Dp-brane and an anti-Dp-brane sometimes forms a stable bound
state. Such a system is called a brane anti-brane system [59]. They typically exist in the presence of the special projection
called the orientifold projection. These brane configurations exhaust all possible D-branes in string theory. The orientifold
projection means that we require the invariance of string theory under the action Ω̃q = Iq · Ω , defined by the product of
the parity I with respect to q-spatial coordinates and the orientation reverse Ω of the string world-sheet. The set of fixed
points of Iq is called the orientifold (9 − q) plane.

Being a stable object in string theory, one could imagine what is protecting them from “decay”. It turns out that one
can assign a K-theory charge to D-branes, which is the reason for stability. Indeed, the K-theory provides a very systematic
classification of D-branes in string theory [48,49]. In mathematics, (topological) K-theory classifies vector bundles. More
precisely, we start from a pair of two bundles (E1, E2) on a manifold X and consider its difference. In other words, we
introduce the identification:

(E1 ⊕ H, E2 ⊕ H) � (E1, E2) (30)

This defines the K-group K (X).
In string theory, this identification is naturally interpreted as follows. We start with a brane anti-brane system. The gauge

bundles on the D-brane and the anti-D-brane are regarded as E1 and E2. Typically, a brane anti-brane system becomes
unstable because the total RR-charge is vanishing and it can pair-annihilate. In other words, there appears a so-called
tachyon field in the open string between the brane and the anti-brane [60]. The tachyon field has unstable potential energy
and condenses like the Higgs effect, which makes the system decay into a lower-dimensional D-brane. This procedure is
mathematically described by (30), which means that the charge is conserved under the tachyon condensation. If the gauge
field configurations are the same i.e., E1 = E2, then the brane and anti-brane are completely annihilated, and nothing
remains after the tachyon condensation. If E1 �= E2, then eventually the system decays into a D-brane, which corresponds
to the difference between E1 and E2. We presented the K-theory classification of D-branes in type-IIA, type-IIB and type-I
string theory, where we take X = S9−p for a Dp-brane via a compactification procedure. Notice that type-I string theory is
defined to be the projection of type-IIB string theory by an (SO type) orientifold 9-plane. For type IIA and type I, we need
to use a different K-theory called K −1(X), which just shifts the dimension by one, and K O (X), which is the real valued
version of K (X).

In particular, if we ignore the torsion of the K-group K (X), then it is known that K (X) is reduced to even-dimensional
cohomology

⊕
i�0 H2i(X,Q). Indeed, this is explicitly given by the Chern character and this nicely matches with the RR

coupling formula (29) [47]. On the other hand, the argument based on K-theory with torsion is quite general and includes
the case where the D-branes do not have any RR-charges as is so for the non-BPS D-brane.
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