1,980 research outputs found

    Statistical mechanics of two-dimensional Euler flows and minimum enstrophy states

    Full text link
    A simplified thermodynamic approach of the incompressible 2D Euler equation is considered based on the conservation of energy, circulation and microscopic enstrophy. Statistical equilibrium states are obtained by maximizing the Miller-Robert-Sommeria (MRS) entropy under these sole constraints. The vorticity fluctuations are Gaussian while the mean flow is characterized by a linear ωˉ−ψ\bar{\omega}-\psi relationship. Furthermore, the maximization of entropy at fixed energy, circulation and microscopic enstrophy is equivalent to the minimization of macroscopic enstrophy at fixed energy and circulation. This provides a justification of the minimum enstrophy principle from statistical mechanics when only the microscopic enstrophy is conserved among the infinite class of Casimir constraints. A new class of relaxation equations towards the statistical equilibrium state is derived. These equations can provide an effective description of the dynamics towards equilibrium or serve as numerical algorithms to determine maximum entropy or minimum enstrophy states. We use these relaxation equations to study geometry induced phase transitions in rectangular domains. In particular, we illustrate with the relaxation equations the transition between monopoles and dipoles predicted by Chavanis and Sommeria [J. Fluid. Mech. 314, 267 (1996)]. We take into account stable as well as metastable states and show that metastable states are robust and have negative specific heats. This is the first evidence of negative specific heats in that context. We also argue that saddle points of entropy can be long-lived and play a role in the dynamics because the system may not spontaneously generate the perturbations that destabilize them.Comment: 26 pages, 10 figure

    Intrusion and extrusion of water in hydrophobic mesopores

    Full text link
    We present experimental and theoretical results on intrusion-extrusion cycles of water in hydrophobic mesoporous materials, characterized by independent cylindrical pores. The intrusion, which takes place above the bulk saturation pressure, can be well described using a macroscopic capillary model. Once the material is saturated with water, extrusion takes place upon reduction of the externally applied pressure; Our results for the extrusion pressure can only be understood by assuming that the limiting extrusion mechanism is the nucleation of a vapour bubble inside the pores. A comparison of calculated and experimental nucleation pressures shows that a proper inclusion of line tension effects is necessary to account for the observed values of nucleation barriers. Negative line tensions of order 10−11J.m−110^{-11} \mathrm{J.m}^{-1} are found for our system, in reasonable agreement with other experimental estimates of this quantity

    Analysis of an operator-differential model for magnetostrictive energy harvesting

    Get PDF
    We present a model of, and analysis of an optimization problem for, a magnetostrictive harvesting device which converts mechanical energy of the repetitive process such as vibrations of the smart material to electrical energy that is then supplied to an electric load. The model combines a lumped differential equation for a simple electronic circuit with an operator model for the complex constitutive law of the magnetostrictive material. The operator based on the formalism of the phenomenological Preisach model describes nonlinear saturation effects and hysteresis losses typical of magnetostrictive materials in a thermodynamically consistent fashion. We prove well-posedness of the full operator-differential system and establish global asymptotic stability of the periodic regime under periodic mechanical forcing that represents mechanical vibrations due to varying environmental conditions. Then we show the existence of an optimal solution for the problem of maximization of the output power with respect to a set of controllable parameters (for the periodically forced system). Analytical results are illustrated with numerical examples of an optimal solution

    Piecewise linear car-following modeling

    Full text link
    We present a traffic model that extends the linear car-following model as well as the min-plus traffic model (a model based on the min-plus algebra). A discrete-time car-dynamics describing the traffic on a 1-lane road without passing is interpreted as a dynamic programming equation of a stochastic optimal control problem of a Markov chain. This variational formulation permits to characterize the stability of the car-dynamics and to calculte the stationary regimes when they exist. The model is based on a piecewise linear approximation of the fundamental traffic diagram.Comment: 19 pages, 3 figure

    Analysis of an operator-differential model for magnetostrictive energy harvesting

    Get PDF
    We present a model of, and analysis of an optimization problem for, a magnetostrictive harvesting device which converts mechanical energy of the repetitive process such as vibrations of the smart material to electrical energy that is then supplied to an electric load. The model combines a lumped differential equation for a simple electronic circuit with an operator model for the complex constitutive law of the magnetostrictive material. The operator based on the formalism of the phenomenological Preisach model describes nonlinear saturation effects and hysteresis losses typical of magnetostrictive materials in a thermodynamically consistent fashion. We prove well-posedness of the full operatordifferential system and establish global asymptotic stability of the periodic regime under periodic mechanical forcing that represents mechanical vibrations due to varying environmental conditions. Then we show the existence of an optimal solution for the problem of maximization of the output power with respect to a set of controllable parameters (for the periodically forced system). Analytical results are illustrated with numerical examples of an optimal solution

    Mathematical models of martensitic microstructure

    Get PDF
    Martensitic microstructures are studied using variational models based on nonlinear elasticity. Some relevant mathematical tools from nonlinear analysis are described, and applications given to austenite-martensite interfaces and related topics

    A rate-independent model for the isothermal quasi-static evolution of shape-memory materials

    Get PDF
    This note addresses a three-dimensional model for isothermal stress-induced transformation in shape-memory polycrystalline materials. We treat the problem within the framework of the energetic formulation of rate-independent processes and investigate existence and continuous dependence issues at both the constitutive relation and quasi-static evolution level. Moreover, we focus on time and space approximation as well as on regularization and parameter asymptotics.Comment: 33 pages, 3 figure

    Reactive Flow and Transport Through Complex Systems

    Get PDF
    The meeting focused on mathematical aspects of reactive flow, diffusion and transport through complex systems. The research interest of the participants varied from physical modeling using PDEs, mathematical modeling using upscaling and homogenization, numerical analysis of PDEs describing reactive transport, PDEs from fluid mechanics, computational methods for random media and computational multiscale methods

    Reactive Flows in Deformable, Complex Media

    Get PDF
    Many processes of highest actuality in the real life are described through systems of equations posed in complex domains. Of particular interest is the situation when the domain is variable, undergoing deformations that depend on the unknown quantities of the model. Such kind of problems are encountered as mathematical models in the subsurface, or biological systems. Such models include various processes at different scales, and the key issue is to integrate the domain deformation in the multi-scale context. Having this as the background theme, this workshop focused on novel techniques and ideas in the analysis, the numerical discretization and the upscaling of such problems, as well as on applications of major societal relevance today
    • 

    corecore