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AbstratThis note addresses a three-dimensional model for isothermal stress-induedtransformation in shape-memory polyrystalline materials. We treat the prob-lem within the framework of the energeti formulation of rate-independentproesses and investigate existene and ontinuous dependene issues at boththe onstitutive relation and quasi-stati evolution level. Moreover, we fouson time and spae approximation as well as on regularization and parameterasymptotis.1 IntrodutionShape-memory materials are metalli alloys showing some surprising thermo-mehan-ial behavior: severely deformed speimens with residual strain up to 15% regaintheir original shape after a thermal yle (shape-memory e�et). Moreover, thesame materials are super-elasti (also alled pseudo-elasti), namely, they reoveromparably large deformations during mehanial loading-unloading yles at pre-sribed temperatures (see, among others, [1, 6, 20, 22, 24, 44, 55℄). These features,whih are not present (at least to this extent) in materials traditionally used inengineering, are at the basis of the innovative and ommerially valuable applia-tions of shape-memory materials. Namely, shape-memory tehnologies are nowadaysexploited in a variety of di�erent appliative ontexts ranging from sensors and a-tuators (even mirosopial), to robotis, to lamping and �xation devies, to spaeappliations (grippers, positioners), to damping devies (shok absorption) [54℄. Thelargest ommerial suess of shape-memory materials is however related to biomed-ial appliations. The ombination of good bio-ompatibility and interesting mate-rial properties reates unique materials for medial tools and devies. Nowadays,shape-memory materials are suessfully used in orthodontis (arhwires), ortho-pedis (bone anhors, intromedullary �xations, bone staples), medial instruments,minimal invasive surgery tehnology (atheters, endoguidewires, grippers, utters),drug delivery systems, and both intravasular (ardiovasular stenting, bronhialbiliary, aorti aneurysm, arotid stenosis) and extravasular sa�olding. In partiu-lar, shape-memory stents are the key tool in order to implement a variety of quitesuessful non-invasive surgial tehniques [14, 52, 53℄.The present analysis is onerned with the quasi-stati evolution of shape-memorymaterials in the small-strain regime. In partiular, we shall study a marosopi phe-nomenologial model for shape-memory polyrystalline materials undergoing stress-indued transformations that was originally proposed by Souza et al. [51℄ and1



later addressed and extended by Aurihio & Petrini [4, 5℄, and Aurihio etal. [7℄. Our aim is to fous on the isothermal situation at suitably high temper-atures in order to apture the super-elasti material behavior. The understandingand the e�ient desription of the super-elasti regime is learly of a great applia-tive interest. In partiular, most of the biomedial appliations enlisted above arebased on super-elasti deployment in situ and/or super-elasti kink resistane ofshape-memory materials.Let us brie�y reall here the basi features of the proposed model, the interestedreader is of ourse referred to the above-mentioned ontributions for all the neessarymodeling details and motivations as well as for some omputations and validation.The formal harater of this introdution is intended to serve for the purpose of ageneral overview on the model and our results. In partiular, (most of) the mathe-matial details are here omitted and will be provided in the forthoming setions.Moving into the frame of Generalized Standard Materials (see Maugin [28℄) andwithin the small-strain regime, we additively deompose the linearized deformation
ε = (εij) = (ui,j + uj,i)/2, (u being the displaement from a �xed referene on�gu-ration Ω ⊂ R3) into the elasti part εel and the inelasti (or transformation) part
z as

ε = εel + z. (1.1)At the mirosopi level the super-elasti e�et is interpreted as the result of astrutural phase transition between di�erent on�gurations of the material latties,namely the parent phase (austenite and twinned martensite) and its shared oun-terpart termed produt phase (detwinned martensite). In partiular, the internalvariable z is assumed to be desriptive of the mehanial (tensorial) e�et of thedetwinning observed in the material.Denoting by W (ε, z) the stored energy density of the system, the evolution of thematerial will be desribed by the following lassial relations
σ = ∂W/∂ε, (1.2)

−ξ = ∂W/∂z, (1.3)
ż = ∇D∗(ξ). (1.4)Here, ξ denotes the thermodynami fore assoiated with z and (1.4) is the �owrule for z where D∗ stands for the Legendre onjugate of the dissipation density

D (see below).The material onstitutive relations (1.2)-(1.4) may be onveniently rewritten in thefollowing equivalent subdi�erential formulation
(

0

∂D(ż)

)

+

(

∂εW (ε, z)

∂zW (ε, z)

)

∋

(

σ

0

)

. (1.5)where D stands for the dissipation density and the symbol ∂ denotes subdi�eren-tials in the sense of Convex Analysis (see below).2



The evolution problem (1.5) may be set within the frame of energeti formulations ofrate-independent proesses reently proposed by Mielke et al. [27, 40, 42℄. Thenotion of energeti solution (disussed in some detail in the forthoming Setion 2)is based on equivalently reasting the subdi�erential problem (1.5) as the ouplingof a global stability ondition and an energy onservation relation. In partiular,the subdi�erential relation (1.5) is rewritten as(stability) (ε(t), z(t))∈Arg Min
(ε,z)

(

W (ε, z)−σ(t) : ε+D(z−z(t))
)(1.6)(energy equality) W (ε(t), z(t)) − σ(t) : ε(t) + DissD(z, [0, t])

= W (ε0, z0) − σ(0) : ε0 −

∫ t

0

σ̇(s) : ε(s) ds, (1.7)for all t ≥ 0. Here, we assume to be given some suitable initial data (ε0, z0) andthe stress t 7→ σ(t) and denote the total dissipation of the system on [0, t] asDissD(z, [0, t]) := sup

{

N
∑

i=1

D(z(ti)−z(ti−1)) : {0 = t0<t1<. . . < tN−1<tN = t}

}

,where the supremum is taken with respet to all �nite partitions of [0, t]. Ener-geti formulations were originally developed for shape-memory alloys in Mielke &Theil andMielke et al. [40, 41, 42℄, and have shown to be extremely well-suitedfor a variety of di�erent rate-independent situations. In partiular, they have beensuessfully onsidered in onnetion with elasto-plastiity [12, 32, 33, 34, 35℄, dam-age [38℄, brittle fratures [13℄, delamination [27℄, ferro-eletriity [43℄, shape-memoryalloys [37, 40, 42℄, and vortex pinning in superondutors [50℄. The reader is referredto Mielke [36℄ for a omprehensive survey of the mathematial theory.Let us now introdue the preise form of W we will deal with. Namely, we hoose
W (ε, z) =

1

2
C(ε − z) : (ε − z) + c1|z| + c2|z|

2 + I(z) +
ν

2
|∇z|2. (1.8)Here, C is the elastiity tensor and the positive parameters c1 and c2 are given.Indeed, in [51℄ the onstant c1 is assumed to depend expliitly on the temperatureof the speimen while here temperature e�ets are negleted. On the other hand, c2measures the ourrene of some hardening phenomenon with respet to the internalvariable z. The funtion I is the indiator of a �xed losed ball of radius c3 > 0.In partiular, c3 represents the maximum modulus of transformation strain thatan be obtained by alignment (detwinning) of the martensiti variants. Finally, thepositive oe�ient ν is expeted to measure some nonloal interation e�et for theinternal variable z and ∇z stands for the usual gradient with respet to to spatialvariables. Indeed, gradients of inelasti strains have already been onsidered in theframe of shape-memory materials by Frémond [19℄ and the reader is referred alsoto Arndt et al. [2℄, Fried & Gurtin [21℄, Kruºík et al. [25℄, Mielke &Roubí£ek [37℄, Roubí£ek [48, 49℄ for examples and disussions on nonloal energyontributions of z. 3



The proposed model is apable of desribing the main features of the super-elastievolution of shape-memory materials. In partiular, the internal variable tensorialharater of the model allows for taking into aount the so-alled single-variantmartensite reorientation phenomenon. Namely, also in the ase the material is fullytransformed into produt phase (i.e. |z| = c3), inelasti strain hanges an still beexperiened due to variant reorientation (ż 6= 0). This fat is experimentally ob-served and turns out to be ruial with respet to appliations. Moreover, whenevernot restrited to the isothermal situation, the model turns out the be thermodynam-ially onsistent in the sense that the Seond Law of Thermodynamis is satis�edin the form of the Clausius-Duhem inequality.As for the full quasi-stati evolution of the material we shall ouple the onstitutiverelation (1.5) with the equilibrium equationdivσ + f = 0 in Ω, (1.9)where f is a given body fore, suitably omplemented with some presribed bound-ary displaement and boundary tration in distinguished parts of the boundary of
Ω.The �rst issue of this paper is that of adapting the above referred abstr at theoryfor energeti formulations to the quasi-stati evolution problem and obtain that(Theorem 6.1)(existene) the quasi-stati problem admits at least one energeti solution

t 7→ (u(t), z(t)).We shall be onerned with some spei� regularization of the original quasi-statimodel. Namely, some smooth variant of the potential W above turns out to bebetter suited for the sake of numerial onsiderations. In partiular, we will onsidera regularized version of the model by posing
Wρ(ε, z) =

1

2
C(ε − z) : (ε − z) + Fρ(z) +

ν

2
|∇z|2, (1.10)where Fρ is some regularization of F0 : z 7→ c1|z| + c2|z|

2 + I(z) obtained bypenalization and smoothing and depending on the regularization parameter ρ ≥ 0.This regularization is exatly the starting point of Aurihio & Petrini [4, 5℄,and has been exploited in Aurihio et al. [7℄ as well (in all these papers ν = 0though).A seond fous of the present ontribution is on unique solvability of the regularizedmodel. In partiular, we hek that(uniqueness for ρ > 0) for ρ>0, the quasi-stati problem has a unique solution.This uniqueness result was proved in an abstrat frame byMielke & Theil [40, 41℄and is here reonsidered in the spei� situation of the regularized version of thequasi-stati problem. 4



A quite natural approah to rate-independent evolution problems relies on impliittime-disretization. This perspetive is here investigated and omplemented withsome spae approximation tehnique. In partiular, the main novelty of this paper isthe onvergene analysis for the disretized-regularized model. Namely, we onsiderthe (possibly joint) limits with respet to the time-steps τ of time partitions (hereonsidered to be onstant for simpliity), the spae mesh size h (onforming �niteelements are exploited), and the regularization parameter ρ. In partiular, denot-ing by (u, z)ρ,τ,h the unique solution to the spae-time disrete problem with theparameter-hoie ρ ≥ 0 (time-interpolant, pieewise onstant on the time-partition)and by (u, z)ρ the time-ontinuous solution to the problem for ρ ≥ 0, we prove thefollowing (Theorem 7.8)(onvergene for ρ > 0) for ρ>0, (u, z)ρ,τ,h onverges to (u, z)ρ as (τ, h) → (0, 0),(full onvergene) up to a subsequene, (u, z)ρ,τ,h → (u, z)0as(ρ, τ, h) → (0, 0, 0).Of ourse the topologies under whih the latter onvergenes hold true will be spe-i�ed in the forthoming setions.Indeed muh more is true and we are in the position of giving a full piture ofonvergenes for the model subsequently. Moving from Setion 2 where the math-ematial formulation of the problem is presented, we shall organize our results bysuessively inreasing omplexity. Setion 3 addresses the analysis of the onstitu-tive relation problem (1.5), namely the zero-dimensional problem. In partiular, weprove well-posedness and onvergene of time-disrete approximations. Then, thethree-dimensional minimum problem arising from time-disretization is addressedin Setion 4 where we also investigate well-posedness and onvergene of spae ap-proximations along with suitable error bounds. Some a priori bounds and a pre-liminary onvergene result for the inremental solutions to the problem in ase thetime-partition is �xed are disussed in Setion 5. Finally, the three-dimensionalquasi-stati evolution problem is takled in Setion 6 where we provide the abovementioned existene, uniqueness, and onvergene results for the spae-time dis-rete solutions. Finally, Setion 7 deals with onvergene issues with respet toparameters and disretizations in full generality.2 Mathematial formulationTensors. We will denote by R3×3sym the spae of symmetri 3× 3 tensors endowedwith the natural salar produt a : b := tr(ab) = aijbij (summation onvention) andthe orresponding norm |a|2 := a : a for all a, b ∈ R
3×3sym. The spae R

3×3sym is or-thogonally deomposed as R3×3sym = R
3×3dev ⊕R 12, where R 12 is the subspae spannedby the identity 2-tensor 12 and R

3×3dev is the subspae of deviatori symmetri 3×3tensors. In partiular, for all a ∈ R3×3sym, we have that a = adev + tr(a)12/3. Forall u ∈ H1lo(R3; R3) we let ε(u) ∈ L2lo(R3; R3×3sym) denote the standard symmetrigradient. 5



Referene on�guration. We shall assume Ω to be a non-empty, bounded, andonneted open set in R3 with a Lipshitz ontinuous boundary. The spae dimen-sion 3 plays essentially no role throughout the analysis and we would be in theposition of reformulating our results in Rd with no partiular intriay. We assumethat the boundary ∂Ω is partitioned in two disjoint open sets Γtr and ΓDir with
∂Γtr = ∂ΓDir (in ∂Ω). We ask ΓDir to be suh that there exists a positive onstant
c0 depending on ΓDir and Ω suh that the Korn inequality

c0‖u‖
2
H1(Ω;R3) ≤ ‖u‖2

L2(ΓDir;R3) + ‖ε(u)‖2
L2(Ω;R3×3sym)

, (2.1)holds true for all u ∈ H1(Ω; R3). It would indeed su�e to impose ΓDir to have apositive surfae measure (see, e.g., [15, Thm. 3.1, p. 110℄).Presribed boundary displaement. We will presribe some non-homogeneousDirihlet boundary onditions on ΓDir. To this end, we will assign uDir ∈ C1([0, T ];
H1/2(ΓDir, R3)) or, equivalently, uDir ∈ C1([0, T ]; H1(Ω, R3)) whose trae on ΓDir isthe presribed boundary value for the displaement u. On Γtr some time-dependenttration will be presribed instead.Elasti energy. Let C be the elastiity tensor. The latter is regarded as a sym-metri positive de�nite linear map C : R3×3sym → R3×3sym. We shall assume that theorthogonal subspaes R

3×3dev and R 12 are invariant under C. This amounts to saythat indeed
Ca = Cdevadev + κ tr(a)12,for a given Cdev : R

3×3dev → R
3×3dev and a onstant κ, and all a ∈ R3×3sym. The aseof isotropi materials is given by Cdev = 2G(14 − 12 ⊗ 12/3) and G and κ arerespetively the shear and the bulk moduli. The latter deomposition is not exploitedin our analysis but it is learly suggested by the mehanial appliation.We will make use of the stored elasti energy funtional C : L2(Ω; R3×3sym) → [0, +∞)de�ned as
C(a) :=

1

2

∫

Ω

C(a) : a dx.Inelasti energy. As for the stored inelasti (or transformation) energy we shallpresribe the funtion F : R
3×3dev → [0, +∞] as

F (a) = c1|a| + c2|a|
2 + I(a),where I : R

3×3dev → [0, +∞] is the indiator funtion of the ball {a ∈ R
3×3dev :

|a| ≤ c3} and the positive onstants c1, c2, and c3 are given. Moreover, the storedinelasti energy funtional is de�ned as F : L2(Ω; R3×3dev) → [0, +∞] as
F(a) :=

∫

Ω

F (a) dx if F (a) ∈ L1(Ω) and F(a) = +∞ otherwise.6



The well-posedness and time disretization issues disussed here do not rely on thepartiular form of F and ould be adapted to any uniformly onvex, proper, andlower semiontinuous funtion. We however prefer to stik to the atual modelinghoie for the sake of larity. In the forthoming of the paper we will address somesuitable regularization of F . Indeed, we introdue an approximation parameter
ρ ≥ 0 and some funtions

Fρ ∈ C2,1(R3×3dev) with ∇Fρ bounded, ∇2Fρ ≥ c214, and Fρ(0) = 0, (2.2)and de�ne F0 := F . An example in the diretion of (2.2) is
Fρ(a) := c1(

√

ρ2 + |a|2 − ρ) + c2|a|
2 + ϕ(|a|)/ρfor ϕ ∈ C2,1(R), ϕ′ ∈ L∞(R), ϕ′′ ≥ 0, ϕ(r) = 0 i� r ≤ c3. (2.3)Exatly as above, for all ρ ≥ 0 we let the regularized stored inelasti energy fun-tional Fρ : L2(Ω; R3×3dev) → [0, +∞) be de�ned as

Fρ(a) :=

∫

Ω

Fρ(a) dx,and F0 := F . Finally, we shall be onsidering also some spae-regularized situation.To this end, let ρ, ν ≥ 0 and de�ne Fρ,ν : L2(Ω; R3×3dev) → [0, +∞] as
Fρ,ν(a) :=

∫

Ω

(

Fρ(a) +
ν

2
|∇a|2

)

dx,where (∇a)ijk = ∂aij/∂xk is the usual gradient in the distributional sense and | · |denotes here the Eulidean norm.Stored energy. Following the above introdutory disussion, we de�ne the stored(Helmholtz free) energy funtional for ρ, ν ≥ 0 as
Wρ,ν(u, z) := C(ε(u) − z) + Fρ,ν(z).Load and tration. We assume to be given the body fore f ∈ W 1,1(0, T ; L2(Ω; R3))and a surfae tration g ∈ W 1,1(0, T ; L2(Γtr; R3)). In partiular, one an de�ne thetotal load ℓ ∈ W 1,1(0, T ; (H1(Ω; R3))′) (the prime denotes here the dual) as

〈ℓ(t), u〉 :=

∫

Ω

f · u dx +

∫

Γtr g · u dH2 ∀u ∈ H1(Ω; R3), t ∈ [0, T ],where H2 is the 2-dimensional Hausdor� measure and 〈·, ·〉 denotes the dualitypairing between (H1(Ω; R3))′ and H1(Ω; R3).
7



State spae. We set our problem by letting
Yν = U × Zν := H1(Ω, R3) × Hj(ν)(Ω; R3×3dev).Here j(ν) = 0 for ν = 0 and j(ν) = 1 otherwise. For all u ∈ H1(Ω; R3), let usde�ne Yν(u) ⊂ Yν as
Yν(u) := {(u, z) ∈ Yν : u = u on ΓDir},Then, for all t ∈ [0, T ], we shall de�ne the phase spae of the proess as Yν(uDir(t)).For the sake of later purposes (see also (1.8)) let us denote by Wρ : R3×3sym ×R

3×3dev →
[0, +∞) the funtion

Wρ(ε, z) :=
1

2
C(ε − z) : (ε − z) + Fρ(z),by Aν : Yν → [0,∞) the quadrati form

Aν(u, z) := C(ε(u) − z) + c2

∫

Ω

|z|2dx +
ν

2

∫

Ω

|∇z|2dx ∀(u, z) ∈ Yνand by α > 0 the orresponding uniform elliptiity onstant (depending on C, c2,and ν).Dissipation potential. The quasi-stati evolution of the material is desribed bymeans of an appropriate dissipation mehanism, see (1.5). To this aim, we hoosethe dissipation (pseudo)-potential D : R
3×3dev → [0, +∞) to be lower semi-ontinuous,positively 1−homogeneous, and to ful�ll the triangle inequality

D(a) ≤ D(b) + D(c) whenever a = b + c. (2.4)Moreover, we ask for some onstant cD > 0 suh that
cD|a| ≤ D(a) ∀a ∈ R

3×3dev .Under the urrent assumptions on D, the latter non-degeneray ondition is indeedequivalent to the fat that the set {a : D(a) ≤ 1} is bounded or that D does notvanish exept in 0. Let us stress that D turns out to be onvex (see (2.4)) and thatthere exists a seond onstant CD > 0 suh that
D(a) ≤ CD|a| ∀a ∈ R

3×3dev .We de�ne the orresponding dissipation funtional D : L1(Ω; R3×3dev) → [0, +∞) as
D(a) =

∫

Ω

D(a) dx.

8



One shall stress that indeed, sine D is obviously positively 1-homogeneous, a rate-independent evolution follows. Moreover, we reall here that, for all z : [0, T ] →
R

3×3dev , we letDissD(z, [s, t]) := sup

{

N
∑

i=1

D(z(ti)−z(ti−1)) : {s = t0<t1<. . .<tN−1<tN = t}

}

,(2.5)the supremum being hosen on the set of all �nite partitions of [s, t] ⊂ [0, T ]. Finallythe analogous notion DissD(z, [s, t]) will be used for funtions whih take values in
L1(Ω; R3×3dev).State spae approximation. Heneforth we will be interested in some spaeapproximation proedure. Indeed, we assume to be given a suitable sequene ofapproximating losed subspaes Yν

h := Uh×Zν
h ⊂ Yν depending on some parameter

h > 0 whih is intended to go to zero in the limit. We shall ollet and ommenthere the abstrat assumptions whih will be exploited in the following. Of ourse themain appliation we have in mind are onforming �nite elements on a shape regularand quasi-optimal mesh [8℄ with size h on the polyhedral domain Ω. We will �rstlyask Yν
h to be non-dereasing and suh that ∪h>0Y

ν
h is dense in Yν . Moreover, werestrit from the very beginning to the speial ase when Y0

h ≡ Y1
h ⊂ Y1.Now let pν

h : Yν → Yν
h the Galerkin projetor orresponding to the salar produtindued by the quadrati form Aν . In partiular, by introduing the bilinear form

Bν : Yν ×Yν → R de�ned by
Bν

(

(u1, z1), (u2, z2)
)

:=
1

2

∫

Ω

C(ε(u1) − z1) : (ε(u2) − z2) + c2

∫

Ω

z1 z2 +
ν

2

∫

Ω

∇z1 · ∇z2for (u1, z1), (u2, z2) ∈ Yν , we have that, for all (u, z) ∈ Yν , the projetion pν
h(u, z)may be uniquely determined by

Bν

(

(u, z) − pν
h(u, z), (uh, zh)

)

= 0 ∀(uh, zh) ∈ Yν
h . (2.6)Namely, one has that

Aν(p
ν
h(u, z)) = Bν(p

ν
h(u, z), pν

h(u, z)) ≤ Aν(u, z) ∀(u, z) ∈ Yν . (2.7)Let us expliitly observe that pν
h is pointwise onverging in Yν to the identity as

h → 0.Next, let us introdue a pair of operators qh : U → Uh and rν
h : Zν → Zν

h and askthem to be pointwise onverging to the identity as h → 0. More spei�ally, we willask for
h → 0, ν → 0 ⇒ rν

h(z) → z ∀z ∈ Zν .Moreover, we require that
z ∈ Z0 and |z| ≤ c3 a.e. in Ω ⇒ |rν

h(z)| ≤ c3 a.e. in Ω, (2.8)9



and that r0
h : Z1 → Z1 maps bounded sets into bounded sets. As for rν

h an exampleof operator ful�lling the assumptions is the omponent-wise Clément interpolantfrom L1(Ω; R3×3dev) to the spae of pieewise linear funtions [9℄. In this ase, relation(2.8) follows from Jensen's inequality.3 Analysis of the onstitutive relationLet us start our analysis by fousing on the onstitutive material relation. Namely,we neglet for the moment the oupling of the material model with the equilibriumproblem (1.9). Assuming to be given a tension history, we solve for the elasti andthe inelasti strain starting from a given state. The understanding of this simpli�ed(redued) problem will be ruial. First of all, a detailed study of the onstitutiverelation is surely an important step in the diretion of the investigation of the fullquasi-stati evolution problem. This in espeially true with respet to numeris.Indeed, the e�ient solution of the onstitutive relation is the key ingredient fora full disretization proedure. Seondly, the full equilibrium system might redueto a zero-dimensional problem under spei� yet ommon geometri restritionsor symmetries. Finally, we aim to give in this somehow (notationally) simpli�edsituation the main points of our analysis.Assuming to be given σ : [0, T ] → R3×3sym, we shall determine ε : [0, T ] → R3×3symand z : [0, T ] → R
3×3dev starting from (ε0, z0) and ful�lling (1.5). Of ourse, sinethe transformation strain z is assumed to be deviatori and the elastiity tensor

C deomposes as above, the problem ould be easily reformulated in the deviatorisubspae R
3×3dev only. We however prefer not to exploit this simpli�ation for thesake of onsisteny with the forthoming analysis.Let ρ ≥ 0 be �xed throughout this setion. We shall be onerned with the energyfuntion Wρ(ε, z) − σ(t) : ε whih is de�ned for all (t, ε, z) ∈ [0, T ] × R

3×3sym × R
3×3dev .Moreover, let us de�ne the set of stable states at time t ∈ [0, T ] as

S(t) :=
{

(ε, z) ∈ R
3×3sym × R

3×3dev suh that, ∀(ε, z) ∈ R
3×3sym × R

3×3dev ,
Wρ(ε, z) − σ(t) : ε ≤ Wρ(ε, z) − σ(t) : ε + D(z − z)

}

, (3.1)and S := ∪t∈[0,T ](t, S(t)).As for an energeti solution of (1.5) we mean a pair (ε, z) : [0, T ] → R
3×3sym × R

3×3devsuh that the funtion t 7→ σ̇(t) : ε(t) is integrable and, for all t ∈ [0, T ],
(ε(t), z(t)) ∈ S(t), (3.2)
Wρ(ε(t), z(t)) − σ(t) : ε(t) + DissD(z, [0, t])

= Wρ(ε0, z0) − σ(0) : ε0 −

∫ t

0

σ̇(s) : ε(s) ds. (3.3)Let us now omment on the equivalene between (1.5) and the energeti formulation(3.2)-(3.3). To this end we will fous for simpliity on the smooth ase ρ > 0.10



Indeed, the argument for the situation ρ = 0 is just slightly less straightforwardfrom a notational viewpoint. Using the de�nition of the subdi�erential ∂D(ż),relation (1.5) turns out to be equivalent to
(∂εWρ(ε, z) − σ) : (v − ε̇) + ∂zWρ(ε, z) : (w − ż) + D(w) − D(ż) ≥ 0

∀(v, w) ∈ R
3×3sym × R

3×3dev , a.e. in (0, T ). (3.4)Now, by respetively hoosing (v, w) = (kv, kw) and letting k → +∞ or (v, w) =
(0, 0) in the latter relation we easily get that

(∂εWρ(ε, z) − σ) : v + ∂zWρ(ε, z) : w + D(w) ≥ 0

∀(v, w) ∈ R
3×3sym × R

3×3dev , a.e. in (0, T ), (3.5)
(∂εWρ(ε, z) − σ) : ε̇ + ∂zWρ(ε, z) : ż + D(ż) ≤ 0 a.e. in (0, T ). (3.6)Of ourse (3.4) and (3.5)-(3.6) are equivalent. Now, sine Wρ is stritly onvex, wehave that (ε(t), z(t)) is the almost everywhere unique minimizer of

(ε, z) 7→ Wρ(ε, z) − σ : ε + D(z − z(t)).In partiular, by assuming ε, z, and σ to be absolutely ontinuous (see below), wereadily hek that (3.2) holds. Moreover (3.5)-(3.6) imply that
(∂εWρ(ε, z) − σ) : ε̇ + ∂zWρ(ε, z) : ż + D(ż) = 0 a.e. in (0, T ),whih an be rewritten as

d

dt

(

Wρ(ε, z) − σ : ε
)

= −σ̇ : ε − D(ż) a.e. in (0, T ).Hene, by integrating the latter on (0, t) for t ∈ [0, T ], we readily dedue (3.3). Vieversa, (3.3) allows us to reover (3.5)-(3.6) at one by di�erentiating and exploiting(3.2).The main advantage of the energeti formulation (3.2)-(3.3) is that it does involveneither derivatives of onstitutive quantities nor of the solution. It is hene par-tiularly well-suited for the aim of proving well-posedness results and it simplygeneralizes to possibly non-onvex situations.The aim of this setion is to exploit here the abstrat existene theory for energetiformulations developed in [16, 27℄ and adapt it to the urrent modeling situation.The inremental problem. In order to �nd an energeti solution to (3.2)-(3.3)we shall onsider an impliit time disretization proedure. At �rst, let us observethat, for all z ∈ R
3×3dev and t ∈ [0, T ], the funtion (ε, z) 7→ Wρ(ε, z) − σ(t) :

ε + D(z − z) has a unique minimum sine it is uniformly onvex and oerive. Letnow the partition P := {0 = t0 < t1 < · · · < tN−1 < tN = T} be given withdiameter τ = maxi=1,...,N ti − ti−1. Moreover, let (ε0, z0) ∈ S(0) be a given initialdatum. One should onsider that, for any given z0 ∈ R
3×3dev , there exists a unique11



ε0 = Lz0, where L = id here, with (ε0, z0) ∈ S(0). Hene, we solve iteratively theminimum problem
(εi, zi) ∈ Arg Min

(ε,z)∈R
3×3sym×R

3×3dev (

Wρ(ε, z)−σ(ti) : ε+D(z−zi−1)
) for i = 1, . . . , N. (3.7)We shall refer to the latter as the inremental problem assoiated with (3.2)-(3.3).Let us expliitly observe that, by the triangle inequality, any solution (εi, zi) to(3.7) solves also

(εi, zi) ∈ Arg Min
(ε,z)∈R

3×3sym×R
3×3dev (

Wρ(ε, z) − σ(ti) : ε + D(z − zi)
) for i = 1, . . . , N. (3.8)Error propagation. We shall start by providing a ontinuous dependene resultfor the single-step minimum problem in (3.7). Referring to the forthoming time-stepping proedure, the following estimate an be seen as some error propagationontrol.Lemma 3.1 (Continuous dependene). Let (σj, zj) ∈ R3×3sym × R

3×3dev j = 1, 2, begiven and (εj , zj) := Arg Min(ε,z)∈R
3×3sym×R

3×3dev (Wρ(ε, z) − σj : ε + D(z − zj)). Then
|ε1 − ε2|2 + |z1 − z2|2 ≤

1

α2
|σ1 − σ2|2 +

4

α
D(z1 − z2). (3.9)Proof. Sine (ε1, z1) is minimal and Wρ is uniformly onvex of onstant α one hasthat

α|ε1 − ε2|2 + α|z1 − z2|2 ≤ Wρ(ε
2, z2) − σ1 : ε2 + D(z2 − z1)

− Wρ(ε
1, z1) + σ1 : ε1 − D(z1 − z1).On the other hand, the minimality of (ε2, z2) entails that

0 ≤ Wρ(ε
1, z1) − σ2 : ε1 + D(z1 − z2) − Wρ(ε

2, z2) + σ2 : ε2 − D(z2 − z2).Taking the sum of the latter relations and exploiting the triangle inequality (2.4)we get that
α|ε1 − ε2|2 + α|z1 − z2|2 ≤ (σ1 − σ2) : (ε1 − ε2) + 2D(z1 − z2),whene the assertion follows.The evolution problem. We shall now provide the main result of this setionwhih follows by passing to the limit in the above desribed time-disrete approxi-mation.Theorem 3.2 (Existene for ρ ≥ 0). Given σ ∈ W 1,1(0, T ; R3×3sym) and (ε0, z0) ∈

S(0) there exists an energeti solution (ε, z) to (3.2)-(3.3) suh that (ε(0), z(0)) =
(ε0, z0). Moreover (ε, z) ∈ W 1,1(0, T ; R3×3sym × R

3×3dev).12



Proof. Let us hoose a sequene of partitions P n := {0 = tn0 < tni < · · · <
tnNn−1 < tnNn = T} with diameters τn = maxi=1,...,Nn(tni − tni−1) going to zero.Owing to the above disussion, we uniquely determine a sequene of solutions
{(εn

i , z
n
i )}Nn

i=0 to the orresponding inremental problems (3.7) suh that (εn
0 , z

n
0 ) =

(ε0, z0). We shall denote by (εn, zn) the inremental solution, i.e. the right-ontinuous pieewise-onstant interpolant of {(εn
i , z

n
i )}Nn

i=0 on the partition P n,and by τn, sn : [0, T ] → [0, T ] the funtions τn(t) := tni for t ∈ (tni−1, t
n
i ], and

sn(t) := tni−1 for t ∈ [tni−1, t
n
i ), i = 1 . . . , Nn.Sine {(εn

i , z
n
i )}Nn

i=0 solves (3.8) with zn
i replaing zi, one diretly gets that (εn

i , z
n
i ) ∈

S(tni ) for all i = 1, . . . , Nn. Moreover, from (3.7) and the minimality of (εn
i , z

n
i ), weompute that

Wρ(ε
n
i , z

n
i ) − σ(tni ) : εn

i − Wρ(ε
n
i−1, z

n
i−1) + σ(tni−1) : εn

i−1

+D(zn
i − zn

i−1) ≤ −(σ(tni ) − σ(tni−1)) : εn
i−1.Next, taking the sum of the latter relation for i = 1, . . . , m and m ≤ Nn, we getthat

Wρ(ε
n
m, zn

m) − σ(tnm) : εn
m − Wρ(ε0, z0) + σ(0) : ε0

+
m

∑

i=1

D(zn
i − zn

i−1) ≤ −

∫ tnm

0

σ̇ : εn ds. (3.10)Hene, it su�es to apply the disrete Gronwall lemma and exploit the oerivityof Wρ in order to hek that
sup

t∈[0,T ]

Wρ(ε
n(t), zn(t)) and DissD(zn, [0, T ]) are bounded independently of n.(3.11)Indeed, the latter bound depends on Wρ(ε0, z0) and ‖σ‖W 1,1(0,T ;R3×3sym) only.In order to pass to the limit with n we exploit Helly's seletion priniple and �nd a(not relabeled) subsequene of partitions and a non-dereasing funtion φ : [0, T ] →

[0, +∞) suh that
zn(t) → z(t), DissD(zn, [0, t]) → φ(t) for all t ∈ [0, T ], (3.12)and DissD(z, [s, t]) ≤ φ(t) − φ(s) ∀[s, t] ⊂ [0, T ]. (3.13)Consequently, for all t ∈ [0, T ], we readily �nd the unique limit ε(t) = Lz(t) sine

εn(t) = Lzn(t) → Lz(t).Next, we hek that S is losed. Indeed, let the sequene (tk, εk, zk) ∈ S onvergeto (t, ε, z) in [0, T ]×R
3×3sym×R

3×3dev . Then, sine Wρ is lower semiontinuous and σis ontinuous, for all (ε, z) ∈ R3×3sym × R
3×3dev ,

Wρ(ε, z) − σ(t) : ε ≤ lim inf
k→+∞

(

Wρ(εk, zk) − σ(tk) : εk

)

≤ lim inf
k→+∞

(

Wρ(ε, z) − σ(tk) : ε + D(z − zk)
)

= Wρ(ε, z) − σ(t) : ε + D(z − z).13



Namely (t, ε, z) ∈ S. We shall exploit the latter losure property in order to provethat (ε(t), z(t)) is a stable state. Indeed, realling that t ∈ [0, T ] is �xed, one readilyheks that the sequene τn(t) onverges to t and is suh that (εn(τn(t)), zn(τn(t)))onverges to (ε(t), z(t)) by de�nition. Hene, relation (3.2) follows sine (τn(t),
εn(τn(t)), zn(τn(t))) ∈ S. In partiular, we have proved that (ε(t), z(t)) solves (see(3.8))

(ε(t), z(t)) ∈ Arg Min
(ε,z)∈R

3×3sym×R
3×3dev (

Wρ(ε, z) − σ(t) : ε + D(z − z(t))
)

.Moreover, by onstrution, we have (ε(0), z(0)) = (ε0, z0).We are left to prove that indeed (ε, z) ful�lls the energy identity (3.3). Relation(3.10) an be rewritten as
Wρ(ε

n(t), zn(t)) − σ(τn(t)) : εn(t) + DissD(zn, [0, τn(t)])

≤ Wρ(ε0, z0) − σ(0) : ε0 −

∫ τn(t)

0

σ̇ : εn ds. (3.14)Hene, passing to the lim inf in the latter relation and exploiting one again thelower semiontinuity of Wρ, the integrability of σ̇, the boundedness of εn (see(3.11)), and (3.13), we readily hek by Lebesgue dominated onvergene that
Wρ(ε(t), z(t)) − σ(t) : ε(t) + DissD(z, [0, t])

≤ Wρ(ε0, z0) − σ(0) : ε0 −

∫ t

0

σ̇ : ε ds. (3.15)Some more preise onvergene for the energy an be dedued. Indeed, from thestability ondition (εn(t), zn(t)) ∈ S(sn(t)), the lower semiontinuity of Wρ, andthe ontinuity of σ one heks that
Wρ(ε(t), z(t)) − σ(t) : ε(t) = lim

n→+∞

(

Wρ(ε(t), z(t)) − σ(sn(t)) : ε(t) + D(z(t) − zn(t))
)

≥ lim sup
n→+∞

(

Wρ(ε
n(t), zn(t)) − σ(sn(t)) : εn(t)

)

≥ Wρ(ε(t), z(t)) − σ(t) : ε(t). (3.16)In partiular, we have proved that Wρ(ε
n(t), zn(t)) onverges to Wρ(ε(t), z(t)).Our next step will be that of proving that (ε, z) is absolutely ontinuous. Indeedthis follows at one from the stability ondition (3.2), the upper energy estimate(3.15), the uniform onvexity of Wρ, and the absolute ontinuity of σ. Let us �x

[s, t] ⊂ [0, T ]. Owing to (ε(s), z(s)) ∈ S(s) and the uniform onvexity of Wρ withonstant α one readily gets that
α|ε(t) − ε(s)|2 + α|z(t) − z(s)|2

≤ Wρ(ε(t), z(t)) − σ(s) : ε(t) + D(z(t) − z(s)) − Wρ(ε(s), z(s)) + σ(s) : ε(s)

≤ Wρ(ε(t), z(t)) − σ(t) : ε(t) + DissD(z, [s, t])

−Wρ(ε(s), z(s)) + σ(s) : ε(s) − (σ(s) − σ(t)) : ε(t)

≤ −

∫ t

s

σ̇(r) : (ε(r) − ε(t)) dr. 14



Hene, by means of Gronwall's lemma, one heks that
|ε(t) − ε(s)| + |z(t) − z(s)| ≤ c4

∫ t

s

|σ̇|, (3.17)where the positive onstant c4 depends just on α. The absolute ontinuity of εand z follows.We are now in the position of proving the onverse inequality to (3.15), namely, thelower energy estimate. Indeed, for all t ∈ [0, T ],
Wρ(ε(t), z(t)) − σ(t) : ε(t) + DissD(z, [0, t])

≥ Wρ(ε0, z0) − σ(0) : ε0 −

∫ t

0

σ̇ : ε ds. (3.18)Indeed, let suitable partitions Qm = {0 = sm
0 < sm

1 < · · · < sm
Mm−1 < sm

Mm = t}be given suh that the diameters maxj=1,...,Mm(sm
j − sm

j−1) go to zero. By exploitingagain the stability (ε(sm
j−1), z(sm

j−1)) ∈ S(sm
j−1) for j = 1, . . . , Mm, we obtain that

Wρ(ε(s
m
j ), z(sm

j )) − σ(sm
j ) : ε(sm

j ) + D(z(sm
j ) − z(sm

j−1))

≥ Wρ(ε(s
m
j−1), z(sm

j−1)) − σ(sm
j−1) : ε(sm

j−1) − (σ(sm
j ) − σ(sm

j−1)) : ε(sm
j )We shall take the sum above for j = 1, . . . , Mm and obtain that

Wρ(ε(t), z(t)) − σ(t) : ε(t) + DissD(z, [0, t])

≥ Wρ(ε0, z0) − σ(0) : ε0 −

Mm
∑

j=1

(σ(sm
j ) − σ(sm

j−1)) : ε(sm
j ). (3.19)Then, relation (3.18) follows at one from Lebesgue dominated onvergene sine

−
Mm
∑

j=1

(σ(sm
j ) − σ(sm

j−1)) : ε(sm
j ) = −

∫ t

0

(

−

∫

Qm

σ̇ dr

)

(s) : ε(τm(s)) ds,where we used a standard notation for the pieewise mean on the partition Qm.In fat, ε ◦ τm and −
∫

Qm σ̇ dr onverge to ε and σ̇ at least almost everywhere,respetively, and ε ◦ τm is uniformly bounded. One (3.18) is established, it is astandard matter to hek that indeed DissD(z, [0, t]) = φ(t) for all t ∈ [0, T ].Finally, an early onsequene of (3.17) entails the following Lipshitz regularityresult.Corollary 3.3 (Lipshitz ontinuity). Under the assumptions of Theorem 3.2, if
σ ∈ W 1,∞(0, T ; R3×3sym), then we have (ε, z) ∈ W 1,∞(0, T ; R3×3sym × R

3×3dev).We shall omplement the above detailed existene analysis by providing a loalLipshitz ontinuous dependene result for the smooth ase ρ > 0 (see [41, Thm.7.4℄). 15



Theorem 3.4 (Continuous dependene for ρ > 0). Let the assumptions of Theo-rem 3.2 hold ρ > 0, σ1, σ2 ∈ W 1,1(0, T ; R3×3sym), suitably stable initial data (ε0,1, z0,1)and (ε0,2, z0,2) be given and (ε1, z1) and (ε2, z2) be two orresponding energeti so-lutions to (3.2)-(3.3). Then, there exists a positive onstant c depending only on
α, ‖Wρ‖C2,1(R3×3sym×R

3×3dev ), and ‖σi‖W 1,1(0,T ;R3×3sym) for i = 1, 2 suh that
|(ε1 − ε2)(t)|

2 + |(z1 − z2)(t)|
2

≤ c
(

|ε0,1 − ε0,2|
2 + |z0,1 − z0,2|

2 + ‖σ1 − σ2‖
2
W 1,1(0,t;R3×3sym)

)

∀t ∈ [0, T ]. (3.20)Proof. Let us start by introduing some onvenient notation. In partiular, let
yi :=

(

εi

zi

)

, ∇Wi :=

(

∂εWρ(εi, zi)

∂zWρ(εi, zi)

)

,

∇2Wi :=

(

∂εεWρ(εi, zi) ∂εzWρ(εi, zi)

∂εzWρ(εi, zi) ∂zzWρ(εi, zi)

) for i = 1, 2.Next, by exploiting the above mentioned equivalene between (3.2)-(3.3) and (3.4),one readily heks that
(∇W1 −∇W2) · (ẏ1 − ẏ2) ≤ (σ1 − σ2) : (ε̇1 − ε̇2) a.e. in (0, T ), (3.21)where of ourse · is the salar produt in R3×3sym × R

3×3dev . Moreover, we shall use
ε := ε1 − ε2, z := z1 − z2 and so on. Within this proof, the symbol c willdenote any positive onstant possibly depending on α, ‖Wρ‖C2,1(R3×3sym×R

3×3dev ), and on
‖σi‖W 1,1(0,T ;R3×3sym) for i = 1, 2. Let us de�ne

γ := ∂εW : ε + ∂zW : z ≥ α|ε|2 + α|z|2 = α|y|2,where we also used the uniform onvexity of Wρ. Now, by di�erentiating γ withrespet to time and exploiting the smoothness of Wρ, one gets that
γ̇ = (∇W1 −∇W2 + ∇2W1y) · ẏ1 − (∇W1 −∇W2 + ∇2W2y) · ẏ2

≤ 2(∇W1 −∇W2) · (ẏ1 − ẏ2)

+ | − ∇W1 + ∇W2 + ∇2W1y| |ẏ1| + | − ∇W2 + ∇W1 −∇2W2y| |ẏ2|

≤ 2σ : ε̇ + c(|ẏ1| + |ẏ2|)|y|
2 a.e. in (0, T ).By olleting the above omputation we hek that, for all t ∈ [0, T ],

γ(t) = γ(0)+

∫ t

0

γ ds≤γ(0)+2σ(t) : ε(t)−2σ(0) : ε0−2

∫ t

0

σ̇ : ε ds+c

∫ t

0

(|ẏ1|+|ẏ2|) γ ds

≤
1

2
γ(t) + c

(

|ε0|
2 + |z0|

2 + |σ(t)|2 + |σ(0)|2 +

∫ t

0

(|ẏ1| + |ẏ2|)γ ds

)

.The assertion follows by Gronwall's lemma.16



Properties of the approximations. The above detailed existene proof exploitsa disrete onstrution whih is interesting in itself. Let us ondense in the followinglemma the above proved results on the disrete sheme. Note that the result is lesssharp for ρ = 0 sine we do not know whether the solutions are unique in this ase.Lemma 3.5 (Convergene). Under the assumptions of Theorem 3.2, the inremen-tal solutions (εn, zn) of problem (3.7) for partitions P n with diameters τn going tozero are suh that, possibly extrating a not relabeled subsequene, for all t ∈ [0, T ],
zn → z uniformly in [0, T ],DissD(zn, [0, t]) → DissD(z, [0, t]),

εn(t) → ε(t),

Wρ(ε
n(t), zn(t)) → Wρ(ε(t), z(t)),for some pair (ε, z) whih solves (3.2)-(3.3). As ρ > 0 the whole sequene (εn, zn)onverges.We onlude this setion by realling from [41℄ (see also [36℄) an a priori errorestimate of order 1/2 for the above disussed disrete approximations. The lattererror bound is however restrited the smooth situation ρ > 0.Lemma 3.6 (Error). Under the assumptions of Lemma 3.5, let ρ > 0. Thenthere exists a positive onstant c depending on α, ‖Wρ‖C2,1(R3×3sym×R

3×3dev ), (ε0, z0), and
‖σ‖W 1,1(0,T ;R3×3sym) suh that

|(ε − εn)(t)| + |(z − zn)(t)| ≤ c(τn)1/2 ∀t ∈ [0, T ]. (3.22)We shall not provide here a proof of the above lemma. Indeed, in ase σ ∈
W 1,∞(0, T ; R3×3sym) it su�es to rewrite in the urrent setting the argument of [36,Thm. 4.3℄. Moreover, the proof an be adapted with little additional intriay forthe urrent absolutely ontinuous ase σ ∈ W 1,1(0, T ; R3×3sym) as well.4 Inremental minimization for the boundaryvalue problemIn this setion we fous on a minimum problem whih arises from the time inre-mental approximation of the quasi-stati evolution. Sine we are atually dealingwith a rate-independent evolution, this minimum problem is of ourse the basi toolfor understanding the phenomenon. Moreover, the study of the time disrete seemsto be heavily addressed by the engineering ommunity [23, 29, 30, 31, 45, 46, 47℄.Finally, the time inremental situation will turn out to be better suited than thetime-ontinuous one in order to prove onvergene of spae approximations.17



The data of the minimum problem are the urrent value z ∈ L2(Ω, R3×3dev) of theinelasti strain and the updated values uDir ∈ H1(Ω; R3) of the boundary displae-ment and ℓ ∈ (H1(Ω; R3))′ of the total load. We shall be interested in solving thefollowing
(u, z) ∈ Arg Min

(v,w)∈Yν(uDir) (Wρ,ν(v, w) − 〈ℓ, v〉 + D(w − z)
)

. (4.1)The existene of minimizers to the latter problem is a straightforward appliation ofthe Diret Method of the Calulus of Variations [10℄. Indeed, (v, w) 7→ Wρ,ν(v, w)+
D(w − z) − 〈ℓ, v〉 is trivially oerive and lower semiontinuous with respet to theweak topology in Yν and Yν(uDir) is onvex and losed. As far as uniqueness isonerned one should observe that Wρ,ν is uniformly onvex for all ρ, ν ≥ 0.Let us state here a preliminary lemma whose proof an be obtained by means ofstandard omputations on the quadrati form C.Lemma 4.1 (Change of boundary onditions). Let uDir, vDir ∈ H1(Ω; R3), z ∈
L2(Ω, R3×3dev), and ℓ ∈ (H1(Ω; R3))′ be given. Moreover, let (u∗, z∗) ∈ Yν(uDir) solve(4.1) and v∗ = u∗ − uDir + vDir. Then (v∗, z∗) solves
(v∗, z∗) ∈ Arg Min

(v,z)∈Yν(vDir) (Wρ,ν(v, z)+

∫

Ω

C(ε(v)−z) : ε(uDir−vDir)−〈ℓ, v〉+D(z−z)

)

.(4.2)On the other hand let (v∗, z∗) solve (4.2). Then (v∗ − vDir + uDir, z∗) solves (4.1).Problem (4.1) is Hölder ontinuously stable with respet to perturbations on thedata z, uDir, and ℓ. Indeed, we have the following generalization of Lemma 3.1.Lemma 4.2 (Continuous dependene). Let ρ, ν ≥ 0 be �xed and z1, z2 ∈ L2(Ω, R3×3dev),
uDir

1 , uDir
2 ∈ H1(Ω; R3), and ℓ1, ℓ2 ∈ (H1(Ω; R3))′ be given. Moreover, let (ui, zi) ∈

Yν(uDir
i ) solve (4.1) with uDir = uDir

i , z = zi, and ℓ = ℓi for i = 1, 2. Then, thereexists a onstant c depending on c0, α, CD, and C suh that
‖u1 − u2‖

2
H1(Ω;R3) + ‖z1 − z2‖

2
L2(Ω;R3×3dev )

+ ν‖z1 − z2‖
2
H1(Ω;R3×3dev )

≤ c
(

‖uDir
1 − uDir

2 ‖2
H1(Ω;R3) + ‖z1 − z2‖L1(Ω;R3×3dev ) + ‖ℓ1 − ℓ2‖

2
(H1(Ω;R3))′

)

. (4.3)Proof. We simply adapt the argument of Lemma 3.1 Owing to the minimality of
(u1, z1) and the uniform onvexity of Wρ,ν we readily dedue that, for any (v1, w1) ∈
Yν(uDir

1 ),
α‖ε(u1 − v1)‖

2
L2(Ω;R3×3sym)

+ α‖z1 − w1‖
2
L2(Ω;R3×3dev )

+ αν‖z1 − w1‖
2
H1(Ω;R3×3dev )

≤ Wρ,ν(v1, w1) − 〈ℓ1, v1〉 + D(w1 − z1)

−Wρ,ν(u1, z1) + 〈ℓ1, u1〉 − D(z1 − z1).18



On the other hand, the minimality of (u2, z2) entails that, for all (v2, w2) ∈ Yν(uDir
2 ),

0 ≤ Wρ,ν(v2, w2) − 〈ℓ2, v2〉 + D(w2 − z2) −Wρ,ν(u2, z2) + 〈ℓ2, u2〉 − D(z2 − z2).By hoosing (v1, w1) = (u2 − uDir
2 + uDir

1 , z2) and (v2, w2) = (u1 − uDir
1 + uDir

2 , z1)and taking the sum of the orresponding inequalities one easily dedues that
α‖ε(u1−u2)−ε(uDir

1 −uDir
2 )‖2

L2(Ω;R3×3sym)
+α‖z1−z2‖

2
L2(Ω;R3×3dev )

+αν‖z1−z2‖
2
H1(Ω;R3×3dev )

≤ 2C(ε(uDir
1 − uDir

2 )) −

∫

Ω

C
(

ε(u1 − u2) − (z1 − z2)
)

: ε(uDir
1 − uDir

2 )

+2D(z1 − z2) + 〈ℓ1 − ℓ2, u1 − u2〉 − 〈ℓ1 − ℓ2, u
Dir
1 − uDir

2 〉.Hene, we readily �nd a positive onstant c depending on α, CD, and C in suha way that
‖ε(u1 − u2)‖

2
L2(Ω;R3×3sym)

+ ‖z1 − z2‖
2
L2(Ω;R3×3dev )

+ ν‖z1 − z2‖
2
H1(Ω;R3×3dev )

≤ c
(

‖uDir
1 − uDir

2 ‖2
H1(Ω;R3) + ‖z1 − z2‖L1(Ω;R3×3dev ) + ‖ℓ1 − ℓ2‖

2
(H1(Ω;R3))′

)

.Whene, the assertion follows from Korn's inequality (2.1).Convergene of spae approximations. Let us now turn our attention to somespae approximation proedure and reall the material of Setion 2. We denote by
Yν

h,0 the set Yν
h,0 := Yν

h ∩ Yν(0). Given (ũ, z̃) = pν
h(u, z) we shall also denote by

pν
h,1(u, z) := ũ and pν

h,2(u, z) := z̃. For the sake of ompleteness, we shall onsideralso some approximate situation. Indeed, we ask that for eah (uDir, z) ∈ Yν and
ℓ ∈ (H1(Ω; R3))′), there exist (uDir

h , zh) ∈ Yν
h and ℓh ∈ (H1(Ω; R3))′ suh that

(uDir
h , zh) → (uDir, z) strongly in H1(Ω; R3) × L1(Ω; R3×3dev),and ℓh → ℓ strongly in (H1(Ω; R3))′. (4.4)We shall be onerned with the approximating minimum problem

(uh, zh) ∈ Arg Min
(u−uDir

h
,z)∈Yν

h,0

(

Wρ,ν(u, z) − 〈ℓh, u〉 + D(z − zh)
)

. (4.5)The latter problem is of ourse uniquely solvable sine (u, z) 7→ Wρ,ν(u, z)−〈ℓh, u〉+
D(z − z) is again uniformly onvex, oerive, and lower semiontinuous in Yν

h and
Yν

h,0 is onvex and losed.Assuming (4.4) and letting (u, z) and (uh, zh) solve the minimum problem (4.1)and (4.5), respetively, the main issue of this setion is that of proving that (uh, zh)onverges to (u, z) strongly in Yν . More preisely, in the ase ρ > 0, some quanti-tative error estimates an be obtained.Lemma 4.3 (Error for ρ > 0). Let ρ > 0, ν ≥ 0 be given and (u, z) and (uh, zh)solve (4.1) and (4.5), respetively. Moreover, let
〈ℓh, v − pν

h,1(v, w)〉 = 0 for all (v, w) ∈ Yν and h > 0. (4.6)19



Then, there exists a positive onstant c depending on ρ, c0, α, CD, and C suhthat
‖u − uh‖

2
H1(Ω;R3) + ‖z − zh‖

2
L2(Ω;R3×3dev )

+ ν‖z − zh‖
2
H1(Ω;R3×3dev )

≤ c
(

‖uDir − uDir
h ‖2

H1(Ω;R3) + ‖z − zh‖L1(Ω;R3×3dev )

)

+c
(

‖ℓ − ℓh‖
2
(H1(Ω;R3))′ + ‖z − pν

h,2(v, z)‖L1(Ω;R3×3dev )

)

. (4.7)Let us omment that (4.6) turns out to be ful�lled in the frame of onforming �niteelements. Considering for simpliity the ase where pν
h,1 does not depend on w, afairly usual hoie for ℓh is

〈ℓh, v〉 := 〈ℓ, pν
h,1(v)〉 ∀v ∈ U ,whene (4.6) follows.Proof. The estimate follows by arefully reonsidering the ontinuous dependeneproof of Lemma 4.2 and exploiting Galerkin's orthogonality (2.6). Indeed, makinguse of Lemma 4.1, one obtains for v = u − uDir and vh = uh − uDir

h ,
α‖ε(v − vh)‖

2
L2(Ω;R3×3sym)

+ α‖z − zh‖
2
L2(Ω;R3×3dev )

+ αν‖z − zh‖
2
H1(Ω;R3×3dev )

≤ Aν(vh, zh) + Gρ(zh) +

∫

Ω

C(ε(vh) − zh) : ε(uDir) + D(zh − z) − 〈ℓ, vh − v〉

−Aν(v, z) − Gρ(z) −

∫

Ω

C(ε(v) − z) : ε(uDir) −D(z − z) (4.8)where we have denoted by Gρ : L2(Ω, R3×3dev) → [0, +∞] the onvex funtional
Gρ(z) := Fρ(z) − c2‖z‖

2
L2(Ω,R3×3dev )

.Moreover, arguing exatly as in Lemma 4.2 and de�ning (ṽ, z̃) := pν
h(v, z), we readilyhek that

0 ≤ Aν(ṽ, z̃) + Gρ(z̃) +

∫

Ω

C(ε(ṽ) − z̃) : ε(uDir
h ) + D(z̃ − zh) − 〈ℓh, ṽ − vh〉

−Aν(vh, zh) − Gρ(zh) −

∫

Ω

C(ε(vh) − zh) : ε(uDir
h ) −D(zh − zh). (4.9)Taking the sum of the latter inequalities and exploiting (2.7), (4.6), and (uDir

h , 0) ∈
Yν

h , we easily hek that
α‖ε(v − vh)‖

2
L2(Ω;R3×3sym)

+ α‖z − zh‖
2
L2(Ω;R3×3dev )

+ αν‖z − zh‖
2
H1(Ω;R3×3dev )

≤

∫

Ω

C(ε(vh − v) − (zh − z)) : ε(uDir − uDir
h ) + 2D(z − zh)

+〈ℓ − ℓh, v − vh〉 + Gρ(z̃) − Gρ(z) + D(z − z̃),and the assertion follows. 20



We shall now turn to some (neessarily weaker) quantitative onvergene estimatefor the spei� ase ρ = 0.Lemma 4.4 (Convergene for ρ = 0). Under the assumptions of Lemma 4.3, let
ρ = 0. Moreover, let (ṽ, z̃) := pν

h(u − uDir, z) and (v̂, ẑ) := (qh(u − uDir), rν
h(w)).Then, there exists a positive onstant c depending on c1 and the same onstant of(4.7) suh that

‖u − uh‖
2
H1(Ω;R3) + ‖z − zh‖

2
L2(Ω;R3×3dev )

+ ν‖z − zh‖
2
H1(Ω;R3×3dev )

≤ c
(

‖uDir−uDir
h ‖2

H1(Ω;R3×3sym)
+‖z−zh‖L1(Ω;R3×3dev )+‖ℓ−ℓh‖

2
(H1(Ω;R3))′+‖z−z̃‖L1(Ω;R3×3dev )

)

+c

(

Aν(v̂, ẑ) −Aν(ṽ, z̃) +

∫

Ω

C(ε(v̂ − ṽ) − (ẑ − z̃)) : ε(uDir
h )

)

+c
(

〈ℓh, ṽ − v̂〉 + ‖ẑ − z̃‖L1(Ω;R3×3dev )

)

. (4.10)Sine of ourse ph(v, w) − (qh(v), rν
h(w)) strongly onverges to zero in Yν , esti-mate (4.10) proves in partiular that, assuming (4.4), the strong onvergene of theapproximations holds.Proof. This proof follows the same lines of Lemma 4.3. We shall however replae(4.9) as follows.

0 ≤ Aν(v̂, ẑ) + c1‖ẑ‖L1(Ω;R3×3dev ) +

∫

Ω

C(ε(v̂) − ẑ) : ε(uDir
h ) + D(ẑ − zh) − 〈ℓh, v̂ − vh〉

−Aν(vh, zh) − c1‖zh‖L1(Ω;R3×3dev ) −

∫

Ω

C(ε(vh) − zh) : ε(uDir
h ) −D(zh − zh),and again take its sum with (4.8). In order to redue to the situation of Lemma 4.3one needs to simply add and subtrat the term z̃ in most of the ourrenes of ẑ.This proedure of ourse produes the extra residual terms that appear in the lasttwo lines of (4.10).5 The inremental problem.We shall prepare here some material in the diretion of the full time-steppingproedure. To this aim, we assume to be given a partition P := {0 = t0 <

t1 < · · · < tN−1 < tN = T} with diameter τ = maxi=1,...,N(ti − ti−1) and data
{uDir

i }N
i=0 ∈ (H1(Ω; R3))N+1, {ℓi}

N
i=0 ∈ ((H1(Ω; R3))′)N+1, and (u0, z0) ∈ Yν(uDir

0 ).Hene, we �nd iteratively the unique solutions {(ui, zi)}
N
i=1 to the problem

(ui, zi) ∈ Arg Min
(u,z)∈Yν(uDiri )

(

Wρ,ν(u, z) − 〈ℓi, u〉 + D(z − zi−1)
) for i = 1, . . . , N.(5.11)21



We shall denote by (u, z) the inremental solution whih interpolates right-ontinuouslythe values (ui, zi) on the partition P . Hene, the following a priori estimate holdstrue.Lemma 5.1 (A priori bounds). Let ρ, ν ≥ 0. Then there exists a positive onstant
c depending on α, Wρ,ν(u0, z0), 〈ℓ0, u0〉, and ∑N

i=1 ‖ℓi − ℓi−1‖(H1(Ω;R3))′ suh that
Wρ,ν(u, z) + DissD(z, [0, T ]) ≤ c. (5.12)Proof. From the minimality of (ui, zi) in (5.11) one has that

Wρ,ν(ui, zi) − 〈ℓi, ui〉 + D(zi − zi−1)

≤ Wρ,ν(ui−1, zi−1) − 〈ℓi−1, ui−1〉 − 〈ℓi − ℓi−1, ui−1〉.Taking the sum in the latter relation for i = 1, . . . , m, m ≤ N , one has that
Wρ,ν(um, zm) − 〈ℓm, um〉 +

m
∑

i=1

D(zi − zi−1)

≤ Wρ,ν(u0, z0) − 〈ℓ0, u0〉 −

m
∑

i=1

〈ℓi − ℓi−1, ui−1〉.and the assertion follows from the uniform onvexity of Wρ,ν and the Gronwalllemma.Let us ollet here some remark on the inremental problem (5.11) in the spaedisretized situation. To this aim we shall refer to the notation introdued in Se-tion 2 and assume to be given, for all h > 0, suitable data {uDir
i,h }

N
i=0 ∈ (Uh)

N+1,
{ℓi,h}

N
i=0 ∈ ((H1(Ω; R3))′)N+1, and (u0,h, z0,h) suh that (u0,h − uDir

0,h , z0,h) ∈ Yν
0,h.Hene, by solving iteratively the minimum problem, we de�ne the right-ontinuouspieewise onstant inremental solutions (uh, zh).First of all, one should notie that the a priori bound of Lemma 5.1 holds for (uh, zh)as well (of ourse the dependenes of the onstant are referred to the approximatingdata). Seondly, we are in the position of obtaining for (uh, zh) the same ontin-uous dependene as in Lemma 4.2. This fat entails the onvergene of the spaeapproximated inremental problem in N steps to the orresponding limit. In par-tiular, employing Lemma 4.3 or 4.4, respetively, and performing an indution over

i = 1, . . . , N , we have the following result.Lemma 5.2 (Convergene for N steps as h → 0). Under the above assumptions,let the parameters ρ, ν ≥ 0, N ∈ N be �xed and assume that uDir
i,h → uDir

i in
H1(Ω; R3), ℓi,h → ℓi in (H1(Ω; R3))′, and (u0,h, z0,h) → (u0, z0) in H1(Ω; R3) ×
L1(Ω; R3×3dev) as h → 0. Then, we have that ui,h → ui in H1(Ω; R3) as well, for all
i = 1, . . . , N .Indeed, we would be in the position of stating a more preise quantitative bound forthe error max1≤i≤N ‖ui − ui,h‖H1(Ω;R3) in terms of data. This bound will howeverdeteriorate and eventually explode as N → +∞.22



6 The evolution problemWe shall �nally turn to the study of the time-ontinuous problem. In partiular, weare interested in energeti solutions to (1.5)-(1.9) along with the above presribedboundary displaement and boundary tration onditions. Namely, our solutionswill be funtions t 7→ (u(t), z(t)) ∈ Yν(uDir(t)) suh that t 7→ 〈ℓ̇(t), u(t)〉 is inte-grable and, for all t ∈ [0, T ],
(u(t), z(t)) ∈

{

(u, z) ∈ Yν(uDir(t)) suh that, ∀(u, z) ∈ Yν(uDir(t)),
Wρ,ν(u, z)−〈ℓ(t), u〉 ≤ Wρ,ν(u, z)−〈ℓ(t), u〉+D(z−z)

}

, (6.1)
Wρ,ν(u(t), z(t)) − 〈ℓ(t), u(t)〉 + DissD(z, [0, t])

= Wρ,ν(u(0), z(0)) − 〈ℓ(0), u(0)〉 −

∫ t

0

〈ℓ̇(s), u(s)〉 ds. (6.2)Following the argument of Setion 3, we are in the position of proving the equivaleneof the two formulations (1.5)-(1.9) and (6.1)-(6.2) as soon as the above mentionedboundary ondition (plus an extra homogeneous Neumann type ondition for zwhen ν > 0) are onsidered and the solutions are assumed to be at least absolutelyontinuous. The latter is of ourse a quite natural regularity requirement and wewill readily reover it in our framework.The main issue of this setion is to �x ν > 0 and exploit the analysis of [42, 41℄in order to obtain some existene, uniqueness, and onvergene of approximationsresult. Apart from in�nite dimensions, the arguments involved here are quite loseto those of Setion 3. Owing to this onsideration, we will mainly sketh the proofs ofthe forthoming results by heavily referring to the orresponding material in Setion3.An equivalent problem. It is onvenient to introdue yet another equivalentformulation of problem (6.1)-(6.2) by replaing the variable u by v = u − uDir.The main advantage of this hange of variables is that the energeti formulation for
(v, z) takes values in the �xed phase spae Yν

0 := Yν(0). Indeed, in the same spiritof Lemma 4.1, one readily omputes that
Wρ,ν(u, z)−〈ℓ, u〉 = Wρ,ν(v, z)+

∫

Ω

C(ε(v)−z) : ε(uDir)−〈ℓ, v〉+C(ε(uDir))−〈ℓ, uDir〉.
23



Hene, one heks that (u, z) is an energeti solution if and only if (v, z) : t 7→ Yν
0is suh that, for all t ∈ [0, T ],

(v(t), z(t)) ∈ S(t) :=
{

(v, z) ∈ Yν
0 suh that, ∀(v, z) ∈ Yν

0 ,

Wρ,ν(v, z) − 〈L(t), (v, z)〉 ≤ Wρ,ν(v, z) − 〈L(t), (v, z)〉 + D(z − z)〉
}

, (6.3)
Wρ,ν(v(t), z(t)) − 〈L(t), (v(t), z(t))〉 + q(t) + DissD(z, [0, t])

= Wρ,ν(v(0), z(0)) − 〈L(0), (v(0), z(0))〉 + q(0)

−

∫ t

0

〈ℓ̇(s), v(s)〉 ds−

∫ t

0

〈ℓ̇(s), uDir(s)〉 ds, (6.4)where we have denoted by L : [0, T ] → (Yν
0 )′ the funtional

〈L(t), (v, z)〉 := −

∫

Ω

C(ε(v) − z) : ε(uDir(t)) + 〈ℓ(t), v〉 ∀(v, z) ∈ Yν
0 , t ∈ [0, T ].Here 〈·, ·〉 is used for the duality pairing between (Yν

0 )′ and Yν
0 , as well. Moreover,the funtion q : [0, T ] → R is de�ned as

q(t) := C(uDir(t)) − 〈ℓ(t), uDir(t)〉 ∀t ∈ [0, T ].We shall expliitly observe that uDir∈W 1,1(0,T ;H1(Ω;R3)) and ℓ∈W 1,1(0,T ;(H1(Ω,R3))′)entail that L ∈ W 1,1(0, T ; (Yν
0 )′) and q ∈ W 1,1(0, T ).From now on, we will fous on problem (6.3)-(6.4) and leave to the reader thestraightforward interpretation of the forthoming results for our original variable u.Let us start from the following existene result.Theorem 6.1 (Existene for ν > 0). Let ν > 0 and ρ ≥ 0. Given L ∈

W 1,1(0, T ; (Yν(0))′), q ∈ W 1,1(0, T ), and (v0, z0) ∈ S(0), there exists an energetisolution (v, z) to (6.3)-(6.4) suh that (v(0), z(0)) = (v0, z0). Moreover (v, z) ∈
W 1,1(0, T ;Yν

0 ).We shall not provide here a full proof of this result. Indeed, it su�es to suitablyadapt the mahinery of Lemma 3.2 to the situation of (6.3)-(6.4). In partiular,we argue again by disretizing the problem on a sequene of partitions P n withdiameter going to zero. The orresponding inremental problems
(vi, zi) ∈ Arg Min

(v,z)∈Yν
0

(

Wρ,ν(v, z)− 〈L(tni ), u〉+D(z − zn
i−1)

) for i = 1, . . . , Nn, (6.5)will turn out to be solvable by means of the results of Setion 4. Namely, we anintrodue some right-ontinuous and pieewise onstant interpolant (vn, zn) of thedisrete solution on the partition P n. Moreover, we exploit Lemma 5.1 whih entailsthat
sup

t∈[0,T ]

Wρ,ν(v
n(t), zn(t)) and Var[0,T ](z

n) are bounded independently of n.24



Indeed, the latter bound depends now on Wρ,ν(v0, z0), ‖L‖W 1,1(0,T ;(Yν(0)))′), and
‖q‖W 1,1(0,T ).As for the limit, we will make use of some extended version of Helly's priniple [27,Thm. 3.1℄ and �nd a (not relabeled) subsequene of partitions and a non-dereasingfuntion φ : [0, T ] → [0, +∞) suh that
zn(t) → z(t) weakly in H1(Ω; R3×3dev) and DissD(zn, [0, t]) → φ(t) for all t ∈ [0, T ],DissD(z, [s, t]) ≤ φ(t) − φ(s) ∀[s, t] ⊂ [0, T ].Indeed, here we have used in a ruial way that ν > 0, i.e., the sublevels of Wρ,νare ompat in L2(Ω; R3×3sym)×L2(Ω; R3×3dev). Moreover, we have that vn(t) = Lzn(t),
L being linear, and Lzn(t) → Lz(t) = v(t) weakly in H1(Ω; R3) for all t ∈ [0, T ],where (v(t), 0) ∈ Yν

0 .The set of stable trajetories S := ∪t∈[0,T ](t,S(t)) is losed with respet to theweak topology of Yν . Namely, letting (tk, vk, zk) ∈ S with tk → t and (vk, zk) →
(v, z) weakly in Yν

0 , we readily exploit the lower semiontinuity of Wρ,ν , the weakontinuity of D in H1(Ω; R3×3dev), and the ontinuity of L and get that
Wρ,ν(v, z) + 〈L(t), (v, z)〉 ≤ lim inf

k→+∞

(

Wρ,ν(vk, zk) + 〈L(tk), (vk, zk)〉
)

≤ lim inf
k→+∞

(

Wρ,ν(v, z)+〈L(tk), (v, z)〉+D(zk−z)
)

= Wρ,ν(v, z)+〈L(t), (v, z)〉+D(z−z)for all (v, z) ∈ Yν
0 . Namely, (t, v, z) ∈ S and the stability ondition (6.3) easilyfollows. Moreover, the initial ondition is ful�lled by onstrution and the uniformonvexity of Wρ,ν along with stability entail that the whole sequene ε(vn(t)) a-tually onverges to ε(v(t)).As for to prove that (v, z) ful�lls (6.4) we readily dedue from the above statedonvergenes and lower semiontinuity arguments (see (3.14)) that the equivalent of(3.15) holds. Indeed we have that

Wρ,ν(v
n(t), zn(t)) − 〈L(τn(t)), (vn(t), zn(t))〉 + q(τn(t)) + DissD(zn, [0, τn(t)])

≤ Wρ,ν(v0, z0) − 〈L(0), (v0, z0)〉 + q(0)

−

∫ τn(t)

0

〈ℓ̇(s), vn(s)〉 ds −

∫ τn(t)

0

〈ℓ̇(s), u(s)〉 ds. (6.6)and we simply pass to the lim inf as n → +∞ in order to get that
Wρ,ν(v(t), z(t)) − 〈L(t), (v(t), z(t))〉 + q(t) + DissD(z, [0, t])

≤Wρ,ν(v0,z0)−〈L(0),(v0,z0)〉+q(0)−

∫ t

0

〈ℓ̇(s),v(s)〉ds−

∫ t

0

〈ℓ̇(s),u(s)〉,ds (6.7)Moreover, again by stability, one has that Wρ,ν(v
n(t), zn(t)) → Wρ,ν(v(t), z(t))as well (see (3.16)). As a by-produt, the above stated weak onvergene for

(vn(t), zn(t)) turns out to be atually strong in Yν .25



Exatly as in Theorem 3.2, the absolute ontinuity of (v, z) follows at one fromthat of L and q, relation (6.7), the uniform onvexity of Wρ,ν , and stability (6.3). Inpartiular, we are in the position of reproduing the same argument as in (3.19) and,exploiting one more stability and the ontinuity of data, obtain the upper energyestimate as well. Namely, one has that φ(t) = DissD(z, [0, t]) for all t ∈ [0, T ]. Theexistene proof is hene omplete.Again, energeti solutions orresponding to Lipshitz ontinuous data turn out tobe Lipshitz ontinuous as well.Lemma 6.2 (Lipshitz ontinuity). Under the assumptions of Theorem 6.1, when-ever L ∈ W 1,∞(0, T ; (Yν
0 )′) and q ∈ W 1,∞(0, T ), we have (ε, z) ∈ W 1,∞(0, T ;Yν

0 ).Existene by smoothness. The above skethed existene proof exploits in aruial way the ompatness of the sublevels of Wρ,ν for ν > 0 in the weak topologyof H1(Ω; R3) × H1(Ω; R3×3dev) and works for any ρ > 0. An alternative approah toexistene of solutions of the energeti formulation is however available in the smoothsituation ρ > 0 by means of the onstrution of [41, Se. 7℄, for instane. A possibleadvantage of this perspetive is that of gaining expliit onvergene rates. We shalladdress this issue elsewhere.In the above mentioned smooth situation ρ > 0 no ompatness is assumed forenergy-bounded states but the energy funtional Wρ,ν : Yν → [0, +∞) is required tobe C2,1. This again fores
ν > 0. Namely, given h ∈ C2,1(R) with h′′ ∈ L∞(R), one has that the funtional
H : L2(Ω; R3×3dev) → R de�ned by

Hu :=

∫

Ω

h(u(x))dx for u ∈ L2(Ω; R3×3dev)is C2,1 if and only if h is quadrati (and in this ase H ∈ C∞). On the other hand,
H is C2,1 on H1(Ω; R3×3dev). This fat entails that Wρ,ν is C2,1 on Yν if and onlyif ν > 0.Continuous dependene. We are in the position of reproduing the ontinuousdependene result of Setion 3 in the present framework and for ρ, ν > 0. Oneagain ontinuous dependene relies on uniform onvexity and C2,1 ontinuity of theenergy funtional. In partiular, the assumption ν > 0, whih of ourse plays norole in Lemma 3.4, is atually needed here (see above).Properties of the approximations. The time disretization tehnique desribedabove has of ourse some interest in itself. Let us ollet for onveniene some relatedresult in the following.Lemma 6.3. Let ν > 0. Under the assumptions of Theorem 6.1, the inrementalsolutions (vn, zn) of problem (6.5) for partitions P n with diameters τn going to 026



are suh that, possibly extrating a not relabeled subsequene, for all t ∈ [0, T ],
zn → z strongly in C([0, T ]; H1(Ω; R3×3dev)),DissD(zn, [0, t]) → DissD(z, [0, t]),

vn(t) → v(t) strongly in H1(Ω; R3),

Wρ,ν(v
n(t), zn(t)) → Wρ,ν(v(t), z(t)),for some (v, z) whih solves (6.3)-(6.4). As ρ > 0 the whole sequene is onvergentto the unique energeti solution (v, z) and there exists a positive onstant c de-pending on α, ‖Wρ,ν‖C2,1(Yν
0
;R), (v0, z0), ‖L‖W 1,1(0,T ;(Yν(0))′), and ‖q‖W 1,1(0,T ) suhthat

‖(v − vn)(t)‖H1(Ω;R3) + ‖(z − zn)(t)‖Hν(Ω;R3×3dev ) ≤ c(τn)1/2 ∀t ∈ [0, T ]. (6.8)Full spae-time approximations. We onlude this analysis by ommenting onthe possibility of performing a full spae-time approximation of the problem. To thisaim let us refer to the above introdued notations, onsider some approximationparameter h > 0, and redue the energeti formulation (6.3)-(6.4) to the spaes
Yν

h,0 exhausting Yν
0 . We shall be onsidering in partiular some disrete values

{(vn
h,i, z

n
h,i)}

Nn

i=0 de�ned indutively from suitable initial data (vh,0, zh,0) ∈ Yν
h,0 byletting (vn

0 , zn
0 ) = (vh,0, zh,0) and solving the following inremental problem

(vn
h,i, z

n
h,i) ∈ Arg Min

(v,z)∈Yν
h,0

(

Wρ,ν(v, z) − 〈L(tni ), u〉 + D(z − zn
h,i−1)

) for i = 1, . . . , Nn.(6.9)Again, the unique solvability of the latter problems is ensured by uniform onvexityand lower semiontinuity, i.e., it is independent of h. We will denote as usual by
(vn

h , zn
h) the orresponding inremental solutions.Our �rst observation is that, arguing exatly as above, whenever the assumptions ofTheorem 6.1 are ful�lled and the initial data are bounded in energy independentlyof h, the usual bound

sup
t∈[0,T ]

Wρ,ν(v
n
h(t), zn

h(t)) and DissD(zn
h , [0, T ]) are bounded indep. of n and h,(6.10)an be obtained.Convergene for the spae-disretized problem. Assume h > 0. Then, weare in the position of reproduing the argument of Theorem 6.1 and dedue theexistene of a limiting spae-approximated energeti solution (vh, zh). To this aim,the restrition ν > 0 ould even be avoided whenever Yν

h are hosen to be �nitedimensional, for instane. Moreover, the fully disrete solution (vn
h , zn

h) onverges to
(vh, zh) in the sense of Lemma 6.3 as n → +∞. We shall not give a detailed proofof these fats but rather limit ourselves in observing that the energeti formulation27



(6.3)-(6.4) an be rewritten in Yν
h,0 with no intriay. In partiular, estimate (6.10)is again the starting point for the limit proedure.One the energeti solution (vh, zh) : [0, T ] → Yν

h,0 is found (uniqueness again followsin ase ρ > 0) we are in the ondition of onsidering the limit as h goes to zeroas well. To this aim, we shall assume that the orresponding initial data onvergetogether with their energies, namely
Wρ,ν(vh,0, zh,0) − 〈L(0), (vh(0), zh(0))〉 → Wρ,ν(v0, z0) − 〈L(0), (v0, z0)〉.In this ase, it is straightforward to hek that the bound (6.10) is preserved whilepassing to the limit in h. Assuming ν > 0, this entails the possibility of extratinga (not relabeled) subsequene pointwise onverging to an energeti solution (v, z) :

[0, T ] → Yν
0 . In ase ρ > 0, the latter is indeed the unique energeti solution whoseexistene is stated in Theorem 6.1. In order to hek this we brie�y omment onrelations (6.3)-(6.4). As for (6.3), let us �x t ∈ [0, T ] and any (v, z) ∈ Yν

0 andexploit the stability of (vh(t), zh(t)) in order to get that, for all (v, z) ∈ Yν ,
Wρ,ν(vh(t), zh(t)) − 〈L(t), (vh(t), zh(t))〉

≤ Wρ,ν(p
ν
h(v, z)) − 〈L(t), pν

h(v, z))〉 + D(zh − pν
h,2(v, z)).Hene, the stability of (v(t), z(t)) follows by passing to the limit in h. As for theupper energy estimate we �x a uniform partition Qm := {sm

j , j = 0, . . . , M : sm
j =

jt/m}, exploit the upper energy estimate for (vh, zh), and get that
Wρ,ν(vh(t), zh(t)) − 〈L(t), (vh(t), zh(t))〉 + q(t) +

m
∑

j=1

D(zh(s
m
j ) − zh(s

m
j−1))

≤ Wρ,ν(vh,0, zh,0) − 〈L(0), (vh,0, zh,0)〉 + q(0)

−

∫ t

0

〈ℓ̇(s), vh(s)〉 ds −

∫ t

0

〈ℓ̇(s), u(s)〉 ds.It hene su�es to pass to the limit in h �rst and then in m in order to getthe upper energy estimate for (v, z). Finally, the lower energy estimate for (v, z)follows as above from the upper energy estimate, stability, uniform onvexity of
Wρ,ν , and the ontinuity of L and q. We refer to [39℄ for a full proof of the aboveonvergene argument. However, we shall remark that no quantitative estimates forthe approximations are given.Convergene for the time-disretized problem. Let us onsider now the limitas h goes to 0 �rst. Owing to Lemma 5.2 we are in the position of establishing a(quantitative) strong onvergene result for the orresponding time disretized solu-tions (vn, zn). Indeed, one ould exhibit some expliit error ontrol whih howeverexplodes with n. Moreover, in the ase ν > 0, sine (vn, zn) are uniquely deter-mined, the subsequent limit in n an be taken exatly as above and the onvergeneto an energeti solution (v, z) is ensured.28



Joint onvergene. Assume now ν > 0. Owing to (6.10) we are of ourse inthe position of passing to the limit with respet to both n and h simultaneouslyin (vn
h , zn

h). By arguing as above the stability of the limit (v, z) will follow at oneby using the losedness of S and the onvergene of projetions. As for the upperenergy estimate, we ombine the above exploited tehniques and pass to the lim infin the following relation (see (6.6))
Wρ,ν(v

n
h(t), zn

h(t)) − 〈L(τn(t)), (vn
h(t), zn

h(t))〉 + q(τn(t)) + DissD(zn
h , [0, τn(t)])

≤ Wρ,ν(v0,h, z0,h) − 〈L(0), (v0,h, z0,h)〉 + q(0)

−

∫ τn(t)

0

〈ℓ̇(s), vn
h(s)〉 ds −

∫ τn(t)

0

〈ℓ̇(s), u(s)〉 ds. (6.11)One the upper energy estimate is established, the uniform onvexity of Wρ,ν theontinuity of L and q, and the stability of (v, z) entail that also the lower energyestimate holds. Namely, (v, z) is an energeti solution to (6.3)-(6.4) and it is uniqueas ρ > 0.Of ourse, whenever ρ > 0 we would be able to show some onvergene of order
1/2 in time. On the other hand, by passing to the limit in time we loose the haneto estimate the error in spae (see above). Hene, so far we are not able to providean expliit spae-time error bound for the joint limit proedure.7 The limits ρ, ν → 0.Up to this point, the parameters ρ and ν have been systematially assumed tobe �xed throughout the analysis. The limit ν → 0 is however of some interestsine it desribes the behavior of the model toward its non-regularized limit. As for
ρ we have to mention that our modeling hoie orresponds to the limit situation
ρ = 0 . On the other hand the smooth situation ρ > 0 is better suited for numerialimplementation. Moreover, all problems are ontinuously dependent on data for
ρ > 0 while energeti evolutions are not known to be unique for ρ = 0.In this setion we shall disuss the possibility of obtaining suitable asymptoti resultsfor ρ and (possibly) ν going to zero within the onstitutive relation, the minimumproblem, the inremental problem, and the evolution problem. We will expliitlytreat the spae approximated ase and disuss joint limits of parameters and timeand/or spae approximations.As a general remark, one should notie that the hoie ρ = ν = 0 does not a�etthe well-posedness of the minimum problems sine the uniform onvexity of theorresponding funtionals is preserved, this being true also for spae approximations.Seondly, a priori bounds on sequenes of solutions (either minimizing, inremental,or energeti) are usually available independently of the parameters. Whenever theompatness of sequenes of solutions is obtained, the ruial feature in order toidentify the limit of some possibly extrated subsequene is the Γ-onvergene (see29



below) of the approximating funtionals Wρ (in the zero-dimensional ase) and
Wρ,ν (in three dimensions).
Γ-onvergene issues. Let us ollet here some preliminary remarks on the on-vergene properties of funtions and funtionals under onsideration. The basinotion in this diretion is of ourse that of Γ-onvergene [17, 18℄. The reader isreferred to the monographs [3, 11℄ for a omprehensive disussion. Let us howeverreall here that, given a metri spae X and funtions gn, g : X → (−∞, +∞], wesay that gn → g in the sense of Γ−onvergene in X i�

g(x) ≤ lim inf
n→+∞

gn(xn) ∀xn → x and (7.12)
∀x ∈ X there exists xn → x suh that g(x) ≥ lim sup

n→+∞

gn(xn). (7.13)We shall lassially refer to (7.12) as Γ-liminf inequality and to xn in (7.13) asthe reovery sequene for x. Moreover, letting X be a Banah spae, we say that
gn → g in the sense of Moso [3℄ if gn → g in the sense of Γ-onvergene withrespet to both the strong and weak topology of X.Let us mention that the issue of the onvergene of rate-independent evolution prob-lems under approximation is indeed a ruial one. A general abstrat theory of
Γ-onvergene for rate-independent systems is detailed in [39℄.Heneforth, we shall refer to the urrent hoie (2.3) and expliitly ask the funtion
f to be onvex and non-dereasing. This entails in partiular that Fρ → F point-wise and non-dereasing. The smoothness of Fρ and the latter onvergene entailby means of [3, Thm. 2.40, p. 198℄ that Fρ → F in the sense of Γ-onvergene in
R

3×3dev . As a onsequene and by using [3, Thm. 2.15, p. 138℄, we have that
Wρ → W0 in the sense of Γ-onvergene in R

3×3sym × R
3×3dev . (7.14)As for the three-dimensional situation, let us start by observing that Fρ → F inthe sense of Γ-onvergene with respet to both the strong and the weak topologyin L2(Ω; R3×3dev) (namely, Fρ onverges to F0 in the sense of Moso [3℄). This fatfollows at one from [3, Thm. 2.40, p. 198℄ and the onvexity of Fρ. For all ν > 0�xed, we readily dedue in a quite similar way that Fρ,ν onverges to F0,ν in thesense of Moso in H1(Ω; R3×3dev). Let us make preise the latter statement with thefollowing.Lemma 7.1 (Γ-onvergene of the inelasti energy). Let ρk → ρ ≥ 0 and νk → ν ≥

0 be non-inreasing. Then Fρk,νk
→ Fρ,ν in the sense of Moso in Hj(ν)(Ω; R3×3dev).Proof. The above disussion may be readily extended in order to over the ase

νk → ν > 0. Let us turn to the situation ν = 0 and νk > 0 instead. Of ourse,the Γ−liminf inequality (7.12) easily follows from the Γ-onvergene Fρk
→ Fρand lower semiontinuity onsiderations. As for the reovery sequene, letting z ∈30



L2(Ω; R3×3dev) be �xed, we shall de�ne zk as the unique solution to the singularperturbation problem
zk + νkJzk = z in (H1(Ω; R3×3dev))′,where J : H1(Ω; R3×3dev) → (H1(Ω; R3×3dev))′ is the Riesz map. We have that (see, e.g.,Lions [26℄)

zk → z strongly in L2(Ω; R3×3dev) and νk

2

∫

Ω

|∇zk|
2 → 0.Moreover, whenever |z| ≤ c3 almost everywhere in Ω, the same bound holds for all

zk by the maximum priniple. Hene, we readily hek that
Fρk,νk

(zk) → Fρ,0(z)and the assertion follows.We shall now turn our attention to the onvergene of stored energies and state thefollowing.Lemma 7.2 (Γ-onvergene of the stored energy). Let ρk → ρ ≥ 0 and νk → ν ≥ 0be non-inreasing. Then Wρk ,νk
→ Wρ,ν in the sense of Moso in Yν.We will not provide the reader with a detailed proof. Of ourse, the argument anbe easily reprodued by arguing along the lines of the proof of Lemma 7.1.7.1 Constitutive relationLet us denote by (ε, z)ρ,τ the inremental solution to the onstitutive relation onthe partition P := {0 = t0 < t1 < · · · < tN−1 < tN = T} with diameter τ ,namely the right-ontinuous pieewise onstant interpolant on the time partition ofthe solutions {(εi

ρ, z
i
ρ)} to

(εi
ρ, z

i
ρ) ∈ Arg Min

(ε,z)∈R
3×3sym×R

3×3dev (

Wρ(ε, z) − σ(ti) : ε + D(z − zi−1
ρ )

)

i = 1, . . . , N,where σ ∈ W 1,1(0, T ; R3×3sym) and (ε0
ρ, z

0
ρ) = (ε0, z0) are given. Moreover, for all

ρ ≥ 0, we will denote by (ε, z)ρ,0 a solution for the time-ontinuous onstitutiverelation. Of ourse we would be in the position of onsidering approximating data
σρ,τ and (ε0, z0)ρ,τ as well. We limit ourselves to the above situation just for thesake of simpliity. The main result of this subsetion is the following.Theorem 7.3 (Convergene for the onstitutive relation). Let ρk → ρ ≥ 0 and
τk → τ ≥ 0 either being onstant or onverging to 0. Then, possibly up to theextration of a subsequene in the ase (ρ, τ) = (0, 0), we have that

(ε, z)(ρ,τ)k
→ (ε, z)ρ,τ pointwise in [0, T ].31



Indeed muh more is true sine the onvergene of the omponent z(ρ,τ)k
is uniformand we have onvergenes also of energies and dissipations. Moreover, one ouldonsider the limits ρk → ρ > 0 and/or τk → τ > 0 as well (whih we howeverbelieve to be less interesting). We limit ourselves to the above statement for thesake of larity.The situation of Theorem 7.3 is desribed in Figure 1 below where every parameterhoie (ρ, τ) in the ρ × τ square gives rise to a solution either of the inrementalproblem (for τ > 0) or the time-ontinuous problem (τ = 0). Of ourse this solutionis unique if (ρ, τ) 6= (0, 0). Theorem 7.3 entails that all the depited limits (arrows)an be performed.PSfrag replaements
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Figure 1: Convergenes for the onstitutive relationProof. By referring to Figure 1, we shall proeed by disussing limits of type a, b,, and d.Limits of type a, namely (ρ, τ)k → (ρ, 0). These limits follow diretly from Theorem3.2.Limits of type b, namely (ρ, τ)k → (0, τ) with τ > 0. Sine the time partitionis �xed, the onvergene of the whole sequene (ε, z)(ρk,τ) to the orrespondinginremental solution (ε, z)(0,τ) is ensured by the Γ-onvergene of the orrespondingenergy funtionals, their equi-oerivity with respet to ρ, the ontinuity of R, andthe ontinuous dependene of the inremental problem for ρ ≥ 0.The limit , namely (ρ, τ)k → (0, 0). Let us now turn to the joint limit. Again, theusual energy and dissipation bounds may be obtained and, by suitably hoosing notrelabeled subsequenes, we �nd (ε, z) : [0, T ] → R3×3sym ×R
3×3dev suh that z(ρ,τ)k

(t) →
z(t) and ε(ρ,τ)k

(t) → ε(t) for all t ∈ [0, T ]. As for to prove the stability of (ε(t), z(t))we simply need to speialize the losure argument in Theorem 3.2 by onsideringthe parameter dependene on ρ. Here, the Γ−onvergene (7.14) is again ruial.In partiular, let us rede�ne (see (3.1)), for all ρ ≥ 0,
Sρ(t) :=

{

(ε, z) ∈ R
3×3sym × R

3×3dev suh that, ∀(ε, z) ∈ R
3×3sym × R

3×3dev ,
Wρ(ε, z) − σ(t) : ε ≤ Wρ(ε, z) − σ(t) : ε + D(z − z)

}

, (7.15)32



and Sρ := ∪t∈[0,T ](t, Sρ(t)). Owing to the Γ−onvergene (7.14) and the ontinuityof σ we readily hek that, for all (tρ, ερ, zρ) ∈ Sρ suh that (tρ, ερ, zρ) onverges to
(t0, ε0, z0) as ρ → 0 one has that (t0, ε0, z0) ∈ S0. As for the upper energy estimate,we readily pass to the lim inf in the disrete upper equality estimate (3.14) by meansof the Γ-onvergene (7.14) and the fat that Wρ → W0 pointwise. Finally, the fullenergy equality follows again from stability.The limit d, namely (ρ, 0)k → (0, 0). We shall not disuss this limit in detail sineit follows easily along the lines of limit  above.7.2 The minimum problemWe investigate for simpliity the situation of �xed data uDir ∈ H1(Ω; R3), ℓ ∈
(H1(Ω; R3))′, and z ∈ L2(Ω; R3×3dev). Of ourse, some more general situation ofparameter-dependent data ould be onsidered as well (see also the forthomingLemma 7.6). Moreover, let us introdue for the purposes of this setion the notation
Iρ,ν : Yν → (−∞, +∞] as

Iρ,ν(u, z) := Wρ,ν(u, z) − 〈ℓ, u〉 + D(z − z) ∀(u, z) ∈ Yν ,for all ρ, ν ≥ 0. Problem (4.1) has a unique solution (u, z)ρ,ν ∈ Yν(uDir) for allgiven parameters ρ, ν ≥ 0. Moreover, we readily hek that Wρ,ν((u, z)ρ,ν) turnsout to be bounded independently of ρ and ν. Hene, (u, z)ρ,ν is weakly preompatin Yν .Moreover, we shall onsider the spae approximated situation desribed by the mesh-size h > 0. For the sake of notational simpliity, we redue ourselves to the over-simpli�ed situation of data independent of h . In partiular, we assume uDir ∈ Uhfor h small enough and de�ne Yν
h(uDir) := Yν

h,0 + (uDir, 0). As for the general ase,the following disussion has to be restrited to the situation where onvergene (4.4)holds for the approximating data uDir
h , ℓh, and zh. Consequently, we will make useof the notation

Iρ,ν,h(u, z) := Iρ,ν(u, z) for (u, z) ∈ Yν
h and + ∞ otherwise in Yν .We shall start by providing the following onvergene result.Lemma 7.4 (Γ-onvergene of Iρ,ν,h). Let ρk → ρ ≥ 0, νk → ν ≥ 0, and h > 0.Then

Iρk,νk
→ Iρ,ν in the sense of Moso in Yν , (7.16)

Iρk,νk,h → Iρ,ν,h in the sense of Moso in Yν
h . (7.17)Moreover, let hk → 0. Then

I(ρ,ν,h)k
→ Iρ,ν in the sense of Moso in Yν . (7.18)33



Proof. The onvergene in (7.16) follows diretly from Lemma 7.2 and the strongontinuity of D in L2(Ω, R3×3dev).Convergene (7.17) is also straightforward. Namely, the lim inf inequality for weaklyonverging sequenes is immediate and the onstrution of reovery sequenes fol-lows at one from pointwise onvergene (reall that Y0
h = Y1

h hene no singularperturbation is needed here).The full onvergene situation of (7.18) deserves some omment. Given any (u, z) ∈
Yν , we de�ne

(u, z)(ρ,ν,h)k
:= (qhk

(u), rνk

hk
(z)).Owing to the onvergene and boundedness properties of the projetors qhk

and
rνk

hk
(see Setion 1), we readily dedue that (u, z)(ρ,ν,h)k

→ (u, z) strongly in Yνand
W(ρ,ν,h)k

((u, z)(ρ,ν,h)k
) → Wρ,ν(u, z).The lim inf inequality follows one again from lower semiontinuity.The main result of this subsetion onerns the possibility of onsidering (possiblyjoint) limits in the parameters ρ, ν, and h and is graphially represented in Figure2 below.
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h Figure 2: Convergenes for the minimum problemTheorem 7.5 (Convergene for the minimum problem). Let ρk → ρ ≥ 0, νk →
ν ≥ 0, and hk → h ≥ 0 either being onstant or onverging to 0. Then

(u, z)(ρ,ν,h)k
→ (u, z)ρ,ν,h weakly in Yν (Yν

h if h > 0).This result, whose proof is not reported, follows at one from Lemma 7.4 and theequi-oerivity and uniform onvexity of the funtionals. The limits (ρ, ν, h) →
(ρ, ν, 0) where already disussed in detail in Setion 4.7.3 The inremental problemWe shall extend the latter asymptotis for the minimum problem to the situationof the inremental problem on the �xed partition P := {0 = t0 < t1 < · · · <34



tN−1 < tN = T}. To this aim let the data {uDir,i}N
i=0, {ℓi}N

i=0 and the initial datum
(u0, z0) be suitably given independently of ρ and ν (for simpliity). Then, for all
ρ, ν ≥ 0 we are entitled to solve the inremental problem and �nd a solution vetor
{(ui

ρ,ν, z
i
ρ,ν)}

N
i=0. Now, arguing as above, we easily obtain that Wρ,ν(u

i
ρ,ν, z

i
ρ,ν) isbounded independently of ρ, ν, and i. For all given ρ, ν ≥ 0, i = 1, . . . , N , and

z ∈ L2(Ω; R3×3dev), we introdue the funtionals J i
ρ,ν(·, ·, z) : Yν → (−∞, +∞] as

J i
ρ,ν(u, z, z) := Wρ,ν(u, z) − 〈ℓi, u〉 + D(z − z) ∀(u, z) ∈ YνMoreover, possibly taking into aount the spae-approximated situation, one wouldneed to introdue spae approximated data {uDir,i

h }N
i=0, {ℓi

h}
N
i=0 and the initial da-tum (u0

h, z
0
h). Let us however restrit ourselves to the (over)simpli�ed situationwhere the latter an be assumed to be independent of h. For all ρ, ν ≥ 0,

h > 0, i = 1, . . . , N , and z ∈ L1(Ω; R3×3dev), we shall make use of the funtionals
J i

ρ,ν,h(·, ·, z) : Yν → (−∞, +∞] de�ned as
J i

ρ,ν,h(u, z, z) := J i
ρ,ν(u, z, z) if (u, z) ∈ Yν

h and + ∞ otherwise.Let us start from the following Γ-onvergene result.Lemma 7.6 (Γ-onvergene of J i
ρ,ν,h). Let ρk → ρ ≥ 0, νk → ν ≥ 0, and h > 0.Moreover, let zk → z strongly in L1(Ω; R3×3dev). Then, for all i = 1, . . . , N ,

J i
ρk,νk

(·, ·, zk) → J i
ρ,ν(·, ·, z) in the sense of Moso in Yν , (7.19)

J i
ρk,νk,h(·, ·, zk) → J i

ρ,ν,h(·, ·, z) in the sense of Moso in Yν
h . (7.20)Moreover, let hk → 0. Then, for all i = 1, . . . , N ,

J i
(ρ,ν,h)k

(·, ·, zk) → J i
ρ,ν(·, ·, z) in the sense of Moso in Yν . (7.21)We are not reporting here the proof of the latter lemma for the sake of brevity.Indeed, the argument may be easily adapted from that of Lemma 7.4 by exploitingthe strong ontinuity of D in L1(Ω; R3×3dev), its lower semiontinuity in L2(Ω; R3×3dev),and the triangle inequality (2.4).By using Lemma 7.6 and denoting by (u, z)ρ,ν and (u, z)ρ,ν,h the inremental solu-tions related to the parameter hoie (ρ, ν) and, possibly, the spae approximation,the main result of this subsetion reads as follows.Theorem 7.7 (Convergene for the inremental problem for ν > 0). Let ν > 0 be�xed and ρk → ρ, and hk → h ≥ 0 either being onstant of onverging to 0. Then,for all t ∈ [0, T ],

(u(t), z(t))ρk ,ν,hk
→ (u(t), z(t))ρ,ν,h strongly in Yν .Of ourse, we would be in the position of onsidering the ase νk → ν, ρk → ρ > 0,and/or hk → h > 0 as well. We however restrit to the above situation for the sakeof larity. 35



Lemma 7.6 entails the onvergene of the inremental solutions as soon as the strongonvergene of zρk,ν or zρk ,ν,hk
in L1(Ω; R3×3dev) is ensured. In order to obtain thelatter from the boundedness of energy through ompatness we are fored one againto restrit our attention to the ase ν > 0. The proof of Theorem 7.7 follows thenby simply taking steps in i.7.4 The evolution problemOwing to the latter disussion on the inremental problem (see Lemma 7.6), we shallrestrit ourselves to the situation ν > 0 from the very beginning (note that existeneis not known for ν = 0). For all ρ, h ≥ 0, let us denote by (v, z)ρ : [0, T ] → Yν

0 and
(v, z)ρ,h : [0, T ] → Yν

0,h the solutions to the orresponding energeti formulations for
h = 0 and h > 0 (here and in what follows we have assumed the data L, q, and theinitial datum (v0, z0) to be �xed independently of all approximations). The lattersolutions are known to exists and turn out to be unique for ρ > 0. Moreover, let
(v, z)ρ,τ and (v, z)ρ,τ,h denote the unique inremental solutions to the problem ona given partition with diameter τ .A variety of onvergene results for (v, z)ρ, (v, z)ρ,h, (v, z)ρ,τ , and (v, z)ρ,τ,h havealready been obtained. This subsetion will omplement the above disussions andomplete the piture of onvergene results for the time-ontinuous evolution prob-lem. In partiular, as soon as ν > 0 is �xed, we are entitled to take (possibly joint)limits in (ρ, τ, h) as it is graphially depited in Figure 3 below.PSfrag replaements
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Figure 3: Convergenes for the evolution problem (ν > 0)The main result of this subsetion reads as follows.Theorem 7.8 (Convergene for the evolution problem for ν > 0). Let ν > 0 be�xed and ρk → ρ, τk → τ ≥ 0, and hk → h ≥ 0 either being onstant of onvergingto 0. Then, possibly extrating not-relabeled subsequenes if (ρ, τ) = (0, 0), for all
t ∈ [0, T ],

(v(t), z(t))(ρ,τ,h)k
→ (v(t), z(t))ρ,τ,h strongly in Yν

0 .Sketh of the proof. Referring to Figure 3, let us start by observing that the limits of36



type a and b were already obtained in Theorem 7.7 and Theorem 6.1, respetively.Moreover, the limits of type c have been disussed at the end of Setion 6.Limits of type d. This limits an be established by simply adapting to the urrentthree-dimensional situation the argument of Theorem 7.3. In ase h > 0, the latteradaptation is even simpli�ed by �nite-dimensionality and the onvergene resultwould hold for ν = 0 as well.The limit e. By suitably extrating (not-relabeled) subsequenes we readily �nd
(v, z) : [0, T ] → Yν

0 suh that, for all t ∈ [0, T ],
(v(t), z(t))(ρ,τ,h)k

→ (v(t), z(t)) weakly in Yν
0 ,

z(ρ,τ,h)k
(t) → z(t) strongly in L2(Ω; R3×3dev). (7.22)Hene, we are left to prove that indeed (v, z) is a solution of the evolution problem,i.e., hek for the stability ondition (6.1) and the energy equality (6.2).As for the former, we exploit Lemma 7.2 and, for all (v, z) ∈ Yν

0 , by letting (v, z)k :=
(qhk

(v), rν
hk

(z)) we hek that
W0,ν(v(t), z(t)) − 〈L(t), (v(t), z(t))〉

≤ lim inf
k→+∞

(

Wρk ,ν((v(tτk
), z(tτk

))(ρ,τ,h)k
) − 〈L(tτk

), ((v(tτk
), z(tτk

))(ρ,τ,h)k
)
)

≤ lim inf
k→+∞

(

Wρk,ν((v, z)k) − 〈L(tτk
), ((v, z)k) + D(zh − z(ρ,τ,h)k

)
)

= W0,ν(v, z) − 〈L(t), (v, z)〉 + D(z − z(t))where we used some obvious notation for the point tτk
on the time-partition ofdiameter τk suh that 0 ≤ t − tτk

< τk, Lemma 7.2, the stability of (v, z)(ρ,τ,h)k
attime tτk

, and the strong ontinuity of D in L2(Ω; R3×3dev).The upper energy estimate (and hene (6.2)) follows by simply passing to the lim infas (ρ, τ, h)k → (0, 0, 0) in the disrete upper energy estimate (6.6).The limit f. This limit an be obtained along the same lines of limit e above, theargument being even simpli�ed by the fat that here τk = 0 and the upper energyestimate follows by passing to the lim inf as (ρ, h)k → (0, 0) in the time-ontinuousupper energy estimate (6.7).Referenes[1℄ S. Antman, J. L. Eriksen, D. Kinderlehrer, and I. Müller. Metastability andInompletely Posed Problems. Springer, New York, 1987.[2℄ M. Arndt, M. Griebel, and T. Roubí£ek. Modelling and numerial simulation ofmartensiti transformation in shape memory alloys. Contin. Meh. Thermodyn.,15 (2003), 5:463�485. 37
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