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Abstract

Variational Approaches for Learning Finite Scaled Dirichlet Mixture

Models

Dinh Hieu Nguyen

With a massive amount of data created on a daily basis, the ubiquitous demand for

data analysis is undisputed. Recent development of technology has made machine learning

techniques applicable to various problems. Particularly, we emphasize on cluster analysis,

an important aspect of data analysis. Recent works with excellent results on the aforemen-

tioned task using finite mixture models have motivated us to further explore their extents

with different applications. In other words, the main idea of mixture model is that the ob-

servations are generated from a mixture of components, in each of which the probability

distribution should provide strong flexibility in order to fit numerous types of data. Indeed,

the Dirichlet family of distributions has been known to achieve better clustering perfor-

mances than those of Gaussian when the data are clearly non-Gaussian, especially propor-

tional data. Thus, we introduce several variational approaches for finite Scaled Dirichlet

mixture models. The proposed algorithms guarantee reaching convergence while avoiding

the computational complexity of conventional Bayesian inference. In summary, our con-

tributions are threefold. First, we propose a variational Bayesian learning framework for

finite Scaled Dirichlet mixture models, in which the parameters and complexity of the mod-

els are naturally estimated through the process of minimizing the Kullback-Leibler (KL)

divergence between the approximated posterior distribution and the true one. Secondly, we

integrate component splitting into the first model, a local model selection scheme, which

gradually splits the components based on their mixing weights to obtain the optimal num-

ber of components. Finally, an online variational inference framework for finite Scaled

Dirichlet mixture models is developed by employing a stochastic approximation method in

order to improve the scalability of finite mixture models for handling large scale data in

real time. The effectiveness of our models is validated with real-life challenging problems

including object, texture, and scene categorization, text-based and image-based spam email

detection.
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Chapter 1

Introduction

1.1 Cluster Analysis via Finite Mixture Models

Cluster analysis can be understood as the process of detecting different groups within a

considered dataset [1]. In other words, similar data points are naturally categorized into the

same group without the prior knowledge of the true number of groups. Undoubtedly, the

aforementioned exploratory problem has been frequently discussed due to its applications

among various disciplines [2]. For instance, detecting spam emails is considered as a highly

challenging task due to the fact that they are becoming more insidious as well as the need

of identifying them in real time. With ubiquity of emails in both personal and professional

environments, an efficient tool for finding spams is crucial, and recurrent spam emails have

been known as the cause for the decline in productivity and additional financial cost among

various organizations [3]. Image clustering is another task which has attracted many recent

studies [4], [5], [6]. Indeed, it is the heterogeneous essence of the images that raises as

a huge obstacle to any proposed method. In other words, all the pixels containing most

important features should be identified and analyzed, in which the context and behavior

of each pixel could be learned through its position and value, respectively. Therefore, an

accurate mathematical representation of the images is a key step in order to efficiently

analyzing them [7].

Probabilistic models have been widely chosen for their versatility in different applica-

tions [8], [9], [10], [11]. With the initial assumption that the data are originated from a

mixture of components following a particular probabilistic distribution, the parameters are

then updated within the Expectation Maximization (EM) framework [12] in order to find

1



Figure 1: Different shapes of Scaled Dirichlet distribution

the optimal fit of the data points to the model [13]. Therefore, the flexibility of the chosen

distribution plays an important role in the outcome of the model. Gaussian distribution has

been a popular choice due to its adaptability to many cases [14], [15], [16], [17]. However,

real life data come in with many different properties [18], many of which can be clearly

seen as non-Gaussian, such as proportional data [19], for which Dirichlet family of distribu-

tions has been proven to be a more acclaimed choice for cluster analysis [20], [4], [21]. In

addition, recent applications of Scaled Dirichlet distribution on anomaly detection and text

clustering have proven its modeling capabilities [22], [23], [24]. With different parameter

values, Scaled Dirichlet distribution’s shapes are presented in Fig. 1.

The inference process is another crucial part in statistical modeling. Maximum Likeli-

hood Estimation (MLE) is among the most used estimation approaches due to its simplicity
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in terms of implementation [25], [26]. Nonetheless, the process of maximizing the likeli-

hood function could deviate from the global maximum and converge to a local maximum

instead, which results in an unsatisfactory performance. Furthermore, ML also suffers

from its sensitivity to the initialization [27]. Bayesian inference can overcome the pre-

vious disadvantages with the introduction of prior knowledge. Still, since the marginal

distribution is intractable, it requires additional approximation methods such as Markov

chain Monte Carlo (MCMC) [28] and Laplace’s approximation [29]. Unfortunately, the

drawbacks including complex computation and inability to ensure convergence outweigh

the supplementary effort, causing some unnecessary compromises during implementation

despite their applications among a variety of problems.

The variational approach has been then introduced with the inherited strengths from

conventional Bayesian inference while avoiding its disadvantages [4], [30]. Its main idea

is based on using an approximated variant of the true posterior distribution. Then, their dif-

ference is minimized by maximizing the lower bound of the joint likelihood function using

Kullback-Leibler (KL) divergence. With the integrated approximation scheme, the vari-

ational framework can simultaneously update the model’s parameters and determine the

optimal number of components. Recently, it has received increasing attention with many

applications in different domains such as image clustering, spam detection, and image seg-

mentation. Furthermore, it has been shown that online learning can handle large scale data

effectively [31].

1.2 Contributions

The goal of this thesis is to introduce several novel variational approaches for finite Scaled

Dirichlet mixture models including the mean field variational inference without a local

model selection, mean field variational inference with component splitting, and online

stochastic variational inference. The contributions are listed as follows:

☞ Data Clustering using Variational Learning of Finite Scaled Dirichlet Mixture

Models

We propose the application of variational inference on Scaled Dirichlet mix-

ture models, a more generalized and flexible distribution than Dirichlet, having

an additional scale parameter, which determines the spread of the distribution.

3



The parameters as well as the model’s complexity are optimized through the

minimization of the KL divergence. This work has been accepted by the 28th

International Symposium on Industrial Electronics.

☞ Data Clustering using Variational Learning of Finite Scaled Dirichlet Mixture

Models with Component Splitting

A variational Bayesian inference for finite Scaled Dirichlet mixture model is

proposed along with component splitting, a local model selection framework.

The main idea is starting from two components and then gradually adding new

components by splitting existing ones based on their mixing weights. The op-

timal number of components is achieved when the splitting test is no longer

applicable. This contribution has been submitted to the 16th International Con-

ference on Image Analysis and Recognition.

☞ Data Clustering using Online Variational Learning of Finite Scaled Dirichlet

Mixture Models

We introduce an online variational Bayesian framework for finite Scaled Dirich-

let mixture models. The proposed method is capable of estimating values for

the parameters as well as computing the model’s complexity in a sequential way

for large scale data in real time. This research work has been submitted to the

20th International Conference on Information Reuse and Integration for Data

Science.

1.3 Thesis Overview

❏ Chapter 1 briefly introduced the fundamentals of cluster analysis along with several

current prominent applications. The motivation for the determined probabilistic dis-

tribution and the variational inference framework are also clearly explained.

❏ In Chapter 2, we develop a variational inference learning approach for Scaled Dirich-

let mixture models, which could simultaneously estimate the parameters and find the

optimal number of components. Different real-life challenging problems including

texture and object clustering are used for validating the performance of the proposed

model.

4



❏ In chapter 3, we integrate component splitting, a local model selection method, to

assist the model’s complexity prediction process. Our model has been tested with

extensive experiments consisting of spam email detection, texture, object, and scene

clustering. The results have shown the effectiveness of the proposed approach.

❏ Chapter 4 describes the application of online variational approach on finite Scaled

Dirichlet mixture models. With the idea of stochastic variational inference, both the

parameters and model’s complexity are computed efficiently for large scale datasets.

The effectiveness of the model is tested with demanding applications such as email

spam detection and image categorization.

❏ In conclusion, we briefly summarize our contributions and some remarks for poten-

tial future works

5



Chapter 2

Variational Learning of Finite Scaled

Dirichlet Mixture Models

In this chapter, we propose a variational framework for Scaled Dirichlet mixture models.

The prominent advantages include the ability to automatically update the parameters as

well as estimate the model’s complexity. Indeed, the variational inference can be seen as

an optimization process, in which we focus on minimizing the difference between approx-

imated posterior distribution and the true one using KL divergence. The performance of

the proposed method is validated with different challenging problems such as texture and

object clustering.

2.1 Finite Scaled Dirichlet Mixture Model

Assuming a set of N D-dimensional vectors generated from Scaled Dirichlet distribution

X =
(

~X1, ..., ~XN

)

. Then, the vectors follow the probability density function p
(

~Xi | ~α, ~β
)

:

p
(

~Xi | ~α, ~β
)

=
Γ (α+)

∏D

d=1 Γ (αd)

D
∏

d=1

βαd

d Xαd−1
id

(

D
∑

d=1

βdXid

)α+
(1)

where Γ(·) is the Gamma function, ~α = (α1, ..., αD), αd > 0 for d = 1, ..., D, ~β =

(β1, ..., βD), 0 ≤ βd ≤ 1 for d = 1, ..., D,
D
∑

d=1

βd = 1, and α+ =
D
∑

d=1

αd.

Then, the M-component finite Scaled Dirichlet mixture model (SDMM) is defined as

6



folllows:

p
(

~Xi | ~π, ~αj, ~βj

)

=
M
∑

j=1

πjp
(

~Xi | ~αj, ~βj

)

(2)

where ~π = (π1, ..., πM) is the vector of mixing coefficients with respect to each compo-

nent, which are positive and sum to 1. Then, ~αj and ~βj denote the distribution’s parameters

with respect to component j. So, the likelihood function is:

p
(

X | ~π, ~αj, ~βj

)

=
N
∏

i=1

[

M
∑

j=1

πjp
(

~Xi | ~αj, ~βj

)

]

(3)

For each vector ~Xi, a M -dimensional assigning vector ~Zi = (Zi1, ..., ZiM), where

Zij ∈ {0, 1},
M
∑

j=1

Zij = 1 and Zij = 1 if ~Xi belongs to component j and 0, otherwise. The

conditional probability of Z =
(

~Z1, ..., ~ZN

)

given ~π is:

p (Z | ~π) =
N
∏

i=1

M
∏

j=1

π
Zij

j (4)

So, the conditional probability of data set X with the class labels Z is as follows:

p
(

X | Z, ~α, ~β
)

=
N
∏

i=1

M
∏

j=1

p
(

~Xi | ~αj, ~βj

)Zij

(5)

Where ~α = (~α1, ..., ~αM) and ~β =
(

~β1, ..., ~βM

)

. The estimation of the mixture parameters

and finding the optimal number of components M is a crucial part of a mixture model. The

next section provides details about the variational Bayesian inference.

2.2 Variational Bayesian Learning

Following Bayesian inference, Gamma and Dirichlet distributions are chosen as priors for

~αjd and ~βj , respectively:

p (αjd) = G (αjd | ujd, vjd) =
v

ujd
jd

Γ (ujd)
α

ujd−1

jd e−vjdαjd (6)

p
(

~βj

)

= D
(

~βj | ~hj

)

=

Γ

(

D
∑

d=1

hjd

)

∏D

d=1 Γ (hjd)

D
∏

d=1

β
hjd−1

jd (7)

7



where ~hj = (hj1, ..., hjD), Gamma and Dirichlet distributions are denoted as G(.) and D(.),

respectively; {ujd}, {vjd}, and {hjd} are positive hyperparameters. So

p (~α) =
M
∏

j=1

D
∏

d=1

p (αjd) (8)

p
(

~β
)

=
M
∏

j=1

D
∏

d=1

p (βjd) (9)

Thus, the joint distribution of all the random variables is as follows:

p (X ,Θ | ~π) = p
(

X | Z, ~α, ~β
)

p (Z | ~π) p (~α) p
(

~β
)

=
N
∏

i=1

M
∏

j=1











πj
Γ (α+)

∏D

d=1 Γ (αjd)

D
∏

d=1

β
αjd

jd X
αjd−1

id

(

D
∑

d=1

βjdXid

)α+











Zij

×
M
∏

j=1

D
∏

d=1

[

v
ujd
jd

Γ (ujd)
α

ujd−1

jd e−vjdαjd

×

Γ

(

D
∑

d=1

hjd

)

∏D

d=1 Γ (hjd)

D
∏

d=1

β
hjd−1

jd

]

(10)

x where Θ =
{

Z, ~α, ~β
}

. The model’s graphical representation is shown in Fig. 2.

The main idea is to find the true posterior distribution p (Θ | X , ~π) by defining Q (Θ)

as an approximation to it. By applying the KL divergence, the difference between two

distributions is measured as follows

L (Q) = ln p (X | ~π)−KL (Q || P ) (11)

where

KL (Q || P ) = −

∫

Q (Θ) ln

(

p (Θ | X , ~π)

Q (Θ)

)

dΘ (12)

L (Q) =

∫

Q (Θ) ln

(

p (X ,Θ | ~π)

Q (Θ)

)

dΘ (13)

It is clear that the lower bound L (Q) reaches its maximum value when the KL divergence

equals zero. However, it is hardly feasible to compute the true posterior directly. Therefore,

by applying the mean field theory [32], we could factorize Q (Θ) to become Q (Θ) =

8





pij = exp

{

ln πj + R̃j +
D
∑

d=1

[

αjd ln βjd + (αjd − 1) lnXid

]

−

D
∑

d=1

αjd ln

(

D
∑

d=1

βjdXid

)}

(19)

R̃j = ln
Γ
(

∑D

d=1 αjd

)

∏D

d=1 Γ (αjd)

+
D
∑

d=1

αjd

[

ψ

(

D
∑

d=1

αjd

)

− ψ (αjd)

]

[

〈lnαjd〉 − lnαjd

]

+
1

2

D
∑

d=1

α2
jd

[

ψ′

(

D
∑

d=1

αjd

)

− ψ′ (αjd)

]

−
〈

(lnαjd − lnαjd)
2〉

+
1

2

D
∑

a=1

D
∑

b=1,a 6=b

αja αjb

{

ψ′

(

D
∑

d=1

αjd

)

(〈lnαja〉 − lnαja)

× (〈lnαjb〉 − lnαjb)

}

(20)

u∗
jd = ujd + ϕjd, v∗jd = vjd − ϑjd (21)

ϕjd =
N
∑

i=1

〈Zij〉αjd

[

ψ

(

D
∑

d=1

αjd

)

− ψ (αjd)

+
D
∑

d 6=s

ψ′

(

D
∑

d=1

αjd

)

× αjs (〈lnαjs〉 − lnαjs)

]

(22)

ϑjd =
N
∑

i=1

〈Zij〉

[

ln βjd + lnXid − ln

(

D
∑

d=1

βjdXid

)]

(23)

h∗
jd = hjd + τjd (24)

τjd =
N
∑

i=1

〈Zij〉











αjd − αjdβjd

Xid

D
∑

d=1

βjdXid











(25)
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Algorithm 1 varSDMM Framework

1: Choose a large initial number of components M
2: Randomize initial values for {ujd}, {vjd}, {hjd}
3: Initialize rij using K-Means

4: E-step: Update Q (Z) (15), Q (~α) (16), Q
(

~β
)

(17)

5: M-step: Maximize L (Q) corresponding to the current value of (~π) (30)

6: Repeat steps 4 and 5 until convergence

7: Determine number of components M by naturally removing those with insignificant

mixing coefficients (eg. smaller than 10−5)

8: Estimate new values for parameters (~α) (16),
(

~β
)

(17), and (~π) (30)

where ψ (.) and ψ′ (.) are the digamma and trigamma functions, respectively. The expecta-

tion of values addressed in the equations above are

〈

Zij

〉

= rij (26)

αjd =
〈

αjd

〉

=
ujd

vjd
,
〈

lnαjd

〉

= ψ
(

ujd

)

− ln vjd (27)

〈

(

lnαjd − lnαjd

)2
〉

=
[

ψ
(

ujd

)

− ln ujd

]2

+ ψ′
(

ujd

)

(28)

βjd =
〈

βjd
〉

=
hjd

D
∑

d=1

hjd

(29)

The complete summary for the VSDMM algorithm is presented in Algorithm 1. The max-

imization of lower bound L (Q) along with variational updates for Q (Z), Q (~α), and

Q
(

~β
)

, allows the estimation of the mixing coefficients ~π. By setting the derivative of

L (Q) corresponding to ~π to zero, we obtain:

πj =
1

N

N
∑

i=1

rij (30)

During the variational learning, the mixing coefficients of components with insignificant

contribution to analyze the data would be reduced to zero. Therefore, those components

are automatically eliminated from the model. The algorithm reaches convergence if the

difference of the lower bound values in two consecutive iterations is insignificant.
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Table 1: Results on Iris dataset using different models

Method Accuracy(%)

varSDMM 94.70

GMM 89.00

varGMM 86.70

varDMM 83.00
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Figure 3: Confusion Matrix using varSDMM on Iris dataset

2.3 Experimental Results

In this section, we detail the experiment scope, configurations, and results compared with

two finite variational mixture models based on Gaussian (varGMM) and Dirichlet (varDMM)

distributions and a MLE-based finite Gaussian mixture model (GMM). The efficiency of

varSDMM has been tested on several data categorization applications. The initial values

of the hyperparameters {ujd}, {vjd}, {hjd} may affect the model’s accuracy significantly.

Therefore, finding a good combination of initialized hyperparameters is essential in order to

improve the convergence speed as well as the detection of optimal number of components.

Pre-processing data before running the algorithm has also enhanced the overall perfro-

mance. Several normalization techniques have been applied namely Rescaling (min-max

normalization), Mean normalization, and standardization.

2.3.1 Multivariate Data Categorization

We considered one of the classic datasets in machine learning, Iris dataset which was first

introduced in [33], and now it is available for research purposes on UCI - Machine Learn-

ing Repository [34]. The dataset is created from 150 flowers, which are evenly divided into

12



(a) (b) (c) (d)

Figure 4: Images from Vistex: (a) Bark, (b) Fabric, (c) Food, (d) Metal

three groups, represented by the flowers’ names: Iris setosa, Iris virginica, and Iris versi-

color. While the first group is relatively distinct, the remaining clusters somewhat overlap

each other raising a challenge. There are five features of the flowers: species, sepal length,

sepal width, petal length, petal width.

The categorization results are shown in Table 1 along the confusion matrix in Fig. 3.

Clearly, varSDMM outperforms varDMM, varGMM, and GMM in terms of accuracy. It is

noted that this result was achieved given that min-max normalization was applied on the

dataset before running our model.

2.3.2 Texture Categorization

Texture categorization is another challenging task we address, an efficient texture analysis

framework can help enhance the performance of other applications namely object segmen-

tation or scene recognition [35]. For our experiment, we used the Vistex texture database

from MIT Media Lab. Four homogeneous groups were considered: Bark, Fabric, Food, and

Metal, each from which we sampled four images making total sample size of 16. However,

we decided to challenge the extent of our model by considering each 512 × 512 original

image as a mother image, then dividing them into 64 64×64 images. Thus, the new sample

size is 1024, with 256 images in each category. Examples from each group are presented

in Fig. 4.

The texture characteristics are represented via co-occurrence matrix [36]. Each co-

occurrence was computed with regards to its neighborhoods: (1;0), (1;π
4
), (1;π

2
), and (3;π

4
).

We calculated co-occurrence matrix of each of the neighborhood considering four features:

Contrast, Correlation, Energy, Homogeneity. Thus, we combined them together to obtain a

16D feature vector.

The confusion matrix in Fig. 5 shows that the majority of the images are accurately

13
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Figure 5: Confusion Matrix using varSDMM on Vistex dataset

Table 2: Results on Vistex dataset using different models

Method Accuracy(%)

varSDMM 83.20

varGMM 74.40

varDMM 63.90

GMM 62.20

categorized, especially those from group Food. Table 2 shows that varSDMM’s accuracy is

significantly higher than those of other methods. It is also worth mentioning that min-max

normalization helped improving the result by approximately 2%.

2.3.3 Object Categorization

Image categorization has always been a frequently discussed topic in computer vision [37].

Indeed, many research contributions have tackled this problem with different scopes and

approaches namely classification of sport activities [4], scenes [5], medical-related images

(eg. different body parts) [38], [39].

For this experiment, we address the object categorization task using Caltech 101 dataset

[40]. There are 101 groups of different objects, animals, faces, etc. Due to the immense

imbalance of number of images among the groups, we sampled two datasets: dataset A

consists of 200 images evenly divided into four groups: Starfish, Soccer ball, Faces, and

Ketch; dataset B has 550 images from 4 groups: Motorbikes (150), Airplanes (150), Faces

(150), Hawksbill (100). The sample images from two datasets are presented in Fig. 6.
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(a) (b) (c) (d) h (e) (f) (g)

Figure 6: Examples from Caltech101: (a) Starfish, (b) Soccer ball, (c) Face, (d) Ketch, (e)

Motorbike, (f) Airplane, (g) Hawksbill

Table 3: Results on datasets A and B from Caltech101 using different models

Method
Accuracy (%)

Dataset A Dataset B

varSDMM 81.00 84.00

varDMM 80.00 55.40

varGMM 73.00 72.50

GMM 67.50 75.50

An accurate representation in feature space of a dataset is an important task before

carrying out any prediction process. In other words, it requires an efficient descriptor hav-

ing most of the important features. Thus, we chose SIFT (Scale Invariant Feature trans-

form) [41] since it has proved its capability and robustness in different classification prob-

lems [21], [4], [5]. SIFT’s descriptors are presented as 128D vectors, all of which are put

into a collection of local features. Then, we use K-means to perform clustering process

in order to construct the dictionary of visual words. Each cluster centroid is considered

as a visual word and the vocabulary of the dictionary is a predetermined number of the

centroids.

After several tests, we determined that the optimal number of visual words was 50. The

confusion matrices when applying vadSDMM on datasets A and B are shown in Fig. 7 and

Fig. 8, respectively. Then, in order to confirm the efficiency of our model, we compared our

results with other models, the summaries are presented in Table 3 for both datasets A and

B. Thus, we have tested varSDMM on four datasets and compared the results with other

variational models to prove the capability and effectiveness of our model with different

challenges.
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Figure 7: Confusion Matrix using varSDMM on dataset A
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Figure 8: Confusion Matrix using varSDMM on dataset B
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Chapter 3

Variational Bayesian Learning of finite

Scaled Dirichlet mixture models with

Component Splitting

Previously, we have successfully applied the variational Bayesian learning framework on

finite Scaled Dirichlet mixture model, in which the parameters’ estimation was accurately

achieved without the cumbersome computational cost of conventional Bayesian methods.

In this chapter, component splitting, a local model selection scheme, is integrated into

the framework to compute the model’s complexity. The structure of the model has been

explained in Section 2.1. The model is tested with different challenging problems including

spam detection and image clustering to validate its effciency.

3.1 Variational Bayesian Learning with Component Split-

ting

The use of component splitting is inherited from [42]. First, the mixture components are

divided into two parts, fixed components and free components. While the M − s fixed

components already provided a reasonable fit for the data, the model selection process

operates on the s free ones. Therfore, the prior ditribution of Z can be rewritten as follows:

p
(

Z | ~π, ~π∗
)

=
N
∏

i=1

[

s
∏

j=1

π
Zij

j

M
∏

j=s+1

π
∗Zij

j

]

(31)
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where ~π = {πj} are the mixing coefficients of the free components, ~π∗ = {π∗
j} are the

mixing coefficients of the fixed ones, and their sum must be 1:
∑s

j=1 πj +
∑M

j=s+1 π
∗
j = 1.

Considering π∗
j as a random variable, the prediction for optimal number of components is

then computed solely on the free components by maximizing the marginal likelihood given

{πj}. Then, according to [42], we have prior distribution for ~π∗:

p(~π∗ | ~π) =

(

1−
s
∑

k=1

πk

)−M+s
Γ(
∑M

j=s+1 cj)
∏M

j=s+1 Γ(cj)

M
∏

j=s+1

(

π∗
j

1−
∑s

k=1 πk

)cj−1

(32)

We choose Gamma and Dirichlet distribution as priors for ~αjd and ~βj , respectively:

p (αjd) = G (αjd | ujd, vjd) =
v

ujd
jd

Γ (ujd)
α

ujd−1

jd e−vjdαjd (33)

p
(

~βj

)

= D
(

~βj | ~hj

)

=

Γ

(

D
∑

d=1

hjd

)

∏D

d=1 Γ (hjd)

D
∏

d=1

β
hjd−1

jd (34)

where ~hj = (hj1, ..., hjD), G(·) and D(·) represent Gamma and Dirichlet distributions,

respectively; {ujd}, {vjd}, and {hjd} are hyperparameters, where ujd > 0, vjd > 0, and

hjd > 0. Therefore

p (~α) =
M
∏

j=1

D
∏

d=1

p (αjd) , p
(

~β
)

=
M
∏

j=1

D
∏

d=1

p (βjd) (35)

We have the joint distribution of all the random variables:

p (X ,Θ | ~π) = p
(

X | Z, ~α, ~β
)

p
(

Z | ~π, ~π∗
)

p
(

~π∗ | ~π
)

p (~α) p
(

~β
)

=
N
∏

i=1

M
∏

j=1











πj
Γ (α+)

∏D

d=1 Γ (αjd)

D
∏

d=1

β
αjd

jd X
αjd−1

id

(

D
∑

d=1

βjdXid

)α+











Zij

×

N
∏

i=1

[

s
∏

j=1

π
Zij

j

M
∏

j=s+1

π
∗Zij

j

]

×

(

1−
s
∑

k=1

πk

)−M+s

×
Γ
(

∑M

j=s+1 cj

)

∏M

j=s+1 Γ (cj)

M
∏

j=s+1

(

π∗
j

1−
∑s

k=1 πk

)cj−1

×
M
∏

j=1

D
∏

d=1

v
ujd
jd

Γ (ujd)
α

ujd−1

jd e−vjdαjd ×

Γ

(

D
∑

d=1

hjd

)

∏D

d=1 Γ (hjd)

D
∏

d=1

β
hjd−1

jd (36)

18



        c

Z

X

α 

π* 

M-s ND

MD

s NM

u

ν 

π 

β 

MD

h

Figure 9: Graphical representation of the finite Scaled Dirichlet mixture model with com-

ponent splitting. Symbols in circles denote parameters and random variables, arcs describe

the conditional dependencies of the variables, plates show repetitions, and the numbers in

the lower right corners of the plates explain the quantity of repetitions.

where Θ =
{

Z, ~α, ~β, ~π∗
}

is the set of unknown parameters. The model’s graphical repre-

sentation is shown in Figure 9

The goal is to find the true posterior distribution p (Θ | X , ~π) by creating Q (Θ) as an

approximated distribution to it. By applying the KL divergence, the difference between

two distributions is computed as follows

L (Q) = ln p (X | ~π)−KL (Q || P ) (37)

The maximum value of lower bound L (Q) =
∫

Q (Θ) ln
(

p(X ,Θ|~π)
Q(Θ)

)

dΘ is achieved when

the KL divergence is zero. Since the true posterior is intractable, the mean field theory [32]

is applied to factorize Q (Θ) so that Q (Θ) = Q (Z)Q (~α)Q
(

~β
)

Q
(

~π∗
)

. The maximiza-

tion of lower bound L (Q) with respect to each sub-distribution Qs (Θs) is:

Qs (Θs) =
exp 〈ln p (X ,Θ)〉j 6=s

∫

exp 〈ln p (X ,Θ)〉j 6=s dΘ
(38)

where 〈·〉j 6=s denotes the expectation of the parameters with the exception of j = s. Then,

(38) is used for updating the algorithm to reach convergence:

Q (Z) =
N
∏

i=1

[

s
∏

j=1

r
Zij

ij

M
∏

j=s+1

r
∗Zij

ij

]

(39)
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Q(~π∗) =

(

1−
s
∑

k=1

πk

)−M+s Γ
(

∑M

j=s+1c
∗
j

)

∏M

j=s+1 Γ
(

c∗j
)

M
∏

j=s+1

(

π∗
j

1−
∑s

k=1 πk

)c∗j−1

(40)

Q (~α) =
M
∏

j=1

D
∏

d=1

G
(

αjd | u∗
jd, v

∗
jd

)

(41)

Q
(

~β
)

=
M
∏

j=1

D
∏

d=1

D
(

βjd | h∗
jd

)

(42)

where

rij =
r̃ij

∑s

j=1 r̃ij +
∑M

j=s+1 r̃
∗
ij

, r∗ij =
r̃∗ij

∑s

j=1 r̃ij +
∑M

j=s+1 r̃
∗
ij

(43)

r̃ij = exp

{

ln πj + R̃j +
D
∑

d=1

[

αjd ln βjd + (αjd − 1) lnXid

]

−

D
∑

d=1

αjd ln

(

D
∑

d=1

βjdXid

)}

(44)

r̃∗ij = exp

{

〈ln π∗
j 〉+ R̃j +

D
∑

d=1

[

αjd ln βjd + (αjd − 1) lnXid

]

−
D
∑

d=1

αjd ln

(

D
∑

d=1

βjdXid

)}

(45)

R̃j = ln
Γ
(

∑D

d=1 αjd

)

∏D

d=1 Γ (αjd)
+

D
∑

d=1

αjd

[

ψ

(

D
∑

d=1

αjd

)

− ψ (αjd)

]

[

〈lnαjd〉 − lnαjd

]

+
1

2

D
∑

d=1

α2
jd

[

ψ′

(

D
∑

d=1

αjd

)

− ψ′ (αjd)

]

−
〈

(lnαjd − lnαjd)
2〉

+
1

2

D
∑

a=1

D
∑

b=1,a 6=b

αja αjb

{

ψ′

(

D
∑

d=1

αjd

)

(〈lnαja〉 − lnαja)× (〈lnαjb〉 − lnαjb)

}

(46)

c∗j =
N
∑

i=1

r∗ij + cj, u∗
jd = ujd + ϕjd, v∗jd = vjd − ϑjd, h∗

jd = hjd + τjd (47)
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ϕjd =
N
∑

i=1

〈Zij〉αjd

[

ψ

(

D
∑

d=1

αjd

)

− ψ (αjd)

+
D
∑

d 6=s

ψ′

(

D
∑

d=1

αjd

)

× αjs (〈lnαjs〉 − lnαjs)

]

(48)

ϑjd =
N
∑

i=1

〈Zij〉

[

ln βjd + lnXid − ln

(

D
∑

d=1

βjdXid

)]

(49)

τjd =
N
∑

i=1

〈Zij〉











αjd − αjdβjd

Xid

D
∑

d=1

βjdXid











(50)

where ψ (·) and ψ′ (·) denote the digamma and trigamma functions, respectively. The

expectation of the aforementioned equations are

〈Zij〉 = rij, for j = 1, ..., s, 〈Zij〉 = r∗ij, for j = s+ 1, ...,M (51)

αjd = 〈αjd〉 =
ujd

vjd
, 〈lnαjd〉 = ψ

(

ujd

)

− ln vjd, βjd = 〈βjd〉 =
hjd

D
∑

d=1

hjd

(52)

〈

(

lnαjd − lnαjd

)2
〉

=
[

ψ
(

ujd

)

− ln ujd

]2

+ ψ′
(

ujd

)

(53)

〈

π∗
j

〉

=

(

1−
s
∑

k=1

πk

)

∑N

i=1 r
∗
ij + cj

∑M

k=s+1

(

∑N

i=1 r
∗
ik + ck

) (54)

〈

ln π∗
j

〉

=ln
(

1−
s
∑

k=1

πk
)

+ ψ
(

N
∑

i=1

r∗ij + cj
)

− ψ
(

N
∑

i=1

M
∑

k=s+1

r∗ik + ck
)

(55)

The estimation for the free mixing coefficients ~π is computed from the maximization of

lower bound L (Q) and the variational updates for Q (Z), Q (~π∗), Q (~α), and Q
(

~β
)

. We

have the derivative of L (Q) with respect to ~π after setting it to zero:

πj =

(

1−
M
∑

k=s+1

〈π∗
k〉

)

∑N

i=1 rij
∑N

i=1

∑s

k=1 rik
(56)
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Algorithm 2 varSDMM with Component Splitting Framework

1: Initialize number of components M to 2

2: Randomize initial values for {ujd}, {vjd}, {hjd}
3: Start the variational inference without the local model selection

4: If only one component remains, the algorithm ends

5: Sort all the elements in M in descending order by their mixing coefficients

6: For each element j in M :

• Split j into jj and j2 as the free components

• Set:

♦ πj1 = πj2 = πj/2
♦ ujd1 = u∗

jd, ujd2 = u∗
jd

♦ vjd1 = v∗jd, vjd2 = v∗jd
♦ hjd1 = h∗

jd, hjd2 = h∗
jd

• c∗j =
∑N

i=1 r
∗
ij for each j in the fixed components

• Apply variational inference with component splitting by updating Q (Z) (39),

Q (~π∗) (40), Q (~α) (41), Q
(

~β
)

(42) until convergence

• Use (56) to calculate the suitable number of components

• Split test fails if only one remaining component left.

• If both components are redundant, split test fails and move on the next compo-

nent

• If both components remains, then M =M + 1

7: Repeat steps 5, 6 until the splitting test fails in all the components

3.2 Model Selection via Component Splitting

First, the algorithm starts with the variational learning without local model selection where

M = 2. If the result has two components, the splitting process proceeds; otherwise, the

algorithm ends if there is only one component. When the splitting test is passed, one

of the components is split into two free components. Next, the model with local model

selection operates on the free components while leaving the fixed ones intact. Two common

possibilities could occur after the inference: first, both free components are kept due to

their meaningful contribution to fit the data; second, only one component is kept while the

insignificant one is removed. However, when there are some outliers in the data set, both

the free components could end up being redundant, then this particular split is restored in

order to avoid an infinite loop. Then, after each successful split, the number of components
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gradually increases until all the split tests fail. The complete summary of the model’s

process is presented in Algorithm 2.

3.3 Experimental Results

In this section, we discuss the performance of our proposed method (varSDMM) as com-

pared to MLE-based Gaussian mixture model (GMM), variational Gaussian mixture model

(varGMM), variational Dirichlet mixture model (varDMM). Two challenging real life ap-

plications are considered including spam email detection of both texts as well as image

categorization consisting of textures, objects, and scenes.

3.3.1 Spam detection

For the past two decades, e-mail has become an essential means of communication, espe-

cially in the workplace environment. However, e-mails are also one of the most common

target for network-based attacks namely phishing [43], [44], [45], [46]. Spam emails con-

taining not only texts, but also deceiving images combined with the evolve of various scam

techniques are drawing increasing interest as a challenging task that needs immediate ac-

tions.

Since the performance of any model depends greatly on the the quality of preprocess-

ing steps, an accurate mathematical representation in feature space of the images is crucial

prior to applying the inference process. Therefore, SIFT (Scale Invariant Feature trans-

form) [41] is used for preprocessing the images. Then, all the 128D descriptors of SIFT

are grouped into a corpus of local features. Next, we use K-means to cluster the collec-

tion to construct the visual words vocabulary, in which the centroids are the number of

visual words. The performance of each result is validated using four important measures:

Accuracy( TP+TN
TP+TN+FP+FN

), Precision( TP
TP+FP

), Recall( TP
TP+FN

), False Positive Rate (FPR)

( FP
FP+TN

).

For textual spam e-mail detection, we chose the Spambase data set [47], in which the

histogram of the occurrences of the words is used as a feature. We chose 3626 instances in

the data set, half of which was spam and the other half was non-spam. The results in Table

4 shows that our proposed model outperforms others in all aspects.

Three real life image spam data sets were considered: Personal Image Spam (2995

images) [48], SpamArchive Image Spam (3014 images) [48], and Princeton Spam Image

23



Table 4: Results on Spambase (%) using different models

Method Accuracy Precision Recall False Positive Rate

varSDMM 85.60 99.61 70.44 0.28

varDMM 83.84 97.23 69.06 1.99

GMM 73.08 73.24 72.75 26.59

varGMM 71.37 69.56 76.01 33.26

(a) (b) (c) (d)

Figure 10: Images from (a) Personal Image Spam, (b) SpamArchive, (c) Princeton, (d)

Personal Image Ham.

(1063 images)1. One common legitimate (ham) email data set Personal Image Ham (1650

images) [48] is used for clustering analysis. Sample images from these data sets are shown

in Figure 10. After several trials, the optimal number of visual vocabulary is 50. The results

shown in Table 5 validates varSDMM’s performance over other models.

3.3.2 Texture Categorization

An efficient texture classification framework could not only help improve the performance

of object clustering, but also the categorization of sophisticated collections of various ob-

jects such as human organs or scenes [35]. In this experiment, two real-life challenging

texture datasets were used: Amsterdam Library of Textures (ALOT) [49] and Vistex. Par-

ticularly, we tested 600 images evenly divided into six clusters from ALOT: Macaroni,

Corn Flakes, Silver foil, Banana peel, Mustard seed, and Plaster; sample images are in Fig.

12. The preprocessing step was similar to that mentioned in Section 3.3.1 with the opti-

mal value for vocabulary was 50. For Vistex dataset, there are 16 observations which are

equally divided into 4 groups: Fabric, Food, Metal, and Tile. However, in order to avoid

ambiguity, each 512 × 512 observation is separated into 8 64 × 64 parts making the total

sample size 1024. Then, each instance is then represented as a 16D feature vector after

1http://www.cs.princeton.edu/cass/spam/
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Table 5: Results on image spam detection using different models

Method Measure (%) Dredze SpamArchive Princeton

varSDMM

Accuracy 88.63 86.94 86.18

Precision 96.25 98.98 90.66

Recall 85.71 80.62 72.15

False Positive Rate 6.06 1.52 4.79

varDMM

Accuracy 87.56 80.87 84.11

Precision 94.58 96.74 81.35

Recall 85.61 72.86 71.14

False Positive Rate 8.91 4.48 11.39

varGMM

Accuracy 86.29 81.56 84.37

Precision 89.91 96.95 85.38

Recall 88.68 73.79 72.53

False Positive Rate 18.06 4.24 8.36

GMM

Accuracy 87.26 80.83 84.56

Precision 91.73 95.45 85.86

Recall 88.18 73.86 72.53

False Positive Rate 14.42 6.42 7.70

(a) (b) (c) (d)

Figure 11: Images from Vistex: (a) Fabric, (b) Food, (c) Metal, (d) Tile

using co-occurrence matrix [36], which has been explained in Section 2.3. Examples from

Vistex dataset are presented in Fig. 11
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(a) (b) (c) (d) (e) (f)

Figure 12: Sample images from ALOT: (a) Macaroni, (b) Corn Flakes, (c) Silver foil, (d)

Banana peel, (e) Mustard seed, (f) Plaster

.

Table 6: Results on texture datasets using different models

Method
Accuracy (%)

ALOT Vistex

varSDMM 94.83 86.52

varDMM 78.83 75.00

varGMM 76.16 79.98

GMM 71.50 79.19

The results are presented in Table 6, showing that the proposed model surpasses other

novel approaches by a significant margin. Particularly, despite the fact that there are many

similar texture details among the groups, the result in confusion matrix for Vistex in Fig.

13 shows that the greatest amount of misclassification in a cluster is only 21.90%. Fur-

thermore, it is clear that the proposed method is capable of achieving at least 89.00% of

accuracy in each cluster when tested with ALOT as presented in Fig. 14.
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Figure 13: Confusion Matrix using varSDMM on Vistex
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Figure 14: Confusion Matrix using varSDMM on ALOT

3.3.3 Object & Scene Categorization

The task to automatically differentiate random objects has always been frequently dis-

cussed in computer vision [37]. Indeed, even similar objects could raise significant prob-

lems due to different angles, surrounding environments, and various depth of the captured

images. Furthermore, recent research works have addressed related challenging clustering
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Table 7: Results on object and scene datasets using different models

Method
Accuracy (%)

Caltech GHIM10K - Object GHIM10K - Scene

varSDMM 83.00 94.25 89.00

varDMM 69.50 83.75 80.54

varGMM 76.00 83.50 71.36

GMM 76.30 83.25 65.81
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Figure 17: Confusion Matrix using varSDMM on Caltech256

Woods, Grass-field, Coast. Examples from these datasets are presented in Fig. 15 and Fig.

16. The preprocessing step was the same as that described in Section 3.3.1, and the optimal

number of vocabulary was also 50.

The accuracy of varSDMM is compared with other widely used models in Table 7, con-

firming its flexibility and capability to efficiently differentiate various objects in different

environments. The confusion matrices for object clustering in Fig. 17 and Fig. 18 vali-

date the performance of the proposed method for this demanding task. In other words, the

majority of the objects are accurately clustered despite various complex background noises

and different angles. Furthermore, scene clustering is another challenging problem, which

contain a large amount of similar details among the scenes. From Fig. 19, it can be ob-

served that a significant portion from group Building is labeled to group Woods, it is due to

the fact that buildings are captured with many trees in front causing the missclassification.
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Figure 18: Confusion Matrix using varSDMM on GHIM10K for object clustering
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Figure 19: Confusion Matrix using varSDMM on GHIM10K for scene clustering
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Chapter 4

Online Variational Learning of Finite

Scaled Dirichlet Mixture Models

An immense amount of data is created daily through various activities, especially those on

social media. Indeed, a method is only considered efficient when it can handle large scale

datasets in real time. Motivated by the aforementioned challenge, we introduce an online

variational learning approach for Scaled Dirichlet mixture models. As the fundamental

structure of finite mixture models has been discussed in Section 2.1, we adopt the idea of

stochastic variational inference. In other words, the global knowledge is obtained from

the information in an individual observation. Therefore, as new data point coming in, the

model’s prediction becomes more accurate. The proposed inference is capable of reaching

convergence faster than conventional mean field variational inference, which improves the

scalability of finite mixture models in order to handle large scale data sequentially in real

time. Experiments with object, scene clustering and spam email detection validate the

superior performance of our model over other comparable methods.

4.1 Online Variational Bayesian Learning

We introduce an approximated variant Q (Θ) of the true posterior distribution p (Θ | X , ~π).

Then, we focus on minimizing the difference between them by using KL divergence as

presented in the following equations:

L (Q) = ln p (X | ~π)−KL (Q || P ) (57)
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where

KL (Q || P ) = −

∫

Q (Θ) ln

(

p (Θ | X , ~π)

Q (Θ)

)

dΘ (58)

L (Q) =

∫

Q (Θ) ln

(

p (X ,Θ | ~π)

Q (Θ)

)

dΘ (59)

It can be observed that when KL divergence reaches zero, the maximum value of the

lower bound L (Q) is achieved. Unfortunately, the true posterior distribution is intractable

due to its computational complexity. However, we can overcome it by utilizing the mean

field theory [32] by factorizing Q (Θ) to become Q (Θ) = Q (Z)Q (~α)Q
(

~β
)

. Generally,

the lower bound L (Q) with respect to each distribution Qs (Θs) can reach its maximum

by:

Qs (Θs) =
exp 〈ln p (X ,Θ)〉j 6=s

∫

exp 〈ln p (X ,Θ)〉j 6=s dΘ
(60)

where 〈.〉j 6=s represents the expectation of all the parameters excluding that case of j =

s. However, in order to efficiently extend variational framework for online learning, the

variational inference is considered as a gradient method [51]. The main idea centralizes

the lower bound being a function for the distributions’ parameters. In other words, since

the model adopts Bayesian inference, the conjugate priors guarantee a functional variant

of all factors in the variational posterior probability. Furthermore, as new data are added

gradually overtime, the variational lower bound is calculated with respect to a fixed N

number of observations. Then, we have the expected value of p(X ) in logarithm form as

follows:

〈ln p(X )〉φ =

∫

φ(X ) ln

(
∫

p(X | Θ)p(Θ)dΘ

)

dX (61)

where φ(X ) is the approximated probability distribution fitting the observed data. Next,

the expected value of the lower bound is described as:
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〈L(Q)〉φ =

〈

∑

Z

∫

{

Q(Ω)Q(Z)

× ln

[

p(X ,Z | Ω)p(Ω)

Q(Ω)Q(Z)

]

}

dΩ

〉

φ

= N

∫

Q(Ω)dΩ

〈

∑

~Z

Q(~Z) ln
p( ~X, ~Z | Ω)

Q(~Z)

〉

φ

+

∫

Q(Ω) ln

[

p(Ω)

Q(Ω)

]

dΩ (62)

where Ω =
{

~α, ~β
}

. With the size of observed data denoted as t, the estimation for the

lower bound corresponding the observed data is given as:

L(t)(Q) =
N

t

t
∑

i=1

∫

Q(Ω)dΩ
∑

~Zi

Q(~Zi)

× ln

[

p( ~Xi, ~Zi | Ω)

Q(~Zi)

]

+

∫

Q(Ω) ln

[

p(Ω)

Q(Ω)

]

dΩ (63)

Indeed, the main goal is calculating the expected log evidence (61) for an invariant

amount of data, which is estimated from the expected lower bound (62). By keeping N

fixed while t increases, our online variational framework gradually maximizes the lower

bound (63). Particularly, with the observed data {X1, ..., X(t−1)}, (63) can be updated for

data point Xt corresponding to Q( ~Zt), while Q(Ω) and πj is set to Qt−1(Ω) and πt−1
j ,

respectively. Thus, we have the optimal approximation for Q( ~Zt) as follows:

Q
(

~Zt

)

=
M
∏

j=1

r
Ztj

tj (64)

rtj =
ptj

∑M

j=1 ptj

(65)

ptj = exp

{

D
∑

d=1

[

αjd ln βjd + (αjd − 1) lnXtd

]

−

D
∑

d=1

αjd ln

(

D
∑

d=1

βjdXtd

)

+ R̃j + ln π
(t−1)
j

}

(66)
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R̃j = ln
Γ
(

∑D

d=1 αjd

)

∏D

d=1 Γ (αjd)

+
D
∑

d=1

αjd

[

ψ

(

D
∑

d=1

αjd

)

− ψ (αjd)

]

×
[

〈lnαjd〉 − lnαjd

]

+
1

2

D
∑

d=1

α2
jd

[

ψ′

(

D
∑

d=1

αjd

)

− ψ′ (αjd)

]

−
〈

(lnαjd − lnαjd)
2〉

+
1

2

D
∑

a=1

D
∑

b=1,a 6=b

αja αjb

{

ψ′

(

D
∑

d=1

αjd

)

× (〈lnαja〉 − lnαja)× (〈lnαjb〉 − lnαjb)

}

(67)

Then, with the application of the gradient method, we set Q(~Zt) fixed, so that the

lower bound (63) is maximized with respect to Q(t)(Ω) and π
(t)
j . Therefore, the natural

gradients are estimated by multiplying the gradients of the parameters with the inverse of

the coefficient matrix, which is then removed so that the natural gradients for the posterior

probabilities can be computed for an efficient online learning framework. Thus, we have

the optimal solutions for parameters’ updates:

Q(t) (~α) =
M
∏

j=1

D
∏

d=1

G
(

α
(t)
jd | u

∗(t)
jd , v

∗(t)
jd

)

(68)

Q(t)
(

~β
)

=
M
∏

j=1

D
∏

d=1

D
(

βjd | h
∗(t)
jd

)

(69)

where

u
∗(t)
jd = u

∗(t−1)
jd + ρt∆u

∗(t)
jd (70)

v
∗(t)
jd = v

∗(t−1)
jd + ρt∆v

∗(t)
jd (71)

h
∗(t)
jd = h

∗(t−1)
jd + ρt∆h

∗(t)
jd (72)

We have the solution for the mixing coefficient π
(t)
j :

π
(t)
j = π

(t−1)
j + ρt∆π

(t)
j (73)
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Where ρt denotes the learning rate [52] following the equation:

ρt = (η0 + t)−ǫ (74)

which ǫ ∈ (0.5, 1] and η ≥ 0. The main goal of the learning rate is ignoring the previous

incorrect estimations of the lower bound and accelerate the convergence rate. Then, the

natural gradients are given as:

∆u
∗(t)
jd = u

∗(t)
jd − u

∗(t−1)
jd = ujd − u

∗(t−1)
jd

+Nrtjαjd

[

ψ

(

D
∑

d=1

αjd

)

− ψ (αjd)

+
D
∑

d 6=s

ψ′

(

D
∑

d=1

αjd

)

× αjs (〈lnαjs〉 − lnαjs)

]

(75)

∆v
∗(t)
jd = v

∗(t)
jd − v

∗(t−1)
jd = vjd − v

∗(t−1)
jd

−Nrtj

[

ln βjd + lnXtd − ln

(

D
∑

d=1

βjdXtd

)]

(76)

∆h
∗(t)
jd = h

∗(t)
jd − h

∗(t−1)
jd = hjd − h

∗(t−1)
jd

+Nrtj











αjd − αjdβjd

Xtd

D
∑

d=1

βjdXtd











(77)

∆π
(t)
j = π

(t)
j − π

(t−1)
j =

(

N

t

)

rtj − π
(t−1)
j (78)

where ψ (.) and ψ′ (.) denote the digamma and trigamma functions, respectively. The

expectations in the aforementioned equations are:

〈

lnαjd

〉

= ψ
(

ujd

)

− ln vjd (79)

〈

(

lnαjd − lnαjd

)2
〉

=
[

ψ
(

ujd

)

− ln ujd

]2

+ ψ′
(

ujd

)

(80)
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When a new data point is included, an additional distribution is added to the lower bound.

Since the online learning framework can be considered as a stochastic approximation al-

gorithm [53], in which the lower bound may not always increase and the convergence is

ensured within the following conditions:

∞
∑

t=1

ρt = ∞,
∞
∑

t=1

ρ2t <∞ (81)

The summary of our model is described in Algorithm 3, in which K-means is used to

initialize the parameters with respect to the observed data, then we update the variational

solutions by iterating until convergence using EM. In order to achieve the optimal number

of components, those with insignificant mixing coefficients (close to 0) are automatically

removed.

Algorithm 3 OSDMM Framework

1: Choose an large initial number of components M

2: Initialize values for {ujd}, {vjd}, {hjd}

3: Initialize rij using K-Means

4: for t = 1 to N do

5: Variational E-Step:

6: Update Q(Zt) by estimating rtj from (64)

7: Variational M-Step:

8: Calculate learning rate through (74)

9: Compute natural gradients ∆u
∗(t)
jd , ∆v

∗(t)
jd , ∆h

∗(t)
jd , and ∆π

(t)
j using (75), (76), (77),

and (78), respectively

10: Update new variational estimations for Q(t)(~α) (68), Q(t)(~β) (69), π
(t)
j (73)

11: Repeat E-step and M-step until new observation is included

12: end for

4.2 Experimental Results

In this section, we validate the performance of OVSDMM with two challenging problems

including spam email detection and image clustering. The results are compared with 3

other online variational mixture models using different distributions: Dirichlet (OVDMM),

Inveted Dirichlet (OVIDMM), and Gaussian (OVGMM). The preprocessing steps for im-

ages consist of 2 main steps: SIFT features extraction and Bag-of-Visual-Words (BoVW)
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(a) (b) (c) (d)

Figure 20: Examples from (a) Personal Image Spam, (b) SpamArchive, (c) Princeton, and

(d) Personal Image Ham.

Table 8: Results of different models on Spambase (%)

Method Accuracy Precision Recall FPR

OVSDMM 85.27 97.97 72.04 1.49

OVDMM 74.41 86.48 57.86 9.05

OVIDMM 75.48 86.55 60.34 9.38

OVGMM 80.25 84.17 74.52 14.01

construction, which are further explained in Section 4.2.1. The initial number of compo-

nents is 10 with equal mixing weights. The initialization of the hyperparameters u, v, and h

varies with respect to the amount of considered observations as well as the vocabulary size

of BoVW. Since our model adopted the iterative scheme EM, the value of initial parameters

may affect the overall outcome and the convergence rate rather significantly. Therefore, it

is beneficial to test several cases in order to have the optimal initialization.

4.2.1 Spam Detection

Nowadays, we are constantly exchanging information through various mobile messag-

ing applications, and the ubiquitous existence of them has shown their unarguable im-

portance. However, there are many situations where informality can result in devastating

consequences. Therefore, emails have been the prominent choice for such occasions [54].

Indeed, the vast usage of emails among co-operations has made it a promising target for

various attacks and one of the most financially costly problems. In other words, apart from

daily legitimate emails, an immense amount of new spam commercial emails arise along

with the demand for additional servers in order to solve the storage problem. Furthermore,

spam emails have been the leading inducement for the productivity related decrements of

the affected individuals. In addition, spam emails can contain fraudulent schemes beneath
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Table 9: Results of different models on image-based spam datasets

Method Measure

(%)

Personal Spam

Archive

Princeton

OVSDMM

Accuracy 88.85 97.04 86.44

Precision 96.93 98.55 89.18

Recall 85.41 96.85 74.41

FPR 4.91 2.61 5.82

OVDMM

Accuracy 87.30 89.52 85.18

Precision 92.90 96.88 84.68

Recall 86.94 86.56 75.92

FPR 12.06 5.09 8.85

OVIDMM

Accuracy 87.06 93.03 74.42

Precision 92.57 93.05 63.82

Recall 86.91 96.42 80.15

FPR 12.67 13.15 29.27

OVGMM

Accuracy 86.72 94.43 81.98

Precision 91.54 92.95 84.00

Recall 87.48 98.87 66.70

FPR 14.67 13.70 8.18

attractive click-baits such as phishing [43], [55], [56]. Thus, an efficient tool to automati-

cally detect spam emails is of the utmost importance.

In this experiment, we challenge our model with a text-based spam dataset Spam-

base [47] and 3 image-based spams datasets: Personal Image Spam [48], SpamArchive

Image Spam [48], and Princeton Spam Image1; in which Personal Image Spam contains a

non-spam dataset in order to perform cluster analysis. In Spambase dataset, there are 3626

observations, in which half of them is spam and the other half is non-spam. The features are

the histograms of the occurrences of the important words. For image-based datasets, we se-

lect random sizes for 3 spam datasets: Personal Image Spam (2995 images), SpamArchive

Image Spam (3014 images), and Princeton Spam Image (1063 images); where as the com-

mon non-spam (ham) email dataset Personal Image Ham has 1650 images. Examples from

the aforementioned datasets are shown in Fig. 20. Due to the magnitude of spam detection

problems, it is paramount to construct an accurate mathematical collection of common pat-

terns from the dataset. Therefore, we use SIFT (Scale Invariant Feature transform) [41] to

extract important features from the images as it has shown its consistency from previous

1http://www.cs.princeton.edu/cass/spam/
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(a) (b) (c) (d) (e)

Figure 21: Examples from Corel-10K: (a) Mushroom, (b) Card, (c) Pottery, (d) Egg, and

(e) Bead.

(a) (b) (c) (d) (e)

Figure 22: Examples from GHIM-10K: (a) Firework, (b) Building, (c) Tree, (d) Grass, and

(e) Beach.

works [4], [5]. All the 128D descriptors extracted by SIFT are concatenated into a collec-

tion of local features. Then, K-means is used to cluster the corpus to build the visual words

vocabulary, in which the number of visual words is represented by the centroids. Finally,

our BoVW is constructed from the histograms of the vocabulary frequencies.

(a) (b) (c) (d) (e)

Figure 23: Examples from 15-Scene: (a) Suburb, (b) Store, (c) Coast, (d) Forest, and (e)

Building.

Generally, the performance of relating cluster analysis only considers the Accuracy

( TP+TN
TP+TN+FP+FN

). However, in order to avoid ambiguity, we also include several other

metrics: Precision( TP
TP+FP

), Recall( TP
TP+FN

), and False Positive Rate (FPR) ( FP
FP+TN

); in
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Table 10: Results of different models on image clustering datasets

Method
Accuracy (%)

Corel-10K GHIM-10K 15-Scene

OVSDMM 87.20 86.63 91.30

OVDMM 80.20 83.54 82.25

OVIDMM 71.00 58.10 84.83

OVGMM 39.60 83.36 48.70
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Figure 24: Confusion Matrix for Corel-10K dataset using OVSDMM

which we expect that our model can achieve the smallest percentage of FPR meaning the

least amount of legitimate emails are incorrectly classified as spams. Indeed, an effective

spam detector must ensure both its effectiveness in terms of identifying true spams and

its ability to keep number of legitimate emails which are incorrectly classified as spams at

minimum. After several tests, the optimal vocabularies for BoVW is 50. The results in

Table 8 and Table 9 show that for both text-based and image-based spam clustering tasks,

our proposed model not only achieves the highest accuracy, but also has the lowest FPR.

4.2.2 Object & Scene Categorization

Image clustering is among the most challenging topics in computer vision [57], [58], [59],

[60]. Indeed, an immense problem when performing cluster analysis is the fact that an
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Figure 25: Confusion Matrix for GHIM-10K dataset using OVSDMM

observation in real-life environment could be captured in different postures, hues, and dis-

tances. Furthermore, noises could also come from background surroundings having similar

features as the target object causing higher probability of misclassification. In this experi-

ment, we investigate our model performance not only for object but also scene clustering,

for which features extraction is an important step. Recent works on image clustering using

finite mixture models have provided good performance which has motivated us to further

explore the capabilities of probabilistic models with this challenging task [4], [5].

In our experiments, we considered 3 real-life datasets: Corel-10K [61], GHIM-10K

[62], and 15-Scene [63]. Most images are captured in natural environments from different

angles along with other items making different scenes having a considerable number of

similar features. It is the mixed components that raise as a significant challenge for any

interested method. For Corel-10K dataset, we choose 500 images which are evenly into

5 groups: Mushroom, Card, Pottery, Egg, and Bead. Then, we select 5 clusters from

GHIM-10K: Firework (350 images), Building (240 images), Tree (160 images), Grass (200

images), and Beach (150 images) making the total sample size of 1100. Finally, there are

930 images in 15-Scene from 5 classes: Suburb (150 images), Store (200 images), Coast

(150 images), Forest (220 images), and Building (210 images). Examples from 3 datasets

are given in Fig. 21, Fig. 22, and Fig. 23.

The preprocessing steps also include SIFT and BoVW as explained in Section 4.2.1.

After several trials, the optimal BoVW size is also 50. Table 10 shows that the proposed
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Figure 26: Confusion Matrix for 15-Scene dataset using OVSDMM

model is significantly more accurate for cluster analysis with respect to other methods.

Furthermore, from Corel-10K confusion matrix in Fig. 24, the misclassification between

Pottery and Egg is caused by the fact that many instances in Pottery have oval shapes

similar to those in Egg. Likewise, those scenes with a considerable amount of incorrectly

clustered images as represented in confusion matrices for GHIM-10K and 15-Scene in

Fig. 25 and Fig. 26 all contain similar features related to trees. Thus, with the results

from several challenging real-life datasets, OVSDMM’s effectiveness has been validated

for cluster analysis.
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Chapter 5

Conclusion

With the ubiquitous appearances of proportional data in text and multimedia environments,

we focus on cluster analysis of this kind of data by developing three effective variational

approaches for finite Scaled Dirichlet mixture models. Indeed, previous promising results

of Dirichlet distribution on various challenging applications have motivated us to further

explore the extent of this family of distributions.

In chapter 2, we have introduced variational learning for finite Scaled Dirichlet mixture

models, which follows the idea of minimizing the difference between approximated poste-

rior distribution and the real one using KL divergence. Besides being a statistical inference,

the variational framework can also be seen as an optimization process, in which the param-

eters and model’s complexity are estimated simultaneously along with the maximization of

the variational lower bound. Through extensive experiments including object and texture

images clustering, the proposed model has proven its efficiency by reaching convergence

rapidly with accurate estimations.

Then, in chapter 3, component splitting, a local model selection scheme, is employed

to provide an elegant approach to determine the optimal number of components. In other

words, after successfully applying conventional variational approach for two components,

the framework gradually splits the components with the highest mixing weights until all

the components no longer satisfy the splitting test. Our method is tested with different real-

life challenging applications namely spam detection, image clustering including textures,

objects, and scenes. Despite the amount of noise in the observations raising as a significant

obstacle, most of the data points are accurately clustered, which validate the performance

of our model.
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Finally, we have implemented an online approach for finite Scaled Dirichlet mixture

models in chapter 4, which adopts the idea of stochastic variational inference in order

to efficiently estimate the parameters and model’s complexity. In other words, in each

iteration, the global knowledge is updated with the local information from analyzing an

individual observation. Therefore, the convergence rate is significantly more effective than

using mean field variational inference, in which all the data points must be processed in

each iteration. Indeed, the application of online learning not only improves the scalability

of finite mixture models in order to handle large scale data effectively, but also open the

feasibility of dealing with demanding challenges in real time. The performance of our

model is tested with different prominent problems such as spam detection, image clustering

including objects and scenes.

Thus, the variational framework has proven to be an efficient alternative to conventional

Bayesian inference as its ability to guarantee convergence without the computational cost

when using other widely used estimation schemes such as MCMC or Laplace approxi-

mation. In addition, since the proposed variational inference adopts KL divergence in the

optimization process, many other divergences could be utilized to introduce new variants of

variational framework such as expectation propagation and belief propagation. Extending

to infinite case is also an interesting future work to the proposed methods.
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