research

Intrusion and extrusion of water in hydrophobic mesopores

Abstract

We present experimental and theoretical results on intrusion-extrusion cycles of water in hydrophobic mesoporous materials, characterized by independent cylindrical pores. The intrusion, which takes place above the bulk saturation pressure, can be well described using a macroscopic capillary model. Once the material is saturated with water, extrusion takes place upon reduction of the externally applied pressure; Our results for the extrusion pressure can only be understood by assuming that the limiting extrusion mechanism is the nucleation of a vapour bubble inside the pores. A comparison of calculated and experimental nucleation pressures shows that a proper inclusion of line tension effects is necessary to account for the observed values of nucleation barriers. Negative line tensions of order 10−11J.m−110^{-11} \mathrm{J.m}^{-1} are found for our system, in reasonable agreement with other experimental estimates of this quantity

    Similar works

    Full text

    thumbnail-image

    Available Versions