608 research outputs found

    Variational Learning for Finite Inverted Dirichlet Mixture Models and Its Applications

    Get PDF
    Clustering is an important step in data mining, machine learning, computer vision and image processing. It is the process of assigning similar objects to the same subset. Among available clustering techniques, finite mixture models have been remarkably used, since they have the ability to consider prior knowledge about the data. Employing mixture models requires, choosing a standard distribution, determining the number of mixture components and estimating the model parameters. Currently, the combination of Gaussian distribution, as the standard distribution, and Expectation Maximization (EM), as the parameter estimator, has been widely used with mixture models. However, each of these choices has its own limitations. In this thesis, these limitations are discussed and addressed via defining a variational inference framework for finite inverted Dirichlet mixture model, which is able to provide a better capability in modeling multivariate positive data, that appear frequently in many real world applications. Finite inverted Dirichlet mixtures enable us to model high-dimensional, both symmetric and asymmetric data. Compared to the conventional expectation maximization (EM) algorithm, the variational approach has the following advantages: it is computationally more efficient, it converges fast, and is able to estimate the parameters and the number of the mixture model components, automatically and simultaneously. The experimental results validate the presented approach on different synthetic datasets and shows its performance for two interesting and challenging real world applications, namely natural scene categorization and human activity classification

    A Study on Variational Component Splitting approach for Mixture Models

    Get PDF
    Increase in use of mobile devices and the introduction of cloud-based services have resulted in the generation of enormous amount of data every day. This calls for the need to group these data appropriately into proper categories. Various clustering techniques have been introduced over the years to learn the patterns in data that might better facilitate the classification process. Finite mixture model is one of the crucial methods used for this task. The basic idea of mixture models is to fit the data at hand to an appropriate distribution. The design of mixture models hence involves finding the appropriate parameters of the distribution and estimating the number of clusters in the data. We use a variational component splitting framework to do this which could simultaneously learn the parameters of the model and estimate the number of components in the model. The variational algorithm helps to overcome the computational complexity of purely Bayesian approaches and the over fitting problems experienced with Maximum Likelihood approaches guaranteeing convergence. The choice of distribution remains the core concern of mixture models in recent research. The efficiency of Dirichlet family of distributions for this purpose has been proved in latest studies especially for non-Gaussian data. This led us to study the impact of variational component splitting approach on mixture models based on several distributions. Hence, our contribution is the application of variational component splitting approach to design finite mixture models based on inverted Dirichlet, generalized inverted Dirichlet and inverted Beta-Liouville distributions. In addition, we also incorporate a simultaneous feature selection approach for generalized inverted Dirichlet mixture model along with component splitting as another experimental contribution. We evaluate the performance of our models with various real-life applications such as object, scene, texture, speech and video categorization

    Variational Learning for the Inverted Beta-Liouville Mixture Model and Its Application to Text Categorization

    Get PDF
    he finite invert Beta-Liouville mixture model (IBLMM) has recently gained some attention due to its positive data modeling capability. Under the conventional variational inference (VI) framework, the analytically tractable solution to the optimization of the variational posterior distribution cannot be obtained, since the variational object function involves evaluation of intractable moments. With the recently proposed extended variational inference (EVI) framework, a new function is proposed to replace the original variational object function in order to avoid intractable moment computation, so that the analytically tractable solution of the IBLMM can be derived in an effective way. The good performance of the proposed approach is demonstrated by experiments with both synthesized data and a real-world application namely text categorization

    The Discrete Infinite Logistic Normal Distribution

    Full text link
    We present the discrete infinite logistic normal distribution (DILN), a Bayesian nonparametric prior for mixed membership models. DILN is a generalization of the hierarchical Dirichlet process (HDP) that models correlation structure between the weights of the atoms at the group level. We derive a representation of DILN as a normalized collection of gamma-distributed random variables, and study its statistical properties. We consider applications to topic modeling and derive a variational inference algorithm for approximate posterior inference. We study the empirical performance of the DILN topic model on four corpora, comparing performance with the HDP and the correlated topic model (CTM). To deal with large-scale data sets, we also develop an online inference algorithm for DILN and compare with online HDP and online LDA on the Nature magazine, which contains approximately 350,000 articles.Comment: This paper will appear in Bayesian Analysis. A shorter version of this paper appeared at AISTATS 2011, Fort Lauderdale, FL, US

    Variational Approaches For Learning Finite Scaled Dirichlet Mixture Models

    Get PDF
    With a massive amount of data created on a daily basis, the ubiquitous demand for data analysis is undisputed. Recent development of technology has made machine learning techniques applicable to various problems. Particularly, we emphasize on cluster analysis, an important aspect of data analysis. Recent works with excellent results on the aforementioned task using finite mixture models have motivated us to further explore their extents with different applications. In other words, the main idea of mixture model is that the observations are generated from a mixture of components, in each of which the probability distribution should provide strong flexibility in order to fit numerous types of data. Indeed, the Dirichlet family of distributions has been known to achieve better clustering performances than those of Gaussian when the data are clearly non-Gaussian, especially proportional data.  Thus, we introduce several variational approaches for finite Scaled Dirichlet mixture models. The proposed algorithms guarantee reaching convergence while avoiding the computational complexity of conventional Bayesian inference. In summary, our contributions are threefold. First, we propose a variational Bayesian learning framework for finite Scaled Dirichlet mixture models, in which the parameters and complexity of the models are naturally estimated through the process of minimizing the Kullback-Leibler (KL) divergence between the approximated posterior distribution and the true one. Secondly, we integrate component splitting into the first model, a local model selection scheme, which gradually splits the components based on their mixing weights to obtain the optimal number of components. Finally, an online variational inference framework for finite Scaled Dirichlet mixture models is developed by employing a stochastic approximation method in order to improve the scalability of finite mixture models for handling large scale data in real time. The effectiveness of our models is validated with real-life challenging problems including object, texture, and scene categorization, text-based and image-based spam email detection

    A Study on Anomaly Detection Using Mixture Models

    Get PDF
    With the increase in networks capacities and number of online users, threats of different cyber attacks on computer networks also increased significantly, causing the loss of a vast amount of money every year to various organizations. This requires the need to identify and group these threats according to different attack types. Many anomaly detection systems have been introduced over the years based on different machine learning algorithms. More precisely, unsupervised learning algorithms have proven to be very effective. In many research studies, to build an effective ADS system, finite mixture models have been widely accepted as an essential clustering method. In this thesis, we deploy different non-Gaussian mixture models that have been proven to model well bounded and semi-bounded data. These models are based on the Dirichlet family of distributions. The deployed models are tested with Geometric Area Analysis Technique (GAA) and with an adversarial learning framework. Moreover, we build an effective hybrid anomaly detection system with finite and in-finite mixture models. In addition, we propose a feature selection approach based on the highest vote obtained. We evaluated the performance of mixture models with Geometric Area Analysis technique based on Trapezoidal Area Estimation (TAE) and the effect of adversarial learning on ADS performance via extensive experiments based on well-known data sets

    A Study on Online Variational learning : Medical Applications

    Get PDF
    Data mining is an extensive area of research which is applied in various critical domains. In clinical aspect, data mining has emerged to assist clinicians in early detection, diagnosis and prevention of diseases. On the other hand, advances in computational methods have led to the implementation of machine learning in multi-modal clinical image analysis such as in CT, X-ray, MRI, microscopy among others. A challenge to these applications is the high variability, inconsistent regions with missing edges, absence of texture contrast and high noise in the background of biomedical images. To overcome this limitation various segmentation approaches have been investigated to address these shortcomings and to transform medical images into meaningful information. It is of utmost importance to have the right match between the bio-medical data and the applied algorithm. During the past decade, finite mixture models have been revealed to be one of the most flexible and popular approaches in data clustering. Here, we propose a statistical framework for online variational learning of finite mixture models for clustering medical images. The online variational learning framework is used to estimate the parameters and the number of mixture components simultaneously in a unified framework, thus decreasing the computational complexity of the model and the over fitting problems experienced with maximum likelihood approaches guaranteeing convergence. In online learning, the data becomes available in a sequential order, thus sequentially updating the best predictor for the future data at each step, as opposed to batch learning techniques which generate the best predictor by learning the entire data set at once. The choice of distributions remains the core concern of mixture models in recent research. The efficiency of Dirichlet family of distributions for this purpose has been proved in latest studies especially for non-Gaussian data. This led us to analyze online variational learning approach for finite mixture models based on different distributions. iii To this end, our contribution is the application of online variational learning approach to design finite mixture models based on inverted Dirichlet, generalized inverted Dirichlet with feature selection and inverted Beta-Liouville distributions in medical domain. We evaluated our proposed models on different biomedical image data sets. Furthermore, in each case we compared the proposed algorithm with other popular algorithms. The models detect the disease patterns with high confidence. Computational and statistical approaches like the ones presented in our work hold a significant impact on medical image analysis and interpretation in both clinical applications and scientific research. We believe that the proposed models have the capacity to address multi modal biomedical image data sets and can be further applied by researchers to analyse correct disease patterns

    spatial and temporal predictions for positive vectors

    Get PDF
    Predicting a given pixel from surrounding neighboring pixels is of great interest for several image processing tasks. To model images, many researchers use Gaussian distributions. However, some data are obviously non-Gaussian, such as the image clutter and texture. In such cases, predictors are hard to derive and to obtain. In this thesis, we analytically derive a new non-linear predictor based on an inverted Dirichlet mixture. The non-linear combination of the neighbouring pixels and the combination of the mixture parameters demonstrate a good efficiency in predicting pixels. In order to prove the efficacy of our predictor, we use two challenging tasks, which are; object detection and image restoration. We also develop a pixel prediction framework based on a finite generalized inverted Dirichlet (GID) mixture model that has proven its efficiency in several machine learning applications. We propose a GID optimal predictor, and we learn its parameters using a likelihood-based approach combined with the Newton-Raphson method. We demonstrate the efficiency of our proposed approach through a challenging application, namely image inpainting, and we compare the experimental results with related-work methods. Finally, we build a new time series state space model based on inverted Dirichlet distribution. We use the power steady modeling approach and we derive an analytical expression of the model latent variable using the maximum a posteriori technique. We also approximate the predictive density using local variational inference, and we validate our model on the electricity consumption time series dataset of Germany. A comparison with the Generalized Dirichlet state space model is conducted, and the results demonstrate the merits of our approach in modeling continuous positive vectors
    corecore