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Abstract

A Study On Online Variational Learning : Medical Applications

Meeta Kalra

Data mining is an extensive area of research which is applied in various critical domains.

In clinical aspect, data mining has emerged to assist clinicians in early detection, diag-

nosis and prevention of diseases. On the other hand, advances in computational methods

have led to the implementation of machine learning in multi-modal clinical image analysis

such as in CT, X-ray, MRI, microscopy among others. A challenge to these applications

is the high variability, inconsistent regions with missing edges, absence of texture contrast

and high noise in the background of biomedical images. To overcome this limitation vari-

ous segmentation approaches have been investigated to address these shortcomings and to

transform medical images into meaningful information. It is of utmost importance to have

the right match between the bio-medical data and the applied algorithm.

During the past decade, finite mixture models have been revealed to be one of the

most flexible and popular approaches in data clustering. Here, we propose a statistical

framework for online variational learning of finite mixture models for clustering medical

images. The online variational learning framework is used to estimate the parameters and

the number of mixture components simultaneously in a unified framework, thus decreasing

the computational complexity of the model and the over fitting problems experienced with

maximum likelihood approaches guaranteeing convergence. In online learning, the data

becomes available in a sequential order, thus sequentially updating the best predictor for

the future data at each step, as opposed to batch learning techniques which generate the

best predictor by learning the entire data set at once. The choice of distributions remains

the core concern of mixture models in recent research. The efficiency of Dirichlet family of

distributions for this purpose has been proved in latest studies especially for non-Gaussian

data. This led us to analyze online variational learning approach for finite mixture models

based on different distributions.
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To this end, our contribution is the application of online variational learning approach

to design finite mixture models based on inverted Dirichlet, generalized inverted Dirichlet

with feature selection and inverted Beta-Liouville distributions in medical domain. We

evaluated our proposed models on different biomedical image data sets. Furthermore, in

each case we compared the proposed algorithm with other popular algorithms. The models

detect the disease patterns with high confidence. Computational and statistical approaches

like the ones presented in our work hold a significant impact on medical image analysis

and interpretation in both clinical applications and scientific research. We believe that the

proposed models have the capacity to address multi modal biomedical image data sets and

can be further applied by researchers to analyse correct disease patterns.
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Chapter 1

Introduction

1.1 Background

In modern era, imaging is increasingly implemented in medical diagnosis and scientific

research. Thus, leading to advances in technical and diagnostic improvements in the field

of medical imaging [3]. This has resulted in the emergence of medical data mining which

is an increasingly notable research domain [4]. In medicine, imaging is a non invasive

biomedical technique applied in clinical context to identify and diagnose diseases [5, 6].

Depending on the medical imaging technique used, medical imaging can give insights into

two categories of biomedical analysis, structural or functional [7]. For example, MRI can

be used to give structural information of the tumour mass but can also be used to monitor

blood flow into the tumour, thus giving functional insights [8]. Although, most medical

images represent anatomical structure of the body, application of data mining on them

can give valuable insights on the physiology and diagnosis for computer aided-diagnosis

[9, 10, 11]. However, extraction and analysis of pertinent information from the often noisy

medical images is becoming a more and more pressing issue [6, 12]. In this aspect, medical

image segmentation applications have great potential for exploiting hidden patterns in these

data sets. The purpose of medical image segmentation is to divide an image into several

different regions according to the characteristics of regions within that image [13]. How-

ever, identifying the pixels for patho-physiological features from the medical images is a

challenging task due to high background in such images. Therefore, the implementation

of different algorithms which help detecting segments that can assist doctors to diagnose

the disease have recently gained tremendous traction in this field. Many researchers have
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proposed various automated techniques to address this, for e.g., traditionally edge detec-

tion methods along with mathematical modelling was explored. Later on, a combination

of machine learning and feature extraction techniques are explored. In this aspect, many

algorithms have been applied, such as classification, clustering, association rules, decision

trees, and artificial neural networks [14].

Among the many existing clustering methods, finite mixture models have gained in-

creasing interest and have been successfully applied in various fields such as data mining,

machine learning, image processing and bioinformatics. This popularity lies on their so-

lutions to model heterogeneous data. In the case of medical images, the data set can be

divided into two or more sub-populations (components). These components are defined by

the parameters of the mixture that would provide adequate adaptation to the data [15, 16].

From the different kinds of mixture models, Gaussian mixture model has been a popular

choice in various studies because of its simplicity [17]. GMM has disseminated the industry

and has profound applications in a number of data analysis tasks [18]. However, Gaussian

mixture is not the best choice in all applications and fails to discover the actual underlying

data structure when partitions are not Gaussian. In this context, the Dirichlet family per-

forms better with proportional data [15, 19]. Recent work has demonstrated through many

real-world applications which involve positive vectors that other mixture models could be

better alternatives to clustering and data modelling, such as inverted dirichlet (ID), gen-

eralized inverted dirichlet (GID), or inverted Beta-Liouville (IBL) mixtures. In particular,

data extracted from texts, images, or videos [20, 21]. Several works have been proposed to

model positive vectors based on inverted Dirichlet mixture models (IDMM) [19, 22, 23].

The traditional approaches to learn finite mixture models are based on maximum likeli-

hood (ML) [24] which is usually carried out via expectation maximization (EM) [25]. The

differences between Monte Carlo Markov Chain (MCMC), online variational learning and

maximum likelihood estimation (MLE) methods have been succinctly described [26]. For

instance, online variational learning and MLE methods have been described to be more

efficient than MCMC. Out of these methods, maximum likelihood estimation (MLE) has

been the most well described and well-known in probabilistic models. It has been exten-

sively applied for estimation of parameters in modern statistics. One problem which EM
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faces is the over fitting and being unable to determine the model complexity [23]. How-

ever, the disadvantage can be offset by the adoption of Bayesian framework. The Bayesian

approach is very comprehensive since the posterior distribution covers the uncertainty of

the process. In essence, the Bayesian framework goes hand-in-hand with an approxima-

tion scheme. Robert and Cabella [27] describe the utilization of MCMC techniques as the

most significant sampling methods which enabled the application of Bayesian techniques

in wide aspects of studies. However, the critical challenge of MCMC is limitation to small

scale applications due to the need of high computational resources to solve it. In addition,

convergence diagnosis is very complex to assess. Thus, variational inference method was

developed to overcome the limitations of MCMC.

Variational inference, also known as variational Bayes, is a deterministic approxima-

tion method, where, the model’s posterior distribution is approximated using analytical

procedures [28]. It has generated a lot of interest in finite mixture models through the pro-

vision of high generalization schemes and high computation tractability. Model selection

and parameter estimation can be performed simultaneously through the use of variational

inference. Online mixture learning algorithms have been described to be more efficient in

the modeling of data streams, as compared to batch algorithms. Examples include online

Gaussian Mixture Models (GMM) considered for instance in [29]. Most of the recent past

research works have demonstrated that simulations with other methodological approaches

can be better than the GMM when dealing with non-gaussian data. For example, Bouguila

and Ziou [20] developed an online learning approach in which the MML criterion was uti-

lized and incorporated. An online variational inference algorithm has been developed in

[30], also. In this study, we have proposed a more elaborated approach in which model

selection and online learning are examined simultaneously.

The developed approach will be explained in detail in Chapter 2. The authors in [31, 32]

have developed an efficient application of this model to finite Dirichlet mixture model. Our

intention is to study the efficiency of the above mentioned model when applied to inverted

Dirichlet (ID), generalized inverted Dirichlet (GID) and inverted Beta-Liouville (IBL) mix-

ture models. We evaluated our proposed models on different biomedical image data sets

including optic disc detection and localization in diabetic retinopathy, digital imaging in

3



melanoma lesion detection and segmentation, brain tumour detection, colon cancer detec-

tion and computer aid detection (CAD) of Malaria using different evaluation metrics in

each experimental case.

1.2 Data mining and its use in healthcare

In simple terms data mining approach uses computational models to extract useful informa-

tion from the data. Particularly, in healthcare, the data generated is rich and multi-modal,

for e.g., electronic medical records data, medical image data, proteomic and genomic data

to name a few [33]. Despite the abundance of data, computer aided decision support is

at its nascency. In this aspect, data mining is implemented to assist clinicians in the early

detection, diagnosis and prevention of diseases. This is achieved by establishing models on

medical data sets. These models learn from the data and help predict disease prognosis and

progression. Basically, data mining models are grouped into two categories; descriptive

and predictive models [34]. As the name suggests, descriptive models define the associ-

ations that are represented in the data by pattern discovery [35]. In contrast, predictive

models are applied to predict a future behaviour or trend as opposed to giving information

of the existing behaviour [36]. Depending on the type of medical data, a descriptive or

predictive model is chosen for. The important data mining tasks applied in healthcare is to

validate conclusions on the diagnosis and treatment regimes [37, 38] are:

1.2.1 Classification

Classification techniques are largely based on statistical models. As per the name, classi-

fication refers to the concept of assigning data into target classes. Data are grouped into

testing and training sets whenever classification is being implemented. Training data are

used by the classifiers in coming up with conclusive attributes of the data before they are

put in classes whereas the testing data sets are used to determine the correctness or accu-

racy of the classifier.

In hospitals or clinics, classification can be applied to determine risk pattern of each

patient depending on the data that are stored about the patient [39]. Since these classifiers

are rule based, they are implemented to classify the patient into low or high risk populations

for a certain diagnosis or disease [40]. In this approach, the patient cases are known thus,

4



classification can be described as supervised learning. A practical application of classifica-

tion is that the hospitals and diagnosing units determine the cost of treating the patients in

the classes of low risk or high risk diseases [41].

1.2.2 Trend Analysis

Trend analysis is a purely statistical approach where data are temporally examined. These

data sets can be obtained through continuous recording of data of a specific patient. The

statistical approach to this is called time series data analysis [30]. In this approach, data

sets are assigned a ”time” attribute such that time dependent properties of the data sets

can be deduced and analysed. This analysis is important as time patterns and irregularities

are critical concerns for the emergence of various diseases. For example, patients often

experience immense pain during and after operation and require anesthesia. In normal

recovery, the requirement of pain analgesic changes over time. Thus, the analysis of dose

delivery information of the analgesic over time on a patient can help predict the variance

of a patient pain relief condition [42]. Another application of trend analysis is to follow the

population trends of patient populations undergoing a certain treatment for hospital visits,

medical costs and lengths of stay of patients [43, 44]. Thus, incurring a trend in the aspects

of treatment cost and effectiveness.

1.2.3 Clustering

Simply put, clustering of data is the placing of similar data together in a cluster and dissim-

ilar ones in the others. While clustering can be confused with classification, there is a no-

table difference among the two. Clustering is an unsupervised learning technique whereas

classification is a supervised learning one. Importantly, in clustering the data information

about classes is not known. Clustering also does not necessitate the subtle information for

the partitioning of the data [45]. A major challenge in this method is that clusters have to

be identified first. Typical examples of its application are genomic sequence analysis and

genetic expression data analysis [46].
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1.2.4 Regression

In regression, data items are analyzed with the motivation of establishing a relationship in

the known dependent variable and unknown and independent estimated variable. Statisti-

cally, regression is the most effective tool for predicting future patterns [47]. In biomedical

research regression correlation coefficients are frequently used to establish a cause and ef-

fect relationship. For example, to determine if the patient has high blood pressure and the

relationship of the risk of high blood pressure to the weight and age of the patient [48].

1.2.5 Association

Association is the criterion in which the data are examined for the similarities or bonding

in which they can be attributed. In examining the data, association rule is very effective. It

reveals the correlations and relationships in which the objects are portrayed. Association

rules are critical factors in medical marketing, advertising and commodities management

[26]. In essence, association rules make it possible for grouping items as per their attributes,

then generating rules which can be used conclusively for the data sets. An accurate example

is the ranking of hospitals where data mining techniques facilitate the placing of different

hospitals according to their performance and other attributes by creating the necessary as-

sociation on information from various hospitals and then ranking them [23, 49].

1.2.6 Summarization

Using summarization, data can be examined and abstracted to smaller groups or sets of

data. The smaller group of data gives the overall description or attributes of the generalized

data. The data which are being abstracted can be examined in different ways or perspectives

depending on the scope. For instance, this is effectively applied on electronic medical

records where the data of the patient population are analysed, categorised based on the data

and the insurance providers [28, 50]. By mining the data this way, patterns and regularities

of a data set are easily recognised.

1.3 Contributions

The main objective of this thesis is to study the efficiency of ID, GID and IBL mixture

models when integrated with the online variational learning algorithm. The contributions
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are listed as follows:

+ Medical image segmentation using online variational learning of Finite Inverted
Dirichlet Mixture Models approach

We propose a finite Inverted Dirichlet mixture model for unsupervised learning

using online variational inference. We validate our model on synthetic data and

to detect challenging diseases namely brain tumour, lung tuberculosis and skin

lesion. This work has been accepted as a book chapter in the book titled Mixture

Models and Applications [21].

+ Medical image segmentation using online variational learning of Finite Gener-
alized Inverted Dirichlet Mixture Models with feature selection approach

An online variational learning algorithm of finite generalized inverted Dirichlet

mixture model with feature selection is proposed. Efficiency of proposed model

has been evaluated on synthetic data as well as three medical applications for

brain tumor detection, skin melanoma detection and computer aid detection

(CAD) of malaria. This work has been accepted as a book chapter in the book

titled Artificial Intelligence and data mining in healthcare.

+ Medical image segmentation using online variational learning of Finite Inverted
Beta-Liouville Mixture Models approach

We introduce a finite mixture model based on Inverted Beta-Liouville distribu-

tion which provides a better fit for the data with online variational learning ap-

proach. We evaluated our proposed algorithm on five different biomedical im-

age data sets including optic disc detection and localization in diabetic retinopa-

thy, digital imaging in melanoma lesion detection and segmentation, brain tu-

mour detection, colon cancer detection and computer aid detection (CAD) of

Malaria. Furthermore, we compared the proposed algorithm with three other

popular algorithms. This work has been submitted to International Journal of

Imaging Systems and Technology and is under revision.
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1.4 Thesis Overview

o Chapter 1 introduces the concepts of data mining and its use in healthcare and also

gives a brief overview of various concepts related to the work proposed. It also

conveys clearly our motivations behind the conducted research work.

o In Chapter 2, we briefly explain the online variational inference approach for in-

verted Dirichlet mixture models. The efficiency of the model has been evaluated by

comparing it to the popular online variational learning of Gaussian Mixture Model

(GMM) on synthetic data and to detect challenging diseases namely brain tumour,

lung tuberculosis and skin lesion.

o In chapter 3, we propose online variational learning model for generalized inverted

Dirichlet mixture models along with variational feature selection. The model ac-

curacy was tested on different medical data sets using evaluation metrics such as

Jaccard Similarity Index, Dice Similarity Coefficient, Adjusted Rand Index (ARI),

V-Measure Score and Adjusted Mutual Information (AMI) score.

o Chapter 4 describes the application of online variational learning to finite inverted

Beta-Liouville mixture models. The model has been tested with challenging medical

data sets using image segmentation including optic disc detection and localization in

diabetic retinopathy.

o In conclusion, we briefly summarize our contributions.
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Chapter 2

Online Variational learning for Finite
Inverted Dirichlet Mixture Model

In this chapter, we have examined and analyzed multi-modal medical images by devel-

oping an unsupervised machine learning algorithm based on online variational inference

for finite Inverted Dirichlet Mixture Model. The prime focus of this chapter is to validate

the developed approach on medical images. We do so by implementing the algorithm on

both synthetic and real data sets. We test the algorithm’s ability to detect challenging dis-

eases namely brain tumour, lung tuberculosis and skin lesion. Extensive comparisons with

comparable recent approaches have shown the merits of our proposed model.

2.1 Model Specification

2.1.1 Finite Inverted Dirichlet Mixture Model

The main reason for using finite inverted Dirichlet method is basically to have a flexible

distribution for our mixture model. Unlike the Gaussian distribution, it is reasonably flexi-

ble and has the property to perform in both symmetric and asymmetric modes. A graphical

model for finite inverted Dirichlet mixture model is shown in Figure 2.1. Consider a pos-

itive D-dimensional vector that is sampled from a finite inverted Dirichlet mixture model

with M components. Hence, the finite mixture of inverted Dirichlet distributions can be

defined as:

p
(
~Xi | ~π, ~α

)
=

M∑
j=1

πjID
(
~Xi | ~αj

)
(2.1)
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where α = (α1, ...., αM) and π = (π1, ...., πM) denotes the mixing coefficients along with

the constraints that they are positive and sum to one. Also, the term ID( ~Xi| ~αj) hereby

represents the jth inverted Dirichlet distribution with the parameter ~(αj) which is defined

as [45]:

ID
(
~Xi | ~αj

)
=

Γ
(∑D+1

l=1 αjl
)∏D+1

l=1 Γ
(
αjl
) D∏

l=1

X
αjl−1

il

(
1 +

D∑
l=1

Xil

)−∑D+1
l=1 αjl

(2.2)

where, Xil is positive for l = 1, ..., D and ~αj =
(
αj1, αj2, .....αjD+1

)
, αjl > 0 for l =

1, ..., D + 1. Mean, variance and co-variance of the inverted Dirichlet distribution are

hereby given as under:

E
[
Xl

]
=

αl
αD+1 − 1

(2.3)

var
(
Xl

)
=

αl
(
αj + αD+1 − 1

)(
αD+1 − 1

)2(
αD+1 − 2

) (2.4)

cov(Xa, Xb) =
αaαb

(αD+1 − 1)2(αD+1 − 2))
(2.5)

We introduce an M-dimensional binary random vector ~Zi = {Zi1, ...., ZiM} called the

latent variable which is hidden for each of the observed vectorXi. Furthermore, conditional

distribution of the Z given the mixing coefficients is as under:

p
(
Z | ~π

)
=

N∏
i=1

M∏
j=1

π
Zij
j (2.6)

Therefore, the conditional distribution of the data set X can be written as:

p
(
X | Z, ~α

)
=

N∏
i=1

M∏
j=1

ID
(
~Xi | ~αj

)Zij (2.7)

Assuming that the parameters of the inverted Dirichlet are statistically independent and for

every parameter αjl, the Gamma distribution that is adopted to approximate the conjugate

prior is given as below :

p
(
αjl
)

= G
(
αjl | ujl, νjl

)
=

ν
ujl
jl

Γ
(
ujl
)αujl−1

jl e−νjlαjl (2.8)
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Here, {ujl} and {νjl} are hyperparameters which have constraint such that ujl > 0 and

νjl > 0. Now considering ~α we can write,

p
(
~α
)

=
M∏
j=1

D∏
l=1

p
(
αjl
)

(2.9)

The joint distribution of all the random variables can be written as:

p
(
X ,Z, ~α | ~π

)
= p
(
X | Z, ~α

)
p
(
Z | ~π)p

(
~α
)

=
N∏
i=1

M∏
j=1

πjΓ
(∑D+1

l=1 αjl

)
∏D+1

l=1 Γ (αjl)

D∏
l=1

X
αjl−1

il

×

(
1 +

D+1∑
l=1

Xil

)−∑D+1
l=1 αjl ]Zij

(2.10)

×
M∏
j=1

D+1∏
l=1

v
ujl
jl

Γ (ujl)
α
ujl−1

jl e−vjlαjl (2.11)

Figure 2.1: Graphical model representation for finite inverted Dirichlet mixture. Symbols

in the circle denote the random variables; otherwise, they denote the model parameters.

11



2.2 Online variational learning for finite inverted Dirich-

let mixture model

2.2.1 Variational inference

Variational inference is used to formulate the computation of conditional probability in

terms of an optimization problem which is basically deterministic approximation. The main

objective of variational inference is to perform an approximation of conditional density of

latent variables based on the observed variables. The best choice to find this approximation

is by doing optimization. In essence, we make use of a family of densities over the latent

variables, which are parameterized by free ”variational parameters”. Therefore, the task

of the optimization is to find the member from this density family i.e., the setting of the

parameters, that lie close to the conditional of interest using KL divergence [51]. In order to

estimate the parameters of the finite inverted dirchlet mixture model correctly and to select

the appropriate number of components for the model , we adopted an online variational

approach [52]. For Simplifying the notation, we define Θ =
{
Z, ~α

}
. The main purpose of

variational learning is to find an approximation Q(Θ), that approximates p(Θ|X , ~π). To do

this, we find the Kullback-Leibler (KL) divergence which is the distance between the the

distribution Q
(
Θ
)

and posterior distribution p
(
Θ | X , ~π

)
given by,

KL
(
Q || P

)
= −

∫
Q
(
Θ
)

ln

(
p
(
Θ | X , ~π

)
Q
(
Θ
) )

dΘ (2.12)

Modifying this equation we can write

KL
(
Q || P

)
= ln p

(
X | ~π

)
− L

(
Q
)

(2.13)

where, L(Q) is called the variational lower bound , defined as:

L
(
Q
)

=

∫
Q
(
Θ
)

ln

(
p
(
X ,Θ | ~π

)
Q
(
Θ
) )

dΘ (2.14)

The KL divergence being a similarity measure follows the conditions KL
(
Q || P

)
≥

0 and KL
(
Q || P

)
= 0 when Q

(
Θ
)

= p
(
Θ | X

)
. From

(
2.13

)
we can say L

(
Q
)

is the lower bound of p
(
X | ~π

)
. We maximize the lower bound which means we are

minimizing the KL divergence and hence approximating the true posterior distribution.

However, the true posterior distribution cannot be used directly for variational inference as

12



it is computationally intractable. Therefore, for this reason we use the method of mean-field

approximation for our algorithm [53][54][55] by which we factorize Q
(
Θ
)

into disjoint

tractable distributions as below

Q
(
Θ
)

= Q
(
Z
)
Q
(
~α
)

(2.15)

To maximize the lower bound L(Q), we are supposed to make a variational optimiza-

tion of L(Q) with respect to each factor. The variational solution for a specific parameter

Qk

(
Θk

)
is

Qk

(
Θk

)
=

exp
〈

ln p
(
X ,Θ

)〉
6=k∫

exp
〈

ln p
(
X ,Θ

)〉
6=kdΘ

(2.16)

where
〈
.
〉
6=k is the expectation with respect to all the parameters other than Θk.

We hereby can obtain the following optimal variational solutions for the finite inverted

Dirichlet mixture model (derived in Appendix A.1 and Appendix A.2)

Q
(
Z
)

=
N∏
i=1

M∏
j=1

r
Zij
ij (2.17)

Q(~α) =
M∏
j=1

D+1∏
l=1

G(αjl|u∗jl, ν∗jl) (2.18)

where,

rij =
ρij∑M
j=1 ρij

(2.19)

ρij = exp

{
lnπj + R̃j +

D∑
l=1

(
αjl − 1

)
lnXil −

D+1∑
l=1

αjl ln
(
1 +

D∑
l=1

Xil

)}
(2.20)
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R̃j = ln
Γ
(∑D+1

l=1 αjl
)∏D+1

l=1 Γ
(
αjl
)

+
D+1∑
l=1

αjl

[
ψ

(
D+1∑
l=1

αjl

)
− ψ

(
αjl
)][〈

lnαjl
〉
− lnαjl

]
+

1

2

D+1∑
l=1

α2
jl

[
ψ′

(
D+1∑
l=1

αjl

)
− ψ′

(
αjl
)]
−
〈(

lnαjl − lnαjl
)2
〉

+
1

2

D+1∑
a=1

D+1∑
b=1

αja αjb

[
ψ′

(
D+1∑
l=1

αjl

)(〈
lnαja

〉
− lnαja

)
×
(〈

lnαjb
〉
− lnαjb

)]
(2.21)

The estimation equations for u∗jl and v∗jl are given by (derived in Appendix A.2)

u∗jl = ujl +
N∑
i=1

〈
Zij
〉
αjl

[
ψ

(
D+1∑
s=1

αjs

)
− ψ

(
αjl
)

+
D+1∑
s6=l

ψ′

(
D+1∑
ls=1

αjs

)
× αjs

(〈
lnαjs

〉
− lnαjs

)]
(2.22)

v∗jl = vjl −
N∑
i=1

〈
Zij
〉[

lnXil − ln

(
1 +

D+1∑
l=1

Xil

)]
(2.23)

ψ
(
·
)

and ψ′
(
·
)

in the above equations represent the digamma and trigamma functions. The

expectation of values mentioned in the equations above is given by the equations below,

〈
Zij
〉

= rij (2.24)

αjl =
〈
αjl
〉

=
u∗jl
ν∗jl
,
〈

lnαjl
〉

= ψ
(
u∗jl
)
− ln ν∗jl (2.25)

〈(
lnαjl − lnαjl

)2
〉

=
[
ψ
(
u∗jl
)
− lnu∗jl

]2

+ ψ′
(
u∗jl
)

(2.26)

We therefore maximize the variational lower bound L(Q) to estimate the coefficient ~π

which is treated as parameter for mixture model. The derivative of this lower bound with
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respect to ~π (derived in Appendix A.3) is given as under:

πj =
1

N

N∑
i=1

rij (2.27)

Therefore, for the variational learning of inverted Dirichlet mixture model, the value of

the lower bound is calculated as:

L(Q) =
∑
z

∫
Q(Z, ~α)ln{p(χ, Z, ~α|~π)

Q(Z, ~α)
}dα

=< lnp(χ|Z, ~α) > + < lnp(Z|~π) > + < lnp(~α) > (2.28)

− < lnQ(Z) > − < lnQ(~α) >

2.2.2 Online variational inference

In this section, we present an online variational inference algorithm for finite inverted

Dirichlet mixture models. In this algorithm we treat variational inference as a natural gra-

dient which is the inverse of the Riemannian metric multiplied by the gradient [56]. We do

this as it helps to achieve optimal convergence which allows to have faster online inference.

Online learning is when the data become available in a sequence and later the previous

data are used to as a reference to update the best predictor for the new incoming data at

each step since the data is continuously arriving in online fashion. It is different from batch

learning variational technique, in which we know the best predictor by working on the

entire data set at the same time. Online learning is being commonly used in many areas

where it is completely infeasible to train the entire data set at once since the data set is too

large to be trained altogether. Online learning is also extensively useful in areas such as

stock price prediction where it is important to adapt to the new patterns in the data or even

when the data itself is generated as a function of time. In such a case when the data are

continuously arriving in an online fashion, we have to estimate the variational lower bound

to a fixed amount of data which is N . Considering this, the value expected from the model

evidence p(X) for a data with finite size can be derived as [31]:

〈
ln p(X)

〉
φ

=

∫
φ(X) ln

(∫
p(X|Θ)p(Θ)d(Θ)

)
dx (2.29)
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where φ(X) represents the probability distribution which is unknown for the data ob-

served. Thus, the corresponding expected variational lower bound can be computed using

[31]: 〈
L(Q)

〉
φ

=

〈∑
Z

∫
Q(α)Q(Z) ln

[
p(X,Z|α)p(α)

Q(α)Q(Z)

]
dα

〉
φ

= N

∫
Q(α)dα

〈∑
Z

Q(Z) ln

[
p(X,Z|α)

Q(Z)

]〉
φ

+

∫
Q(α) ln

[
p(α)

Q(α)

]
dα

(2.30)

We consider t as the actual amount of data observed thus for the observed data the current

lower bound can be estimated by [31]

L(t)(Q) =
N

t

t∑
i=1

∫
Q(α)dα

∑
Zi

Q (Zi) ln

[
p (Xi,Zi|α)

Q (Zi)

]
+

∫
Q(α) ln

[
p(α)

Q(α)

]
dα

(2.31)

We realise that while N remains fixed, t increases over time. The main reason for this

is the fact that the principal objective of the proposed online algorithm is the expected log

evidence computed for a fixed amount of data. Even if there is an increase in the observed

data, the algorithm basically computes the same quantity. Now relating this to the context,

the former observed data is then used to improve the quality of estimation of the expected

variational lower bound in equation (2.30). This inherently approximates the resulting log

evidence as it does not have any previous knowledge of the former observed data.

With respect to the expectation values we saw in previous section, equation (2.25) and

(2.26) for i = 1, 2, . . . , N and l = 1, 2, . . . , D + 1 get modified to the below equations as

the data is getting updated in online fashion.

αjl =
〈
αjl
〉

=
u

(t−1)
jl

ν
(t−1)
jl

,
〈

lnαjl
〉

= ψ
(
u

(t−1)
jl

)
− ln ν

(t−1)
jl (2.32)

〈(
lnαjl − lnαjl

)2
〉

=
[
ψ
(
u

(t−1)
jl

)
− lnu

(t−1)
jl

]2

+ ψ′
(
u

(t−1)
jl

)
(2.33)
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The fundamental concept of this online algorithm is to enable successful maximization

of the present variational lower bound in equation (2.31). Assuming that the observed data

set exists in the form {X1, . . . Xt−1}. For every new observation Xt , we mainly perform

maximization of the present L(t)(Q) with respect to Q
(
Zt) while Q(α) is set to Q(t−1)(α)

and πj is set to π(t−1)
j . Hence, the variational solution can be computed using:

Q
(
Zt
)

=
M∏
j=1

r
Ztj
tj (2.34)

where, ρij

ρij = exp[lnπ
(t−1)
j +Rj +

D∑
l=1

( ~αjl − 1)lnXil − (
D+1∑
l=1

~αjl)ln(1 +
D∑
l=1

Xil)] (2.35)

where Rj is given by

R̃j = ln
Γ
(∑D+1

l=1 αjl
)∏D+1

l=1 Γ
(
αjl
)

+
D+1∑
l=1

αjl

[
ψ

(
D+1∑
l=1

αjl

)
− ψ

(
αjl
)][〈

lnαjl
〉
− lnαjl

]
+

1

2

D+1∑
l=1

α2
jl

[
ψ′

(
D+1∑
l=1

αjl

)
− ψ′

(
αjl
)]
−
〈(

lnαjl − lnαjl
)2
〉

+
1

2

D+1∑
a=1

D+1∑
b=1

αja αjb

[
ψ′

(
D+1∑
l=1

αjl

)(〈
lnαja

〉
− lnαja

)
×
(〈

lnαjb
〉
− lnαjb

)]
(2.36)

Later, we maximize the lower bound L(t)(Q) with respect to Q(t)(α) and π(t)
j while

Q
(
Zt) is fixed. As mentioned before, here we consider variational inference as a natural

gradient method. Therefore, the coefficient matrix for the posterior parameter distribution

gets cancelled since the natural gradient of a parameter is obtained by multiplying the

gradient by the inverse of Riemannian metric. Therefore, the natural gradients for ∆ujs,

∆νjs for j = 1, 2, ....,M and s = 1, 2, ...., D + 1 are
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∆ujs = ~αjs[ψ
(D+1∑
l=1

~αjl)− ψ
(
~αjs) (2.37)

+ ψ′
(D+1∑
l=1

)
D+1∑
l 6=s

~αjl(< lnαjl > −ln ~αjl)]
N∑
i=1

rij

∆νjs = −
N∑
i=1

rij[lnXis − ln(1 +
D∑
l=1

Xil)] (2.38)

Thus, the variational solution to Q(t)(α) is given by

Q(t)(α) =
M∏
j=1

D+1∏
l=1

G(α∗jl|u∗jl, ν∗jl) (2.39)

Therefore, we update the hyper parameters and optimal variational parameters as

u
(t)
jl = u

(t−1)
jl + ρt∆ujl (2.40)

ν
(t)
jl = ν

(t−1)
jl + ρt∆νjl (2.41)

where ρt is learning rate in which epsilon ∈ (0,1) and ηo ≥ 0 is defined as

ρt = (ηo + t)−ε (2.42)

The function of the learning rate here is adopted from [57] and is used to forget the

earlier inaccurate estimation effects that contributed to the lower bound and expedite the

convergence of the learning process. Online learning embraces the fact that learning envi-

ronments can (and do) change from second to second. The mixing coefficient π(t)
jl is given

by

π
(t)
jl = π

(t−1)
jl + ρt∆πjl (2.43)

where ∆πj is

∆πj =
1

N

N∑
i=1

rij − π(t−1)
j (2.44)

The varitional lower bound in case of online variational inference does not always in-

crease where as in batch variational it does because in case of online learning a new con-

tribution is always added to the lowerbound for each new observation. It is very important
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to choose the hyper parameters and the learning rate accurately since it might affect the

convergence of the model.

Algorithm 1 Online Variational learning of the finite inverted Dirichlet mixture model.

1. Choose the initial number of components M .

2. Initialize the value of hyper-parameters values for ujl and νjl.

3. Using K-means algorithm, initialize the value of rij .

4. for t = 1→ N do

i The variational E-step:

ii Update the variational solutions for Q(Zt) using rij

iii The variational M-step:

iv Compute the learning rate ρt = (ηo + t)−ε

v Calculate the natural gradients ∆ujs, ∆νjs and ∆πj using (2.37) , (2.38) and

(2.44) respectively.

vi Update the variational solution forQ(t)(α) and the mixing coefficient π(t)
jl through

(2.39) and (2.43)

vii Repeat the variational E-step and M-step until new data is observed.

5. end for

2.3 Experimental results

In order to evaluate the performance of our proposed algorithm we first validate it on syn-

thetic data sets of varied sizes. Once the algorithm is validated, we further apply it on real

world medical image data sets which are available with ground truth to perform segmen-

tation and analysis of diseases. In our case, we performed medical image segmentation

on three data sets of different diseases and different medical image testing techniques. We

applied the algorithm to detect brain tumour, skin lesion and tuberculosis. Furthermore,

we have used three different formats of images to test the applicability of the algorithm on

varied output formats, namely, MRI scans, normal photographs and X-ray images.
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In order to have an insight on the accuracy of our algorithm we further compared it to

the implementation of online variational inference of finite Gaussian mixture model on the

data sets. We chose online variational inference of finite Gaussian mixture model as the

comparison algorithm since Gaussian mixtures are widely applied in medical applications.

Image segmentation is a key challenge in image analysis. In medical imaging, it is a

particularly difficult challenge due to high variability in the image data sets. This variabil-

ity arises due to two reasons. One, each human itself has variability in the anatomy of the

organ or tissue. Second, there is an additional technical variability introduced to the images

due to the different modalities (e.g., MRI, PET scans, CT scans etc.) by which the image

is created.

Let’s say we have an input observed dataframe X which contains N pixels such that X=

{X1, . . . XN} . Each pixel is modelled as a mixture of M inverted Dirichlet distributions :

p
(
~Xi | ~π, ~α

)
=

M∑
j=1

πjID
(
~Xi | ~αj

)
(2.45)

where Xi is the pixel intensity value. In all our experiments, we initialize the number

of components M to 15. The parameters of the ε and ηo learning rate are set to 0.1 and 64

respectively. The accuracy of the algorithm was verified by comparison with the ground

truth that were available for each data sets. According to our experiments, a good choice

of the initial values of the hyper parameters ujl and νjl are discovered to be 1 and 0.01

respectively. We can thus detect the optimal number of the components M by eliminating

the components with the small mixing coefficients close to 0.

2.3.1 Synthetic data

The goal of using synthetic data is to investigate the accuracy of the online variational ap-

proach for both parameter estimation and model selection. Therefore, we first tested the

model accuracy on synthetic data sets. These data sets consisted of different data sizes,

namely, 300, 400, 600, 800 and 1000. The effectiveness of the algorithm was tested by

estimating the mixture parameters. Table (2.1) represents a comparison of the estimation

performed by online variational learning of inverted Dirichlet mixture model versus the
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real parameters. It is noted that our algorithm can determine mixing coefficient parameters

(α̂j1, α̂j2, α̂j3 and π̂j) close to the real data parameters (αj1, αj2, αj3 and πj).

There are different ways that can be used for estimation of the number of components.

In our case, once the algorithm reached convergence, we removed the components with

very small (less than 10−5) mixing coefficients in each data set.
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Data set Nj j αj1 αj2 αj3 πj α̂j1 α̂j2 α̂j3 π̂j

S1 100 1 7 25 79 0.33 7.43 25.62 80.28 0.33(
N = 300

)
100 2 11 32 63 0.34 10.41 31.81 62.97 0.35

100 3 22 45 51 0.33 22.37 43.99 51.09 0.33

S2 200 1 7 25 79 0.50 6.89 25.82 81.9 0.49(
N = 400

)
200 2 11 32 63 0.50 11.52 33.9 67.36 0.51

S3 200 1 7 25 79 0.33 7.56 25.62 79.3 0.33(
N = 600

)
200 2 11 32 63 0.33 11.26 31.55 62.78 0.33

200 3 22 45 51 0.33 22.42 46.66 51.55 0.33

S4 200 1 7 25 79 0.25 7.5 25.53 82.88 0.24(
N = 800

)
200 2 11 32 63 0.25 11.32 33.21 68.4 0.25

400 3 22 45 51 0.50 21.2 44.55 50.87 0.5

S5 200 1 7 25 79 0.25 6.98 24.95 78.76 0.24(
N = 800

)
200 2 11 32 63 0.25 10.21 29.43 60.29 0.25

200 3 22 45 51 0.25 22.11 45.11 50.85 0.27

200 4 28 83 90 0.25 28.75 85.4 93.05 0.23

S6 200 1 7 25 79 0.20 7.32 24.95 76.64 0.18(
N = 1000

)
200 2 11 32 63 0.20 11.86 34.79 68.16 0.21

200 3 22 45 51 0.20 23 46.1 51.59 0.22

200 4 28 83 90 0.20 28.71 83.81 88.55 0.23

200 5 40 3 56 0.20 37.94 2.95 55.05 0.2

Table 2.1: Real and estimated parameters of different data sets. N denotes the total number

of data points,Nj denotes the number of data points in the cluster j.αj1, αj2, αj3 and πj are

the real parameters and α̂j1, α̂j2, α̂j3 and π̂j are the parameters estimated by our proposed

algorithm.

2.3.2 Medical image data sets

After validating the algorithm on synthetic data sets, we applied it on three biomedical

image data sets. These data sets were used to detect three different disease morphology’s

which were created using three different imaging techniques. These data sets were MRI
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scan of brain tumors, X-ray scans of lung tuberculosis and normal png format pictures of

skin lesions. We observed that our algorithm could detect the morphological and structural

anomalies similar to the ground truth data. We used 25 images in each case and compared

the results of our proposed algorithm with online variational learning for Gaussian mixture

model (OVGMM) to determine the model performance.

Brain tumour detection

Gliaomas or brain tumor are the most prominent brain malignancies which exhibit varying

degrees of aggressiveness, prognosis and inherent variability in the MRI image representa-

tion. Due to the heterogeneous nature of the brain anatomy, the MRI image segmentation

and tumor detection is a highly challenging task [58]. For this, the brain tumor data set

was obtained from BRATS20151 [1, 2]. The data set consists of four MRI sequence images

for each patient. The MRI sequence images were Fluid Attenuation Inversion Recovery

(FLAIR), T1c, T1p and T2 which all stand for images which are weighted with respect

to the relaxation time of protons in the body tissue during the scanning. FLAIR is widely

applied to detect clinical malformations related to diseases like Multiple sclerosis (MS),

Hemorrhages, Meningitis etc [59]. In our experiment, we used the available FLAIR im-

ages for image segmentation and brain tumor detection.

The resulting accuracy of brain MRI segmentation was measured using Jaccard and

Dice metrics. This is illustrated in Figure 2.2 and the mean and standard deviation are

illustrated in Figure 2.3.The Jaccard and Dice for the BRATS20152 data set were signif-

icantly greater for our proposed algorithm than the online variational Gaussian Mixture

Model helping us conclude that it can be useful to detect tumours. The mean was 0.5

greater than the compared algorithm and the standard deviation was comparatively less

showing the robustness of our model.

1https://www.smir.ch/BRATS/Start2015
2https://www.smir.ch/BRATS/Start2015
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Figure 2.2: Results using Jaccard and dice evaluation metrics for brain tumour detection

Figure 2.3: Mean and standard deviation results for brain tumour detection

Representative segmentation results after running our proposed algorithm are depicted

in Figure 2.4 where the three clusters generated by the algorithm are depicted against the

MRI image. The last image in the panel is the best prediction made by the algorithm

and it is seen that the algorithm is able to identify the brain glioma. Further, the post

processing images are depicted in Figure 2.5 where, the last image in the panel is the post

processed ground truth image. The predicted image by the algorithm was compared against

the ground truth. We are able to visibly see the similarities of the detection by the algorithm

versus an experts opinion.
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A .                                  B.                                          C.                                     D.                          

PredictedBrain tumor  MRI

Figure 2.4: Best segmented brain MRI images : A. Input image, B. 3rd Cluster, C. 6th

Cluster, D. 7th Cluster

A .                                  B.                                          C.                                     D.                                    E.

Ground truth

Figure 2.5: Segmented brain MRI images after post processing: A.Clustered image, B.

Binary image, C. Clustered after filling holes, D. Processed clustered image and E. Ground

truth image. The data set was taken from BRATS database [1, 2] where the ground truth

data was available.

Skin lesion diagnosis

Similarly to brain gliomas, skin melanomas are also difficult glioma to detect. Specially

because the naked eye is not able to differentiate between the malignant and benign skin

melanoma [60]. Therefore digital imaging and lesion detection with identification can help

increase the efficiency in the detection and treatment [61]. Furthermore, since skin is the

largest organ of the body and highly visible, taking photos of the melanomas from smart

phones would add convenience in the process. However analysis of smart phone medical

images is also a challenging task due to the heterogeneity [62, 63]. For this reason, the data

used for assessing the performance of the proposed algorithm was done on the photos of

skin lesion obtained from International Skin Imaging Collaboration3. The data set consists

of images of skin melanoma of patients.

3https://isic-archive.com/api/v1
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The accuracy of the result obtained from skin image segmentation is measured by Jac-

card and Dice metrics as illustrated in Figure 2.6 and the mean and standard deviation are

shown in Figure 2.7 by comparing the proposed algorithm with online variational finite

Gaussian mixture model. The Jaccard index and Dice coefficient for the data set were sig-

nificantly greater for our proposed algorithm since both the values for each image were

above 0.85. The mean was 0.7 greater than the compared algorithm and the standard

deviation was 0.05 less for our algorithm proving the robustness of our algorithm. This

demonstrates the accuracy of our model for predicting skin lesions.

Figure 2.6: Results using Jaccard and Dice evaluation metrics for skin lesion diagnosis

Figure 2.7: Mean and standard deviation results for skin lesion diagnosis

Figure 2.8 shows a representative image of skin melanoma from the ISIC database (left

panel, first photo) and the best segmented and detected melanoma by the algorithm can

be seen at the end of the panel in the figure. In this case the algorithm was able to detect

14 clusters. Figure 2.9 displays a representative skin melanoma image achieved after post

processing for the ground truth in order to compare it with the algorithm.
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A .                                  B.                                          C.                                     D.                                       E.                          

Skin lesion photo Predicted

Figure 2.8: Best Segmented Skin Lesion Images: A. Input image, B. 0th Cluster, C. 9th

Cluster, D. 14th Cluster E. 10th Cluster

Ground truth

 A .                              B.                                   C.                                        D.                                    E.

Figure 2.9: Segmented Skin lesion images after post processing: A.Clustered image, B.

Greyscale image, C. Binary image, D. Binary image after filling holes, and E. Ground

truth image. The data set was taken from ICIS database where the ground truth data was

available.

Lung tuberculosis detection

Tuberculosis is caused by Mycobacterium tuberculosis which majorly infects the lung but

can spread rapidly through the body [64]. X-Ray is currently the most common diagnostic

tool used to detect tuberculosis. However, a lot of time the infection goes undetected due

to the high intrinsic noise in the X-Ray measurements [65]. Besides, in a low resource

setup X-Ray interpretations are performed by non-experts [66]. Here, a digital analysis of

detection can lend to computer aided decision support. Therefore, the third data set used

for this analysis is an X-Ray image selected from collection of data compiled by National

Library of Medicine in collaboration with the Department of Health and Human Services,

Montgomery County, Maryland, USA [67, 68]. The sample set is composed of 58 cases

with manifestation of tuberculosis and 80 normal cases. Each image is gray-scale with a

spatial resolution of 4020 x 4892, or 4892 x 4020. We performed our algorithm on 25 im-

ages and on cases where Tuberculosis was detected. It is to be noted that we compared only

the right mask of the lung for the algorithm predictions as the ground truth was available

for that.
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The accuracy obtained by performing lung segmentation is given by Jaccard and Dice

metrics as illustrated in Figure 2.10 and the mean and standard deviation are shown in Fig-

ure 2.11. The Jaccard and Dice for this data set were significantly higher for our proposed

algorithm since each image had a considerable difference in the value from the online vari-

ational learning of finite Gaussian Mixture Model. The mean was 0.11 greater than the

compared algorithm and the standard deviation was comparatively less for our algorithm

showing the strength of our model.

Figure 2.10: Results using Jaccard and Dice evaluation metrics for lung tuberculosis de-

tection

Figure 2.11: Mean and standard deviation results for lung tuberculosis detection

Figure 2.12 is a representative image of the prediction algorithm where the top 4 clusters

are depicted. In the panel the first image is that of the X-Ray and the last image is of the

best predicted tuberculosis image by the algorithm. There were 14 clusters generated by

the algorithm which are not shown here. Figure 2.13 depicts the images of the same lung

X-Ray segmentation after post processing on segmentation. It can be clearly seen in the
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last images of Figure 2.12 ( predicted ) and Figure 2.13 ( ground truth ) that the algorithm

is able to capture the similar segment of tuberculosis in the right lung.

A .                                  B.                                          C.                                     D.                                       E.                          

Lung tubercolosis XRay Predicted

Figure 2.12: Best segmented Lung images : A. Input image, B. 10th Cluster, C. 7th Cluster,

D. 4th Cluster,E. 0th Cluster

 A .                              B.                                   C.                                        D.                                    E.

Ground truth

Figure 2.13: Lung X-ray after post processing: A.Clustered image, B. Binary image, C.

Clustered after filling holes, D. Processed cluster and E. Ground truth image. The data set

was taken from Montgomery County - Chest X-ray Database provided by national library

of medicine where the ground truth data was available.
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Chapter 3

Online Variational learning using Finite
Generalized Inverted Dirichlet Mixture
Model with Feature Selection

In this chapter, we propose a statistical framework for online variational learning of finite

generalized inverted Dirichlet (GID) mixture model for clustering medical images data by

simultaneously using feature selection and image segmentation. The model allows one to

adjust the mixture model parameters, number of components and features weights to tackle

the challenge of over fitting. The algorithm in this study has been evaluated on synthetic

data as well as three medical applications for brain tumor detection, skin melanoma detec-

tion and computer aid detection (CAD) of malaria.

3.1 Model specification

The most significant reason to consider generalized inverted Dirichlet distribution as a stan-

dard one in our mixture model is its ability to generate models specified to positive vectors

and its more general covariance structure. The GID has several interesting mathematical

properties which allow for instance, the representation of GID samples in a transformed

space in which features are independent and follow inverted Beta distributions [69]. We

consider a set Y of N D-dimensional positive vectors, such that Y = (Y1, Y2, ..., YN) and M

indicates the number of various clusters [70]. We suppose that Y is managed by a mixture
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of GID distributions p
(
Yi | ~π, ~α, ~β,

)
[71] as

p
(
Yi | ~π, ~α, ~β

)
=

M∑
j=1

πj

D∏
l=1

Γ
(
αjd + βjd

)
Γ
(
αjd
)
Γ
(
βjd
) Yαjd−1

id(
1 +

d∑
l=1

Yil
)γjd (3.1)

where ~α =
{
α1, α2, ...αM

}
, with ~αj =

{
αj1, αj2, ...αjD

}
, j = 1,.., M and ~β =

{
β1, β2, ...βM

}
,

with ~βj =
{
βj1, βj2, ...iβjD

}
, j = 1,.., M. ~π =

{
π1, π2, ...πM

}
, are the mixing weights, such

that
M∑
j=1

~πj = 1. We define ~γjd such that ~γjd = ~βjd + ~αjd− ~βj(d+1). The GID posterior prob-

ability can be factorized as follows [71].

p
(
j | Yi, ~π, ~α, ~β

)
∝ πj

D∏
l=1

piBeta
(
Xil | ~αjl, ~βjl

)
(3.2)

where we have set Xil = Yil and Xil = Yil

1+
l=1∑
k=1

Yik
for~l > 1. piBeta

(
Xil | ~αjl, ~βjl

)
is an inverted

Beta distribution with parameters ~αjl and ~βjl as below :

piBeta
(
Xil | ~αjl, ~βjl

)
=

Γ
(
αjd + βjd

)
Γ
(
αjd
)
Γ
(
βjd
)X αjl−1

il

(
1 + Xil

)−(~αjl+~βjl) (3.3)

Let
−→
Z i =

(
~Zi1, ..., ~ZiM

)
be a binary latent variable assigned to each observation

−→
~X i.

The values ofZi satisfyZij ∈ {0, 1},
M∑
j=1

Zij = 1 ,Zij = 1 if
−→
~X i belongs to component j and

equal to 0, otherwise. The conditional distribution of latent variables Z =
(−→
~Z 1, ...,

−→
~Z N

)
given the mixing coefficients

−→
~π , can be written as

p
(
Z | −→π

)
=

N∏
i=1

M∏
j=1

~πj
Zij (3.4)

Thus, given the latent variables and the component parameters set we are able to write the

conditional distribution of the data set X =
(−→
~X 1, ...,

−→
~XN

)
as:

p
(
X | Z,−→α ,

−→
β
)

=
N∏
i=1

M∏
j=1

(
D∏
l=1

iBeta
(
Xil | ~αil, ~βjl

))Zij

(3.5)

Feature selection is an important aspect when data is multidimensional and some features

could be noisy, which can impact the algorithm performance as well as the clustering pro-

cess. These features can thus be considered irrelevant since they do not have any dis-

criminatory impact on the clustering. As so, to integrate feature selection with finite GID
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mixture model in equation (3.2), and to take into consideration the fact that the features ~Xil

are mostly not equally important for the clustering task, the following approximation for

the Xil distribution has been suggested [71]:

p
(
Xil | Wikl, ~φil, ~αjl, ~βjl, ~λkl, ~τkl

)
' iBeta

(
Xil | ~αjl, ~βjl)φil

)
(

K∏
K=1

iBeta
(
Xil | ~λkl, ~τkl

)Wikl

)1−φil

(3.6)

where ~φil is a binary latent variable, such that ~φil = 1 indicates that l is relevant feature

and follows an inverted Beta distribution iBeta (Xil|αjl, βjl) . However, ~φil = 0 represents

that feature l is irrelevant and supposed to follow a finite mixture of inverted beta distribu-

tions independent from the class labels such as:

p
(
Xil
)

=
K∑
K=1

ηkliBeta
(
Xil | ~λkl, ~τkl

)
(3.7)

where nkl denotes a mixing probability and implies the prior probability that Xil is

generated from the kth component of the finite inverted beta mixture representing irrelevant

features, and
K∑
K=1

ηkl = 1.

In equation (3.6),Wikl is a binary latent variable such thatWikl = 1 only if Xil comes

from the kth component of the finite inverted beta mixture for the irrelevant features. The

conditional distribution of the latent variablesW =
(−→
W 1, ...,

−→
WN

)
with
−→
W i =

(−→
W i1, ...,

−→
W iK

)
and
−→
W ik =

(−→
W ik1, ...,

−→
W ikD

)
given the mixing coefficients −→η , can be written as

p
(
W | −→η

)
=

N∏
i=1

K∏
K=1

D∏
L=1

~ηkl
Wikl (3.8)

where −→η =
(−→η 1, ...,

−→η K

)
with element −→η k =

(−→η k1, ...,
−→η kD

)
. The conditional dis-

tribution of the feature relevancy indicator variable
−→
φ =

(−→
φ 1, ...,

−→
φ N

)
with elements(−→

φ i1, ...,
−→
φ iD

)
, given −→ε , is defined as

p
(−→
φ | −→ε

)
=

N∏
i=1

D∏
l=1

~εl1
φil ~εl2

1−φil (3.9)

where φ is a Bernoulli variable such that p(φil = 1) = εl1 and p(φil = 0) = εl2 .

The vector −→ε =
(−→ε 1, ...,

−→ε D
)

represents the probabilities of the relevant features called

feature saliencies such that −→ε l = (εl1 , εl2) and (εl1 + εl2) = 1. Therefore, the likelihood of
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the observed data set X following the finite GID mixture model with feature selection is

given as follows :

p
(
X | Z,W ,

−→
φ ,−→α ,

−→
β ,
−→
λ ,−→τ

)
=

N∏
i=1

M∏
j=1

[ D∏
l=1

iBeta
(
~Xil | ~αil, ~βjl

)φil
×

(
K∏
K=1

iBeta
(
~Xil | ~λkl, ~τkl

)Wikl

]1−φil)Zij (3.10)

The detailed description on this unsupervised feature selection model is given in [72].

3.1.1 Prior Specifications

The setting up of prior distributions is a very crucial step in variational learning. Hence,

we have to place priors over (−→α ), (
−→
β ) , (

−→
λ ) and (−→τ ). The consideration of conjugate

priors is the key factor which majorly simplifies variational inference method. In our case,

we consider the gamma distribution to approximate a Beta distribution conjugate prior as

suggested in [73] which gives the following priors:

p
(−→α ) = G

(−→α | −→u ,−→ν ) =
M∏
j=1

D∏
l=1

ν
ujl
jl

Γ
(
ujl
)αujl−1

jl e−νjlαjl (3.11)

p
(−→
β
)

= G
(−→
β | −→p ,−→q

)
=

M∏
j=1

D∏
l=1

q
pjl
jl

Γ
(
pjl
)βpjl−1

jl e−qjlβjl (3.12)

p
(−→
λ
)

= G
(−→
λ | −→g ,

−→
h
)

=
M∏
K=1

D∏
l=1

hgklkl
Γ
(
gkl
)λgkl−1

kl e−hklλkl (3.13)

p
(−→τ ) = G

(−→τ | −→s ,−→t ) =
M∏
K=1

D∏
l=1

tsklsl
Γ
(
skl
)τ skl−1

kl e−tklτkl (3.14)

where all the hyper-parameters −→u =
{
ujl
}

, −→v =
{
vjl
}

, −→p =
{
pjl
}

, −→q =
{
qjl
}

, −→g ={
gkl
}

,
−→
h =
{
hkl
}

,−→s =
{
skl
}

and
−→
t =

{
tkl
}

of the above conjugate priors are positive. We

do not consider−→π ,−→η and−→ε as random variables in our model so no priors are considered

for them. The joint distribution of all the random variables for GID mixture model with

feature selection is given by

p
(
X | Z,W ,

−→
φ ,−→α ,

−→
β ,
−→
λ ,−→τ

)
= p
(
X | Z,W ,

−→
φ ,−→α ,

−→
β ,
−→
λ ,−→τ

)
×p
(
Z | −→π

)
p
(
W | −→η

)
p
(−→
φ | −→ε

)
p
(−→α )p(−→β )p(−→λ )p(−→τ ) (3.15)
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3.2 Online variational learning for finite generalized in-

verted Dirichlet mixture mode with feature selection

Variational procedures are very common and have been extensively utilized in the past to

find approximations which are tractable for posterior distributions of a variety of statistical

models [74]. One of the most integral part of designing finite mixture models is parameter

estimation and to select the number of components correctly. In this section, we adopt

an online variational framework of finite GID mixture model for parameter estimation and

model selection. The online variational concept is taken into account for the dynamic nature

of real-world data sets where the observations are sequential. Figure (3.1) represents the

graphical representation for our model.

Figure 3.1: Graphical representation of finite GID mixture model with feature selection.

The circles represent the random variables and model parameters. Numbers in the upper

right corners of the plates indicate the number of repetitions.

The goal of variational inference method is to find a probability distribution Q
(
Λ
)

which approximates the true posterior distribution p
(
Λ | X , γ

)
. We achieve this by maxi-

mizing the lower bound L on the evidence of model p(X|γ). This evidence of lower bound

L is taken by applying Jensen’s inequality on p(X|γ) [32] as:

lnP
(
X | γ

)
= ln

∫
p
(
X | Λ, γ

)
dΛ = ln

∫
Q
(
Λ
)(p(X | Λ, ~γ)

Q
(
Λ
) )

dΛ

≥ ln

∫
Q
(
Λ
)(p(X | Λ, ~γ)

Q
(
Λ
) )

dΛ = L(Q) (3.16)
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In theory, the lower bound L(Q) is maximized when Q(λ) = p(Λ|X ,Γ). However,

the actual posterior distribution is usually arithmetically intractable and cannot be directly

utilized for variational inference. Hence, we use a factorization hypothesis to limit the form

of Q(Λ) in our work, such that Q(Λ) = Q(Z)Q(W)Q(
−→
φ )Q(−→α )Q(

−→
β )Q(

−→
λ )Q(−→τ ). This

hypothesis is commonly known as mean field approximation that comes out of statistical

mechanics [75] and has been extensively utilized in the past for many applications (for ex-

ample, [76]). It has been already described in the previous chapter.

The core idea is that as the model has conjugate priors, the functional form of the

factors in the variational posterior distribution is known. According to this, by using general

parametric forms on these distributions, the lower bound can be viewed as a function of

the parameters of the distributions. We maximize the lower bound with respect to these

parameters in order to obtain the optimization of variational factors. In our algorithm, the

functional form of each factor is identical to its conjugate prior distribution, specifically

discrete for Z and W , bernoulli for
−→
φ , and gamma for −→α ,

−→
β ,
−→
Λ and −→τ . Thus, the

parametric forms of these variational posterior distributions could be defined as following:

Q
(
Z
)

=
N∏
i=1

M∏
j=1

r
Zij
ij , Q

(
W
)

=
N∏
i=1

K∏
K=1

D∏
L=1

~mkl
Wikl (3.17)

Q(
−→
φ ) =

N∏
j=1

D∏
l=1

fφilil (1− fil)1−φil (3.18)

Q(−→α ) =
M∏
j=1

D∏
l=1

G(αjl|u∗jl, ν∗jl), Q(
−→
β ) =

M∏
j=1

D∏
l=1

G(βjl|p∗jl, q∗jl) (3.19)

Q(
−→
λ ) =

M∏
k=1

D∏
l=1

G(λkl|g∗kl, h∗kl), Q(−→γ ) =
M∏
k=1

D∏
l=1

G(γkl|s∗kl, t∗kl) (3.20)

We can obtain the parameterized lower bound L(Q) by substituting equations (3.17) -

(3.20) into (3.16) as below :

L
(
Q
)

=
∑
θ

∫
Q
(
Θ,Ω

)
ln

(
p
(
X ,Θ,Ω | ~γ

)
Q
(
Θ,Ω

) )
dΩ

=
〈

ln p
(
X ,Θ,Ω | ~γ

)
− lnQ

(
Θ,Ω

)〉
(3.21)
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The detailed solution of the above equation is explained [32]. Then, the variational

parameters rij , fil and mikl can be calculated by maximizing L(Q) with respect to these

parameters, respectively where,

rij =
r̃ij∑M
j=1 r̃ij

, fil =
f̃il

f̃il + f̂il
, mikl =

m̃ikl∑k
k=1 m̃ikl

(3.22)

with

r̃ij = exp

{
lnπj +

D∑
l=1

{
fil
[
R̃jl +

(
αjl − 1

)
lnXil − (αjl + βjl) ln(1 + Xil)]

+(1− fil)
K∑
k=1

mikl

[
F̃kl +

(
λkl − 1

)
lnXil − (λkl + τ kl) ln(1 + Xil)]

}}
(3.23)

m̃ikl = exp

{
ln ηkl + (1− fil)

[
F̃kl +

(
λkl − 1

)
lnXil − (λkl + τ kl) ln(1 + Xil)]

}
(3.24)

f̃ij = exp

{
ln εl1 +

M∑
j=1

rij[R̃jl +
(
αjl − 1

)
lnXil − (αjl + βjl) ln(1 + Xil)]

}
(3.25)

f̂il = exp

{
ln εl2 +

{
K∑
K=1

mikl[F̃kl +
(
λkl−1

)
lnXil− (λk1 + τ k1) ln(1+Xil)]

}}
(3.26)

R̃ = ln
Γ
(
α̃ + β̃

)
Γ
(
β
)
Γ
(
α
)

+ α̃
[
ψ
(
α + β̃

)
− ψ

(
α
)][〈

lnα
〉
− lnα

]
+ β̃

[
ψ
(
β + α̃

)
− ψ

(
β
)][〈

ln β
〉
− ln β

]
+ 0.5α̃2

[
ψ
(
α + β̃

)
− ψ

(
α
)][〈

lnα
〉
− lnα

]2

+ 0.5β̃2
[
ψ
(
β + α̃

)
− ψ

(
β
)][〈

ln β
〉
− ln β

]2

+ α̃β̃ψ
(
α + β̃

)[〈
ln β

〉
− ln β

][〈
lnα

〉
− lnα

]
(3.27)
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F̃ = ln
Γ
(
λ̃+ τ̃

)
Γ
(
τ
)
Γ
(
λ
)

+ λ̃
[
ψ
(
λ+ τ̃

)
− ψ

(
λ
)][〈

lnλ
〉
− lnλ

]
+ τ̃
[
ψ
(
τ + λ̃

)
− ψ

(
τ
)][〈

ln τ
〉
− ln τ

]
+ 0.5λ̃2

[
ψ′
(
λ+ τ̃

)
− ψ′

(
λ
)][〈

lnλ
〉
− lnλ

]2

+ 0.5τ̃ 2
[
ψ′
(
τ + λ̃

)
− ψ′

(
τ
)][〈

ln τ
〉
− ln τ

]2

+ λ̃τ̃ψ′
(
λ+ τ̃

)[〈
lnλ
〉
− lnλ

][〈
ln τ
〉
− ln τ

]
(3.28)

where ψ(.) is the digamma function that is defined as ψ(α) =
d ln Γ(α)

d(α)
.

Similarly, we can obtain the update equations of the hyper-parameters of variational

factors α, β, γ and τ . Finally, the mixing coefficients πij , ηkl and the feature salencies εl1
can be calculated as :

πj =
1

N

N∑
i=1

rij, ηkl =
1

N

N∑
i=1

mikl, εl1 =
1

N

N∑
i=1

fil (3.29)

In this subsection, we propose an online variational learning framework with unsuper-

vised feature selection for finite GID mixture model for sequential data . The proposed

algorithm approach of online learning is based upon the variational technique developed

in [77] which we consider in our work. The approach has been already described in the

previous section.

The core idea of the online variational algorithm is to maximize the present varia-

tional lower bound successively. Suppose that we have already observed the data set

X (ι−1) = (X1, . . . , X(ι−1)) and determined the variational factors Q(
−→
φ (ι−1)), Q(

−→
Z (ι−1))

, Q(
−→
W(ι−1)) , Q(ι−1)(−→α ),Q(ι−1)(

−→
β ),Q(ι−1)(

−→
λ ) and Q(ι−1)(−→τ ) as well as the parameters

−→π (ι−1),−→η (ι−1),−→ε (ι−1). When the newly arriving data Xι is observed, we need to update

the current ιth optimal value for a variational factor according to the ((ι − 1)th) values of

the other variational factors. Later, we update the ιth optimal value for the second factor by

holding the newly obtained ιth value of the first factor fixed and setting other factors still to

their (ι− 1)th values. We keep repeating this procedure until all the variational factors are
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updated with respect to the new observation .

In this work, we first maximize the current lower bound L(t)Q with respect to Q(
−→
φ ι) ,

while other variational factors are set toQ(
−→
Z (ι−1)) ,Q(

−→
W(ι−1)) ,Q(ι−1)(−→α ),Q(ι−1)(

−→
β ),Q(ι−1)(

−→
λ )

andQ(ι−1)(−→τ ) , and the feature saliency−→ε is set to−→ε (ι−1). Hence, the variational solution

for Q(
−→
φ ι) can be calculated as

Q(
−→
φ ) =

D∏
l=1

fφιlιl (1− fιl)1−φιl (3.30)

where:

fιl =
f̃ιl

f̃ιl + f̂ιl
, (3.31)

In the above equation (3.31), we substitute the below values of (3.32) and (3.33) by

modifying the equations (3.25) and (3.26) respectively to

f̃ιl = exp

{
ln ε

(ι−1)
l1

+
M∑
j=1

r(ι−1)j[R̃jl +
(
αjl− 1

)
lnXιl− (αjl +βjl) ln(1 +Xιl)]

}
(3.32)

f̂ιl = exp

{
ln ε

(ι−1)
l2

+

{
K∑
K=1

m(ι−1)kl[F̃kl +
(
λkl − 1

)
lnXιl − (λk1 + τ k1) ln(1 +Xιl)]

}}
(3.33)

In the next step, we maximize the current lower bound L(t)Q with respect to Q(
−→
Z ι),

while Q(
−→
φ ι) is fixed, −→π is set to −→π (ι−1) , Q

−→
(α),Q

−→
(β) , are set to Q(ι−1)(−→α ),Q(ι−1)(

−→
β ) ,

respectively. Based on equation (3.17), the variational solution for Q(
−→
Z ι) is given by

Q
(−→
Z ι

)
=

M∏
j=1

r̃
Zιj
ιj (3.34)

where,

rιj =
r̃ιj∑M
j=1 r̃ιj

, (3.35)

We modify the equation (3.23) discussed in the previous section to the one below for

online variational case

38



r̃ιj = exp

{
ln πj

(ι−1) +
D∑
l=1

{
fιl
[
R̃jl +

(
αjl − 1

)
lnXιl − (αjl + βjl) ln(1 + Xιl)]

+(1− fil)
K∑
k=1

m(ι−1)kl

[
F̃kl +

(
λkl − 1

)
lnXιl − (λkl + τ kl) ln(1 + Xιl)]

}}
(3.36)

Subsequently, we maximizeL(t)Qwith respect toQ(
−→
W ι), usingQ(ι−1)(

−→
λ ),Q(ι−1)(−→τ )

and −→η (ι−1), while Q(
−→
φ ι) is considered fixed, such that

Q
(−→
Wι

)
=

K∏
K=1

D∏
L=1

~mιkl
Wιkl (3.37)

where,

mιkl =
m̃ιkl∑k
k=1 m̃ιkl

(3.38)

The equation (3.24) in the previous section is modified as below

m̃ιkl = exp

{
ln η

(ι−1)
kl +(1−f(ιl))

[
F̃kl+

(
λkl−1

)
lnXιl−(λkl+τ kl) ln(1+Xιl)]

}
(3.39)

Now in order to obtain the variational solution for Q(ι)(−→α ) , we need to maximize

L(t)Q with respect to the variational factor Q(ι)(−→α ) , while holding Q(
−→
φ ι) and Q(

−→
Z ι)

fixed as

Qι(−→α ) =
M∏
j=1

D∏
l=1

G(α
(ι)
jl |u

∗(ι)
jl , ν

∗(ι)
jl ) (3.40)

A significant characteristic of the adopted variational method [52], which cites that

variational inference could be handled as a normal gradient method [56] whixh has been

described in the previous chapter. In this case, the natural gradients of the variational

hyper-parameters u∗jl and v∗jl are structurally equivalent to the updates given by
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∆u∗
(ι)

jl = u∗
(ι)

jl − u∗
(ι−1)

jl = ujι +Nrιjfιjαjl
[
ψ′
(
αιj + β̃ιj

)
− ψ

(
αjl
)]

+βjl
[
ψ′
(
αιj + β̃ιj

)[〈
ln βjl

〉
− ln βjl

]
− u∗(ι−1)

jl (3.41)

∆ν∗
(ι)

jl = ν∗
(ι)

jl − ν∗
(ι−1)

jl = νjι −Nrιjfιl ln
Xιt

1 + Xιt
− ν∗(ι−1)

jl (3.42)

Thus, the variational solutions to hyper parameters u∗(ι)jl and v∗(ι)jl are calculated through

their natural gradients as

u
∗(ι)
jl = u

∗(ι−1)
jl + ρι∆u

∗(ι)
jl (3.43)

ν
∗(ι)
jl = ν

∗(ι−1)
jl + ρι∆ν

∗(ι)
jl (3.44)

where ρι is the learning rate and is defined as

ρι = (δo + ι)−ε (3.45)

with the constraints:ξε(0.5, 1]and δo ≥ 0. The function of the learning rate here is

adopted from [57], described in detail in the previous chapter. Similarly, the variational

factors Q(ι)(
−→
β ), Q(ι)(

−→
λ ), Q(ι)(−→τ ), are updated as

Q(ι)
−→
(β) =

M∏
j=1

D∏
l=1

G(β
(ι)
jl |p

∗(ι)
jl , q

∗(ι)
jl ) (3.46)

Q(ι)
−→
(λ) =

K∏
k=1

D∏
l=1

G(λ
(ι)
kl |g

∗(ι)
kl , h

∗(ι)
kl ) (3.47)

Q(ι)
−→
(τ) =

K∏
k=1

D∏
l=1

G(τ
(ι)
kl |s

∗(ι)
kl , t

∗(ι)
kl ) (3.48)

where

p
∗(ι)
jl = p

∗(ι−1)
jl + ρι∆p

∗(ι)
jl , q

∗(ι)
jl = q

∗(ι−1)
jl + ρι∆q

∗(ι)
jl (3.49)
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g
∗(ι)
kl = g

∗(ι−1)
kl + ρι∆g

∗(ι)
kl , h

∗(ι)
kl = h

∗(ι−1)
kl + ρι∆h

∗(ι)
kl (3.50)

s
∗(ι)
kl = s

∗(ι−1)
kl + ρι∆s

∗(ι)
kl , t

∗(ι)
kl = t

∗(ι−1)
kl + ρι∆t

∗(ι)
kl (3.51)

The corresponding natural gradients of the variational hyper parameters in the above

equations are given by

∆p∗
(ι)

jl = p∗
(ι)

jl − p∗
(ι−1)

jl = pjι +Nrιjfιlβjl
[
ψ
(
αιj + βιj

)
− ψ

(
βjl
)]

+αjl
[
ψ′
(
αιj + βιj

)][〈
lnαjl

〉
− lnαjl

]
− p∗(ι−1)

jl (3.52)

∆q∗
(ι)

jl = q∗
(ι)

jl − q∗
(ι−1)

jl = qjι +Nrιjfιl ln
1

1 + Xιl
− q∗(ι−1)

jl (3.53)

∆g∗
(ι)

kl = g∗
(ι)

kl − g∗
(ι−1)

kl = gkl +N(1− φιl)mιklλkl
[
ψ
(
λkl + τ kl

)
−ψ
(
λkl
)

+ τ kl
[
ψ′
(
λkl + τ kl

)[〈
ln τkl

〉
− ln τ kl

]
− g∗(ι−1)

jl (3.54)

∆h∗
(ι)

kl = h∗
(ι)

kl − h∗
(ι−1)

kl = hkl −N(1− φιl)mιkl ln
Xιl

1 + Xιt
− h∗(ι−1)

kl (3.55)

∆s∗
(ι)

kl = s∗
(ι)

kl − s∗
(ι−1)

kl = skl +N(1− φιl)mιklτ kl
[
ψ
(
λkl + τ kl

)
−ψ
(
τ kl
)

+ λklψ′
(
λkl + τ kl

)
(
〈

lnλkl
〉
− lnλkl

)]
− s∗(ι−1)

jl (3.56)

∆t∗
(ι)

kl = t∗
(ι)

kl − t∗
(ι−1)

kl = tkl −N(1− φkl))mkl ln
1

1 + Xιt
− t∗(ι−1)

kl (3.57)

Finally, we can update variational parameters −→π (ι), −→η (ι) and −→ε (ι) as

π
(ι)
j = π

(ι−1)
j + ρι∆πj (3.58)

41



η
(ι)
kl = η

(ι−1)
kl + ρι∆ηkl (3.59)

ε
(ι)
l1

= ε
(ι−1)
l1

+ ρι∆ε
ι
l1

(3.60)

where the natural gradients ∆π
(ι)
j , ∆η

(ι)
kl and ∆ε

(ι)
l1

are calculated by

∆π
(ι)
j = π

(ι)
j − π

(ι−1)
j =

(N
t

)
rιj − π(ι−1)

j (3.61)

∆η
(ι)
kl = η

(ι)
kl − η

(ι−1)
kl =

(N
t

)
mιkl − η(ι−1)

kl (3.62)

∆ε
(ι)
l1

= ε
(ι)
l1
− ε(ι−1)

l1
=
(N
t

)
fιl − ε(ι−1)

l1
(3.63)

Furthermore, as showed in [77], the online variational algorithm can be defined as a

stochastic approximation method [78] in order to estimate the expected lower bound and

the convergence is assured if the learning standard satisfies these conditions:

∞∑
ι=1

ρι =∞,
∞∑
i=1

ρ2
ι <∞ (3.64)

The major cause of slow convergence is the affect on later estimations due to inaccurate

hyper parameter estimations which occur in the earlier inference stages. Therefore, includ-

ing the learning rate in the learning process is considered important for accelerating the

convergence rate. The steps for online variational inference for finite GID mixture model

with feature selection are abstracted in algorithm [3.2].

Algorithm 1 Online Variational learning of the finite GID mixture model with feature

selection

1. Choose the initial number of components M and K.

2. Initialize the values for hyper-parameters ujl, νjl, pjl, qjl, gkl, hkl, skl, tkl.

3. Using K-means algorithm, initialize the values of rij and mikl.

4. for t = 1→ N do

i The variational E-step:
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ii Update the variational solutions for Q(
−→
φ ι), Q(

−→
Z ι) and Q(

−→
W ι) through equa-

tions (3.30), (3.34) and (3.37) respectively.

iii The variational M-step:

iv Compute learning rate ρι = (δo + ι)−ε as in equation (3.45)

v Calculate the natural gradients ∆u∗
(ι)

jl , ∆ν∗
(ι)

jl , ∆p∗
(ι)

jl , ∆q∗
(ι)

jl , ∆g∗
(ι)

kl , ∆h∗
(ι)

kl ,

∆s∗
(ι)

kl and ∆t∗
(ι)

kl using equations (3.41),(3.42) , (3.52), (3.53),(3.54), (3.55),

(3.56),(3.57) respectively

vi Update the variational solution forQι(−→α ),Q(ι)(
−→
β ),Q(ι)(

−→
λ )Q(ι)(−→τ ) through

equations (3.40) ,(3.46) , (3.47), (3.48) and (3.57)

vii Calculate the natural gradients ∆π
(ι)
j , ∆η

(ι)
kl and ∆ε

(ι)
l1

via equations (3.61),

(3.62), (3.63) respectively, for parameters −→π (ι), −→η (ι) and −→ε (ι)

viii Update the current solutions for −→π (ι), −→η (ι) and −→ε (ι) using equations (3.58),

(3.59), (3.60)

ix Repeat the variational E-step and M-step until new data is observed.

5. end for

3.3 Experimental results

In this section, we investigate the efficiency of our proposed online variational GID mixture

model with feature selection by synthetic data and three challenging medical applications.

The synthetic data purpose is to examine the online variational algorithm accuracy in terms

of estimation of parameters and model selection. We performed medical image segmen-

tation and feature selection on three data sets of different diseases and different medical

image testing techniques. We applied the algorithm to detect brain tumor, skin lesion and

computer aid detection (CAD) of malaria. Furthermore, we have used two different for-

mats of images to test the applicability of the algorithm on varied output formats, namely,

MRI scans, dermoscopic photographs. The main goal to focus on medical applications was

to visualize the way different analytical and statistical mixture model methods can help the

healthcare industry to give more precise results while diagnosing any patients health using

machine learning.
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Concerning the medical data sets we have used for the experiments, we make a per-

formance comparison of our algorithm of online variational learning of finite GID with

feature selection (OVGIDMM) with two other models namely online variational learning

of finite inverted dirichlet mixture model (OVIDMM) and OVGMM to illustrate the merits

of our algorithm implementation. OVIDMM is considered for comparison since it has less

co-variance compared to our proposed algorithm and can also be used for positive vectors

. OVGMM is considered since it is an extremely popular and novel approach. The be-

low sections would follow the description on image segmentation, feature selection and the

results obtained by calculating different evaluation metrics.

3.3.1 Image segmentation

Image segmentation is considered as an integral part for computer vision. It is the process

used to partition the image into many segments according to the pixels. The main aim of

the segmentation process is to change the representation of the image to make the analysis

and interpretation process easier, since we get more understanding about the image and to

detect the lines or curves in the image. In other words, the image segmentation makes a

label for each pixel in order to have a table of similar features. Each pixel is similar to the

other computed features like color or texture.

There are mainly two types of image segmentation techniques called non - contex-

tual thresholding and contextual thresholding. The non-contextual type doesn’t consider

the spatial relationships between features in the image but the contextual technique does

consider these relationships for example grouping together pixels with similar grey levels.

In all our experiments in this chapter, we used the non contextual thresholding technique

called RGB colour thresholding. The input to the thresholding operation was typically gray

scale for brain tumor detection and color scale for the skin melanoma and CAD of malaria.

In this implementation, the output is a binary image representing the segmentation where

the black pixels correspond to background and white pixels correspond to foreground (or

vice versa). The detection of edges in various clusters formed by the image segmentation

helped us to derive the diagnostic insights to it by comparing it with the ground truth. The

major challenge while performing segmentation was to identify the pixels that belong to

features of interest to us. As an example, we performed the followings steps to detect the

brain tumor by MRI image segmentation :- where we first extracted the brain structures and
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then did localization of tumor region of interest (ROI) and then considering the size of the

tumor with other structures in the brain and then diagnosed the tumor by comparing it to

the ground truth.

In automated MRI image analysis, image segmentation is considered to be a prelim-

inary step. The different types of factors which can affect on deciding the segmentation

type when dealing with medical data sets are; which main body part is being considered,

the imaging technique and lastly the application type for deciding the best suitable seg-

mentation [79]. The applications in the healthcare field could be related to cell counting,

measurement process for organ, counting of cells or prediction of abnormal growth which

would depend on boundary extraction. There are a few general challenges that could be

experienced when dealing with medical image segmentation: 1) the variability in sensing

of the main part is very large, especially because it is very complicated when dealing with

human anatomy, 2) the affect of medical image is different for each organ of the body since

the motion of the heart also affects the imaging quality, 3) the noise effect of the sensor

being used for detection.

In our model we extracted the feature of each image using the most commonly used

technique of color histogram where we calculated the green color component histogram

value for an RGB component of an image since the red and blue colour component had no

varitions and followed no statistical model. Color is one of the most outstanding features

of the image, it is the most important human visual content and it is very easy to calculate.

The color histogram for an image is constructed by quantizing the colors within the image

and counting the number of pixels of each color. Then, we take a summation of it and

find the mean and standard deviation from the color histogram. Finally, it is stored in a 1D

array. This value is calculated for every image in the data set [80].

3.3.2 Synthetic data

Our proposed algorithm was evaluated by quantitative analysis on dimensional data with

two relevant features. These data sets have different data sizes namely, 200, 600, 900 and

1200. The relevant features were created in the converted space from mixture of inverted

beta distributions with well-separated components. The table [3.1] below demonstrates the

actual and evaluated parameters of the distributions using our proposed online variational
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approach and considering the relevant features for each data set. According to the results

obtained, the model parameters representing relevant features, and its mixing coefficients

are precisely estimated by our online algorithm. In our experiments for synthetic data ,

the components M and K number had been initialized with 6 and 2 for two dimensional

data respectively with equivalent mixing coefficients and the feature salencies value are

initialized at 0.5.The initial values of the hyper-parameters u, p, g and s for the conjugate

priors are fixed to 1, v to 0.04, q to 0.03, h to 0.05 and t to 0.06. ε and Σ the learning rate

parameters are fixed to 0.5 and 64.

Data set Nj j αj1 βj1 αj2 βj2 πj α̂j1 β̂j1 α̂j2 β̂j2 π̂j

Data set 1 100 1 20 13 18 15 0.5 19.91 13.05 18.99 15.30 0.50

(N = 200) 100 2 25 15 22 12 0.5 25.43 15.27 21.76 12.27 0.50

Data set 2 200 1 20 13 24 15 0.33 21.59 14.53 23.74 15.13 0.33

(N=600) 200 2 22 15 25 12 0.33 21.19 15.11 25.41 12.76 0.33

200 3 25 16 22 14 0.34 24.79 16.10 23.86 13.86 0.34

Data set 3 300 1 20 13 24 15 0.33 20.68 13.51 24.17 14.13 0.33

(N=900) 300 2 22 15 25 12 0.33 21.89 14.77 24.46 13.26 0.33

300 3 21 15 22 14 0.34 20.53 15.05 22.82 13.89 0.34

Data set 4 400 1 20 13 20 15 0.33 20.06 14.37 21.49 13.88 0.33

(N=1200) 400 2 22 15 20 12 0.33 21.72 14.96 20.83 14.21 0.33

400 3 21 15 22 14 0.34 20.89 13.89 23.02 14.28 0.34

Table 3.1: Real and estimated parameters of different data sets. N denotes the total number

of data points,Nj denotes the number of data points in the cluster j.αj1, βj1, αj2, βj2 and πj
are the real parameters and α̂j1, β̂j1, α̂j2, β̂j2, and π̂j are the parameters estimated by our

proposed algorithm.

3.3.3 Medical image data sets

After validating the algorithm on synthetic data sets, we applied it on three challenging

medical data sets for brain tumor detection, skin melanoma detection and CAD of malaria

data set. We observed that our algorithm could detect the morphological and structural

anomalies similar to the ground truth data when performing image segmentation. We used
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30 different patient images in each case of image segmentation for brain tumor detec-

tion and skin melanoma and compared the result of our proposed algorithm OVGIDMM

with OVIDMM and OVGMM by taking out the mean of all the images values obtained

in terms of Adjusted Rand Index (ARI) score, Adjusted Mutual Information (AMI) score,

V-Measure score, Fowlkes - Mallows (FM) index, Dice similarity coefficient and Jaccard

similarity index for evalution of the accuracy. The evaluation of CAD of malaria data set

was also done by comparing our algorithm to OVIDMM and OVGMM on the basis of con-

fusion matrix for classification of the patients into uninfected and parasitized category.

In our experiments for image segmentation of brain MRI images section [3.3.3] and skin

melanoma images section [3.3.3], the number of components M and K had been initialized

with 16 and 2 and the feature salencies value were initialized at 0.5. The initial values of

the hyper-parameters u, p, g and s for the conjugate priors are fixed to 1, v to 0.03, q to

0.035, s to 0.05 and t to 0.06. ε and Σ the learning rate parameters are fixed to 0.5 and 64.

The initialization was kept different for the testing of CAD of malaria data set which has

been described in section [3.3.3].

Brain tumor detection

Tumor results from any abnormal proliferation of different kinds of cells in the body and

can be either benign or malignant [81]. Brain tumor is accounted by the occurrence of the

tumor in the brain or the skull. Benign brain tumor has uniformity in structure and does

not contain proliferative cells, while malignant brain tumors have non-uniform (heteroge-

neous) structure and contain proliferative cells. Further to this, brain tumor is divided into

two categories: primary and secondary. Primary tumors begin in the brain tissue while sec-

ondary spread from other tissues to the brain. According to the World Health Organization

and the American Brain Tumor Association, the tumor types are classified on the scale of

grade I to IV representing benign and malignant tumors. Benign tumors are grade I and

grade II gliomas while the malignant are grade III and IV gliomas. Grade I and II gliomas

are also called low grade tumor type and have slow growth, while grades III and IV are

called high grade tumor type and have fast tumor growth. Gliomas and meningiomas are

examples of low-grade primary tumors and are classified as benign tumors. Glioblastoma

and astrocytomas on the other hand, are a class of high-grade primary tumors and are there-

fore classified as malignant tumors [82].
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High grade gliomas (HGG) are the most frequently diagnosed primary brain tumor. De-

spite decades of research, HGG are among the top 10 causes of cancer deaths. The progno-

sis is quick and the life expectancy of a patient diagnosed with glioblastoma is drastically

reduced. An estimate of 13, 000 people have been reported to die due to brain tumors [83].

Patients with gliomas are kept under serial monitoring and magnetic resonance imaging

(MRI) or computed tomography (CT) observations on the tumor growth are made every 6

to 12 months. Brain cancer can affect any individual at any age and its impact on the body

may not be the same for every individual [84].

MRI is routinely employed as a non invasive imaging method to characterize brain

tumors and give pretreatment evaluations on it [85]. This image can be further segmented

where the process of segmentation involves identifying and separating tumor micro-environment

tissues, such as edema and dead cells, from normal brain tissues [86]. Several researchers

have proposed various methodologies and algorithms for brain tumor segmentation by us-

ing K - means clustering technique [87], Spatial Fuzzy C-means [88], convolution neural

network (CNN) as pixel classifier for the segmentation process [89] and K-Medoids clus-

tering [90].

In this chapter, the brain tumor data set was obtained from kaggle 1. The data set

consisted of 110 brain MRI images in the FLAIR sequence along with manual FLAIR ab-

normality segmentation masks which are binary, 1-channel images considered as ground

truth. The images for the data set have been obtained from The Cancer Imaging Archive

(TCIA). In order to find out the brain tumor from modalities of the brain MRI images,

image segmentation was performed along with some post processing steps. The represen-

tative segmentation achieved after running our proposed algorithm is depicted in Figure

[3.2] and Figure [3.3] for two different patients as an example where two of the best seg-

mented clusters generated by the algorithm are merged as a post processing step in order to

compare with the ground truth.

1https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation
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Figure 3.2: Example of best segmented brain MRI images for patient 1 : A. Input MRI

image, B. 7th Cluster Image, C. 8th Cluster Image, D. Predicted Image from post processing,

E. Ground Truth Image

Figure 3.3: Example of best segmented brain MRI images for patient 2 : A. Input MRI

image, B. 0th Cluster Image, C. 5th Cluster Image, D. Predicted Image from post processing,

E. Ground Truth Image.

Table [3.2] below shows the performance comparison between our proposed algorithm,

OVIDMM and OVGMM . The result obtained from our algorithm are clearly much bet-

ter in terms of accuracy for all evaluation metrics compared to OVIDMM and OVGMM

signifying our algorithm could be of better use in healthcare to diagnose brain tumor.

Method ARI AMI V-Measure Dice Jaccard

OVGIDMM 90.44 78.66 80.80 91.12 82.97

OVIDMM 84.02 67.9 72.11 86.38 75.0

OVGMM 82.3 65.83 70.90 83.63 73.02

Table 3.2: Evaluation metrics for brain tumor detection
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Skin Melanoma detection

In recent years, skin cancer has emerged to be a high burden disease. Depending on the

cause, there are three different consequent skin cancer conditions that can arise: melanoma,

Cutaneous squamous cell carcinoma and cutaneous basal cell carcinoma, of which melanoma

is the most unpredictable [91]. Melanoma accounts for 75% of all skin cancer deaths

[91, 92]. Intensive skin exposure to ultraviolet radiation is the leading cause of melanoma.

If diagnosed and treated in its early stages, it can be cured, but if the diagnosis is delayed,

melanoma can grow deeper into the skin and spread to other parts of the body [92]. The

origin of melanoma cells is unknown, it has been proposed that melanoma cells arise from

either dedifferentiated melanocytes or from melanocyte progenitors [93].

Dermoscopy is a non invasive examination technique based on the use of incident light

and oil immersion to enable visual examination of skin surface structures. Although detec-

tion of melanoma by dermoscopy is superior to discovery based on unaided observation,

its diagnostic accuracy depends on dermatologist training, where the diagnostic accuracy

of melanoma is estimated to be about 75-84%. Therefore, a lot of research is put into es-

tablishing good segmentation techniques to detect melanoma and to assist doctors in their

diagnosis. Such computer aided diagnostics can improve in accuracy of melanoma de-

tection as it can extract some information, such as color variation, asymmetry, and plot

characteristics, which may not be readily apparent to human eyes. The feature extraction

methodology of many computerized melanoma detection systems was primarily based on

the conventional clinical algorithm of the ABCD dermoscopy rule due to its effectiveness

and simplicity of implementation [94].

In order to test the performance of our algorithm to detect skin melanoma we used the

data set from International Skin Imaging Collaboration2. The data set consists of 23,906

dermoscopic images of melanoma of different patients with ground truth available for each

image. Figures [3.4] and [3.5] are example images of two different patients respectively

showing the result of our proposed algorithm while performing image segmentation with

feature selection. In each patient’s case there were a lot of cluster images formed upto

approximately the number of components however, in post processing of the image we

merged the best segmented images in order to compare it with ground truth.

2https://www.isic-archive.com
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Figure 3.4: Example of best segmented dermoscopic images for patient 1 : A. Input image,

B. 5th Cluster Image, C. 8th Cluster Image, D. Predicted Image from post processing, E.

Ground Truth Image

Figure 3.5: Example of best segmented dermoscopic images for patient 2 : A. Input image,

B. 0th Cluster Image, C. 5th Cluster Image, D. Predicted Image from post processing, E.

Ground Truth Image.

Table [3.3] below shows the result obtained from our algorithm, as compared to OVIDMM

and OVGMM whihc is much accurate for all evaluation metrics where we took mean of the

test performed on 30 sample images.

Method ARI AMI V-Measure FM Dice Jaccard

OVGIDMM 88.22 75.04 78.56 94.59 95.95 92.48

OVIDMM 75.46 62.43 67.03 89.70 89.67 82.17

OVGMM 50.57 42.86 46.04 82.32 69.90 58.81

Table 3.3: Evaluation metrics for skin melanoma detection

51



Malaria data set

Malaria is vector borne parasitic disease prevalent in tropical parts of the world. It is trans-

mitted by the bite of female Anopheles mosquito. Plasmodium Falciparum and plasmod-

ium vivax are predominant parasite transmitted by mosquitoes worldwide with the highest

occurance rate of malaria cases. About 80% of falciparum malaria cases are reported in

Africa. The absolute global burden of malaria is unknown due to various factors, such as

the increasing prevalence in some areas due to the wide availability of fake and substandard

drugs; the expansion of drug resistance; global warming, climate change and malaria ex-

pansion in favorable regions at higher altitudes. The gold standard of laboratory diagnosis

of malaria remains light microscopy of stained blood films. The blood films are stained

by giemsa dye, where the trophozoites are stained in the red blood cell(RBC). Due to the

staining involved and observation of the blood film under microscope, this is a complicated

process that requires specialized technicians.

The infection of Malaria parasite causes micro structural changes to the erythrocytes.

The RBCs microscopic features are usually specified to morphology, intensity and texture.

Also, they may perform the differences that happen between healthy and unhealthy cells.

Both textural and geometric merits for demonstrating stages of malaria infection have been

reported in most of the studies. In general, merits may be identified according to the next

characteristics: morphological features and textural and intensity features [95]. It is a pop-

ular arithmetical morphology procedure to compute the grains size distribution in binary

images, by a sequence of morphological opening operations. Some authors utilize the

area granulometry for prepossessing goals in malaria description, although it is certainly

efficient for extracting cell size features. Local area granulometry connected with colour

histogram are employed as features. The feature of area granulometry is computed locally

on the stained objects binary mask, for channels of RGB.

Computer vision is a growing field for the early detection of malaria. It employs mathe-

matical morphology as a powerful tool to develop computer aided malaria diagnosis (CAD)

due to the frequent practical difficulties encountered in resource-poor health facilities in de-

veloping countries, such as an excessive workload due to lack of staff [96, 97]. Such CAD

enabled identification of parasitic vs non-parasitic cells helps to reduce dependence on

manual microscopic examination of blood smears, which is a thorough and time-consuming
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activity while requiring considerable knowledge of the laboratory technician. Furthermore,

on the identification of presence of parasite, an additional classification of the parasitic life-

stage.

In this chapter, we used the malaria data set from NIH 3. The data set includes a sum

of 27,558 cell images with equivalent examples of parasitized and uninfected cells. A few

examples of the images from the data set are illustrated in Figure [3.6] of parasitized cells

and Figure [3.7] of uninfected cells. The data set also includes a csv file including the

Patient-ID to cell mappings for the parasitized and uninfected classes. There are 151 pa-

tient entries for the parasitized class and the uninfected class includes 201 entries as the

normal cells. In our experiments, the feature selection concept played a very crucial role

in this data set to evaluate the performance of our algorithm. The features were extracted

using the color histogram method where we considered specifically the green component

of RGB model since the red and blue had no variations. The same has been described in the

above section [3.3.1]. Feature extraction has the target of decreasing the subsequent com-

putational complication and facilitating a credible and accurate recognition for unknown

new data. For this experiment, the number of components M and K had been initialized

with 2 and 4 and the feature salencies value were initialized at 0.5. The initial values of the

hyper-parameters u, p, g, v and s for the conjugate priors are fixed to 1, q, h and t were set

to 10. ε and Σ the learning rate parameters are fixed to 0.5 and 64. In total, we considered

17 features out of which 4 were considered as relevant and the rest as irrelevant.

Figure 3.6: Examples of malaria cells labelled as parasitized in the data set

3https://ceb.nlm.nih.gov/repositories/malaria-datasets/
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Figure 3.7: Examples of malaria cells labelled as uninfected in the data set

Table [3.4] shows precisely the way our proposed algorithm out performs the other two

algorithm in CAD of malaria by giving a greater accuracy as well as taking less time for

execution. It also proves the fact that it takes less time for convergence as compared to the

other two models.

Method Accuracy Precision Recall F1-score estimation time(sec)
OVGIDMM 93.8 95.10 90.06 92.51 0.3
OVIDMM 90.3 87.96 79.47 87.59 0.5
OVGMM 83.80 75.26 92.71 83.08 1.2

Table 3.4: Evaluation metrics for malaria data set
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Chapter 4

Online Variational learning for Finite
Inverted Beta-Liouville Mixture Model

In this chapter, we propose a statistical framework for online variational learning of finite

inverted beta-liouville mixture model for clustering medical images data sets. We evalu-

ated our proposed algorithm on five different biomedical image data sets including optic

disc detection and localization in diabetic retinopathy, digital imaging in melanoma lesion

detection and segmentation, brain tumour detection, colon cancer detection and computer

aid detection (CAD) of Malaria. Furthermore, we compared the proposed algorithm with

three other popular algorithms. In our results we analyse that the proposed online varia-

tional learning of finite inverted beta-liouville mixture model algorithm performs accurately

on multiple modalities of medical images. We believe that the proposed algorithm has the

capacity to address multi modal biomedical image data sets and can be further applied by

researchers to analyse correct disease patterns.

4.1 Model Specification

4.1.1 Finite Inverted Beta-Liouville Mixture Model

Consider a D-dimensional vector Xi = (X1, X2, ..., XD) from a set of N independent and

identically distributed data samples χ = (X1,X2, ...,XN) generated from an inverted Beta-

Liouville (IBL) distribution [98]. Then, the probability density function p(Xi|α1, ..., αD, α, β, λ)
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is given by:

p(Xi|αi1, ..., αiD, α, β, λ) =

Γ(
D∑
l=1

αl)Γ(α + β)

Γ(α)Γ(β)

D∏
l=1

Xαl−1
il

Γ(αl)

×λβ
(

D∑
l=1

Xil

)α−
D∑
l=1

αl (
λ+

D∑
l=1

Xil

)−(α+β)

(4.1)

with the conditions Xil > 0 for l = 1, ...., D, α > 0, β > 0 and λ > 0. Examples of

IBL mixture model is shown in Figure 4.1. The mean, variance and covariance of IBL

distribution are given by:

E(Xil) =
λα

β − 1

αl∑D
l=1 αl

(4.2)

V ar(Xil) =
λ2α(α + 1)

(β − 1)(β − 2)

α(α + 1)

αl(
∑D

l=1 αl + 1)

λ2α2

(β − 1)2

α4
l

(
∑D

l=1 αl)
4

(4.3)

Cov(Xim, Xin) =
αmαn∑D
l=1 αl

[
λ2α(α + 1)

(β − 1)(β − 2)(
∑D

l=1 αl + 1)
− λ2α2

(β − 1)2(
∑D

l=1 αl)

]
(4.4)

Figure 4.1: Four examples of inverted beta liouville distributions

56



Let’s assume that given a set of data that contains N vectors where each sample ~Xi =

(Xi1, Xi2, ..., XiD) is generated from a mixture of IBL distributions then :

p( ~Xi|~π,Θ) =
N∑
i=1

M∑
j=1

πjp( ~Xi|θj) (4.5)

where M is the number of components in the mixture model and Θ = (θ1, θ2, ...., θM),

p( ~Xi|θj) denotes the conditional probability of the data sample with respect to each compo-

nent, θj = (αj1, ...., αjD, αj, βj, λj) represents the parameter with respect to the component

j . ~π = (π1, ...., πM) is the set of mixing parameters and follows the conditions
M∑
j=1

πj = 1

and 0 ≤ πj ≤ 1. Examples of our mixture model with different components is represented

in Figure 4.2.

Figure 4.2: Examples of finite IBL Mixture model with different components

We define latent variables Z = ~(Z1, ...., ~ZN) as an indicator matrix which indicates to

which component each data sample is assigned to [99]. Here each ~Zi = (Zi1, ....,ZiM). ~Zi
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is a binary vector that satisfies the conditions Zijε{0, 1} and
M∑
j=1

Zij = 1 and is defined by:

Zij =

1, ifXiεj

0, otherwise.

The conditional distribution of Z can be defined as:

p(Z|~π) =
N∏
i=1

M∏
j=1

π
Zij
j (4.6)

Therefore, according to equation (4.6), the likelihood function of data set χ with latent

variables Z and related parameters Θ is given by as:

p(χ|Z,Θ) =
N∑
i=1

M∑
j=1

p(Xi|θj)Zij (4.7)

We now place priors over the parameters Θ = (α,−→α ,
−→
β ,
−→
λ ) . Since all the parameters

are positive thus we make the choice of modelling them using Gamma prior. Hence the

priors are defined by:

p
(
αjl
)

= G
(−→α | −→u ,−→ν ) =

M∏
j=1

D∏
d=1

ν
ujl
jl

Γ
(
ujl
)αujl−1

jl e−νjlαjl (4.8)

p
(
αj
)

= G
(−→α | −→p ,−→q ) =

M∏
j=1

q
pj
j

Γ
(
pj
)αpj−1

j e−qjαj (4.9)

p
(
βj
)

= G
(−→
β | −→g ,

−→
h
)

=
M∏
j=1

h
gj
j

Γ
(
gj
)βgj−1

j e−hjβj (4.10)

p
(
λj
)

= G
(−→
λ | −→s ,−→t

)
=

M∏
j=1

t
sj
j

Γ
(
sj
)λsj−1

j e−tjλj (4.11)

where all the hyper-parameters−→u =
{
ujl
}

,−→v =
{
vjl
}

,−→p =
{
pj
}

,−→q =
{
qj
}

,−→g =
{
gj
}

,
−→
h =
{
hj
}

, −→s =
{
sj
}

and
−→
t =

{
tj
}

of the above conjugate priors are positive. Therefore,

the joint distribution of all random variables and latent variables given mixing coefficient

π is defined by
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p(χ,Z,Θ|−→π ) = p(χ|Z,Θ)p(Z|−→π )p(α)p(−→α )p(
−→
β )p(
−→
λ ) (4.12)

=
N∏
i=i

M∏
j=i

[
Γ(
∑D

l=1 αjl)Γ(αj + βj)

Γ(αj)Γ(βj)

D∏
l=1

Xαil−1
il

Γ(αjl)

× λβjj
( D∑

l=1

Xil

)αj−∑D
i=1 αjl

(
λj +

D∑
l=1

Xil

)−(αj+βj)]Zij
×

N∏
i=1

[ s∏
j=1

π
Zij
j

]
×

M∏
j=1

D∏
l=1

[
v
ujl
jl

Γ(ujl)
α
ujl−1

jl e−vjlαjl

×
q
pj
j

Γ(pj)
α
pj−1
j e−qjαj ×

h
gj
j

Γ(gj)
β
gj−1
j e−hjβj ×

t
sj
j

Γ(sj)
λ
sj−1
j e−tjλj

]

4.2 Online variational learning for finite Inverted Beta-

Liouville Mixture Model

In the past decades variational procedures have been extensively utilized and commonly

used to find approximations which are tractable for the posterior distributions of a variety

of statistical models [74]. In this chapter we take into consideration the online variational

framework of finite IBL mixture model for parameter estimation and model selection. The

concept of variational inference has been explained in detail in the previous chapters. The

graphical representation of the finite IBL mixture model is in Figure 4.3.

χ Ζ π

β

α

λ

α
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h
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M

Figure 4.3: Graphical model representation for finite IBL mixture model. Symbols in the

circle denote the random variables; otherwise, they denote the model parameters.
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The parametric forms of the variational posterior distributions could be defined as fol-

lowing:

Q(Z) =
N∏
i=1

M∏
j=1

r
Zij
ij (4.13)

Q(α) =
M∏
j=1

D∏
l=1

G(αjl|u∗jlν∗jl), Q(α) =
M∏
j=1

G(αj|p∗j , q∗j ) (4.14)

Q(β) =
M∏
j=1

G(βj|g∗j , h∗j), Q(λ) =
M∏
j=1

G(λj|s∗j , t∗j) (4.15)

where:

rij =
r∗ij

M∑
k=1

r∗ik

(4.16)

r∗ij = exp{lnπj + Rj + Sj + (ᾱj −
D∑
l=1

ᾱjl)ln(
D∑
l=1

Xil) + β̄j〈lnλj〉 (4.17)

+
D∑
l=1

[(ᾱjd − 1)lnXid]− (ᾱ + β̄)Tij}

where Rj , Sj and Tij are given by equations (4.18, 4.19, 4.20) as below :

Rj = ln

Γ(
D∑
l=1

ᾱjl)

D∏
l=1

Γ(ᾱjl)

+
D∑
l=1

ᾱjl

[
ψ

( D∑
l=1

ᾱjl

)
− ψ

(
ᾱjl

)][
〈lnαjl〉 − lnᾱjl

]
(4.18)

+
1

2

D∑
l=1

ᾱ2
jl

[
ψ′
( D∑

l=1

ᾱjl

)
− ψ′

(
ᾱjl

)]〈(
lnαjl − lnᾱjl

)2〉
+

1

2

D∑
a=1

D∑
b=1

ᾱjaᾱjb

[
ψ′
( D∑

l=1

ᾱjl

)(
〈lnαja〉 − lnᾱja

)
×
(
〈lnαjb〉 − lnᾱjb

)]
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Sj = ln
Γ
(
α + β

)
Γ
(
β
)
Γ
(
α
) (4.19)

+ α
[
ψ
(
α + β

)
− ψ

(
α
)][〈

lnα
〉
− lnα

]
+ β

[
ψ
(
β + α

)
− ψ

(
β
)][〈

ln β
〉
− ln β

]
+ 0.5α2

[
ψ′
(
α + β

)
− ψ′

(
α
)][〈

lnα− lnα
〉]2

+ 0.5β
2
[
ψ′
(
β + α

)
− ψ′

(
β
)][〈

ln β − ln β
〉]2

+ αβψ
(
α + β

)[〈
ln β

〉
− ln β

][〈
lnα

〉
− lnα

]

Tij = ln

[
λ̄j +

D∑
l=1

Xil

]
+

λ̄j

λ̄j +
∑D

i=1Xil

[
〈lnλj − lnλ̄j

]
(4.20)

u∗jl = ujl +
N∑
i=1

〈Zij〉ᾱjl

[
ψ(

D∑
l=1

ᾱjl)− ψ(ᾱjl) + ψ′(
D∑
l=1

ᾱjl)
D∑
d 6=l

(〈lnαjd〉 − lnᾱjd)ᾱjd

]
(4.21)

v∗jl = vjl −
N∑
i=1

〈Zij〉

[
lnXil − ln(

D∑
l=1

Xil)

]
(4.22)

p∗j = pj +
N∑
i=1

〈Zij〉
[
ψ(ᾱj + β̄)− ψ(ᾱj) + β̄jψ

′(ᾱj + β̄j)

(
〈lnβj〉 − β̄j

)]
ᾱj (4.23)

q∗j = qj −
N∑
i=1

〈Zij〉ln(
D∑
l=1

Xil) +
N∑
i=1

〈Zij〉Tij (4.24)

g∗j = gj +
N∑
i=1

〈Zij〉
[
ψ(ᾱj + β̄)− ψ(β̄j) + ᾱjψ

′(ᾱj + β̄j)

(
〈lnαj〉 − ᾱj

)]
β̄j (4.25)

h∗j = hj +
N∑
i=1

〈Zij〉
[
Tij − 〈lnλj〉

]
(4.26)

s∗j = sj +
N∑
i=1

〈Zij〉β̄j (4.27)
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t∗j = tj +
N∑
i=1

〈Zij〉
ᾱj + β̄j

λ̄j +
D∑
l=1

Xil

(4.28)

The first and second derivative of the Gamma function is given by the digamma and

trigamma functions, ψ(·) and ψ′(·) respectively. The values of the expectations mentioned

in the above equations are given by:

〈Zij〉 = rij

ᾱjl = 〈αjl〉 =
ujl
vjl
, ᾱj = 〈αj〉 =

pj
qj
, β̄j = 〈βj〉 =

gj
hj
, λ̄j = 〈λj〉 =

sj
tj

(4.29)

〈lnαjl〉 = ψ(u∗jl)− lnv∗jl, 〈lnαj〉 = ψ(p∗j)− lnq∗j , (4.30)

〈lnβj〉 = ψ(g∗j )− lnh∗j , 〈lnλj〉 = ψ(s∗j)− lnt∗j (4.31)

〈(lnαjl − lnᾱjl)2〉 =
[
ψ(u∗jl)− lnu∗jl

]2
+ ψ′(u∗jl) (4.32)

〈(lnαj − lnᾱj)2〉 =
[
ψ(p∗j)− lnp∗j

]2
+ ψ′(p∗j) (4.33)

〈(lnβj − lnβ̄j)2〉 =
[
ψ(g∗j )− lng∗j

]2
+ ψ′(g∗j ) (4.34)

We propose an online variational framework for finite IBL mixture model by adopting

the framework proposed in [77]. In our case, let t denotes the actual amount of observed

data. Then, the current lower bound for the observed data is give by

L(t)(Q) =
N

t

t∑
i=1

∫
Q(Λ)dΛ

∑
~Zi

Q(~Zi)ln

[
p( ~Xi, ~Zi|Λ)

Q(~Zi)

]
+

∫
Q(Λ)ln

[
p(Λ)

Q(Λ)

]
dΛ

(4.35)

where Λ = {~π, ~θ}. The key idea of the online variational learning algorithm is to suc-

cessively maximize the current variational lower bound in equation (4.35). Assume that

we have already observed a data set {X1, ....s,X(t−1)}. For a new observation Xt, we can

maximize the current lower bound L(t)(Q) with respect to Q( ~Zt) while other variational
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factors are fixed to Q(t−1)(~λ), Q(t−1)(~α), Q(t−1)(~α), Q(t−1)(~β) and Q(t−1)(~π). Thus, the

variational solution toQ(Z)(t) is given by

Q(Z)(t) =
M∏
j=1

r
Ztj
tj (4.36)

where

rtj =
r̃tj
M∑
j=1

r̃tj

where we substitute equation (4.17) and it becomes as below for online case

r̃tj = exp{lnπ(t−1)
j + R(t−1)

j + S(t−1)
j + (ᾱ

(t−1)
j −

D∑
l=1

ᾱ
(t−1)
jl )ln(

D∑
l=1

Xil) + β̄
(t−1)
j 〈lnλ(t−1)

j 〉

(4.37)

+
D∑
l=1

[
(ᾱ

(t−1)
jl − 1)lnXil

]
− (ᾱ(t−1) + β̄(t−1))T

(t−1)
ij }

Next, the current lower bound L(t)(Q) is maximized with respect to Q(t)(~λ), while

Q(Z)(t) is fixed and other variational factors remain at their (t − 1)th values. Therefore,

we can obtain the variational solution toQ(t) ~(λ) as

Q(t) ~(λ) =
M∏
j=1

G(λ
(t)
j |s

(t)
j , t

(t)
j ) (4.38)

A significant characteristic of the adopted variational method [52], which cites that vari-

ational inference could be handled as a natural gradient method [56] has been desrcibed in

detail in earlier chapters. Here , ∆s
(t)
j and ∆t

(t)
j are the natural gradients of the correspond-

ing hyper parameters which are given by :

∆s∗
(t)

j = s∗
(t)

j − s∗(t−1)

j =
N∑
i=1

〈Zij〉β̄j (4.39)

∆t∗
(t)

j = t∗
(t)

j − t∗(t−1)

j =
N∑
i=1

〈Zij〉
ᾱj + β̄j

λ̄j +
D∑
l=1

Xil

(4.40)

where the hyper parameters are defined by

s
(t)
j = s

(t−1)
j + ρt∆s

(t)
j ,

t
(t)
j = t

(t−1)
j + ρt∆t

(t)
j

(4.41)
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where ρt is the learning rate and is defined as

ρt = (ηo + t)−a (4.42)

In this chapter, we adopt a learning rate function introduced in [57] which is in equation

(4.42) subject to the constraints aε(0.5, 1) and η0 ≥ 0.

Subsequently, the current lower bound L(t)(Q) is maximized with respect toQ(t)(~αl),

and the corresponding variational solution is given by

Q(t)(~αl) =
M∏
j=1

D∏
l=1

G(α
(t)
jl |u

∗(t)
jl , v

∗(t)
jl ) (4.43)

where

u
∗(t)
jl = u

∗(t−1)
jl + ρ∆u

∗(t)
jl ,

v
∗(t)
jl = v

∗(t−1)
jl + ρ∆v

∗(t)
jl

(4.44)

The corresponding natural gradients are defined by

∆u∗
(t)

jl = u∗
(t)

jl −u∗
(t−1)

jl =
N∑
i=1

〈Zij〉ᾱjl

[
ψ(

D∑
l=1

ᾱjl)− ψ(ᾱjl) + ψ′(
D∑
l=1

ᾱjl)
D∑
d6=l

(〈lnαjd〉 − lnᾱjd)ᾱjd

]
(4.45)

∆v∗
(t)

jl = v∗
(t)

jl − v∗
(t−1)

jl = −
N∑
i=1

〈Zij〉

[
lnXil − ln(

D∑
l=1

Xil)

]
(4.46)

The hyper parameters solutions of Q(t)(~α) and Q(t)(~β) can be calculated similarly. In

order to do that the current lower boundL(t)(Q) is maximized with respect toQ(t)(~α) and

Q(t)(~β) and the corresponding variational solutions are given by

Q(t)(α) =
M∏
j=1

G(α
(t)
j |p

∗(t)
j , q

∗(t)
j ) (4.47)

Q(t)(β) =
M∏
j=1

G(β
(t)
j |g

∗(t)
j , h

∗(t)
j ) (4.48)

where

p
∗(t)
j = p

∗(t−1)
j + ρ∆p

∗(t)
j (4.49)
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q
∗(t)
j = q

∗(t−1)
j + ρ∆q

∗(t)
j (4.50)

g
∗(t)
j = g

∗(t−1)
j + ρ∆g

∗(t)
j (4.51)

h
∗(t)
j = h

∗(t−1)
j + ρ∆h

∗(t)
j (4.52)

The corresponding natural gradients for the equations (4.47) and (3.19) are give as

below :

∆p∗
(t)

j = p∗
(t)

j −p∗
(t−1)

j =
N∑
i=1

〈Zij〉
[
ψ(ᾱj+β̄)−ψ(ᾱj)+β̄jψ

′(ᾱj)+β̄j)

(
〈lnβj〉−β̄j

)]
ᾱj

(4.53)

∆q∗
(t)

j = q∗
(t)

j − q∗(t−1)

j = −
N∑
i=1

〈Zij〉ln
( D∑

l=1

Xil

)
+

N∑
i=1

〈Zij〉Tij (4.54)

∆g∗
(t)

j = g∗
(t)

j − g∗(t−1)

j =
N∑
i=1

〈Zij〉
[
ψ(ᾱj + β̄)− ψ(β̄j) + ᾱjψ

′(ᾱj + β̄j)

(
〈lnαj〉 − ᾱj

)]
β̄j

(4.55)

∆h∗
(t)

j = h∗
(t)

j − h∗(t−1)

j =
N∑
i=1

〈Zij〉
[
Tij − 〈lnλj〉

]
(4.56)

The online variational inference for finite IBL mixture model is summarized in Algo-

rithm 1.

Algorithm 1 Online Variational learning of the finite IBL mixture model

1. Choose the initial number of components M .

2. Initialize the values for hyper-parameters ujl, νjl, pj , qj , gj , hj , sj , tj .

3. Using K-means algorithm, initialize the values of rij .

4. for t = 1→ N do

i The variational E-step:
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ii Update the variational solution for Q(
−→
Z t) through equation (4.36)

iii The variational M-step:

iv Compute learning rate ρt = (ηo + t)−a as in equation (4.42)

v Calculate the natural gradients ∆s∗
(t)

j , ∆t∗
(t)

j , ∆u∗
(t)

jl , ∆ν∗
(t)

jl , ∆p∗
(t)

j , ∆q∗
(t)

j ,

∆g∗
(t)

j and ∆h∗
(t)

j using equations (4.39), (4.40) (4.45), (4.46), (4.53), (4.54),

(4.55) and (4.56) respectively

vi Update the variational solution forQ(t)(
−→
λ ),Qt(−→αl),Q(t)(−→α ),Q(t)(

−→
β ) through

equations (4.38), (4.43), (4.47), (4.48).

vii Repeat the variational E-step and M-step until new data is observed.

5. end for

4.3 Experimental Results

In this section, we investigate the efficiency of our proposed online variational IBL mixture

model by validating it on five challenging biomedical applications by performing image

segmentation and feature extraction for analysis of diseases. The biomedical data sets

were chosen as the focus of this work to access the different analytical and statistical mix-

ture model algorithms that can contribute to medicine and help identify precise diagnosis.

Amongst the five data sets chosen, we performed medical image segmentation on four dif-

ferent data sets to identify the relevant diseases. In the last data set for malaria disease

we worked on feature extraction methodology to classify the images of the data set into

uninfected and parasitized category. In this work, we have used different image modalities

as the input form of image data sets, i.e., magnetic resonance imaging (MRI) with FLAIR,

computer aid detection (CAD), regular camera image format and microscopy image. These

image modalities test the applicability of the algorithm on varied output formats. Further to

this, we applied the algorithm to detect brain tumour, skin melanoma lesion, colon cancer,

diabtetic retinopathy and malaria.

In order to validate the accuracy and to illustrate the merit of OVIBLMM algorithm,

we compared it to the implementation of three other algorithms, namely online variational

learning of finite generalized inverted dirichlet mixture model (OVGIDMM), OVIDMM

and OVGMM. The below sections would follow the description on the results obtained by
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calculating different evaluation metrics, namely, adjusted rand index (ARI) score, adjusted

mutual information (AMI) score, V-measure score, dice similarity coefficient and Jaccard

similarity index for evaluation of the accuracy on each medical data set. In the case of

CAD data set of malaria, the evaluation metrics were confusion matrix, precision, recall

and F1-Score for classification of the patients into infected and healthy.

In our experiments we did initialisation of the components and hyper parameters as per

two categories. The image segmentation component initialisation and hyper parameters

definition have been assigned in first category. In the first category, for brain tumour detec-

tion [4.3.1], optic disc detection [4.3.2], colon cancer detection [4.3.4] and skin melanoma

image sections [4.3.3], the number of components M have been initialized 16. The initial

values of the hyper-parameters u, p, g and s for the conjugate priors are fixed to 1 and v, q,

s, t to 0.01. The learning rate parameters a and ηo are fixed to 0.5 and 64, respectively. In

the second category for image clustering, different initialization for the testing of CAD of

malaria data set was defined, which has been described in section [4.3.5].

4.3.1 Brain Tumor Detection

Here, we use the brain tumor magnetic resonance images(MRI) with FLAIR data set from

kaggle 1. The images were taken from The Cancer Imaging Archive (TCIA). The data set

is of 110 patients suffering from low grade glioma. Furthermore, the data set has multilevel

information. It codes for the patho-physiology in the images and for the cellular pathology

the genomic structures are available.

Our proposed algorithm for the detection of brain tumors based on magnetic resonance

imaging had higher accuracy and lower error rates. Statistical analysis of the experimental

results showed that the developed algorithm can segment the brain MRI images with good

precision. The representative segmentation achieved after running our proposed algorithm

is depicted in Figure 4.4 for a patient as an example where two of the best segmented

clusters generated by the algorithm are merged as a post processing step in order to compare

with the ground truth.

1https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation
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A. Input Image E. Ground Truth B. 2nd Cluster 
Image

C. 7th Cluster 
Image

D. Predicted 
Image

Figure 4.4: Example of best segmented brain MRI images for LGG. In the full panel from

left to right are : A. Input MRI image, B. 2nd Cluster Image, C. 7th Cluster Image, D.

Predicted Image after post processing, E. Ground Truth Image. The dice coefficient for this

example was 92% The images show FLAIR modality and predict the FLAIR abnormality.

Additionally, we evaluated the performance of the proposed algorithm in comparison

with other algorithms. Table 4.1 shows that the performance obtained from OVIBLMM
algorithm as compared to OVGIDMM, OVIDMM and OVGMM is higher in terms of ac-

curacy for all evaluation metrics.

Method ARI AMI V-Measure Dice Jaccard

OVIBLMM 91.82 80.51 82.66 92.47 86.26

OVGIDMM 88.82 75.55 78.57 89.72 80.52

OVIDMM 84 67.9 72.12 86.38 75.0

OVGMM 82.26 65.83 70.91 83.63 73.02

Table 4.1: Evaluation metrics for brain tumor detection where the OVIBLMM was com-
pared to OVGIDMM; OVIDMM and OVGMM. The evaluation metrics chosen were ARI,
AMI, V-measure, Dice and Jaccard. It is seen that OVIBLMM performs the best from the
above algorithms, giving the highest accuracy.
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4.3.2 Diabetic retinopathy (DR) Optic Disc Localization and Detec-
tion

The global burden of diabetes mellitus is very high. A total of 282 million people were es-

timated to be suffering from diabetes in 2013 [100]. Diabetic retinopathy (DR), in return is

a consequent complication for diabetes mellitus. It remains the leading cause of visual loss

in the diabetic population [101]. DR is a microvascular complication where the damaged

blood vessels in the retina result in microvasular changes in the retina, which trigger vision

impairment [102, 103]. The loss of vision due to DR is called diabetic macular edema

(DME) which is characterised by high pressure in the blood vessels of the eye and leak of

fluid trigger by the breakdown of blood retina barrier. DR falls in 2 broad categories: non

proliferative diabetic retinopathy (NPDR) and PDR where the former is early stage and

later is the advanced stage. NPDR can be classified with visible features such as retinal

heammorages, intra retinal microvasularisation abnormalities etc. These visible features

are the basis of diagnosis and detection, where emerging imaging technologies are applied

and the algorithms are used to classify these features of the retinal image [104].

Optic Disc (OD) is a bright yellowish disk in human retina from where the blood vessels

and optic nerves emerge. Automated localization and detection of the OD is an essential

step in the analysis of digital diabetic retinopathy images. Accurate localization and detec-

tion of optic disc boundary is important for detection of PDR where fragile vessels develop

in the retina [105]. Reference to diabetic patients is therefore made through regular con-

sultation and annual or biannual monitoring to refine their retina. Eliminating the lack of

justifiable views depends on the number of medical specialists and the health infrastructure

needed to treat the eyes. Currently, the assessment of DR is carried out on retina fundus

images by retinal experts or trained graders leading to large proportions of patients left

undiagnosed due to low adherence and limited access to retina evaluation centres. Thus,

in-person examination is impractical due to the size of the population suffering from DR

[106]. Therefore, computer-assisted diagnostic could address the above mentioned short-

comings and help in DR management in an automated way thus reducing the labour force

and allowing the diagnosis to be more accessible.

In this chapter, the data set on which the algorithms were applied is Indian Diabetic
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Retinopathy Image data set (IDRiD) from 2 which provides expert markups of typical di-

abetic retinopathy lesions and normal retinal structures. The data set consists of 81 color

fundus images with signs of DR. Precise pixel level annotation of abnormalities associated

with DR like microaneurysms (MA), soft exudates (SE), hard exudates (EX) and hemor-

rhages (HE) and OD are provided as a binary mask for performance evaluation of individual

lesion segmentation techniques. It includes color fundus images and binary masks made of

lesions. In addition to all the abnormalities, binary masks for the optic disc region are pro-

vided for all 81 images for the purpose of OD localization and detection. Furthermore, the

data set provides information regarding disease severity level by grading each image in the

database as diabetic retinopathy and diabetic macular edema (DME) based on international

standards of clinical relevance. The medical experts graded the full set of 516 images with

a variety of pathological conditions of DR and DME.

We performed image segmentation on the images present in the optic disc folder of the

data set to evaluate the precision of OVIBLMM in detecting and localizing the OD in the

DR and DME images. Figure 4.5 illustrates two of the best segmented clusters generated

by the OVIBLMM. These images are later merged as a post processing step in order to

compare it with the ground truth and measure the accuracy of the algorithm. It should

be noted that due to various classification of the DR images into DR and DME, different

images gave different accuracy however, we averaged the accuracies to conclude the per-

formance of our algorithm.

A. Input Image B. 10th Cluster 
Image

C. 15th Cluster 
Image

D. Predicted 
Image

E. Ground Truth 

Figure 4.5: Example of best segmented optic disc (OD) images for OD detection in retinal

fundus image. In the full panel, from left to right are : A. Input DR image, B. 10th Cluster

Image, C. 15th Cluster Image, D. Predicted Image from post processing, E. Ground Truth

Image

Table 4.2 below depicts the performance of the applied OVIBLMM as compared to
2https://idrid.grand-challenge.org/Data/
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OVGIDMM, OVIDMM and OVGMM. The algorithm performs better in terms of accuracy

for all evaluation metrics.

Method Dice Jaccard

OVIBLMM 99.24 98.5

OVGIDMM 90.50 85.70

OVIDMM 85.54 77.76

OVGMM 79.47 68.45

Table 4.2: Evaluation metrics for optic disc detection in DR. OVIBLMM was compared
to OVGIDMM; OVIDMM and OVGMM. The evaluation metrics chosen were Dice and
Jaccard. It is seen that OVIBLMM performs the best from the above algorithms, giving the
highest accuracy.

4.3.3 Skin Melanoma Detection

In this section, we implement OVIBLMM to effectively test its melanoma region segmen-

tation of dermoscopic images. The algorithm was implemented on the open source data set

from International Skin Imaging Collaboration (ISIC)3 [61]. The data set contains a total

of 23,906 dermoscopic images with ground truth being provided for each image.

Figure 4.6 represents the resulting two of the best segmented images along with the

input image, predicted image generated by the implementation of OVIBLMM algorithm

and ground truth. It is seen that the predicted image (Figure 3.4 C) is very similar to the

ground truth image marked by the dermatologists (Figure 3.4 D).

3https://www.isic-archive.com
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A. Input Image B. 12th Cluster 
Image

C. 14th Cluster 
Image

D. Predicted 
Image

E. Ground 
Truth 

Figure 4.6: Example of best segment generated from the implementation OVIBLMM al-

gorithm on dermoscopic images of melanoma. In the full panel, from left to right are : A.

Input melanoma image from the data set, B. 12th Cluster Image, C. 14th Cluster Image, D.

Predicted Image, E. Ground Truth Image

Table 4.3 below shows the accuracy and performance comparison of OVIBLMM as

compared to OVGIDMM, OVIDMM and OVGMM. For all evaluation metrics, the algo-

rithm proposed in this chapter is superior in terms of accuracy. Thus, the proposed algo-

rithm is able to segment the skin melanoma accurately and therefore can be utilised and

applied in research of melanoma.

Method ARI AMI V-Measure Dice Jaccard

OVIBLMM 93.34 79.86 85.39 98.07 96.17

OVGIDMM 87.92 74.09 78.99 95.8 92.09

OVIDMM 74.77 61.57 66.52 90.33 81.85

OVGMM 49.33 39.77 44.64 69.48 58.23

Table 4.3: Evaluation metrics for skin melanoma detection where the OVIBLMM was
compared to OVGIDMM; OVIDMM and OVGMM. The evaluation metrics chosen were
Dice and Jaccard. It is seen that OVIBLMM performs the best from the above algorithms,
giving the highest accuracy.

72



4.3.4 Colon Cancer Detection

Colorectal cancer is the third most common cause of cancer related death world wide af-

ter prostate and lung carcinoma and usually affects men and women aged over 50 years

[107]. Most colon cancers initially develop a colorectal polyps, which is a small clump

of cells that grows on the lining of the colon or rectum that can later become cancerous.

There are two main categories of polyps, non-neoplastic and neoplastic. Non-neoplastic

polyps include hyperplastic, inflammatory polyps and hamartomatous polyps. Typically,

these types of polyps are not cancerous. Neoplastic polyps include adenomas and serrated

types. In general the larger a polyp, the greater the risk of cancer, especially with neoplas-

tic polyps. The identification of such polyps is carried out by MRI, which is the primary

imaging modality for the diagnosis [108]. Furthermore, complete colon segmentation and

detection of polyps is done by virtual computed tomography (colonoscopy or CTC) which

scans the abdomen [109].

A common approach involved in colon segmentation includes the following three steps.

(i) Removal of air around the body (ii) Masking of air contained in the lungs (iii) Segmen-

tation of the colon cancer into different slices. However, the above steps do not provide

the desired results in all scenarios. The above steps are also difficulties and they make the

segmentation of colon more complicated, especially for implementation of an automated

algorithm [110].

Human HT-29 colon cancer cells are commonly used in biology to understand the colon

neoplasms and development of colorectal cancer at cellular and molecular scales. When

analysing the microscopic images of such cell lines, millions of cells are present in this

kind of high throughput screening (HTS). Visual classification of each of the cells into dif-

ferent phenotype becomes infeasible due millions of cells. Therefore, in this section, we

use the publicly available human HT-29 microscopy image data set from Broad Bioimage

Benchmark Collection (BBBC018v1)4.

The set of images consists of 56 fields of view (4 for each of 14 samples). There are a

total of 168 images due to three channels for the different stains applied on the cell lines.

The samples were stained with Hoechst 33342, pH3 and phalloidin. Hoechst 33342 is a

4https://data.broadinstitute.org/bbbc/BBBC018/
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DNA stain that identifies the nucleus. Phospho-histone H3 indicates mitosis. Phalloidin

tags actin that is present in the cytoplasm. Each image in the data set is 512 x 512 pix-

els which is in DIB format accompanied by a set of ground truth data to test automated

image analysis against them. The ground truth set consists of outlines of nuclei and cells

as classification of nucleus from the cytoplasm is an important step towards segmentation

and understanding morphological abnormalities. Therefore, we test the robustness of OVI-

BLMM on the data set by analysing the accuracy of the algorithm on its identification of

the cell morphologies.

In Figure 4.7, the representative segmentation of the actin channel from the image data

set is shown. As described previously, this channel is stained by phallodin and it indicates

the cytoplasmic morphology as actins are highly present in the cytoplasm. Two of the

best segmented clusters generated by the algorithm are merged as a post processing step

in order to compare with the ground truth. It is worth mentioning that in each image, the

algorithm could identify lot of cluster of image segments, approximately upto the number

of components. However, we merged the best segmented images in order to compare to the

ground truth.

A. Input Image B. 1st Cluster 
Image

C. 3rd Cluster 
Image

E. Ground Truth D. Predicted 
Image

Figure 4.7: Representative best segment of human HT-29 colon cancer cells where the

cytoplasm is segmented. In the full panel, from left to right are: A. Input Colon actin

image, B. 1st Cluster Image, C. 3rd Cluster Image, D. Predicted Image from post processing,

E. Ground Truth Image

Table 4.4 below shows the result obtained from the proposed algorithm in this chapter:

OVIBLMM which is compared to OVGIDMM, OVIDMM and OVGMM. It is seen that

the algorithm is superior in terms of accuracy for all evaluation metrics. This proves that

the algorithm is capable of accurate image segmentation and therefore can be applied in

approaches where the detection of cellular morphologies has to be automated.
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Method Dice Jaccard

OVIBLMM 97.29 94.77

OVGIDMM 95.3 92.40

OVIDMM 92.78 90.86

OVGMM 84.32 81.51

Table 4.4: Evaluation metrics for human colon cancer detection where the OVIBLMM was
compared to OVGIDMM; OVIDMM and OVGMM. The evaluation metrics chosen were
Dice and Jaccard. It is seen that OVIBLMM performs the best from the above algorithms,
giving the highest accuracy.

4.3.5 Computer Aided Detection (CAD) of Malaria

In this section, we employed OVIBLMM algorithm on the malaria blood smear data set

from NIH 5. The data set has been described in the previous chapter. There are 151 pa-

tient entries for the parasitized class and the uninfected class includes 201 entries as the

normal cells. In this experiments, the feature extraction concept played a very crucial role

in this data set to evaluate the performance of our algorithm. The features were extracted

using the BOVW, SIFT, and color histogram method. Feature extraction has the target of

decreasing the subsequent computational complication and facilitating a credible and ac-

curate recognition for unknown new data. For this experiment, the number of components

M had been initialized with 2. The initial values of the hyper-parameters u, p, g, v and s

for the conjugate priors are fixed to 1, q, h and t were set to 10. a and ηo the learning rate

parameters are fixed to 0.5 and 64 respectively . In the Figure 3.6 and Figure 3.7 are exam-

ple result images from the application of the algorithm, The images of parasitized cells are

illustrated in Figure 3.6 and Figure 3.7 illustrates the images of uninfected cells detected

by the algorithm.

The accuracy and performance of OVIBLMM algorithm against other algorithms are

depicted in Table 4.5. Compare to other three algorithms, OVIBLMM gives greater accu-

racy, recall, precision and F1- Score for CAD images of malaria . In the case of malaria

5https://ceb.nlm.nih.gov/repositories/malaria-datasets/
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data set, it is a cellular data set (RBC images) as opposed to tissue data set in the previous

examples. In this application we show that the OVIBLMM is able to also classify data set

which is on cellular scale. Therefore, these results exhibit that online variational learning

is a robust method for heterogeneous biological and biomedical data set.

Method Accuracy Precision Recall F1-score
OVIBLMM 93.5 96.88 92.76 92.40
OVGIDMM 91.2 95.10 82.11 88.88
OVIDMM 90.3 87.96 79.47 87.59
OVGMM 83.80 75.26 92.71 83.08

Table 4.5: Evaluation metrics for malaria data set where the OVIBLMM was compared
to OVGIDMM; OVIDMM and OVGMM. The evaluation metrics chosen were Accuracy,
Precision, Recall and F1- Score. It is seen that OVIBLMM performs the best from the
above algorithms, giving the highest accuracy.
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Chapter 5

Conclusion

Biomedical and medical data are essential and complex data to analyze accurately and ef-

ficiently [14]. Artificial intelligence (AI) techniques have greatly improved segmentation

precision due to their ability to tackle complex information. Thus, in many cases, AI has

lent to early diagnosis and treatment of diseases by assisting the doctors as CAD support

systems. In this work, we introduced three new statistical approaches for online variational

learning framework based on three different distributions namely finite inverted Dirichlet,

finite generalized inverted Dirichlet with feature selection and finite IBL mixture model to

analyze multimodal images of biomedical origins. We have shown the segmentation ac-

curacy of the online variational learning approach on medically diverse data set (tissue as

well as cellular) along with its robustness to deal with different imaging modalities as input

image file.

Table 5.6 summarises the data sets on which the algorithm was implemented in our

study where we used different modalities of images to evaluate our models performance in

each case.

However, it has to be noted that medical data comes with some challenges. The most

important challenge is the limited availability of data set with ground truth. Collecting an-

notated cases in medical imaging is often a tough task. Furthermore, as more and more

imaging modalities are being implemented, performing the annotation on new images will

also be tedious and expensive. Therefore, implementing the algorithms on various available

data sets and then broadening their application on data set with no ground truth is the way

forward. It is therefore important to have an understanding of the correct initial parameters
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Organ Dataset Name Dataset Size Modality Format
Brain BRATS2015 189 MRI .MHA
Lung NIH 138 X-Ray .PNG
Brain LGG MRI Segmentation 110 MRI .TIF
Retina IDRiD 81 Retinal Fundus camera .TIF
Skin ISIC 23,906 Digital camera .JPG

HT-29(Cellular) BBC018 168 Microscopy .DIB
RBC(Cellular) NIH 27,558 Microscopy .PNG

Table 5.6: Overview of the biomedical data sets on which our models have been imple-
mented in this study. The data set is heterogeneous in nature (various organs and modali-
ties).

to train the model such that we can transfer the algorithm to data set without ground truth

and obtain an accurate segmentation. Another challenge in medical data segmentation is

the heterogeneous appearance of the organs. There is a huge variance in shape, size and lo-

cation of lesions or abnormalities in the images from patient to patient. While segmenting

different target tissues or cells on the data set, it is of extreme importance to consider the

relevant information on the image by automating the algorithm specifically for particular

data set. Further to this, medical imaging has a strong implementation of 3D approaches to

be able to evaluate the prognosis of the disease with precision and without invasive tech-

niques. For such an application, the algorithm introduced in this thesis can be implemented

on converting the 3D image to 2D.

The learning process in our approach is based upon variational inference in an on-

line manner and permits closed-form solutions for the various involved model parameters.

Variational learning provides good generalization capabilities, but at a significant lower

computational cost since it does not need calculations of high-dimensional integrals as in

MCMC methods. The approach allows analytical calculations of posterior distributions

over the mixtures hidden variables, parameters, and structure [111]. Thus, we were able

to determine the model parameters and the number of components simultaneously within

the framework. The proposed framework of online variational learning as an extension to

batch algorithm keeps not only the advantages of previous models, but also speeds up the

convergence rate significantly.

In all the models we have implemented in our study, OVIBLMM outperforms the other
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models of OVGIDMM, OVIDMM and OVGMM. However, each of the models has its own

advantages which have been briefly discussed in chapter 2, 3 and 4 respectively. We believe

this study may help researches to choose one of the algorithms to perform image segmenta-

tion on medical data and also be aware of the possible challenges and the solutions. Future

work could be dedicated to integrating feature selection in the proposed model of OVI-

BLMM to have higher accuracy and better performance. Another potential future work is

extending the proposed framework via non-parametric Bayesian techniques.
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A Appendix

A.1 Proof of equation
(
2.17

)
: Variational solution of Q

(
Z
)

For the variational solution Qs(Θs), the general expression is expressed as:

lnQs(Θs) =
〈

ln p(X,Θ)
〉
j 6=s + const (A.1)

where const is an additive term representing every term that is independent of Qs(Θs).

Now consider the joint distribution in equation (2.10), the variational solution for Q
(
Z
)

can be derived as follows:

lnQ
(
Z
)

= αij

[
ln πj +Rj +

D+1∑
l=1

(αjl − 1) lnXil

]
+ const (A.2)

where

Rj =

〈
ln

Γ(
∑D+1

l=1 αjl∏
D+1l=1

Γ(αjl)

〉
αjl,...αjD+1

(A.3)

and

αjl =
〈
αjl
〉

=
ujl
vjl

(A.4)

Since we don’t have a closed form solution forRj , therefore it is not possible to directly

apply the variational inference. Therefore in order to provide traceable approximations, the

second order Taylor’s expansion is used to approximate the expected values of parameters

αj [23]. Hence, considering the logarithm form of (2.6) the equation (A.2) can be written

as

lnQ
(
Z
)

=
N∑
i=1

M∑
j=1

Zij ln ρij + const (A.5)

where

ln ρij = lnπj +Rj +
D∑
l=1

(αjl − 1) lnXil (A.6)

Since all the term without Zij can be added to the constant, it possible to show that

Q
(
Z
)
∝

N∏
i=1

M∏
j=1

ρ
Zij
ij (A.7)
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To find the exact formula forQ(Z), equation (53) should be normalized and the calculation

can be expressed as

Q
(
Z
)

=
N∏
i=1

M∏
j=1

r
Zij
ij (A.8)

where

rij =
ρij∑M
j=1 ρij

(A.9)

It is noteworthy that
∑M

j=1 rij = 1, thus the result for Q(Z) is〈
Zij
〉

= rij (A.10)

A.2 Proof of equation
(
2.18

)
,
(
2.22

)
and

(
2.23

)
Assuming the parameters αjl are independent in a mixture model with M components, we

can factorize Q(α) as

Q(α) =
M∏
j=1

D+1∏
l=1

Q(αjl) (A.11)

We compute the variational solution for the Q
(
αjl
)

by using the equation
(
2.16

)
instead of

using the gradient method. The logarithm of the variational solution Q
(
αjl
)

is given by,

lnQ
(
αjl
)

=
〈

ln p
(
X ,Θ

)〉
Θ 6=αjl

=
N∑
i=1

〈
Zij
〉
J
(
αjl
)

+ αjl

N∑
i=1

〈
Zij
〉

lnXil − αjl ln

(
1 +

D+1∑
l=1

Xil

)
+
(
ujl − 1

)
lnαjl − νjlαjl + const (A.12)

where,

J
(
αjl
)

=

〈
ln

Γ
(
αjl +

∑D+1
s 6=l αjs

)
Γ
(
αjl
)∏D+1

s 6=l Γ
(
αjs
)〉

Θ 6=αjl

(A.13)

Similar to what we encountered in the case ofRj the equation forJ
(
αjl
)

is also intractable.

We solve this problem finding the lower bound for the equation by calculating the first-order
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Taylor expansion with respect to αjl. The calculated lower bound is given by [31],

J
(
αjl
)
≥ αjl lnαjl

[
ψ

(
D+1∑
l=1

αjl

)
− ψ

(
αjl
)

+
D+1∑
s 6=l

αjs

× ψ′
(

D+1∑
l=1

αjl

)(〈
lnαjs

〉
− lnαjs

)]
+ const (A.14)

Substituting this equation for lower bound in equation
(
A.12

)
lnQ

(
αjl
)

=
N∑
i=1

〈
Zij
〉
αjl lnαjl

[
ψ

(
D+1∑
l=1

αjl

)
− ψ

(
αjl
)

+
D+1∑
s 6=l

αjsψ
′

(
D+1∑
l=1

αjl

)(〈
lnαjs

〉
− lnαjs

)]

+ αjl

N∑
i=1

〈
Zij
〉

lnXil − αjl ln

(
1 +

D+1∑
l=1

Xil

)
+
(
ujl − 1

)
lnαjl − νjlαjl + const (A.15)

This equation can be rewritten as,

lnQ
(
αjl
)

= lnαjl
(
ujl + ϕjl − 1

)
− αjl

(
νjl − ϑjl

)
+ const (A.16)

where,

ϕjl =
N∑
i=1

〈
Zij
〉
αjl

[
ψ

(
D+1∑
l=1

αjl

)
− ψ

(
αjl
)

+
D+1∑
s 6=l

αjsψ
′

(
D+1∑
l=1

αjl

)(〈
lnαjs

〉
− lnαjs

)]
(A.17)

ϑjl =
N∑
i=1

〈
Zij
〉[

lnXil − ln

(
1 +

D∑
l=1

Xil

)]
(A.18)

Equation
(
A.16

)
is the logarithmic form of a Gamma distribution. If we exponentiate both

the sides, we get,

Q
(
αjl
)
∝ α

ujl+ϕjl−1

jl e−
(
νjl−ϑjl

)
αjl (A.19)

This leaves us with the optimal solution for the hyper-parameters ujl and νjl given by,

u∗jl = ujl + ϕjl, ν∗jl = νjl − ϑjl (A.20)
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A.3 Proof of equation (2.27)

We calculate the mixing coefficients value π by maximizing the lower bound w.r.t to π.

It is essential to include Lagrangian term in the lower bound because of the constraint∑M
j=1 πj = 1. Then, solving for the derivative w.r.t πj and setting the result to zero, we

have [31]

∂L(Q)

∂πj
=
∂L(Q)

∂πj

N∑
i=1

M∑
j=1

rij ln πj + λ

(
M∑
j=1

πj − 1

)

=
N∑
i=1

rij(1/πj) + λ = 0 (A.21)

⇒
N∑
i=1

rij = −λπj (A.22)

By taking the sum of both sides of equation (A.22) over j, we can obtain λ = −N .

Then substituting the value of λ equation (A.21), we can obtain

πj =
1

N

N∑
i=1

rij (A.23)
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