
A STUDY ON VARIATIONAL COMPONENT

SPLITTING APPROACH FOR MIXTURE MODELS

KAMAL MAANICSHAH MATHIN HENRY

A THESIS

IN

CONCORDIA INSTITUTE FOR INFORMATION SYSTEMS ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF APPLIED SCIENCE

(INFORMATION SYSTEMS SECURITY)

CONCORDIA UNIVERSITY

MONTRÉAL, QUÉBEC, CANADA

AUGUST 2019

© KAMAL MAANICSHAH MATHIN HENRY, 2019



CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Kamal Maanicshah Mathin Henry
Entitled: A Study on Variational Component Splitting Approach for Mix-

ture Models
and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science
(Information Systems Security)

complies with the regulations of this University and meets the accepted standards with re-

spect to originality and quality.

Signed by the final examining commitee:

Dr. Roch H. Glitho Chair

Dr. Nizar Bouguila Supervisor

Dr. Jamal Bentahar CIISE Examiner

Dr. Fuzhan Nasiri External Examiner

Approved

Dr. Mohammad Mannan, Graduate Program Director

2019.07.23

Dr. Amir Asif, Dean

Faculty of Engineering and Computer Science



Abstract

A Study on Variational Component Splitting Approach for Mixture
Models

Kamal Maanicshah Mathin Henry

Increase in use of mobile devices and the introduction of cloud-based services have resulted

in the generation of enormous amount of data every day. This calls for the need to group

these data appropriately into proper categories. Various clustering techniques have been

introduced over the years to learn the patterns in data that might better facilitate the classi-

fication process. Finite mixture model is one of the crucial methods used for this task. The

basic idea of mixture models is to fit the data at hand to an appropriate distribution. The de-

sign of mixture models hence involve finding the appropriate parameters of the distribution

and estimating the number of clusters in the data.

We use a variational component splitting framework to do this which could simulta-

neously learn the parameters of the model and estimate the number of components in

the model. The variational algorithm helps to overcome the computational complexity

of purely Bayesian approaches and the over fitting problems experienced with Maximum

Likelihood approaches guaranteeing convergence. The choice of distribution remains the

core concern of mixture models in recent research. The efficiency of Dirichlet family of

distributions for this purpose has been proved in latest studies especially for non-Gaussian

data. This led us to study the impact of variational component splitting approach on mixture

models based on several distributions.

Hence, our contribution is the application of variational component splitting approach

to design finite mixture models based on inverted Dirichlet, generalized inverted Dirichlet

and inverted Beta-Liouville distributions. In addition, we also incorporate a simultaneous

feature selection approach for generalized inverted Dirichlet mixture model along with

component splitting as another experimental contribution. We evaluate the performance of

our models with various real-life applications such as object, scene, texture, speech and

video categorization.

iii



Acknowledgments

I would like to express my deepest gratitude to my supervisor Prof. Nizar Bouguila, who

has widened my view of machine learning research with his vast knowledge on the subject.

During the course of two years working together, he has always been a wise, witty, patient

and cool mentor. Despite my slow start, his constant motivation has inspired me to move

forward to complete the milestones. I will always be grateful for his relentless support and

guidance.

I express my profound gratitude to my co-supervisor Dr. Wentao Fan for his technical

advise without which the completion of this work would have been very hard.

A special thanks to Mr. Muhammad Azam who was like a big brother to me here. He

always made sure that I was in high spirits and kept me motivated when I felt low.

I am also grateful to Eddy who has been the center of a number of discussions which

helped me understand the theory easily.

I have been lucky to have such awesome lab mates who have made two years unforget-

table. I would like to thank Hieu, Jaspreet, Narges, Meeta, Maryam, Samr, Omar, Basim,

Huda, Rim, Fatma, Divya, Shuai and other lab members, who have always shared their vast

knowledge as well as taken the time and effort to explain various concepts.

I would like to extend my gratitude to my roommates and all other friends who have

supported me with all their love and support. Last but not least, I am deeply grateful to my

parents who encouraged me to work hard and sent loads of love over phone which made

me work at my best.

iv



Contents

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Cluster Analysis via Finite Mixture Models . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Finite Inverted Dirichlet Mixture Model with Variational Component Splitting 5
2.1 Model Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Finite Inverted Dirichlet mixture model . . . . . . . . . . . . . . . 5

2.1.2 Component splitting for model selection . . . . . . . . . . . . . . . 6

2.2 Variational inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Variational learning . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Incremental algorithm using component splitting . . . . . . . . . . 12

2.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Energy Saving in Smart Homes . . . . . . . . . . . . . . . . . . . 16

2.3.3 Image Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.4 Video Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Finite Generalized Inverted Dirichlet Mixture Model with Variational Com-
ponent Splitting and Variational Feature Selection 25
3.1 Model specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

v



3.3 The Mathematical Model with Feature Selection . . . . . . . . . . . . . . . 33

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Image Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2 Dynamic Texture Clustering . . . . . . . . . . . . . . . . . . . . . 39

4 Finite Inverted Beta-Liouville Mixture Model with Variational Component
Splitting 41
4.1 The Statistical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Speech Categorization . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.2 Image Categorization . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.3 Software Defect Categorization . . . . . . . . . . . . . . . . . . . 53

5 Conclusion 54
A Proof of equations

(
2.18

)
,
(
2.19

)
,
(
2.20

)
. . . . . . . . . . . . . . . . . . 64

A.1 Proof of equation
(
2.18

)
: variational solution for Q

(
Z
)

. . . . . . 65

A.2 Proof of equation
(
2.19

)
: variational solution of Q(~π∗) . . . . . . . 66

A.3 Proof of equation
(
2.20

)
: variational solution of Q

(
~α
)

. . . . . . . 67

B Proof of equations (4.15), (4.16), (4.17) and (4.18) . . . . . . . . . . . . . 69

B.1 Variational Solution for Q(Z) Eq. (4.15) . . . . . . . . . . . . . . . 70

B.2 Proof of eq.
(
4.16

)
: variational solution of Q(~π∗) . . . . . . . . . . 71

B.3 Proof of equation
(
4.17

)
: variational solution of Q

(
~α
)

. . . . . . . 72

vi



List of Figures

1 Flowchart for the component splitting algorithm . . . . . . . . . . . . . . . 2

2.1 Graphical model of finite inverted Dirichlet mixture with component split-

ting. Circles represent the random variables and parameters. Plates denote

repetitions. Number in the lower right corners of the plates indicate the

number of repetitions. The conditional dependencies of the variables are

represented by the arcs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Comparison between actual occupancy and estimated occupancies using

different approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Sample images from Flowers dataset . . . . . . . . . . . . . . . . . . . . . 20

2.4 Sample images from Zurich Buildings dataset . . . . . . . . . . . . . . . . 20

2.5 Sample images from Food-5K dataset . . . . . . . . . . . . . . . . . . . . 20

2.6 Confusion Matrix for the image dataset . . . . . . . . . . . . . . . . . . . 21

2.7 Sample images from different categories of 15 Scenes dataset . . . . . . . . 22

2.8 Confusion Matrix for the 15 Scenes dataset . . . . . . . . . . . . . . . . . 23

2.9 Sample images from KTH dataset . . . . . . . . . . . . . . . . . . . . . . 23

2.10 Confusion Matrix for KTH dataset . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Graphical representation of GID mixture model with component splitting.

The circles represent the random variables and model parameters, and plates

denote repetitions. Number in the lower right corners of the plates indicate

the number of repetitions. The conditional dependencies of the variables

are represented by the arcs. . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Sample images from different categories of Caltech 101 dataset . . . . . . . 30

3.3 Confusion matrix of Caltech 101 dataset with varGIDMM . . . . . . . . . 30

3.4 Sample images from different categories of VisTex dataset . . . . . . . . . 31

3.5 Confusion matrix of VisTex dataset with varGIDMM . . . . . . . . . . . . 32

vii



3.6 Graphical representation of finite GID mixture model with feature selection

and component splitting. The circles denote the random variables and the

conditional dependencies between the variables are indicated by the arcs.

The number in the bottom right corner of the platesindicates the dimension

of the variables inside . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7 Sample images from different categories of Corel 10K dataset . . . . . . . 38

3.8 Confusion matrix of Corel 10K dataset with varGIDMM . . . . . . . . . . 39

3.9 Sample snapshots from different categories of DynTex dataset . . . . . . . 39

3.10 Confusion matrix of DynTex dataset with varGIDMM . . . . . . . . . . . . 40

4.1 Graphical representation of IBL mixture model with component splitting.

The circles indicate the random variables and model parameters, and plates

point out the repetitions with the number in the lower left corners indicating

the number of repetitions. The arcs specify the conditional dependencies

of the variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Confusion matrix of TSP speech data set with varIBLMM . . . . . . . . . 48

4.3 Sample images from Ghim dataset . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Confusion matrix of Ghim data set with varIBLMM . . . . . . . . . . . . . 50

4.5 Sample images from the spam collection . . . . . . . . . . . . . . . . . . . 51

4.6 Sample images from the ham collection . . . . . . . . . . . . . . . . . . . 51

4.7 Confusion matrix of spam image data set with varIBLMM . . . . . . . . . 52

viii



List of Tables

2.1 Real and estimated parameters of different datasets. N denotes the total

number of data points, Nj denotes the number of data points in the cluster

j.αj1, αj3, αj3 and πj are the real parameters and α̂j1, α̂j3, α̂j3 and π̂j are

the parameters estimated by our proposed model. . . . . . . . . . . . . . . 16

2.2 Properties of the synthetic datasets X1, X2, X3, X4, X5. N denotes the

number of data points, D represents the dimension of the dataset and M is

the number of components. . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Estimated number of components M̂ for the datasets X1, X2, X3, X4 and X5 17

2.4 MAE of different models for smart home data . . . . . . . . . . . . . . . . 19

2.5 Accuracy of different models for the image dataset . . . . . . . . . . . . . 21

2.6 Accuracy of different models for 15 scenes dataset . . . . . . . . . . . . . 22

2.7 Accuracy of different models for KTH dataset . . . . . . . . . . . . . . . . 24

3.1 Accuracy of different models for Caltech 101 dataset . . . . . . . . . . . . 31

3.2 Accuracy of different models for VisTex dataset . . . . . . . . . . . . . . . 32

3.3 Accuracy of different models on Corel 10K dataset . . . . . . . . . . . . . 38

3.4 Accuracy of different models on DynTex dataset . . . . . . . . . . . . . . . 40

4.1 Accuracy of different models for TSP speech data set . . . . . . . . . . . . 49

4.2 Accuracy of different models for Ghim dataset . . . . . . . . . . . . . . . . 51

4.3 Performance measures of different models for spam image data set . . . . . 52

4.4 Results on defect detection using different models . . . . . . . . . . . . . . 53

ix



Chapter 1

Introduction

1.1 Cluster Analysis via Finite Mixture Models

Given a data set containing data from different categories, the data points belonging to

each category possess similar properties quite different from those that belong to other

categories. Clustering algorithms exploit this similarity to group data points belonging

to different categories. Use of mixture models is one of the methods for clustering data.

Finite mixture models assume that the data can be represented as a mixture of multiple

distributions. Finite mixture models based on various distributions have been proposed in

recent years. Especially, Gaussian mixture models are used widely in the industry and have

a number of applications [1–4]. However, it has been found that Gaussian mixture models

cannot fit all types of data. It has been proved that different distributions such as scaled

Dirichlet [5], generalized inverted Dirichlet [6], Beta [7], inverted Beta-Liouville [8], etc.

can be used to model non-Gaussian distributions. Choice of the distribution hence proves to

be an important stage in mixture model design. For our study, we choose inverted Dirichlet,

Generalized inverted Dirichlet and inverted Beta-Liouville distribution as they have proved

to be efficient in recent studies. Inverted Dirichlet distribution performs really well for

semi bounded positive vectors [9, 10]. Generalized inverted Dirichlet has more degrees of

freedom as compared to inverted Dirichlet distribution and hence fits the data better [11,12].

Also, inverted Beta-Liouville distribution has been proved to be an efficient supplement as

well [8]. This choice helps us to study three different distributions with varying properties.

One of the important stages in designing a mixture model is the parameters estimation.

Usually this is done by deterministic methods such as maximum likelihood estimation as

1



Figure 1: Flowchart for the component splitting algorithm

in [13]. Though these methods are found to be useful, they suffer a pitfall which is that

they might converge to a local maximum which might be farther from the global one [14].

This results in wrong selection of the number of components. The issue has been addressed

in various ways, for example, in [13], [15] and [16] the minimum message length criterion

has been used for model selection. Some researchers used a completely Bayesian approach

as in [11, 17]. On the downside the computation cost of these fully Bayesian approaches is

very high and convergence is not guaranteed.

In order to gain a middle ground between the pitfalls of entirely deterministic and

Bayesian methods the variational inference approach was proposed [18]. This method has

then been tested on various models [19,20]. The variational approach approximates the true

posterior distribution instead of computing it. This reduces the complexity of the model and

furthermore, convergence is guaranteed. More information about the variational approach

is given in [21]. The concept of variational parameter estimation will be explained briefly

in the next chapter. In our work we follow the variational algorithm proposed in [22]. This

algorithm used a global model selection process. Component splitting on the other hand is

a local model selection method. An interesting technique based on component splitting has

been proposed in [20] which was then followed in [23]. This algorithm follows an incre-

mental approach initially starting with one or two clusters and then uses a split and merge

2



criterion to determine the optimal number of components. The splitting continues until

all clusters fail the split test. This is very efficient as it takes place within the variational

learning algorithm. A flow chart of the algorithm is shown in Fig. 1.

The algorithm will be explained in detail in Chapter 2. The authors in [23] have devel-

oped an efficient application of this model to finite Dirichlet mixture model. Our intention

is to study the efficiency of this model when applied to inverted Dirichlet (ID), generalized

inverted Dirichlet (GID) and inverted Beta-Liouville (IBL) mixture models. We have ap-

plied these models to a wide variety of applications such as multimedia (image, video, au-

dio and texture) categorization, software defect detection, spam image detection in emails

and occupancy estimation in smart homes.

1.2 Contributions

The main objective of this thesis is to study the efficiency of ID, GID and IBL mixture mod-

els when integrated with the variational component splitting algorithm. The contributions

are listed as follows:

+ Data Clustering using Finite Inverted Dirichlet Mixture Models with a Varia-
tional Component Splitting Approach

We propose a finite Inverted Dirichlet mixture model for unsupervised learning

using variational inference with a component splitting algorithm. We illustrate

our model and learning algorithm with synthetic data and some real applica-

tions for occupancy estimation in smart homes and topic learning in images

and videos. This work has been submitted to Journal of Applied Intelligence

(Springer) and is under revision.

+ Data Clustering using Finite Generalized Inverted Dirichlet Mixture Models
with a Variational Component Splitting Approach

A finite generalized inverted Dirichlet mixture model with a variational learn-

ing method integrated with component splitting is proposed. Efficiency of pro-

posed model is tested for image categorization tasks. This contribution has been

accepted in the 28th International Symposium on Industrial Electronics. Incor-

porating a variational feature selection approach, this work has been extended

3



and also accepted by the 16th International Conference on Image Analysis and

Recognition.

+ Data Clustering using Finite Inverted Beta-Liouville Mixture Models with a
Variational Component Splitting Approach

We introduce a finite mixture model based on Inverted Beta-Liouville distri-

bution which provides a better fit for the data with a component splitting ap-

proach for model selection. We evaluate our model against some challenging

applications like image clustering, speech clustering, spam image detection and

software defect detection. This work has been accepted as a book chapter in the

book titled Mixture Models and Applications.

1.3 Thesis Overview

o Chapter 1 introduces the concepts of clustering and a brief overview of various con-

cepts related to the work. We also explain clearly the motivations behind the con-

ducted research work.

o In Chapter 2, we explain in detail the variational inference learning for inverted

Dirichlet mixture models with the component splitting approach. The efficiency of

the proposed model in solving various problems such us occupancy estimation in

smart homes, image and video clustering is also explained.

o In chapter 3, we integrate variational component splitting approach with generalized

inverted Dirichlet mixture models along with variational feature selection. The ex-

periments with various applications like image clustering, image texture analysis and

video texture analysis is described in detail.

o Chapter 4 describes the application of variational component splitting approach to

inverted Beta-Liouville mixture models. The model has been tested with challeng-

ing applications such as software defect detection, image spam detection in emails,

image clustering and speech clustering.

o In conclusion, we briefly summarize our contributions.

4



Chapter 2

Finite Inverted Dirichlet Mixture Model
with Variational Component Splitting

In this chapter, we detail the design of component splitting algorithm applied to inverted

Dirichlet mixture models within the variational framework. We illustrate our model and

learning algorithm with synthetic data and some real applications for occupancy estimation

in smart homes and topic learning in images and videos. Extensive comparisons with

comparable recent approaches have shown the merits of our proposed model.

2.1 Model Specification

The first part of this section will give a brief description of finite Inverted Dirichlet mixture

model and the next part will apply local model selection on the model using component

splitting approach.

2.1.1 Finite Inverted Dirichlet mixture model

Considering we have N samples of independent identically distributed vectors generated

from Inverted Dirichlet distributionX =
(
~X1, ~X2, ..., ~XN

)
, each sample is aD-dimensional

vector ~Xi =
(
Xi1, Xi2, .....XiD

)
having a probability density function given by [24]

ID
(
~Xi | ~αj

)
=

Γ
(∑D+1

l=1 αjl
)∏D+1

l=1 Γ
(
αjl
) D∏

l=1

X
αjl−1

il

(
1 +

D∑
l=1

Xil

)−∑D+1
l=1 αjl

(2.1)

5



where, Xil is positive for l = 1, ..., D and ~αj =
(
αj1, αj2, .....αjD+1

)
, αjl > 0 for l =

1, ..., D + 1. The mean and variance of the Inverted Dirichlet distribution is given by,

E
[
Xl

]
=

αl
αD+1 − 1

, var
(
Xl

)
=

αl
(
αj + αD+1 − 1

)(
αD+1 − 1

)2(
αD+1 − 2

) (2.2)

Considering an Inverted Dirichlet mixture model with M components, ID
(
~Xi | ~αj

)
rep-

resents the distribution for jth component with parameter ~αj . ~α =
(
~α1, ~α2, ..., ~αj

)
is the

parameter vector for the respectiveM components. According to this terminology, for each

sample, the mixture model can be represented as,

p
(
~Xi | ~π, ~α

)
=

M∑
j=1

πjID
(
~Xi | ~αj

)
(2.3)

~π =
(
π1, π2, ..., πM

)
is the set of mixing coefficients, such that,

∑M
j=1 πj = 1. So the

likelihood function for N samples is,

p
(
X | ~π, ~α

)
=

N∏
i=1

[
M∑
j=1

πjID
(
~Xi | ~αj

)]
(2.4)

In order to calculate the maximum likelihood, we define a latent variable Z which rep-

resents the expectation for each sample to belong to one of the M components. Mathe-

matically, ~Zi =
(
Zi1, Zi2, ZiM

)
where Zij is 1 if the expectation that ~Xi belongs to the

component j is higher than the other components and 0 elsewhere. The conditional proba-

bility for the N latent variables Z =
(
~Z1, ~Z2, ..., ~ZN

)
given ~π is,

p
(
Z | ~π

)
=

N∏
i=1

M∏
j=1

π
Zij

j (2.5)

From this equation we can write the conditional probability of the data given the class

labels Z as,

p
(
X | Z, ~α

)
=

N∏
i=1

M∏
j=1

ID
(
~Xi | ~αj

)Zij (2.6)

2.1.2 Component splitting for model selection

Model selection is one of the major problems with mixture models. Component splitting is

an interesting approach to alleviate this problem. The efficiency of this method on mixture

6



models has been studied in [20] and [23] for Gaussian and finite Dirichlet mixture mod-

els, respectively. We use this approach on finite inverted Dirichlet mixture model. The

component splitting algorithm involves partitioning the components in the mixture model

based on the split criteria. The partitions are made by splitting each component in the

mixture model and among the split components, one set is called the free components and

the remaining set of components are considered as the fixed components. The algorithm

performs calculations on the free components based on the assumption that the fixed com-

ponents already fit the data. In other words, if we are estimating s components considering

them as free components, we assume that the remaining M − s components fit to the data

already. Based on this idea we can rewrite the equation
(
2.5
)

as,

p
(
Z | ~π, ~π∗

)
=

N∏
i=1

[
s∏
j=1

π
Zij

j

M∏
j=s+1

π
∗Zij

j

]
(2.7)

where {πj} represents the mixing coefficients of the free components and {π∗j} represents

the mixing coefficients of fixed components with the constraint,

s∑
j=1

πj +
M∑

j=s+1

π∗j = 1 (2.8)

In our case ~πj is considered more like a parameter rather than a random variable, whereas

~π∗j is considered as random variable. Due to this reason we fit a prior distribution over

the mixing coefficients of the fixed components which is based on the free components.

Our objective here is to find the conditional probability of fixed components given the free

components. This will help us estimate the maximum likelihood of the free components

without affecting the fixed components. We choose the distribution to be a nonstandard

Dirichlet distribution which is also the conjugate prior of the fixed coefficients as mentioned

in [20],

p
(
~π∗ | ~π

)
=

(
1−

s∑
k=1

πk

)−M+s
Γ
(∑M

j=s+1 cj
)∏M

j=s+1 Γ
(
cj
) M∏
j=s+1

(
π∗j

1−
∑s

k=1 πk

)cj−1

(2.9)

Next, we have to find a prior for the ~α parameters. Unfortunately, a conjugate prior does

not exist. Thus, we use a Gamma prior as an approximation assuming that the parameters

are statistically independent. So, the probability density function of αjl is now given by,

p
(
αjl
)

= G
(
αjl | ujl, νjl

)
=

ν
ujl
jl

Γ
(
ujl
)αujl−1

jl e−νjlαjl (2.10)

7



        c

Z

X α π* 

M-s ND
MD

s NM

u

ν 

π 

Figure 2.1: Graphical model of finite inverted Dirichlet mixture with component splitting.
Circles represent the random variables and parameters. Plates denote repetitions. Number
in the lower right corners of the plates indicate the number of repetitions. The conditional
dependencies of the variables are represented by the arcs.

Here, {ujl} and {νjl} are hyperparameters such that ujl > 0 and νjl > 0. Now considering

~α we can write,

p
(
~α
)

=
M∏
j=1

D∏
l=1

p
(
αjl
)

(2.11)

Now, using all the details available to us, the joint distribution of all the random variables

is given by

p
(
X ,Z, ~α, ~π∗ | ~π

)
= p
(
X | Z, ~α

)
p
(
Z | ~π, ~π∗

)
p
(
~π∗ | ~π

)
p
(
~α
)

=
N∏
i=1

M∏
j=1

[
Γ
(∑D+1

l=1 αjl
)∏D+1

l=1 Γ
(
αjl
) D∏

l=1

X
αjl−1

il

(
1 +

D∑
l=1

Xil

)−∑D+1
l=1 αjl

]Zij

×
N∏
i=1

[
s∏
j=1

π
Zij

j

M∏
j=s+1

π
∗Zij

j

]
×

(
1−

s∑
k=1

πk

)−M+s

×
Γ
(∑M

j=s+1 cj
)∏M

j=s+1 Γ
(
cj
) M∏
j=s+1

(
π∗j

1−
∑s

k=1 πk

)cj−1

×
ν
ujl
jl

Γ
(
ujl
)αujl−1

jl e−νjlαjl (2.12)

A graphical representation of this model is shown in Fig. 2.1.

8



2.2 Variational inference

Here we introduce the variational inference method for parameter estimation and then we

describe the algorithm for our model based on variational learning.

2.2.1 Variational learning

We estimate the parameters for our model based on the approach followed in [25]. For easy

reference let’s say Θ =
{
Z, ~α, ~π∗

}
. Our main objective is to find the posterior distribution

p
(
Θ | X , ~π

)
. Variational learning helps us by estimating a distribution Q

(
Θ
)

which is an

approximation to the real posterior distribution p
(
Θ | X , ~π

)
. To determine this approxima-

tion, we compute the Kullback-Leibler (KL) divergence between Q
(
Θ
)

and p
(
Θ | X , ~π

)
given by,

KL
(
Q || P

)
= −

∫
Q
(
Θ
)

ln

(
p
(
Θ | X , ~π

)
Q
(
Θ
) )

dΘ (2.13)

Modifying this equation we can write

KL
(
Q || P

)
= ln p

(
X | ~π

)
− L

(
Q
)

(2.14)

where,

L
(
Q
)

=

∫
Q
(
Θ
)

ln

(
p
(
X ,Θ | ~π

)
Q
(
Θ
) )

dΘ (2.15)

The KL divergence being a similarity measure follows the conditions KL
(
Q || P

)
≥ 0

and KL
(
Q || P

)
= 0 when Q

(
Θ
)

= p
(
Θ | X

)
. From

(
2.14

)
we can say L

(
Q
)

is the

lower bound of p
(
X | ~π

)
. Maximizing this lower bound means we are minimizing the KL

divergence and hence approximating the true posterior distribution. However, the true pos-

terior distribution cannot be used directly for variational inference as it is computationally

intractable. For this reason we use the method of mean-field approximation [26] [21] [27]

by which we factorize Q
(
Θ
)
, such that,

Q
(
Θ
)

= Q
(
Z
)
Q
(
~α
)
Q
(
~π∗
)

(2.16)

Now to maximize the lower bound we find the variational solution for L
(
Q
)

with respect

to each of the parameters [25]. The variational solution for a specific parameter Qk

(
Θk

)
is

Qk

(
Θk

)
=

exp
〈

ln p
(
X ,Θ

)〉
6=k∫

exp
〈

ln p
(
X ,Θ

)〉
6=kdΘ

(2.17)

9



where
〈
·
〉
6=k is the expectation with respect to all the parameters other than Θk.

Next we find the solutions for the optimal variational posteriors using
(
2.17

)
as derived

in Appendix A. The solutions are given by

Q
(
Z
)

=
N∏
i=1

[
s∏
j=1

r
Zij

ij

M∏
j=s+1

r
∗Zij

ij

]
(2.18)

Q
(
~π∗
)

=

(
1−

s∑
k=1

πk

)−M+s
Γ
(∑M

j=s+1 c
∗
j

)∏M
j=s+1 Γ

(
c∗j
) M∏
j=s+1

(
π∗j

1−
∑s

k=1 πk

)c∗j−1

(2.19)

Q
(
~α
)

=
M∏
j=1

D∏
l=1

G
(
αjl | u∗jl, ν∗jl

)
(2.20)

provided,

rij =
r̃ij∑s

j=1 r̃ij +
∑M

j=s+1 r̃
∗
ij

, r∗ij =
r̃∗ij∑s

j=1 r̃ij +
∑M

j=s+1 r̃
∗
ij

(2.21)

r̃ij = exp

{
lnπj + R̃j +

D∑
l=1

(
αjl − 1

)
lnXil −

D+1∑
l=1

αjl ln
(
1 +

D∑
l=1

Xil

)}
(2.22)

r̃∗ij = exp

{〈
ln π∗j

〉
+ R̃j +

D∑
l=1

(
αjl − 1

)
lnXil −

D+1∑
l=1

αjl ln
(
1 +

D∑
l=1

Xil

)}
(2.23)

R̃j = ln
Γ
(∑D+1

l=1 αjl
)∏D+1

l=1 Γ
(
αjl
)

+
D+1∑
l=1

αjl

[
ψ

(
D+1∑
l=1

αjl

)
− ψ

(
αjl
)][〈

lnαjl
〉
− lnαjl

]
+

1

2

D+1∑
l=1

α2
jl

[
ψ′

(
D+1∑
l=1

αjl

)
− ψ′

(
αjl
)]〈(

lnαjl − lnαjl
)2
〉

+
1

2

D+1∑
a=1

D+1∑
b=1

αja αjb

[
ψ′

(
D+1∑
l=1

αjl

)(〈
lnαja

〉
− lnαja

)
×
(〈

lnαjb
〉
− lnαjb

)]
(2.24)

c∗j =
N∑
i=1

r∗ij + cj (2.25)

10



u∗jl = ujl + ϕjl, ν
∗
jl = νjl − ϑjl (2.26)

ϕjl =
N∑
i=1

〈
Zij
〉
αjl

[
ψ

(
D+1∑
l=1

αjl

)
− ψ

(
αjl
)

+
D+1∑
s 6=l

ψ′

(
D+1∑
l=1

αjl

)

× αjs
(〈

lnαjs
〉
− lnαjs

)]
(2.27)

ϑjl =
N∑
i=1

〈
Zij
〉[

lnXil − ln

(
1 +

D+1∑
l=1

Xil

)]
(2.28)

ψ
(
.
)

and ψ′
(
.
)

in the above equations represent the digamma and trigamma functions. The

expectation of values mentioned in the equations above is given by,

〈
Zij
〉

=

rij, for j = 1, ..., s

r∗ij, for j = s+ 1, ...,M
(2.29)

αjl =
〈
αjl
〉

=
u∗jl
ν∗jl
,
〈

lnαjl
〉

= ψ
(
u∗jl
)
− ln ν∗jl (2.30)

〈(
lnαjl − lnαjl

)2
〉

=
[
ψ
(
u∗jl
)
− lnu∗jl

]2

+ ψ′
(
u∗jl
)

(2.31)

〈
π∗j
〉

=

(
1−

s∑
k=1

πk

) ∑N
i=1 r

∗
ij + cj∑N

i=1

∑M
k=s+1 r

∗
ik + ck

(2.32)

〈
lnπ∗j

〉
= ln

(
1−

s∑
k=1

πk

)
+ ψ

(
N∑
i=1

r∗ij + cj

)
− ψ

(
N∑
i=1

M∑
k=s+1

r∗ik + ck

)
(2.33)

Logically, we can see that the expectation of π and π∗ are coupled with each other as

they sum to 1. Hence, the parameters are to be iteratively estimated. Generally, the varia-

tional approach involves initializing the variational solutions Qk

(
Θk

)
suitably, and then it-

eratively updating the values based on equation
(
2.17

)
using the current values of rest of the

variables. This way we maximize the lower bound L with respect to Q
(
Z
)
, Q
(
~π∗
)
, Q
(
~α
)

in each iteration and in addition update the weights of fixed components with respect to

11



that of free components. To find an equation reach this goal we equate the differentiation

of the lower bound with respect to πj to zero which gives

πj =

(
1−

M∑
k=s+1

〈
π∗k
〉) ∑N

i=1 rij∑N
i=1

∑s
k=1 rik

(2.34)

The updates are inculcated within the variational estimation algorithm which forms a

good method of model selection for practical applications. During this process the mixing

weights of some free components might move closer to zero. These components can be

eliminated with an appropriate threshold.

2.2.2 Incremental algorithm using component splitting

We follow the method proposed in [20] for component splitting which is based on the split

and merge algorithm described in [28]. The basic assumption of this algorithm is that the

model has more than one component. So we check this assumption. Thus, we first run

the variational estimation without component splitting. At convergence if there is only one

component, then the process is stopped as there is no point in splitting the components. If

the model is found to have two components then we initiate the component splitting algo-

rithm. Here, we select one of the mixture components and split them into two different

components. The components that have been split will be called the free components and

the rest of the components are called fixed components as explained earlier. We then esti-

mate the parameters based on the variational solutions derived in section 3.1. Doing this

we might end up with three different scenarios. First, the free components might be a good

fit for the data meaning the mixing weights of the components have considerable values.

In this case split is a success and the components are retained. Second, one of the free

components might end up with a considerable value at convergence and the other might

be infinitesimal. Here the split is considered a failure and the components are restored to

values they had before the split. Lastly, in rare cases, both the components might tend to

become infinitesimal at convergence. This is due to the presence of outliers in the data.

As this is an undesirable situation we check for this condition and ignore the split when it

occurs. However, we can remove this component once the component splitting algorithm

terminates as it is the resultant of outliers in the data. The basic idea is to apply this splitting

test to every component sequentially until all the components fail the splitting test. Each

time there is a successful split the number of components increases by one and the split

12



process is re-iterated for all the components. The proposed algorithm can be described as

follows:

1. Initialization:

• Set the number of components M to be 2

• Initiate {ujl}, {νjl} and cj with all ones for u and c; and 0.1 for ν.

2. Apply the variational algorithm for inverted Dirichlet mixture models without com-

ponent splitting for model selection as described in [29].

3. Terminate if only one component is estimated.

4. Let J be the set of M components in the mixture model.

5. Sort J in descending order with respect to the mixing weights.

6. For each element j ε J follow the split and merge algorithm as follows:

• Split component j into j1 and j2

• Set πj1 = πj2 = πj/2, ujl1 = u∗jl, ujl2 = u∗jl, νjl1 = ν∗jl and νjl2 = ν∗jl

• Consider F = {j1, j2} the free components and F ∗ the other fixed components.

• Set cj =
∑N

i=1 r
∗
ij for jεF ∗.

• Iteratively updateQ
(
Z
)
, Q
(
~π∗
)
, Q
(
~α
)

using equations
(
2.18

)
,
(
2.19

)
and

(
2.20

)
until convergence to achieve variational optimization of the model with local

model selection.

• Calculate mixing weights of free components according to equation
(
2.34

)
• If only one component is retained based on the split criteria

(
say, πj close to 0

)
then the split is deemed failure. Go to step 6 to test next component.

• If both the components are eliminated, consider the split a failure. Go to step 6

to test next component.

• If both components have a considerable mixing weight at convergence, set M =

M+1.

7. Repeat steps 4-6 until all the components fail the splitting test.

13



According to [30] the variational bound is convex with respect to the other factors and

hence convergence is guaranteed. Though we use first and second order Taylor expansion

during the estimation of the lower bound the convexity of the approximated functions have

been proved in [31]. All we have to do is to evaluate L
(
Q
)

at the end of each iteration

and terminate the algorithm when the lower bound does not change much with respect to

the lower bound in the previous iteration. The lower bound L
(
Q
)

in our model is given by(
2.15

)
as,

L
(
Q
)

=
〈

ln p
(
X | Z, ~α

)〉
+
〈

ln p
(
Z | ~π, ~π∗

)〉
+
〈

ln p
(
~π∗ | ~π

)〉
+
〈

ln p
(
~α
)〉
−
〈

lnQ
(
Z
)〉
−
〈

lnQ
(
~π∗
)〉
−
〈

lnQ
(
~α
)〉

=
N∑
i=1

M∑
j=1

〈
Zij
〉[
R̃j +

D∑
l=1

(
αjl − 1

)
lnXil −

(
D+1∑
l=1

αjl

)
ln

(
1 +

D∑
l=1

Xil

)]

+
N∑
i=1

[
s∑
j=1

rij lnπj +
M∑

j=s+1

r∗ij
〈

lnπ∗ij
〉]

+ ln Γ

(
M∑

j=s+1

cj

)

−
M∑

j=s+1

ln Γ
(
cj
)

+
M∑

j=s+1

(
cj − 1

)[〈
ln π∗j

〉
− ln

(
1−

s∑
k=1

πk

)]

+
M∑
j=1

D+1∑
l=1

[
ujl ln νjl − ln Γ

(
ujl
)

+
(
ujl − 1

)〈
lnαjl

〉
− νjl αjl

]

−
N∑
i=1

[
s∑
j=1

rij ln rj +
M∑

j=s+1

r∗ij ln r∗ij

]
− ln Γ

(
M∑

j=s+1

c∗j

)

−
M∑

j=s+1

ln Γ
(
c∗j
)

+
M∑

j=s+1

(
c∗j − 1

)[〈
lnπ∗j

〉
− ln

(
1−

s∑
k=1

πk

)]

−
M∑
j=1

D+1∑
l=1

[
u∗jl ln ν∗jl − ln Γ

(
u∗jl
)

+
(
u∗jl − 1

)〈
lnαjl

〉
− ν∗jl αjl

]
(2.35)

2.3 Experimental results

In order to test the performance, we evaluate our model with synthetic data, a smart home

dataset and then apply it for clustering of images and videos. Evaluating synthetic data

helps us to see how accurately our model is able to estimate the parameters. For occu-

pancy estimation in smart homes and the clustering of images and videos we compare

14



the accuracy of our variational inverted Dirichlet mixture model
(
denoted from now on as

varIDMM
)

with Gaussian mixture model using maximum likelihood estimation
(
denoted

from now on as GMM
)

and variational Gaussian mixture model
(
denoted from now on as

varGMM
)
. We then compare the efficiency of the model selection approach for all these

experiments. In our experiments, we use the initial values of hyper parameters u and c as 1

and ν is initiated to be 0.1. These choices proved to give best results in our experiments.

2.3.1 Synthetic data

We first test the effectiveness of our model with three synthetic datasets having different

sizes (300, 500 and 1000 respectively). All the datasets are generated to have three com-

ponents, but the composition of the data from each component varies in proportion. This

helps us to test the efficiency of our model with datasets of varying proportions. We take

the number of dimensions to be three for ease of representation. The model was tested to

be accurate for higher number of dimensions as well. The results of this experiment are

shown in Table
(
2.1
)
. The estimated parameters in the table is an average of the estimates

obtained by running the experiments 10 times. We can see that the parameters estimated

by our varIDMM model are very close to the original ones and also the estimated number

of components and their respective mixing weights were accurate as well. This proves the

efficiency of our model with respect to parameters estimation.

In the next experiment we evaluate the performance of model selection with respect to

different datasets. Table
(
2.2
)

shows the properties of the different datasets X1, X2, X3,

X4 and X5 generated with varying dimensions and number of components. Datasets X4

and X5 especially have the same dimensions and number of components but the number of

data points in the datasets are less for each component. This would help us determine the

robustness of our model with respect to small datasets. Table
(
2.3
)

shows the estimated

number of components of the datasets X1, X2, X3, X4 and X5 respectively. Similar to the

previous case we take the average of estimates over ten different observations. It clearly

shows that our model is able to find the number of components accurately in all the cases.

The estimated parameters in all these cases were found to be accurate as well, but they are

not tabulated to avoid prolixity.

15



Table 2.1: Real and estimated parameters of different datasets. N denotes the total number
of data points,Nj denotes the number of data points in the cluster j.αj1, αj3, αj3 and πj are
the real parameters and α̂j1, α̂j3, α̂j3 and π̂j are the parameters estimated by our proposed
model.

Data set Nj j αj1 αj2 αj3 πj α̂j1 α̂j2 α̂j3 π̂j

S1 100 1 5 12 23 0.33 4.8 11.73 22.06 0.330(
N = 300

)
100 2 10 25 13 0.34 10.47 26.28 13.58 0.341

100 3 1 19 17 0.33 0.99 18.63 16.62 0.329

S2 150 1 5 12 23 0.30 5.09 13.47 22.35 0.294(
N = 500

)
150 2 10 25 13 0.30 10.34 25.75 13.22 0.309

200 3 1 19 17 0.40 1.00 18.64 16.64 0.397

S1 200 1 5 12 23 0.20 5.1 12.24 23.62 0.198(
N = 1000

)
200 2 10 25 13 0.20 9.7 24.33 12.52 0.206

600 3 1 19 17 0.60 1.02 19.51 17.58 0.596

2.3.2 Energy Saving in Smart Homes

Recent development in smart home technologies has attracted a lot of people to this in-

dustry. In addition to making life easy for residents with automated control, these ad-

vancements also help to reduce the energy consumption by limiting the electricity used for

heating elements and other equipments. The primary motivation behind occupancy esti-

mation in smart buildings is to increase energy performance, indeed, occupants who run

a smart building are a crucial component of its intelligence. Thus, identifying the num-

ber of occupants in the housing unit is an important task [32, 33]. The authors in [34]

worked on this problem based on an experimental setup in an of office at Grenoble Insti-

tute of Technology. The office was fitted with a network of connected sensors measuring

the temperature, luminance, humidity, motion, CO2 concentrations, power consumption,

door and window positions, acoustic pressure from microphones, etc. The setup also has

two video cameras to find the original number of occupants. The data recorded from the

sensors are transferred using EnOcean protocol (A standardized protocol for applications

related to smart buildings and similar) to a centralized database and can be monitored by a

web application. Our basic goal in this experiment is to estimate the number of occupants

16



Table 2.2: Properties of the synthetic datasets X1, X2, X3, X4, X5. N denotes the number
of data points, D represents the dimension of the dataset and M is the number of compo-
nents.

Data set N D M

X1 400 5 4

X2 800 15 8

X3 1000 10 10

X4 750 25 15

X5 1500 25 15

Table 2.3: Estimated number of components M̂ for the datasets X1, X2, X3, X4 and X5

Data set X1 X2 X3 X4 X5

M̂ 4.2 7.6 10 14.5 14.6

currently in the building. So our model should be able to cluster the number of occupants.

This helps us limit the power spent on unnecessary appliances when there are no occupants

in the housing unit. Basing on the experimental results of [34] we take the most important

features having a high correlation with the number of occupants in the building. These

features are:

Motion data: A PIR sensor generating binary data with 1 when motion is detected and 0

if not; for each time instance.

Acoustic pressure: This sensor records data based on the RMS (Root Mean Square) value

of the signals generated by a microphone.

Power consumption: This feature represents the power consumption of four laptops that

are regularly used in the office.

Door position: Again a binary value of 0 or 1 for each time instance indicating the door is

closed or open respectively.

The two video cameras provide the ground truth of the occupants originally present (no

occupant, 1 occupant, two occupants, three or more occupants). Obviously, these labels

17



0 100 200 300 400 500 600 700 800

Observation

0

1

2

3

Oc
cu

pa
nc

y

Estimated and Observed occupancies

Ground Truth
varIDMM
GMM
varGMM

Figure 2.2: Comparison between actual occupancy and estimated occupancies using differ-
ent approaches.

were removed when given as input to our model as we follow an unsupervised approach. It

is used for validation purpose, and defining the meaning of each cluster. The original data

set was in fact labeled, but in our experiments, we have removed completely the labels to

make the learning problem completely unsupervised.

The comparison of estimation between varIDMM, GMM and varGMM is shown in Fig.

2.2 along with the ground truth, where both actual occupancy and the estimated occupancy

are plotted as a graph of number of occupants with quantum time is equal to 30 minutes.

Since the main objective of our application is to reduce energy consumption it is important

to have a minimal mean absolute error (MAE):

MAE =

∑N
i=1 | (observed occupancy)i − (estimated occupancy)i |

N
(2.36)

The observed occupancy is the ground truth we obtain from the video cameras. This mea-

sure is important because the closer we estimate with respect to the original number of

occupants, the energy consumption can be regulated accordingly with more accuracy. The

estimated MAE for each of the models is shown in Table 2.4. Our model has a lower er-

ror rate compared to GMM and varGMM models. In addition to these models we found

that one of the K-Means algorithms variants proved to be efficient recently in [35] per-

forms worse for our case. This shows the supremacy of our model compared to the rest of

approaches.

18



Table 2.4: MAE of different models for smart home data

Model MAE(%)

varIDMM 18.13

GMM 19.20

varGMM 20.08

K-Means 29.71

2.3.3 Image Clustering

Pattern recognition in images has been an important application of machine learning tech-

niques in recent years. Identifying patterns in images using unsupervised learning plays a

major role in extraction of features or topics that help greatly in image classification, im-

age retrieval and many other applications [36–39]. In our case we use our model to learn

from a set of images. Our main objective here is, given a set of images our model should

be able to properly cluster them. Generally, when categorizing images the first step is to

extract the feature descriptors from the images. This can be done by various methods like

SIFT [40], SURF [41], HOG [42], etc. Then we construct a bag of visual words from

these descriptors. Bag of visual words approach has been an important tool for image and

video categorization in a wide variety of applications [43–45]. We evaluate the efficiency

of our model for image categorization with two different datasets with varying properties

as follows:

Experiment 1

The data we use for this experiment was derived from three different datasets. We selected

equal number of samples from three varied classes to test the performance of our model

for balanced datasets. We choose 333 images from a flowers dataset taken from kaggle1.

Another 333 images were chosen from the Zurich buildings dataset [46] and another 333

images were chosen from the Food-5K dataset2. The Food-5K dataset consists of two

categories, 2500 images of food and 2500 images which are not food. We chose images of

people from the non food images as they had a lot of variations as compared to the other

1https://www.kaggle.com/alxmamaev/flowers-recognition.
2https://mmspg.epfl.ch/food-image-datasets

19

https://www.kaggle.com/alxmamaev/flowers-recognition
https://mmspg.epfl.ch/food-image-datasets


Figure 2.3: Sample images from Flowers dataset

Figure 2.4: Sample images from Zurich Buildings dataset

class. Some sample images from these datasets are shown in figures 2.3,2.4 and 2.5.

In our case we first detect the SIFT descriptors in each image using Difference of Gaus-

sian (DoG) interest point detectors as in [40]. Considering the descriptors extracted from

all the images, we use K-means to cluster these feature vectors. We can then represent the

images as frequency histograms of visual words. Finally, we use our varIDMM model on

this data for clustering. We also compare our output with varGMM and GMM to show the

efficiency of our algorithm in clustering the data according to detected topics. Figure 2.6

shows the confusion matrix obtained by using our varIDMM model on our image dataset.

The accuracy of our model was found to be 77.98% which is better as compared to the

GMM and varGMM as shown in Table 2.5. We also observed that the other models have

Figure 2.5: Sample images from Food-5K dataset

20



Confusion Matrix

70.3%
234

6.6%
22

24.6%
82

29.1%
97

92.8%
309

4.5%
15

0.6%
2

0.6%
2

70.9%
236

People Flowers Buildings

Output Class

People

Flowers

Buildings

T
ar

ge
t C

la
ss

Figure 2.6: Confusion Matrix for the image dataset

Table 2.5: Accuracy of different models for the image dataset

Method Accuracy(%)

varIDMM 77.98

GMM 66.87

varGMM 66.66

not performed well in detecting images of people whereas our model was able to achieve

more than 70% accuracy for all the categories.

Experiment 2

In our second experiment, we choose more image categories and use imbalanced number

of images from each of the categories to test the robustness of our model. We use the

15 scenes dataset [47] for this experiment. The dataset has 15 categories ranging from

mountains, forests, etc. to homes, skyscrapers, etc. We choose 6 categories from this set

namely: “Living Room”, “Sea”, “Forest”, “Building”, “Snowy Mountain”, “Stores”. We

choose 200 images of living room, 300 images of the sea, 230 images of forests, 200 images

of buildings, 250 images of snowy mountains and 150 images of stores contributing 1330

images on the whole. Some sample images from the dataset are shown in Fig. 2.7. Same as

our previous experiment we extract the SIFT features for each of the images in our database

and create a bag of visual words representation. The confusion matrix obtained by using

our model is shown in Fig. 2.8. Analyzing the confusion matrix we see that, the living

room and snowy mountains are hard for our model to distinguish. The same effect was

21



Living Room Sea Forest Building

Snowy Mountain Stores

Figure 2.7: Sample images from different categories of 15 Scenes dataset

Table 2.6: Accuracy of different models for 15 scenes dataset

Method Accuracy(%)

varIDMM 76.24

GMM 57.81

varGMM 52.93

observed in GMM and varGMM models as well. However, these two models were able to

distinguish less than 10% of the images from the two classes accurately which lowered the

accuracy of the models greatly. Table 2.6 shows the accuracy of different models on this

particular dataset.

2.3.4 Video Clustering

Similar to images, videos clustering is of prime importance as well. It has a variety of

applications in event analysis, video retrieval, video indexing [48], etc. The objective of

our experiment is to test how well our model is able to represent topics in videos. For this,

we evaluate the efficiency of our model on the well renowned KTH dataset [49]. The KTH

dataset consists of 599 video files, each from one of the six different categories: boxing,

hand clapping, hand waving, jogging, running and walking. Each category has 100 video

22



Figure 2.8: Confusion Matrix for the 15 Scenes dataset

S1

S2

S4

S3

Boxing Hand clapping Hand waving Running WalkingJogging

Figure 2.9: Sample images from KTH dataset

samples except the hand clap category which has only 99 video samples. The videos were

recorded by a still camera for 25 test subjects performing the respective task. The videos

were captured with a frame rate of 25fps in 4 different scenarios for each of the test subject:

outdoors (S1), outdoors with scale variation (S2), outdoors with different clothing (S3) and

indoors (S4). Few sample frames from the dataset are shown in figure 2.9.

We follow a similar approach as in the case of images to form bag of visual words. To

do this we use Lukas-Kanade (LK) optical flow [50] a method which tracks the variations

in pixel intensities in the x and y directions along with their orientation and magnitude.

Optical flow has proved to be an efficient tool for video analysis in many applications

[51–53]. For our application we also tried using 3D-SIFT [54], however, the output for

23



Confusion Matrix

62.0%
62

12.0%
12

22.0%
22

0.0%
0

0.0%
0

0.0%
0

20.2%
20

28.3%
28

15.2%
15

3.0%
3

0.0%
0

24.2%
24

18.0%
18

59.0%
59

63.0%
63

0.0%
0

0.0%
0

1.0%
1

0.0%
0

0.0%
0

0.0%
0

68.0%
68

28.0%
28

2.0%
2

0.0%
0

0.0%
0

0.0%
0

10.0%
10

69.0%
69

0.0%
0

0.0%
0

0.0%
0

0.0%
0

19.0%
19

3.0%
3

73.0%
73

Boxing Clapping Waving Jogging Running Walking

Output Class

Boxing

Clapping

Waving

Jogging

Running

Walking

T
ar

ge
t C

la
ss

Figure 2.10: Confusion Matrix for KTH dataset

Table 2.7: Accuracy of different models for KTH dataset

Method Accuracy(%)

varIDMM 60.66

GMM 48.08

varGMM 48.24

our model was not as good compared to optical flow. We also use derivative of Gaussian

before extracting the optical flow attributes. We use the data which represents the change in

magnitude obtained by LK optical flow estimation for 100 frames in each video to build our

bag of words. Figure 2.10 shows the confusion matrix obtained using our model for topic

learning. We see that except the hand clapping class, all other classes are clustered with an

accuracy greater than 60%. However in the case of GMM and varGMM, the accuracy for

all the clusters where less than 50% which shows that our model is able to provide a better

approximation. Table 2.7 shows the comparison of our model with GMM and varGMM.

We see that our model has a higher overall accuracy than the other two models.

24



Chapter 3

Finite Generalized Inverted Dirichlet
Mixture Model with Variational
Component Splitting and Variational
Feature Selection

In this chapter, we detail our findings when component splitting appraoch is applied to

generalized inverted Dirichlet mixture models. We also expand our study to determine the

efficiency of the component splitting algorithm when applied along side a variational fea-

ture selection framework. This helps us estimate the complexity of the data efficiently con-

comitantly eliminating the irrelevant features. We evaluate the performance of our models

with applications such as image categorization and dynamic texture analysis.

3.1 Model specification

Let Y =
(
~Y1, ~Y2, ..., ~YN

)
be a set of N independent and identically distributed vectors

where each vector ~Yi is given by ~Yi =
(
Yi1, Yi2, ..., YiD

)
. HereD is dimension of the vector.

Considering that the underlying mixture within Y is GID, we can define the probability

density function p
(
~Yi | ~αj, ~βj

)
with respect to the jth component as,

p
(
~Yi | ~αj, ~βj

)
=

D∏
d=1

Γ
(
αjd + βjd

)
Γ
(
αjd
)
Γ
(
βjd
) Y

αjd−1

id(
1 +

∑d
l=1 Yil

)γid (3.1)

25



where the parameters of GID is defined by ~αj =
(
αj1, αj2, ..., αjd

)
and ~βj =

(
βj1, βj2, ..., βjd

)
such that, αjd > 0 and βjd > 0. γjd is defined as γjd = βjd + αjd − βj(d+1). Assuming the

model now consists of M different components [27] we can write the GID mixture model

as,

p
(
~Yi | ~π, ~α, ~β

)
=

M∑
j=1

πjp
(
~Yi | ~αj, ~βj

)
(3.2)

where the parameters of the GID distribution pertaining to each component j is represented

by ~α =
(
~α1, ~α2, ..., ~αM

)
and ~β =

(
~β1, ~β2, ..., ~βM

)
. Similarly, ~π =

(
π1, π2, ..., πM

)
repre-

sents the mixing coefficient of the corresponding components, such that,
∑M

j=1 πj = 1. We

can write GID as a product of inverted Beta distribution as it does not change the underlying

model. This is proved in [6]. Hence equation (3.2) becomes,

p
(
X | π, α, β

)
=

N∏
i=1

(
M∑
j=1

πj

D∏
l=1

piBeta
(
Xil | αjl, βjl

))
(3.3)

given X =
(
X1, X2, ..., XN

)
where ~Xi =

(
Xi1, Xi2, ..., XiD

)
, Xi1 = Yi1 and Xil =

Yil
1+

∑l−1
k=1 Yik

for l > 1. piBeta
(
Xil | αjl, βjl

)
in the above equation represents the inverted

Beta distribution defined by parameters αjl and βjl and is given by,

piBeta
(
Xil | αjl, βjl

)
=

Γ
(
αjl + βjl

)
Γ
(
αjl
)
Γ
(
βjl
) X

αjl−1

il(
1 +Xil

)αjl+βjl
(3.4)

According to this design, estimating the parameters of the model represented by equation

(3.3) is the same as estimating the parameters of the model given by equation (3.2). Z =(
Z1, Z2, ...ZN

)
represents the latent variable, where Zi =

(
Zi1, Zi2, ..., ZiM

)
complying to

the conditions, Zijε{0, 1} and
∑M

j=1 Zij = 1.

To integrate the component splitting algorithm we use equations (2.7) and (2.9). Since

GID is a distribution from the exponential family, we choose the prior of the parameters to

be Gamma distribution assuming the parameters are independent as well. Thus the prior

distribution of αjl and βjl is written as,

p
(
αjl
)

= G
(
αjl | ujl, νjl

)
=

ν
ujl
jl

Γ
(
ujl
)αujl−1

jl e−νjlαjl (3.5)

p
(
βjl
)

= G
(
βjl | gjl, hjl

)
=

h
gjl
jl

Γ
(
gjl
)βgjl−1

jl e−hjlβjl (3.6)

26



Figure 3.1: Graphical representation of GID mixture model with component splitting. The
circles represent the random variables and model parameters, and plates denote repetitions.
Number in the lower right corners of the plates indicate the number of repetitions. The
conditional dependencies of the variables are represented by the arcs.

where G
(
.
)

indicates a Gamma distribution. Using all these information available to us, we

can write the joint distribution of all the random variables in our model as,

p
(
X ,Θ |~π

)
= p
(
X | Z, ~α, ~β

)
p
(
Z | ~π, ~π∗

)
p
(
~π∗ | ~π

)
p
(
~α
)
p
(
~β
)

=
N∏
i=1

M∏
j=1

[
Γ
(
αjl + βjl

)
Γ
(
αjl
)
Γ
(
βjl
) X

αjl−1

il(
1 +Xil

)αjl+βjl

]Zij

×
N∏
i=1

[
s∏
j=1

π
Zij

j

M∏
j=s+1

π
∗Zij

j

]
×

(
1−

s∑
k=1

πk

)−M+s

×
Γ
(∑M

j=s+1 cj
)∏M

j=s+1 Γ
(
cj
) M∏
j=s+1

(
π∗j

1−
∑s

k=1 πk

)cj−1

×
ν
ujl
jl

Γ
(
ujl
)αujl−1

jl e−νjlαjl×
h
gjl
jl

Γ
(
gjl
)βgjl−1

jl e−hjlβjl

where Θ = {Z, ~α, ~β, ~π∗} is the set of unknown parameters. The graphical representation

of our model is shown in Fig. 3.1. Following the variational approach we can write the

variational variational solutions for our model as,

Q
(
Z
)

=
N∏
i=1

[
s∏
j=1

r
Zij

ij

M∏
j=s+1

r
∗Zij

ij

]
(3.7)

Q(~π∗)=(1−
s∑

k=1

πk)
−M+s

Γ(
∑M

j=s+1c
∗
j)∏M

j=s+1Γ(c∗j)

M∏
j=s+1

(
π∗j

1−
∑s

k=1πk
)c

∗
j−1 (3.8)

27



Q
(
~α
)

=
M∏
j=1

D∏
l=1

G
(
αjl |u∗jl, ν∗jl

)
, Q
(
~β
)

=
M∏
j=1

D∏
l=1

G
(
βjl |g∗jl, h∗jl

)
(3.9)

given,

rij =
r̃ij∑s

j=1 r̃ij +
∑M

j=s+1 r̃
∗
ij

, r∗ij =
r̃∗ij∑s

j=1 r̃ij +
∑M

j=s+1 r̃
∗
ij

(3.10)

ln r̃ij =ln πj +
D∑
l=1

R̃jl +
(
αjl − 1

)
lnXil −

(
αjl + βjl

)
ln
(
1 +Xil

)
(3.11)

ln r̃∗ij =
〈
lnπ∗j

〉
+

D∑
l=1

R̃jl +
(
αjl − 1

)
lnXil −

(
αjl + βjl

)
ln
(
1 +Xil

)
(3.12)

R̃ = ln
Γ(α + β)

Γ(α)Γ(β)
+ α

[
ψ(α + β)− ψ(α)

]
(
〈

lnα
〉
− lnα)

+ β
[
ψ(α + β)− ψ(β)

]
(
〈

ln β
〉
− ln β)

+ 0.5α2
[
ψ′(α + β)− ψ′(α)

]〈
(lnα− lnα)2

〉
+ 0.5β

2[
ψ′(α + β)− ψ′(β)

]〈
(ln β − ln β)2

〉
+ αβψ′(α + β)(

〈
lnα

〉
− lnα)(

〈
ln β

〉
− ln β) (3.13)

u∗jl =ujl +
N∑
i=1

〈
Zij
〉
αjl

[
ψ
(
αjl + βjl

)
− ψ

(
αjl
)

+ βjlψ
′(αjl + βjl

)(〈
ln βjl

〉
− ln βjl

)]
(3.14)

ν∗jl = νjl −
N∑
i=1

〈
Zij
〉

ln
Xil

1 +Xil

(3.15)

g∗jl =gjl +
N∑
i=1

〈
Zij
〉
βjl

[
ψ
(
αjl + βjl

)
− ψ

(
βjl
)

+ αjlψ
′(αjl + βjl

)(〈
lnαjl

〉
− lnαjl

)]
(3.16)

h∗jl = hjl −
N∑
i=1

〈
Zij
〉

ln
1

1 +Xil

(3.17)

28



in the above equations ψ
(
.
)

and ψ′
(
.
)

denote the digamma and trigamma functions, respec-

tively. Since R =
〈

ln Γ(α+β)
Γ(α)Γ(β)

〉
is intractable, we estimate the lower bound by the second

order Taylor’s expansion as in [6] to get R̃ in equation (3.13). The expectation of values

mentioned in the equations is given by,

〈
Zij
〉

=

rij, for j = 1, ..., s

r∗ij, for j = s+ 1, ...,M
(3.18)

αjl =
〈
αjl
〉

=
u∗jl
ν∗jl
,
〈

lnαjl
〉

= ψ
(
u∗jl
)
− ln ν∗jl (3.19)

βjl =
〈
βjl
〉

=
g∗jl
h∗jl
,
〈

ln βjl
〉

= ψ
(
g∗jl
)
− lnh∗jl (3.20)

〈
π∗j
〉

=

(
1−

s∑
k=1

πk

) ∑N
i=1 r

∗
ij + cj∑N

i=1

∑M
k=s+1 r

∗
ik + ck

(3.21)

〈
ln π∗j

〉
=ln

(
1−

s∑
k=1

πk
)

+ ψ
( N∑
i=1

r∗ij + cj
)
− ψ

( N∑
i=1

M∑
k=s+1

r∗ik + ck
)

(3.22)

During the variational optimization process, these parameters are updated iteratively until

convergence. The component splitting approach as used in [55] is built within this varia-

tional framework.

3.2 Experimental Results

We evaluate the built variational GID mixture model (varGIDMM) using two different

image datasets focused on image categorization. We compare the effectiveness of the

model with mixture models based on variational Inverted Dirichlet (varIDMM), Dirichlet

(varDMM) and Gaussian distribution(varGMM). We also compare the results with Gaus-

sian mixture models (GMM) with log likelihood estimation. The hyperparameters u, g and

c are initiated to be 1 and ν and h are initiated to be 0.05.

Image Categorization

Image categorization plays an important role in industrial automation and has a wide range

of multimedia applications as well [56–58]. Identifying the pattern in these images are

29



Airplane Motorbikes Leopards Faces

Figure 3.2: Sample images from different categories of Caltech 101 dataset

Figure 3.3: Confusion matrix of Caltech 101 dataset with varGIDMM

vital for any image related application. Our application involves two challenging datasets;

Caltech 101 objects [59] and VisTex dataset from MIT Media Lab 1.

The first dataset we used to evaluate our model is the caltech 101 dataset. Among

the 101 categories we chose four categories: airplanes, faces, leopards and Motorbikes.

Among these categories, airplanes have 800 images, faces have 435 images, leopards have

200 images and motorbikes have 798 images. Sample images from these categories are

shown in Fig. 3.2. We chose these four categories as they help to test the performance of

our model with imbalanced data set. Also, the airplanes class in our model has a similar

landscape when compared to many images in the motorbikes and leopards class. We made

this selection to evaluate the robustness of our model when it comes to similar looking

classes. In order to use our model on the images we have to first create a bag of visual

words model [60, 61]. In order to create a bag of visual words model we have to first

extract some kind of descriptors from the images. The frequently used descriptors are

SIFT [40], SURF [41], HOG [42], etc. In our case we found the SIFT descriptors to be an

efficient choice. Hence, we first extract the SIFT features from the images and then perform

K-means clustering over the extracted SIFT descriptors to form the bag of words feature

1http://vismod.media.mit.edu/vismod/imagery/VisionTexture/

30



Table 3.1: Accuracy of different models for Caltech 101 dataset

Method Accuracy(%)

varGIDMM 78.41
varIDMM 68.29
varDMM 68.6
varGMM 70.8

GMM 72.55

Fabric Flowers Food Grass Paintings Tiles Water

Figure 3.4: Sample images from different categories of VisTex dataset

vector for each image. This is used as input to our model for clustering. The confusion

matrix constructed out of the output from our model is shown in Fig. 3.3. The airplanes

class had less accuracy when compared to the other classes because the images looked

similar. The other models were actually worse in distinguishing between the classes. Table

3.1 shows the performance our model compared to the other models. We can see that

varGIDMM performed better than the rest of the models.

In order to make things more demanding, we choose another challenging dataset to

evaluate our model, which is VisTex. The VisTex data set consisted of a number of classes

where the images looked similar. Hence distinguishing them would be an interesting eval-

uation of our model. For this experiment we split each of the 512 × 512 images into

64 × 64 child images. In this case each 512 × 512 mother image contributes to 64

child images in the database. So, all the 64 images should be classified into a single class.

In our experiment we use images from seven different groups namely, “fabric”, “flowers”,

“food”, “grass”, “paintings”, “tiles” and “water”. The database consisted of 1344 child

images, with 4 mother images each from flowers, food, and water contributing 768 images,

3 mother images from fabric class contributing 192 images and 2 mother images each from

grass, paintings and tiles contributing 384 images. Fig. 3.4 shows some sample images

from the different categories chosen for the experiment. When it comes to textures we

intend to obtain features that would represent prevalent pattern in an image rather than the

spatial details. Hence, we use cooccurance matrix [62] which uses the joint probability

31



Figure 3.5: Confusion matrix of VisTex dataset with varGIDMM

Table 3.2: Accuracy of different models for VisTex dataset

Method Accuracy(%)

varGIDMM 77.16
varIDMM 75.37
varDMM 63.69
varGMM 68.37

GMM 69.86

functions of two picture elements in an image at some given relative position [7]. We use

the cooccurance matrices obtained for each image as the features for our model. The con-

fusion matrix obtained by using our model is shown in Fig. 3.5. From the confusion matrix

we see that the flowers class in our model exhibited lower accuracy due to the similarity

with some of the images in fabric and paintings classes. The performance with other mod-

els were worse with this pair as well. However, in addition, the other models were poor in

distinguishing between paintings and water which decreased their accuracy. The accuracy

compared with other models is shown in Table. 3.2. These applications stand proof for the

efficiency of our model. During our experiments we also noticed that some of the small

categories are indistinguishable when using Gaussian and Dirichlet mixture models which

elevates our model in terms of imbalanced datasets.

32



3.3 The Mathematical Model with Feature Selection

Feature selection is an essential process in a mixture model as some features in the data

do not necessarily have importance in clustering. The performance of the model is better

when these features are removed. It is to be noted that the configurations of GID model are

followed as above. In this work we use the approach proposed in [63] where we approxi-

mate the irrelevant features by considering a distribution over it. Hence, the features follow

the following distribution:

p(Xil | φil, αil, βil, λl, τl) '
(
iBeta(Xil | αjl, βjl)

)φil(iBeta(Xil | λl, τl)
)1−φil (3.23)

Here, φil = 0 if feature l is irrelevant for jth and 1 if relevant. In our case we consider the

irrelevant features to follow an inverted beta distribution iBeta(Xil | λl, τl). Since φil is a

binary latent variable we can write the prior distribution of ~φ as:

p
(
~φ | ~ε

)
=

N∏
i=1

D∏
l=1

εφill1
ε1−φill2

(3.24)

where, εl1 = p(φil = 1) and εl2 = p(φil = 0) since φil is a Bernoulli variable. ~ε =

(~ε1,~ε2, ...~εD) represent the probabilities that the features are relevant or not (i.e. feature

saliencies), where ~εl = (εl1 , εl2) and εl1 + εl2 = 1. In this model, the irrelevant features are

modeled globally and model selection is done locally. As a final step, we choose a prior dis-

tribution to model the parameters ~λ and ~τ . Gamma distribution is a perfect choice as GID

is also from an exponential family. Hence, assuming the parameters are independent we

define the priors for the parameters as, p
(
~λ
)

= G
(
~λ | ~g,~h

)
and p

(
~τ
)

= G
(
~τ | ~s,~t

)
,

where G
(
~x | ~a,~b

)
= ba

Γ
(
a
)xa−1e−bx. All the hyperparameter vectors ~g,~h,~s and ~t are

positive in the above equations. Summarizing all the unknown variables, we introduce

33



τ

s

t

λ

g

h

β   

p

q

α 

u

v

X

ϕ 

ϵ 

        c

Z

π* 

M-s

s

NM

π 

ND

MD

MD

Figure 3.6: Graphical representation of finite GID mixture model with feature selection
and component splitting. The circles denote the random variables and the conditional de-
pendencies between the variables are indicated by the arcs. The number in the bottom right
corner of the platesindicates the dimension of the variables inside

Θ = {Z, ~α, ~β,~λ, ~τ , ~φ, ~π∗}. Now, the joint distribution is given by:

p
(
X ,Θ | ~π,~ε

)
= p
(
X | Z, ~α, ~β,~λ, ~τ , ~φ

)
p
(
~φ | ~ε

)
p
(
Z | ~π, ~π∗

)
× p
(
~π∗ | ~π

)
p
(
~α
)
p
(
~β
)
p
(
~λ
)
p
(
~τ
)

=
N∏
i=1

M∏
j=1

{
D∏
l=1

[
Γ
(
αjl + βjl

)
Γ
(
αjl
)
Γ
(
βjl
) X

αjl−1

il(
1 +Xil

)αjl+βjl

]φil

×
[

Γ
(
λl + τl

)
Γ
(
λl
)
Γ
(
τl
) Xλl−1

il(
1 +Xil

)λl+τl
]1−φil

}Zij

×
N∏
i=1

D∏
l=1

εφill1
ε1−φill2

×
N∏
i=1

[
s∏
j=1

π
Zij

j

M∏
j=s+1

π
∗Zij

j

]
×

(
1−

s∑
k=1

πk

)−M+s

×
Γ
(∑M

j=s+1Cj
)∏M

j=s+1 Γ
(
Cj
) M∏
j=s+1

(
π∗j

1−
∑s

k=1 πk

)Cj−1

×
ν
ujl
jl

Γ
(
ujl
)αujl−1

jl e−νjlαjl ×
q
pjl
jl

Γ
(
pjl
)βpjl−1

jl e−qjlβjl

× hgll
Γ
(
gl
)λgl−1

jl e−hlλl × tsll
Γ
(
sl
)τ sl−1

l e−tlτl (3.25)

Fig. 3.6 shows the graphical model of the dependencies between the different parameters.

By following the variational equation (2.17), we can write the variational solutions for our

34



model as:

Q
(
Z
)

=
N∏
i=1

[
s∏
j=1

r
Zij

ij

M∏
j=s+1

r
∗Zij

ij

]
, Q
(
~φ) =

M∏
j=1

D∏
l=1

fφilil

(
1− fil

)1−φil (3.26)

Q(~π∗) =(1−
s∑

k=1

πk)
−M+s

Γ(
∑M

j=s+1c
∗
j)∏M

j=s+1 Γ(c∗j)

M∏
j=s+1

(
π∗j

1−
∑s

k=1 πk
)c

∗
j−1 (3.27)

Q
(
~α
)

=
M∏
j=1

D∏
l=1

G
(
αjl | u∗jl, ν∗jl

)
, Q
(
~β
)

=
M∏
j=1

D∏
l=1

G
(
βjl | p∗jl, q∗jl

)
(3.28)

Q
(
~λ
)

=
D∏
l=1

G
(
λl | g∗l , h∗l

)
, Q
(
~τ
)

=
D∏
l=1

G
(
τl | s∗l , t∗l

)
(3.29)

provided,

rij =
r̃ij∑s

j=1 r̃ij +
∑M

j=s+1 r̃
∗
ij

, r∗ij =
r̃∗ij∑s

j=1 r̃ij +
∑M

j=s+1 r̃
∗
ij

(3.30)

ln r̃ij = lnπj +
D∑
l=1

{〈
φil
〉[
R̃jl +

(
αjl − 1

)
lnXil −

(
αjl + βjl

)
ln
(
1 +Xil

)]

+
〈
1− φil

〉[
F̃l +

(
λl − 1

)
lnXil −

(
λl + τ jl

)
ln
(
1 +Xil

)]}
(3.31)

ln r̃∗ij =
〈

ln π∗j
〉

+
D∑
l=1

{〈
φil
〉[
R̃jl +

(
αjl − 1

)
lnXil −

(
αjl + βjl

)
ln
(
1 +Xil

)]

+
〈
1− φil

〉[
F̃l +

(
λl − 1

)
lnXil −

(
λl + τ jl

)
ln
(
1 +Xil

)]}
(3.32)

c∗j =
N∑
i=1

r∗ij + cj, fil =
f

(φil)
il

f
(φil)
il + f

(1−φil)
il

(3.33)

f
(φil)
il = exp

{〈
ln εl1

〉
+

M∑
j=1

〈
Zij
〉[
R̃jl +

(
αjl − 1

)
lnXil −

(
αjl + βjl

)
ln
(
1 +Xil

)]}
(3.34)

f
(1−φil)
il = exp

{〈
ln εl2

〉
+

[
F̃l +

(
λl − 1

)
lnXil −

(
λl + τ l

)
ln
(
1 +Xil

)]}
(3.35)

35



R̃ = ln
Γ(α + β)

Γ(α)Γ(β)
+ α

[
ψ(α + β)− ψ(α)

]
(
〈

lnα
〉
− lnα)

+ β
[
ψ(α + β)− ψ(β)

]
(
〈

ln β
〉
− ln β)

+ 0.5α2
[
ψ′(α + β)− ψ′(α)

]〈
(lnα− lnα)2

〉
+ 0.5β

2[
ψ′(α + β)− ψ′(β)

]〈
(ln β − ln β)2

〉
+ αβψ′(α + β)(

〈
lnα

〉
− lnα)(

〈
ln β

〉
− ln β) (3.36)

F̃ = ln
Γ(λ+ τ)

Γ(λ)Γ(τ)
+ λ
[
ψ(λ+ τ)− ψ(λ)

]
(
〈

lnλ
〉
− lnλ)

+ τ
[
ψ(λ+ τ)− ψ(τ)

]
(
〈

ln τ
〉
− ln τ)

+ 0.5λ
2[
ψ′(λ+ τ)− ψ′(τ)

]〈
(lnλ− lnλ)2

〉
+ 0.5τ 2

[
ψ′(λ+ τ)− ψ′(τ)

]〈
(ln τ − ln τ)2

〉
+ λ τ ψ′(λ+ τ)(

〈
lnλ
〉
− lnλ)(

〈
ln τ
〉
− ln τ) (3.37)

u∗jl =ujl +
N∑
i=1

〈
Zij
〉〈
φil
〉
αjl

[
ψ
(
αjl + βjl

)
− ψ

(
αjl
)

+ βjlψ
′(αjl + βjl

)(〈
ln βjl

〉
− ln βjl

)]
(3.38)

ν∗jl = νjl −
N∑
i=1

〈
Zij
〉〈
φil
〉

ln
Xil

1 +Xil

(3.39)

Similar to the calculation of u∗jl and ν∗jl we can calculate the hyperparameters p∗jl, q
∗
jl, g

∗
l , h

∗
l , s
∗
l

and t∗l as well. ψ
(
.
)

and ψ′
(
.
)

denote the digamma and trigamma functions, in the equa-

tions above. R̃ and F̃ in equation (3.36) and (3.37) are the taylor series approximation of

R =
〈

ln Γ(α+β)
Γ(α)Γ(β)

〉
and F =

〈
ln Γ(λ+τ)

Γ(λ)Γ(τ)

〉
since these equations are intractable [6]. The

expected values mentioned in the equations above are given by:

〈
Zij
〉

=

rij, for j = 1, ..., s

r∗ij, for j = s+ 1, ...,M
(3.40)

αjl =
u∗jl
ν∗jl
,
〈

lnαjl
〉

= ψ
(
u∗jl
)
− ln ν∗jl (3.41)

〈(
lnαjl − lnαjl

)2〉
=
[
ψ
(
u∗jl
)
− lnu∗jl

]2
+ ψ′

(
u∗jl
)

(3.42)

36



〈
φil
〉

= fil,
〈
1− φil

〉
= 1− fil (3.43)

〈
π∗j
〉

=

(
1−

s∑
k=1

πk

) ∑N
i=1 r

∗
ij + cj∑N

i=1

∑M
k=s+1 r

∗
ik + ck

(3.44)

〈
ln π∗j

〉
=ln

(
1−

s∑
k=1

πk
)

+ ψ
( N∑
i=1

r∗ij + cj
)
− ψ

( N∑
i=1

M∑
k=s+1

r∗ik + ck
)

(3.45)

We can derive similar equations like in (3.41) and (3.42), for ~β,~λ and ~τ . According to

our algorithm, the irrelevant features will have lower probabilities and hence will not be

used in the clustering process. These features are eliminated in the learning process which

increases the efficiency of the clustering algorithm. The model selection method using

component splitting approach on the other hand takes care of the problem of model se-

lection. The efficiency of the model lies in the fact that the model selection approach is

applied only to the components of the relevant features which saves time.

3.4 Experimental Results

To evaluate our model we use two challenging datasets; the dynamic texture dataset (Dyn-

tex) [64] and the Corel 10K dataset2 for image categorization. We compare the results of

our proposed variational GID mixture model (varGIDMM) with the standard benchmark of

Gaussian mixture models based on maximum likelihood estimation (GMM) and variational

approximation (varGMM). The initial values of the hyperparameters u, p, g, s and c is set

to 1, that of ν and q is set to be 0.09 and that of h and t is set to be 0.06. These initiations

were found to give the best results in our experiments.

3.4.1 Image Clustering

There has been a huge increase in the amount of images generated in recent years. With

the increase in the volume of images, the need to categorize them based on analyzed pat-

terns has been on the rise as well. Clustering the images hence plays a predominant role

in categorizing the images. The efficiency of the use of bag of visual words features [45]

is also imminent in recent years. To get the bag of visual words we first have to extract

2http://www.ci.gxnu.edu.cn/cbir/Dataset.aspx

37

http://www.ci.gxnu.edu.cn/cbir/Dataset.aspx


Playing Cards Dolls Steam Tractors Paintings

Easter Eggs Beads Dinosaurs

Figure 3.7: Sample images from different categories of Corel 10K dataset

Table 3.3: Accuracy of different models on Corel 10K dataset

Method Accuracy(%)

varGIDMM 87.41
varGMM 60.42

GMM 57.42

feature descriptors (scale invariant feature transform (SIFT) [40], histogram of Gaussians

(HOG) [42], Speeded-up robust features (SURF) [41], etc.) from the images. We then

use k-means clustering on the extracted descriptors with the k value indicating the number

of features. The Corel 10K dataset which we choose for our application has about a 100

classes with 100 images per class. We choose 7 image classes from them corresponding

to “Playing Cards”,“Dolls”,“Steam Tractors”,“Paintings”,“Easter Eggs”,“Beads” and “Di-

nosaurs”. Sample images from the dataset are shown in Fig. 3.7. It is to be noted that the

use of seven categories is ease of representation. In our case we first extract SIFT feature

descriptors from the images as it is found to give better results and then generate bag of

visual words features from the descriptors. We feed this data as input to our model. The

Confusion matrix pertaining to our model is shown in Fig. 3.8. Table 3.3 shows the accu-

racy of different models compared with ours. It clearly shows that our model outperforms

GMM models by a large margin.

38



Figure 3.8: Confusion matrix of Corel 10K dataset with varGIDMM

Flags Flowers Sea Trees

Figure 3.9: Sample snapshots from different categories of DynTex dataset

3.4.2 Dynamic Texture Clustering

Dynamic textures refers to textures in the temporal dimension. For example, videos of

burning fire, turbulence, sea waves, etc. Dynamic textures play an important role in var-

ious applications such as dynamic background subtraction, video completion, etc. Hence

clustering them is of prime importance as well. In the case of dynamic textures extract-

ing local binary pattern (LBP) features makes more sense because LBP mainly divides an

image into cells and constructs a histogram of features by comparing each cell with its

neighboring cells. In our experiment we use 4 classes from the DynTex dataset, which are:

Flags, Flowers, Sea and Trees. Examples of the four classes are shown in Fig. 3.9. We

extract LBP features from each frame of every video in a class. This is used as input to our

model. The confusion matrix indicating the results obtained with our model is shown in

Fig. 3.10. The accuracy of the different models is shown in Table 3.4. The results show that

the varGIDMM is better than the GMMmodels. Based on the number of frames assigned

to a particular cluster we can predict to which cluster the video belongs to.

39



Figure 3.10: Confusion matrix of DynTex dataset with varGIDMM

Table 3.4: Accuracy of different models on DynTex dataset

Method Accuracy(%)

varGIDMM 86.10

varGMM 84.42

GMM 84.87

40



Chapter 4

Finite Inverted Beta-Liouville Mixture
Model with Variational Component
Splitting

In this chapter, we introduce a finite mixture model based on Inverted Beta-Liouville dis-

tribution which provides a better fit for the data. We use a variational learning framework

to estimate the parameters which decreases the computational complexity of the model.

We handle the problem of model selection with a component splitting approach which is

an added advantage as it is done within the variational framework. We evaluate our model

against some challenging applications like image clustering, speech clustering, spam image

detection and software defect detection.

4.1 The Statistical Model

Consider a D−dimensional vector ~Xi =
(
X1, X2, ..., XD

)
drawn from a set of N inde-

pendent and identically distributed data samples X =
(
~X1, ~X2, ..., ~XN

)
generated from

an inverted Beta-Liouville (IBL) distribution [46]. Then, the probability density function

41



p
(
~Xi | α1, ..., αD, α, β, λ

)
is given by:

p
(
~Xi | αi1, ..., αiD, α, β, λ

)
=

Γ
(∑D

l=1 αl
)
Γ
(
α + β

)
Γ
(
α
)
Γ
(
β
) D∏

l=1

Xαl−1
il

Γ
(
αl
)

× λβ
(

D∑
l=1

Xil

)α−
∑D

l=1 αl
(
λ+

D∑
l=1

Xil

)−(α+β)

(4.1)

with the conditions Xil > 0 for l = 1, .., D, α > 0, β > 0 and λ > 0. The mean, variance

and covariance of IBL distribution is given by:

E(Xil) =
λα

β − 1

αl∑D
l=1 αl

(4.2)

V ar(Xil) =
λ2α(α + 1)

(β − 1)(β − 2)

αl(α + 1)∑D
l=1 αl(

∑D
l=1 αl + 1)

λ2α2

(β − 1)2

α4
l

(
∑D

l=1 αl)
4

(4.3)

Cov(Xim, Xin) =
αmαn∑D
l=1 αl

[
λ2α(α + 1)

(β − 1)(β − 2)(
∑D

l=1 αl + 1)
− λ2α2

(β − 1)2(
∑D

l=1 αl)

]
(4.4)

If we assume that each sample Xi is picked from a mixture of IBL distributions then the

mixture model is represented as:

p
(
X | ~π,Θ

)
=

N∑
i=1

M∑
j=1

πjp
(
~Xi | θj

)
(4.5)

where M is the number of components in the mixture model and Θ = (θ1, θ2, ..., θM).

p
(
~Xi | θj

)
denotes the conditional probability of the data sample with respect to each

component, θj = (αj1, ..., αjD, αj, βj, λj) represents the parameter with respect to the

component j and ~π = (π1, ..., πM) is the set of mixing parameters and follows the con-

ditions
∑M

j=1 πj = 1 and 0 ≤ πj ≤ 1. We now introduce an indicator matrix Z =

(~Z1, ..., ~ZN) which indicates to which component each data sample is assigned to. Here
~Zi = (Zi1, ..., ZiM). ~Zi is a binary vector that satisfies the conditions Zijε{0, 1} and
M∑
j=1

Zij = 1 and is defined by:

Zij =

1, if ~Xiεj

0, otherwise
(4.6)

The conditional distribution of Z can thus be defined as:

p
(
Z | ~π

)
=

N∏
i=1

M∏
j=1

π
Zij

j (4.7)

42



Based on this equation we can write the conditional distribution of a data setX with respect

to the clusters as:

p
(
X | Z,Θ

)
=

N∑
i=1

M∑
j=1

p
(
~Xi | θj

)Zij (4.8)

As we know that all the parameters are positive it would be good choice to model them

using Gamma priors. Hence the priors are defined by:

p
(
αjl
)

=G
(
αjl | ujl, νjl

)
=

ν
ujl
jl

Γ
(
ujl
)αujl−1

jl e−νjlαjl (4.9)

p
(
αj
)

=G
(
αj | pj, qj

)
=

q
pj
j

Γ
(
pj
)αpj−1

j e−qjαj (4.10)

p
(
βj
)

=G
(
βj | gj, hj

)
=

h
gj
j

Γ
(
gj
)βgj−1

j e−hjβj (4.11)

p
(
λj
)

=G
(
λj | sj, tj

)
=

t
sj
j

Γ
(
sj
)λsj−1

j e−tjλj (4.12)

where G
(
·
)

represents a Gamma distribution and all the hyperparameters in the above priors

are positive. Based on the component splitting design we can write the joint distribution

for our model as:

p
(
X ,Z,Θ, ~π∗ | ~π

)
=p
(
X | Z,Θ

)
p
(
Z | ~π, ~π∗

)
p
(
~π∗ | ~π

)
p
(
α
)
p
(
~α
)
p
(
~β
)
p
(
~λ
)

(4.13)

=
N∏
i=1

M∏
j=1

[
Γ
(∑D

l=1 αjl
)
Γ
(
αj + βj

)
Γ
(
αj
)
Γ
(
βj
) D∏

l=1

X
αjl−1

il

Γ
(
αjl
)

× λβjj
( D∑

l=1

Xil

)αj−
∑D

l=1 αjl
(
λj +

D∑
l=1

Xil

)−(αj+βj)
]Zij

×
N∏
i=1

[
s∏
j=1

π
Zij

j

M∏
j=s+1

π
∗Zij

j

]
×

(
1−

s∑
k=1

πk

)−M+s

×
Γ
(∑M

j=s+1 cj
)∏M

j=s+1 Γ
(
cj
) M∏
j=s+1

(
π∗j

1−
∑s

k=1 πk

)cj−1

×
M∏
j=1

D∏
l=1

[
ν
ujl
jl

Γ
(
ujl
)αujl−1

jl e−νjlαjl ×
q
pj
j

Γ
(
pj
)αpj−1

j e−qjαj

×
h
gj
j

Γ
(
gj
)βgj−1

j e−hjβj ×
t
sj
j

Γ
(
sj
)λsj−1

j e−tjλj

]
(4.14)

43



        c

Z

π* 

M-s

s

NM

π 

X

ND

α 

MD

u

ν 

λ

M

s

t

β

M

g

h

α 

M

p

q

Figure 4.1: Graphical representation of IBL mixture model with component splitting. The
circles indicate the random variables and model parameters, and plates point out the repe-
titions with the number in the lower left corners indicating the number of repetitions. The
arcs specify the conditional dependencies of the variables.

Fig. 4.1 shows the graphical representation of the model. Similar to the previous cases, we

can derive the variational solutions for our model as shown in Appendix B as:

Q
(
Z
)

=
N∏
i=1

[
s∏
j=1

r
Zij

ij

M∏
j=s+1

r
∗Zij

ij

]
(4.15)

Q
(
~π∗
)

=

(
1−

s∑
k=1

πk

)−M+s
Γ
(∑M

j=s+1 c
∗
j

)∏M
j=s+1 Γ

(
c∗j
) M∏
j=s+1

(
π∗j

1−
∑s

k=1 πk

)c∗j−1

(4.16)

Q
(
α
)

=
M∏
j=1

D∏
l=1

G
(
αjl | u∗jl, ν∗jl

)
, Q

(
~α
)

=
M∏
j=1

G
(
αj | p∗j , q∗j

)
(4.17)

Q
(
~β
)

=
M∏
j=1

G
(
βj | g∗j , h∗j

)
, Q

(
~λ
)

=
M∏
j=1

G
(
λj | s∗j , t∗j

)
(4.18)

where:

rij =
r̃ij∑s

j=1 r̃ij +
∑M

j=s+1 r̃
∗
ij

, r∗ij =
r̃∗ij∑s

j=1 r̃ij +
∑M

j=s+1 r̃
∗
ij

(4.19)

44



r̃ij = exp

{
lnπj +Rj + Sj +

(
αj −

D∑
l=1

αjl

)
ln
( D∑
l=1

Xil

)
+ βj〈lnλj〉

+
D∑
l=1

[(
αjd − 1

)
lnXid

]
−
(
α + β

)
Tij

}
(4.20)

r̃∗ij = exp

{
〈lnπ∗j 〉+Rj + Sj +

(
αj −

D∑
l=1

αjl

)
ln
( D∑
l=1

Xil

)
+ βj〈lnλj〉

+
D∑
l=1

[(
αjd − 1

)
lnXid

]
−
(
α + β

)
Tij

}
(4.21)

Rj = ln
Γ
(∑D

l=1 αjl
)∏D

l=1 Γ
(
αjl
) +

D∑
l=1

αjl

[
ψ

(
D∑
l=1

αjl

)
− ψ

(
αjl
)][〈

lnαjl
〉
− lnαjl

]
+

1

2

D∑
l=1

α2
jl

[
ψ′

(
D∑
l=1

αjl

)
− ψ′

(
αjl
)]
−
〈(

lnαjl − lnαjl
)2
〉

+
1

2

D∑
a=1

D∑
b=1

αja αjb

[
ψ′

(
D∑
l=1

αjl

)(〈
lnαja

〉
− lnαja

)
×
(〈

lnαjb
〉
− lnαjb

)]
(4.22)

S = ln
Γ(~α + ~β)

Γ(~α)Γ(~β)
+ ~α

[
ψ(~α + ~β)− ψ(~α)

]
(
〈

ln ~α
〉
− ln ~α)

+ ~β
[
ψ(~α + ~β)− ψ(~β)

]
(
〈

ln ~β
〉
− ln ~β)

+ 0.5~α
2[
ψ′(~α + ~β)− ψ′(~α)

]〈
(ln ~α− ln ~α)2

〉
+ 0.5~β

2[
ψ′(~α + ~β)− ψ′(~β)

]〈
(ln ~β − ln ~β)2

〉
+ ~α~βψ′(~α + ~β)(

〈
ln ~α

〉
− ln ~α)(

〈
ln ~β

〉
− ln ~β) (4.23)

Tij = ln
[
λj +

D∑
l=1

Xil

]
+

λj

λj +
∑D

l=1 Xil

[〈
lnλj

〉
− lnλj

]
(4.24)

c∗j =
N∑
i=1

r∗ij + cj (4.25)

45



u∗jl = ujl+
N∑
i=1

〈Zij〉αjl

[
ψ

( D∑
l=1

αjl

)
−ψ
(
αjl
)

+ψ′
( D∑
l=1

αjl

) D∑
d6=l

(
〈lnαjl〉− lnαjl

)
αjl

]
(4.26)

ν∗jl = νjl −
N∑
i=1

〈Zij〉

[
lnXil − ln

( D∑
l=1

Xil

)]
(4.27)

p∗j = pj +
D∑
l=1

〈Zij〉
[
ψ
(
~αj + ~βj

)
− ψ

(
~αj
)

+ ~βjψ
′(~αj + ~βj

)(
〈ln βj〉 − ~βj

)]
~αj (4.28)

q∗j = qj −
N∑
i=1

〈Zij〉 ln
( D∑
l=1

Xid

)
+

N∑
i=1

〈Zij〉Tij (4.29)

g∗j = gj +
D∑
l=1

〈Zij〉

[
ψ
(
αj + βj

)
− ψ

(
βj
)

+ αjψ
′(αj + βj

)(
〈lnαj〉 − αj

)]
βj

h∗j = hj +
N∑
i=1

〈Zij〉
[
Tij − 〈lnλj〉

]
(4.30)

s∗j = sj +
N∑
i=1

〈Zij〉βj (4.31)

t∗j = tj +
N∑
i=1

〈Zij〉
αj + βj

λj +
∑D

l=1Xil

(4.32)

The first and second derivatives of the Gamma function is given by the digamma and

trigamma functions, ψ(·) and ψ′(·) respectively. The values of the expectations mentioned

in the above equations are given by:

〈Zij〉 =

rij, forj = 1, ..., s

r∗ij, otherwise
(4.33)

αjl = 〈αjl〉 =
ujl
νjl
, αj = 〈αj〉 =

pj
qj
, βj = 〈βj〉 =

gj
hj
, λj = 〈λj〉 =

sj
tj

(4.34)

〈lnαjl〉 = ψ(u∗jl)− ln ν∗jl, 〈lnαj〉 = ψ(p∗j)− ln q∗j , (4.35)

46



〈ln βj〉 = ψ(g∗j )− lnh∗j , 〈lnλj〉 = ψ(s∗j)− ln t∗j (4.36)

〈(
lnαjl − lnαjl

)2
〉

=
[
ψ
(
u∗jl
)
− lnu∗jl

]2

+ ψ′
(
u∗jl
)

(4.37)

〈(
lnαj − lnαj

)2
〉

=
[
ψ
(
p∗j
)
− ln p∗j

]2

+ ψ′
(
p∗j
)

(4.38)

〈(
ln βj − ln βj

)2
〉

=
[
ψ
(
g∗j
)
− ln g∗j

]2

+ ψ′
(
g∗j
)

(4.39)

〈
π∗j
〉

=

(
1−

s∑
k=1

πk

) ∑N
i=1 r

∗
ij + cj∑N

i=1

∑M
k=s+1 r

∗
ik + ck

(4.40)

〈
lnπ∗j

〉
= ln

(
1−

s∑
k=1

πk

)
+ ψ

(
N∑
i=1

r∗ij + cj

)
− ψ

(
N∑
i=1

M∑
k=s+1

r∗ik + ck

)
(4.41)

Based on the above update equations, we can calculate the lower bound by:

L
(
Q
)

= 〈ln p
(
X | Z,Θ

)
〉+ 〈ln p

(
Z | ~π, ~π∗

)
〉+ 〈ln p

(
~π∗ | ~π

)
〉 (4.42)

− 〈ln p
(
Θ
)
〉 − 〈lnQ

(
Z
)
〉 − 〈lnQ

(
Θ
)
〉 (4.43)

Based on these equations we run our component splitting algorithm to achieve efficient

results.

4.2 Experimental Results

We present the experimental results we have obtained with our model in this section.

We compare our variational IBL mixture model (IBLMM) with Gaussian mixture mod-

els with maximum likelihood estimation (GMM) and variational Gaussian mixture models

(varGMM) since these are the standards nowadays. We evaluate our model against 4 chal-

lenging applications: object categorization, speech categorization, spam image categoriza-

tion and software defect categorization. We try varying combinations involving imbalanced

data to check the robustness of our model even when little data is available. We start with

more or less equally weighted data sets to highly imbalanced data. The results are as fol-

lows:

47



Figure 4.2: Confusion matrix of TSP speech data set with varIBLMM

4.2.1 Speech Categorization

With voice recognition based automation and control taking over in recent time, efficient

categorization of speech signals becomes an important task. To evaluate our model, we

took a simple task of clustering between male and female speakers in the TSP speech data

set [65]. The TSP data set consists of speech utterances of 10 speakers where 5 are male

and 5 are female. There are 60 speech utterances for each of the speakers. We take 500

samples from each category for our experiment. The pre-processing step for speech data

involves, removal of non-speech parts like momentary pauses as a first step. This is done

by voice activity detection (VAD) which removes the empty signals so that our model

doesn’t get trained on unnecessary pause signals. We now extract Mel Frequency Cepstral

Coefficients (MFCC) which has been widely used for speech recognition tasks [66, 67].

The MFCC feature descriptors are 39 dimensional. Each speech utterance is sampled with

a frame rate of 25ms with a window shift of 10ms. By this method a number of feature

descriptors can be obtained from a single speech utterance file. We use bag of words feature

model to create a histogram of the extracted MFCC features. This data serves as input to

our model. The confusion matrix for our model is shown in Fig. 4.2. Table 4.1 shows the

accuracy of IBLMM compared to GMM and varGMM. It shows that IBLMM improves the

accuracy of GMM and varGMM.

4.2.2 Image Categorization

Pattern recognition from images is an important part of applications related to computer

vision [36–38, 68]. It plays a major role in image retrieval, automated machinery, robot

navigation, etc. For us to apply our model for image clustering, we have to extract feature

48



Table 4.1: Accuracy of different models for TSP speech data set

Method Accuracy(%)

varIBLMM 86.6
varGMM 85.9

GMM 85.2

descriptors from the images. Some of the commonly used methods for feature extraction

are: Scale Invariant feature Transform (SIFT) [40], Histogram of Gaussians (HoG) [42],

Speeded-Up Robust Features (SURF) [41], etc. Once the features are extracted we have to

represent each image in terms of these features. The best way to do that would be to use the

bag of visual words representation [43–45]. The idea fo the bag of visual words approach

is to cluster all the feature descriptors extracted from all the images using k-means creating

a histogram of unique features for each of the image. These data will act as input to our

model.

Images Clustering

For our first experiment we use the Ghim dataset 1 to evaluate the efficiency of our model.

The Ghim dataset has 20 categories with 500 images in each class. Each of the images is

400×300 or 300×400. All images are in JPEG format. We use only four classes for ease of

representation. Sample image from each of the four classes is shown in Fig. 4.3 we choose

500 images from the fireworks class, 150 images from cars, 250 images from Chinese

buildings and 275 from dragon flies contributing 1175 images on the whole. It should be

noted that the data points belonging to each class is varied over the 4 classes. We extract

SIFT features from these images and use it to create bag of visual words features. Fig. 4.4

shows the confusion matrix obtained by using IBLMM on this data. The comparison of

accuracy with GMM and varGMM model is shown in Table 4.2. It is clearly seen that the

accuracy with our model is higher than the other two.

Spam Images Clustering

Usage of email services has become a quotidian task of everyday life nowadays. This also

leaves us as a target to multiple ad agencies and fraudsters who send repeated ads and

1http://www.ci.gxnu.edu.cn/cbir/Dataset.aspx

49



(a) Fireworks (b) Cars (c) Chinese Buildings (d) Dragon Flies

Figure 4.3: Sample images from Ghim dataset

Figure 4.4: Confusion matrix of Ghim data set with varIBLMM

fake ones to trick us to reveal our personal information. Spam mails have also become

a source of threats over the recent years. Hence it is very important to isolate the spam

mails from the legitimate ones. However, it is also a very challenging task as the amount of

spam data available is less when compared to the real ones in real world applications due

to the presence of repeated images. Due to this reason detecting Spam images could be a

good application to test the robustness our model. So we choose the spam data set created

in [7] which consisted of threes sets of images. One is the ham data which contains normal

images obtained from personal mails of people and considered useful. The other two sets

contain spam images from spam archive created in [69] and a set of spam images taken

from personal spam emails. In addition to this we also use images form the Princeton spam

benchmark data set 2. All the images used are taken from real emails and hence is a good

representation of the real world scenario. However, all the three spam data sets contained

a number of duplicate images. We took 150 varied spam images between the three spam

data sets and 1000 images from the ham data. Sample images form the spam and ham sets

are shown in Fig. 4.5 and Fig. 4.6 respectively. We can see that the spam data accounts

2http://www.cs.princeton.edu/cass/spam/

50



Table 4.2: Accuracy of different models for Ghim dataset

Method Accuracy(%)

varIBLMM 82.46
varGMM 74.21

GMM 74.04

Figure 4.5: Sample images from the spam collection

for only 15% of the total data. We then extract SIFT features from these images and then

create visual bag of words feature histogram from it. The confusion matrix for this data

with our model is shown in Fig. 4.7. In applications based on security it is important that

the false negative rate (FNR) is low because even if one malicious image is allowed in the

network it might result in compromising the entire network in the worst case. On the other

hand it is also important that the important images that is intended for the user is delivered

as well; hence the false positive rates (FPR) should be low. Due to this reason both FPR

and FNR have to be low for a good spam categorization model. We enforce the following

Figure 4.6: Sample images from the ham collection

51



Figure 4.7: Confusion matrix of spam image data set with varIBLMM

Table 4.3: Performance measures of different models for spam image data set

Method Accuracy(%) Precision Recall FPR FNR

varIBLMM 90.96 59.1 99.33 0.10 0.006
varGMM 81.22 40.8 98.00 0.21 0.020

GMM 79.73 39.1 98.66 0.23 0.013

performance measures to evaluate our model:

Precision =
TP

TP + FP
(4.44)

Recall =
TP

TP + FN
(4.45)

FalsePositiveRate(FPR) =
FP

FP + TN
(4.46)

FalseNegativeRate(FNR) =
FN

FN + TP
(4.47)

where, true positives (TP) is the number of spam images correctly predicted as spam; false

positives (FP) is the number of non spam images predicted as spam; true negatives (TN)

is the number of non spam images correctly predicted as not spam and false negative (FN)

is then number of spam images that have been classified as not spam. Table 4.3 shows the

comparison of different performance measures for IBLMM, GMM and varGMM respec-

tively. The FNR and FPR values are both low compared to GMM and varGMM which

highlights the capability of our model to cluster imbalanced data sets.

52



4.2.3 Software Defect Categorization

Identification of software defects is an important part of software testing. Using machine

learning techniques helps to identify defects in a short time and helps reduce the manual

workforce for testing [70–72]. We validate our model against 5 data sets from the Promise

software engineering repository [73] namely CM 1, JM1, KC1, KC2 and PC1. CM1,

JM1 and PC1 are written in C and KC1 and KC2 are written in C++. CM1 is a software

written for a NASA spacecraft instrument, JM1 is a real-time predictive ground system,

KC1 and KC2 are storage management systems for processing ground data and PC1 is a

flight software for earth orbiting satellites. McCabe and Halstead features are considered

to describe the source code of these software to create these data sets. The performance

metrics used are the same as in previous subsection. In the case of software defects we are

more concerned about the false negatives and hence FNR is the most important measure.

From Table 4.4 we are able to see that the False negative rate of IBLMM is very much

higher than GMM and varGMM for all the data sets. The ratio between the defect and

the non defect class was around 1:10 in some cases and we found in our experiments that

varGMM and GMM are unable to distinguish the data into two classes in these scenarios.

Table 4.4: Results on defect detection using different models

Data Set Model (%) Accuracy Precision Recall FNR

CM1
varIBL 67.87 17.50 61.22 0.39

varGMM 72.69 1.13 2.04 0.98
GMM 71.29 1.04 2.04 0.98

JM1
varIBL 66.09 0.29 52.16 0.48

varGMM 74.10 0.23 15.59 0.84
GMM 74.10 0.23 15.59 0.84

KC1
varIBL 69.41 30.28 75.15 0.25

varGMM 73.06 32.81 70.85 0.29
GMM 72.68 32.39 70.56 0.29

KC2
varIBL 77.78 47.40 79.43 0.21

varGMM 49.04 4.04 6.50 0.93
GMM 74.90 7.14 1.87 0.98

PC1
varIBL 68.80 11.68 53.24 0.47

varGMM 89.35 2.32 1.3 0.99
GMM 89.35 2.32 1.3 0.99

53



Chapter 5

Conclusion

Clustering has become an inevitable part of pattern recognition tasks. We have explored

component splitting algorithm for different distributions and evaluated its efficiency.

In chapter 2, we introduce a novel unsupervised learning approach based on finite in-

verted Dirichlet mixture model. With the addition of component splitting approach for

model selection our model was able to predict the number of clusters in the data with an

impressive accuracy. The use of variational approach for model learning minimizes the

computational complexity making it a better choice to pure Bayesian methods. The per-

formance measures from synthetic data, occupancy estimation, images and videos by the

application of our proposed model validates the effectiveness of our algorithm. In the case

of synthetic data our model was able to find good estimates for the parameters closer to

the real values and also the estimation of number of clusters was accurate. Occupancy es-

timation in smart homes proved to be another good application for our model. The results

obtained with images and videos are quite promising. Our algorithm was able to correctly

estimate the number of clusters in all the experiments compared to the remaining models.

The performance of our model paves way for a number of new applications as well.

Then, in chapter 3, we describe the design of generalized inverted Dirichlet mixture

model with the component splitting algorithm. The component splitting approach acts as

an added advantage to the model as the estimation of number of clusters was accurate in

all our experiments. Furthermore, variational optimization decreases the computational

complexity of the model as well. The application to image categorization validates the

effectiveness of the algorithm. Our model outperformed all the other models including

Gaussian and variational Gaussian mixture models which are industry standards right now.

54



We then put forth an extended model integrating variational feature selection. Our model

performed better than the GMM models by a large margin of over 25 percent in image

categorization. The results with dynamic texture categorization also shows that our model

is significantly better than the standard GMM models. The performance of the model is

encouraging and can be applied to many other applications such as image segmentation

and video categorization.

Finally, in chapter 4, we have proposed an efficient mixture model for clustering based

on Inverted Beta Liouville mixtures. The variational framework combined with component

splitting approach is found to be effective in model selection. The robustness of our model

is evident from the experiments which involved data sets with varied weights. The first

experiment with equal weight exhibited good results. The second experiment for object

image clustering showed the effectiveness of our model in terms of mixed weights and

also proved the efficiency of model selection. With spam image clustering we were able to

achieve 90% accuracy againstGMM and varGMM which had only around 80% accuracy

along with low FPR and FNR. In the last experiment, our model proved to be better than

the other two models in identifying the defect class. It is to be noted that some data sets in

this experiment had less than 10% of total data for the defect class.

The experiments with proposed frameworks are motivating and proves to be a better

solution than Gaussian mixture models for appropriate data. Future works might include

making the variational approach online to efficiently handle large amount of data.

55



Bibliography

[1] Z. Zivkovic. Improved adaptive gaussian mixture model for background subtraction.

In Proc. 17th Int. Conf. Pattern Recognition ICPR 2004, volume 2, pages 28–31 Vol.2,

August 2004.

[2] K. A. B. Lima, K. R. T. Aires, and F. W. P. D. Reis. Adaptive method for segmentation

of vehicles through local threshold in the gaussian mixture model. In Proc. Brazilian

Conf. Intelligent Systems (BRACIS), pages 204–209, November 2015.

[3] Y. Li, C. Xiong, Y. Yin, and Y. Liu. Moving object detection based on edged mixture

gaussian models. In Proc. Int. Workshop Intelligent Systems and Applications, pages

1–5, May 2009.

[4] D. Reynolds. Gaussian mixture models. Encyclopedia of Biometrics, January 2015.

[5] B. S. Oboh and N. Bouguila. Unsupervised learning of finite mixtures using scaled

dirichlet distribution and its application to software modules categorization. In 2017

IEEE International Conference on Industrial Technology (ICIT), pages 1085–1090,

March 2017.

[6] T. Bdiri, N. Bouguila, and D. Ziou. Variational bayesian inference for infinite general-

ized inverted dirichlet mixtures with feature selection and its application to clustering.

Applied Intelligence, 44(3):507–525, Apr 2016.

[7] N. Bouguila and D. Ziou. Unsupervised learning of a finite discrete mixture model

based on the multinomial dirichlet distribution: Application to texture modeling. In

Pattern Recognition in Information Systems, pages 118–127, 2004.

[8] C. Hu, W. Fan, J. Du, and N. Bouguila. A novel statistical approach for clustering

positive data based on finite inverted beta-liouville mixture models. Neurocomputing,

333:110 – 123, 2019.

56



[9] N. Bouguila and D. Ziou. Dirichlet-based probability model applied to human skin

detection [image skin detection]. In Proc. and Signal Processing 2004 IEEE Int. Conf.

Acoustics, Speech, volume 5, pages V–521, May 2004.

[10] N. Bouguila and D. Ziou. A powerful finite mixture model based on the generalized

dirichlet distribution: unsupervised learning and applications. In Proc. 17th Int. Conf.

Pattern Recognition ICPR 2004, volume 1, pages 280–283 Vol.1, August 2004.

[11] S. Bourouis, M. Mashrgy, and N. Bouguila. Bayesian learning of finite generalized

inverted dirichlet mixtures: Application to object classification and forgery detection.

Expert Syst. Appl., 41(5):2329–2336, 2014.

[12] M. Mashrgy, T. Bdiri, and N. Bouguila. Robust simultaneous positive data cluster-

ing and unsupervised feature selection using generalized inverted dirichlet mixture

models. Knowl.-Based Syst., 59:182–195, 2014.

[13] T. Bdiri and N. Bouguila. Positive vectors clustering using inverted dirichlet finite

mixture models. Expert Syst. Appl., 39(2):1869–1882, February 2012.

[14] M. Gori and A. Tesi. On the problem of local minima in backpropagation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 14(1):76–86, January

1992.

[15] N. Bouguila and D. Ziou. High-dimensional unsupervised selection and estimation

of a finite generalized dirichlet mixture model based on minimum message length.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(10):1716–1731,

October 2007.

[16] N. Zamzami and N. Bouguila. Model selection and application to high-dimensional

count data clustering - via finite EDCM mixture models. Appl. Intell., 49(4):1467–

1488, 2019.

[17] N. Bouguila, J. H. Wang, and A. B. Hamza. Software modules categorization through

likelihood and bayesian analysis of finite dirichlet mixtures. Journal of Applied Statis-

tics, 37(2):235–252, 2010.

[18] H. Attias. Inferring parameters and structure of latent variable models by variational

bayes. In Proceedings of the Fifteenth conference on Uncertainty in artificial intelli-

gence, pages 21–30. Morgan Kaufmann Publishers Inc., 1999.

57



[19] Y. W. Teh, D. Newman, and M. Welling. A collapsed variational bayesian inference

algorithm for latent dirichlet allocation. In Advances in neural information processing

systems, pages 1353–1360, 2007.

[20] C. Constantinopoulos and A. Likas. Unsupervised learning of gaussian mixtures

based on variational component splitting. IEEE Transactions on Neural Networks,

18(3):745–755, May 2007.

[21] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to

variational methods for graphical models. Machine Learning, 37(2):183–233, Nov

1999.

[22] W. Fan, N. Bouguila, and D. Ziou. A variational statistical framework for object

detection. In Neural Information Processing, pages 276–283, Berlin, Heidelberg,

2011. Springer Berlin Heidelberg.

[23] W. Fan, N. Bouguila, and D. Ziou. Variational learning of finite dirichlet mixture

models using component splitting. Neurocomputing, 129:3–16, 2014.

[24] G. G. Tiao and I. Cuttman. The inverted dirichlet distribution with applications. Jour-

nal of the American Statistical Association, 60(311):793–805, 1965.

[25] A. Corduneanu. and C. M. Bishop. Variational bayesian model selection for mixture

distributions. In Proceedings Eighth International Conference on Artificial Intelli-

gence and Statistics, 2001.

[26] M. Opper and D. Saad. Tutorial on Variational Approximation Methods. MITP, 2001.

[27] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, January 2006.

[28] H. X. Wang, Bin B. Luo, Q. B. Zhang, and S. Wei. Estimation for the number of

components in a mixture model using stepwise split-and-merge em algorithm. Pattern

Recognition Letters, 25(16):1799–1809, 2004.

[29] P. Tirdad, N. Bouguila, and D. Ziou. Variational learning of finite inverted dirichlet

mixture models and applications. Artificial Intelligence Applications in Information

and Communication Technologies, January 2015.

58



[30] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,

New York, NY, USA, 2004.

[31] W. Fan, N. Bouguila, and D. Ziou. Variational learning for finite dirichlet mixture

models and applications. IEEE Transactions on Neural Networks and Learning Sys-

tems, 23(5):762–774, May 2012.

[32] H. T. Malazi and M. Davari. Combining emerging patterns with random forest for

complex activity recognition in smart homes. Appl. Intell., 48(2):315–330, 2018.

[33] Z. Liouane, T. Lemlouma, P. Roose, F. Weis, and H. Messaoud. An improved extreme

learning machine model for the prediction of human scenarios in smart homes. Appl.

Intell., 48(8):2017–2030, 2018.

[34] M. Amayri and S. Ploix. Decision tree and parametrized classifier for estimating

occupancy in energy management. In 5th International Conference on Control, Deci-

sion and Information Technologies, CoDIT 2018, Thessaloniki, Greece, April 10-13,

2018, pages 397–402, 2018.

[35] P. Fränti and S. Sieranoja. K-means properties on six clustering benchmark datasets.

Appl. Intell., 48(12):4743–4759, 2018.

[36] Y. Chen, J. Z. Wang, and R. Krovetz. An unsupervised learning approach to content-

based image retrieval. In Proc. Seventh Int. Symp. Signal Processing and Its Applica-

tions, volume 1, pages 197–200 vol.1, July 2003.

[37] Y. Chen, J. Z. Wang, and R. Krovetz. Clue: cluster-based retrieval of images by

unsupervised learning. IEEE Transactions on Image Processing, 14(8):1187–1201,

August 2005.

[38] S. M. Zakariya, R. Ali, and N. Ahmad. Combining visual features of an image at dif-

ferent precision value of unsupervised content based image retrieval. In Proc. IEEE

Int. Conf. Computational Intelligence and Computing Research, pages 1–4, Decem-

ber 2010.

[39] E. Gultepe and M. Makrehchi. Improving clustering performance using independent

component analysis and unsupervised feature learning. Human-centric Computing

and Information Sciences, 8(1):1, August 2018.

59



[40] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International

Journal of Computer Vision, 60(2):91, November 2004.

[41] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up robust features (surf).

Computer Vision and Image Understanding, 110(3):346 – 359, 2008. Similarity

Matching in Computer Vision and Multimedia.

[42] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.

In Proc. IEEE Computer Society Conf. Computer Vision and Pattern Recognition

(CVPR’05), volume 1, pages 886–893 vol. 1, June 2005.

[43] M. Ravinder and T. Venugopal. Content-based cricket video shot classification us-

ing bag-of-visual-features. Artificial Intelligence and Evolutionary Computations in

Engineering Systems, January 2016.

[44] Q. Zhu, Y. Zhong, B. Zhao, G. Xia, and L. Zhang. Bag-of-visual-words scene classi-

fier with local and global features for high spatial resolution remote sensing imagery.

IEEE Geoscience and Remote Sensing Letters, 13(6):747–751, June 2016.

[45] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray. Visual categorization

with bags of keypoints, 2004.

[46] H. Shao, T. Svoboda, and L. Van Gool. Zubud zurich buildings database for image

based recognition. 01 2003.

[47] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: spatial pyramid

matching for recognizing natural scene categories. In IEEE Conference on Computer

Vision & Pattern Recognition (CPRV ’06), pages 2169 – 2178, New York, United

States, June 2006. IEEE Computer Society.

[48] M. Soleymani, M. Larson, T. Pun, and A. Hanjalic. Corpus development for affective

video indexing. IEEE Transactions on Multimedia, 16(4):1075–1089, June 2014.

[49] C. Schuldt, I. Laptev, and B. Caputo. Recognizing human actions: a local SVM

approach. In Proc. 17th Int. Conf. Pattern Recognition ICPR 2004, volume 3, pages

32–36 Vol.3, August 2004.

[50] F. Becker, S. Petra, and C. Schnörr. Optical flow. Handbook of Mathematical Methods

in Imaging, January 2015.

60



[51] I. Bellamine and H. Tairi. Optical flow estimation based on the structure–texture im-

age decomposition. Signal, Image and Video Processing, 9(1):193, December 2015.

[52] H. Miao and Y. Wang. Optical flow based obstacle avoidance and path planning for

quadrotor flight. Proceedings of 2017 Chinese Intelligent Automation Conference,

January 2018.

[53] T. Araújo, G. Aresta, J. Rouco, C. Ferreira, E. Azevedo, and A. Campilho. Optical

flow based approach for automatic cardiac cycle estimation in ultrasound images of

the carotid. Image Analysis and Recognition, January 2015.

[54] P. Scovanner, S. Ali, and M. Shah. A 3-dimensional sift descriptor and its applica-

tion to action recognition. In Proceedings of the 15th International Conference on

Multimedia, MULTIMEDIA ’07, pages 357–360, New York, NY, USA, 2007. ACM.

[55] W. Fan and N. Bouguila. A variational component splitting approach for finite gen-

eralized dirichlet mixture models. In 2012 International Conference on Communica-

tions and Information Technology (ICCIT), pages 53–57, June 2012.

[56] S. Boutemedjet, D. Ziou, and N. Bouguila. Unsupervised feature selection for accu-

rate recommendation of high-dimensional image data. In Advances in Neural Infor-

mation Processing Systems 20, Proceedings of the Twenty-First Annual Conference

on Neural Information Processing Systems, Vancouver, British Columbia, Canada,

December 3-6, 2007, pages 177–184, 2007.

[57] T. Bdiri, N. Bouguila, and D. Ziou. Object clustering and recognition using multi-

finite mixtures for semantic classes and hierarchy modeling. Expert Syst. Appl.,

41(4):1218–1235, 2014.

[58] N. Bouguila. A model-based discriminative framework for sets of positive vectors

classification: Application to object categorization. In 2014 1st International Con-

ference on Advanced Technologies for Signal and Image Processing (ATSIP), Sousse,

Tunisia, March 17-19, 2014, pages 277–282, 2014.

[59] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few

training examples: An incremental bayesian approach tested on 101 object categories.

2004 Conference on Computer Vision and Pattern Recognition Workshop, pages 178–

178, 2004.

61



[60] T. Li, T. Mei, I. Kweon, and X. Hua. Contextual bag-of-words for visual categoriza-

tion. IEEE Transactions on Circuits and Systems for Video Technology, 21(4):381–

392, April 2011.

[61] N. Bouguila and D. Ziou. Improving content based image retrieval systems using

finite multinomial dirichlet mixture. In Proceedings of the 2004 14th IEEE Signal

Processing Society Workshop Machine Learning for Signal Processing, 2004., pages

23–32, 2004.

[62] R. M. Haralick, K. Shanmugam, and I. Dinstein. Textural features for image classi-

fication. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6):610–621,

Nov 1973.

[63] S. Boutemedjet, N. Bouguila, and D. Ziou. A hybrid feature extraction selection

approach for high-dimensional non-gaussian data clustering. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 31(8):1429–1443, Aug 2009.

[64] R. Péteri, S. Fazekas, and M. J. Huiskes. Dyntex: A comprehensive database of

dynamic textures. Pattern Recognition Letters, 31(12):1627 – 1632, 2010.

[65] P. Kabal. TSP speech database. Technical report, Department of Electrical & Com-

puter Engineering, McGill University, Montreal, Quebec, Canada, 2002.

[66] F. Zheng, G. Zhang, and Z. Song. Comparison of different implementations of mfcc.

Journal of Computer Science and Technology, 16(6):582–589, Nov 2001.

[67] V. Tyagi and C. Wellekens. On desensitizing the mel-cepstrum to spurious spectral

components for robust speech recognition. In Proceedings. (ICASSP ’05). IEEE Inter-

national Conference on Acoustics, Speech, and Signal Processing, 2005., volume 1,

pages I/529–I/532 Vol. 1, March 2005.

[68] D. Liu and T. Chen. Unsupervised image categorization and object localization using

topic models and correspondences between images. In Proc. IEEE 11th Int. Conf.

Computer Vision, pages 1–7, October 2007.

[69] G. Fumera, I. Pillai, and F. Roli. Spam filtering based on the analysis of text informa-

tion embedded into images. Journal of Machine Learning Research, 7:2699–2720,

2006.

62



[70] E. A. Felix and S. P. Lee. Integrated approach to software defect prediction. IEEE

Access, 5:21524–21547, 2017.

[71] R. Islam and K. Sakib. A package based clustering for enhancing software defect

prediction accuracy. In 2014 17th International Conference on Computer and Infor-

mation Technology (ICCIT), pages 81–86. IEEE, 2014.

[72] X. Jing, Z. Zhang, S. Ying, F. Wang, and Y. Zhu. Software defect prediction based

on collaborative representation classification. In Companion Proceedings of the 36th

International Conference on Software Engineering, ICSE Companion 2014, pages

632–633, New York, NY, USA, 2014. ACM.

[73] S. J. Shirabad and T. J. Menzies. The PROMISE Repository of Software Engineering

Databases. School of Information Technology and Engineering, University of Ottawa,

Canada, 2005.

[74] Z. Ma and A. Leijon. Bayesian estimation of beta mixture models with varia-

tional inference. IEEE Transactions on Pattern Analysis and Machine Intelligence,

33(11):2160–2173, November 2011.

[75] M. W. Woolrich and T. E. Behrens. Variational bayes inference of spatial mixture

models for segmentation. IEEE Transactions on Medical Imaging, 25(10):1380–

1391, October 2006.

63



Appendix

A Proof of equations
(
2.18

)
,
(
2.19

)
,
(
2.20

)
The solution for variational inference Qs

(
Θs

)
is given by

(
2.17

)
as,

lnQs

(
Θs

)
=
〈

ln p
(
X ,Θ

)〉
t6=s + const (A.1)

where the constant term is the culmination of all the terms that are independent of Qs

(
Θs

)
.

The solutions can be easily derived from the logarithm of the joint distribution p
(
X ,Θ

)
given by,

ln p
(
(X),Θ

)
=

N∑
i=1

M∑
j=1

Zij

[
ln πj + ln

Γ
(∑D+1

l=1 αjl
)∏D+1

l=1 Γ
(
αjl
) +

D∑
l=1

(
αjl − 1

)
Xil

−
(D+1∑

l=1

αjl

)
ln

(
1 +

D∑
l=1

Xil

)]

+
N∑
i=1

[
s∑
j=1

Zij ln πj +
M∑

j=s+1

Zij lnπ∗j

]

−
(
M − s

)
ln

[
1−

s∑
k=1

πk

]
+

Γ
(∑M

j=s+1 cj
)∏M

j=s+1 Γ
(
cj
)

+
M∑

j=s+1

(
cj − 1

)[
π∗j −

(
1−

s∑
k=1

πk

)]

+
M∑
j=1

D∑
l=1

ujl ln νjl − ln Γ
(
ujl
)

+
(
ujl − 1

)
lnαjl − νjlαjl (A.2)

64



A.1 Proof of equation
(
2.18

)
: variational solution for Q

(
Z
)

The logarithm of p
(
X ,Θ

)
with respect to Z is given by,

lnQ
(
Zi
)

=
〈

ln p
(
X ,Θ

)〉
θ 6=Zi

=
M∑
j=1

Zij

[
ln πj +Rj +

D∑
l=1

(
αjl − 1

)
Xil −

(D+1∑
l=1

αjl

)
ln

(
1 +

D∑
l=1

Xil

)]

+
s∑
j=1

Zij ln πj +
M∑

j=s+1

Zij
〈

ln π∗j
〉

+ const

=
s∑
j=1

Zij

[
ln πj +Rj +

D∑
l=1

(
αjl − 1

)
Xil −

(D+1∑
l=1

αjl

)
ln

(
1 +

D∑
l=1

Xil

)]
M∑

j=s+1

Zij

[〈
ln π∗j

〉
+Rj +

D∑
l=1

(
αjl − 1

)
Xil

−
(D+1∑

l=1

αjl

)
ln

(
1 +

D∑
l=1

Xil

)]
+ const (A.3)

where,

Rj =

〈
ln

Γ
(∑D+1

l=1 αjl
)∏D+1

l=1 Γ
(
αjl
) 〉

αj1...αjD+1

, αjl =
〈
αjl
〉

=
ujl
νjl

(A.4)

Here, Rj is intractable as it has no closed form. In order to make the equation tractable we

employ the second-order Taylor expansion of the equation similar to the method followed

in [74,75]. This leads us to the equation
(
2.24

)
which is actually approximation of Rj and(

~αj1, ..., ~αjD+1

)
representing the expected values of ~αj . Thus, we can calculate R̃j using

equation
(
2.24

)
. This equation is also found to be the strict lower bound of Rj as proved

in [29]. Equation
(
A.3
)

can be now rewritten as,

lnQ
(
Z
)

=
N∑
i=1

[
s∑
j=1

Zij ln r̃ij +
M∑

j=s+1

Zij ln r̃∗ij

]
+ const (A.5)

where

ln r̃ij = lnπj + R̃j +
D∑
l=1

(
αjl − 1

)
lnXil −

(D+1∑
l=1

αjl

)
ln

(
1 +

D∑
l=1

Xil

)
(A.6)

and

ln r̃∗ij =
〈

lnπ∗j
〉

+ R̃j +
D∑
l=1

(
αjl − 1

)
lnXil −

(D+1∑
l=1

αjl

)
ln

(
1 +

D∑
l=1

Xil

)
(A.7)

65



It can be seen that equation
(
A.5
)

is the logarithmic form of equation
(
2.7
)

ignoring

the constant. Exponentiating both the sides of equation
(
2.7
)
, we get,

Q
(
Z
)
∝

N∏
i=1

[
s∏
j=1

r̃
Zij

ij

M∏
j=s+1

r̃
∗Zij

ij

]
(A.8)

Normalizing this equation we can write the variational solution of Q
(
Z
)

as,

Q
(
Z
)
∝

N∏
i=1

[
s∏
j=1

r
Zij

ij

M∏
j=s+1

r
∗Zij

ij

]
(A.9)

where rij and r∗ij can be obtained from equation
(
2.22

)
and

(
2.23

)
. Also, we can say that〈

Zij
〉

= rij for j = 1, ..., s and
〈
Z∗ij
〉

= rij for j = s+ 1, ...,M

A.2 Proof of equation
(
2.19

)
: variational solution of Q(~π∗)

Similarly, the logarithm of the variational solution Q
(
~π∗
)

is given as,

lnQ
(
π∗j
)

=
〈

ln p
(
X ,Θ

)〉
Θ 6=π∗

j

=
N∑
i=1

〈
Zij
〉

lnπ∗j +
(
cj − 1

)
ln π∗j + const

= lnπ∗j

[
N∑
i=1

〈
Zij
〉

+ cj − 1

]
+ const (A.10)

This equation shows that it has the same logarithmic form as that of equation
(
2.9
)
. So we

can write the variational solution of Q
(
~π∗
)

as,

Q
(
~π∗
)

=

(
1−

s∑
k=1

πk

)−M+s
Γ
(∑M

j=s+1 c
∗
j

)∏M
j=s+1 Γ

(
c∗j
) M∏
j=s+1

(
π∗j

1−
∑s

k=1 πk

)c∗j−1

(A.11)

where

c∗j =
N∑
i=1

〈
Zij
〉

+ cj (A.12)

〈
Zij
〉

= r∗ij in the above equation.

66



A.3 Proof of equation
(
2.20

)
: variational solution of Q

(
~α
)

As in the other two cases the logarithm of the variational solution Q
(
αjl
)

is given by,

lnQ
(
αjl
)

=
〈

ln p
(
X ,Θ

)〉
Θ 6=αjl

=
N∑
i=1

〈
Zij
〉
J
(
αjl
)

+ αjl

N∑
i=1

〈
Zij
〉

lnXil − αjl ln

(
1 +

D+1∑
l=1

Xil

)
+
(
ujl − 1

)
lnαjl − νjlαjl + const (A.13)

where,

J
(
αjl
)

=

〈
ln

Γ
(
αjl +

∑D+1
s 6=l αjs

)
Γ
(
αjl
)∏D+1

s 6=l Γ
(
αjs
)〉

Θ 6=αjl

(A.14)

Similar to what we encountered in the case ofRj the equation forJ
(
αjl
)

is also intractable.

We solve this problem finding the lower bound for the equation by calculating the first-order

Taylor expansion with respect to αjl. The calculated lower bound is given by,

L
(
αjl
)
≥ αjl lnαjl

[
ψ

(
D+1∑
l=1

αjl

)
− ψ

(
αjl
)

+
D+1∑
s6=l

αjs

× ψ′
(

D+1∑
l=1

αjl

)(〈
lnαjs

〉
− lnαjs

)]
+ const (A.15)

This approximation is also found to be a strict lower bound of L
(
αjl
)

and is also proved

in [29]. Substituting this equation for lower bound in equation
(
A.13

)
lnQ

(
αjl
)

=
N∑
i=1

〈
Zij
〉
αjl lnαjl

[
ψ

(
D+1∑
l=1

αjl

)
− ψ

(
αjl
)

+
D+1∑
s 6=l

αjsψ
′

(
D+1∑
l=1

αjl

)(〈
lnαjs

〉
− lnαjs

)]

+ αjl

N∑
i=1

〈
Zij
〉

lnXil − αjl ln

(
1 +

D+1∑
l=1

Xil

)
+
(
ujl − 1

)
lnαjl − νjlαjl + const (A.16)

This equation can be rewritten as,

lnQ
(
αjl
)

= lnαjl
(
ujl + ϕjl − 1

)
− αjl

(
νjl − ϑjl

)
+ const (A.17)

67



where,

ϕjl =
N∑
i=1

〈
Zij
〉
αjl

[
ψ

(
D+1∑
l=1

αjl

)
− ψ

(
αjl
)

+
D+1∑
s 6=l

αjsψ
′

(
D+1∑
l=1

αjl

)(〈
lnαjs

〉
− lnαjs

)]
(A.18)

ϑjl =
N∑
i=1

〈
Zij
〉[

lnXil − ln

(
1 +

D∑
l=1

Xil

)]
(A.19)

Equation
(
A.17

)
is the logarithmic form of a Gamma distribution. If we exponentiate both

the sides, we get,

Q
(
αjl
)
∝ α

ujl+ϕjl−1

jl e−
(
νjl−ϑjl

)
αjl (A.20)

This leaves us with the optimal solution for the hyper-parameters ujl and νjl given by,

u∗jl = ujl + ϕjl, ν∗jl = νjl − ϑjl (A.21)

68



B Proof of equations (4.15), (4.16), (4.17) and (4.18)

From eq. 4.13 we can write the logarithm of the joint as:

ln p
(
X ,Z

)
=

N∑
i=1

M∑
j=1

Zij

[
ln

Γ
(∑D

l=1 αjl
)∏D

l=1 Γ
(
αjl
) + ln

Γ(αj + βj)

Γ(αj)Γ(βj)
+

D∑
l=1

(
αjl − 1

)
lnXil

+ βj lnλj +
(
αj −

D∑
i=1

αjl

)
ln
( D∑
i=1

Xil

)
−
(
αj + βj

)
ln
(
λj +

D∑
i=1

Xil

)]

+
N∑
i=1

[
s∑
j=1

Zij lnπj +
M∑

j=s+1

Zij lnπ∗j

]
−
(
M − s

)
ln

[
1−

s∑
k=1

πk

]

+ ln
Γ
(∑M

j=s+1 cj
)∏M

j=s+1 Γ
(
cj
) +

M∑
j=s+1

(
cj − 1

)
ln

[
π∗j −

(
1−

s∑
k=1

πk

)]

+
M∑
j=1

D∑
l=1

ujl ln νjl − ln Γ
(
ujl
)

+
(
ujl − 1

)
lnαjl − νjlαjl

+
M∑
j=1

pj ln qj − ln Γ
(
pj
)

+
(
pj − 1

)
lnαj − qjαj

+
M∑
j=1

gj lnhj − ln Γ
(
gj
)

+
(
gj − 1

)
ln βj − hjβj

+
M∑
j=1

sj ln tj − ln Γ
(
sj
)

+
(
sj − 1

)
lnλj − tjλj (B.1)

To derive the variational solutions of each parameter, we consider the logarithm with re-

spect to each of the parameter assuming the rest of the parameters to be constant. This is

explained in the following sub sections.

69



B.1 Variational Solution for Q(Z) Eq. (4.15)

The logarithm with respect to Q(Zi) on the joint is given by:

lnQ
(
Zi
)

=
M∑
j=1

Zij

[
Rj + Sj +

D∑
l=1

(
αjl − 1

)
lnXil + βj lnλj

+
(
αj −

D∑
i=1

αjl

)
ln
( D∑
i=1

Xil

)
−
(
αj + βj

)
Tij

]

+

[
s∑
j=1

Zij ln πj +
M∑

j=s+1

Zij lnπ∗j

]
(B.2)

=
s∑
j=1

[
lnπj +Rj + Sj +

D∑
l=1

(
αjl − 1

)
lnXil + βj lnλj

+
(
αj −

D∑
i=1

αjl

)
ln
( D∑
i=1

Xil

)
−
(
αj + βj

)
Tij

]
M∑

j=s+1

[
〈lnπ∗j 〉+Rj + Sj +

D∑
l=1

(
αjl − 1

)
lnXil + βj lnλj

+
(
αj −

D∑
i=1

αjl

)
ln
( D∑
i=1

Xil

)
−
(
αj + βj

)
Tij

]
(B.3)

Where,

Rj =

〈
ln

Γ
(∑D

l=1 αjl
)∏D

l=1 Γ
(
αjl
) 〉, Sj =

〈
ln

Γ(αj + βj)

Γ(αj)Γ(βj)

〉
, Tij =

〈
ln
(
λj +

D∑
i=1

Xil

)〉
(B.4)

Rj, Sj and Tij are intractable in the above equations. Due to this reason we use second order

Taylor series approximation for Rj and Sj and first order Taylor series approximation for

Tij . the equations are given in eq. (4.22), (4.23) and (4.24) respectively. It is a notable fact

that B.2 is of the form:

lnQ
(
Z
)

=
N∑
i=1

[
s∑
j=1

Zij ln r̃ij +
M∑

j=s+1

Zij ln r̃∗ij

]
+ const (B.5)

given

ln r̃ij = ln πj +Rj + Sj +
(
αj −

D∑
l=1

αjl

)
ln
( D∑
l=1

Xil

)
+ βj〈lnλj〉

+
D∑
l=1

[(
αjd − 1

)
lnXid

]
−
(
α + β

)
Tij (B.6)

70



ln r̃∗ij = 〈ln π∗j 〉+Rj + Sj +
(
αj −

D∑
l=1

αjl

)
ln
( D∑
l=1

Xil

)
+ βj〈lnλj〉

+
D∑
l=1

[(
αjd − 1

)
lnXid

]
−
(
α + β

)
Tij (B.7)

By taking the exponentiation of eq. (B.2) we can write:

Q
(
Z
)
∝

N∏
i=1

[
s∏
j=1

r̃
Zij

ij

M∏
j=s+1

r̃
∗Zij

ij

]
(B.8)

Normalizing this equation we can write the variational solution of Q
(
Z
)

as,

Q
(
Z
)
∝

N∏
i=1

[
s∏
j=1

r
Zij

ij

M∏
j=s+1

r
∗Zij

ij

]
(B.9)

where rij and r∗ij can be obtained from equation
(
4.20

)
and

(
4.21

)
. Also, we can say that〈

Zij
〉

= rij for j = 1, ..., s and
〈
Z∗ij
〉

= r∗ij for j = s+ 1, ...,M

B.2 Proof of eq.
(
4.16

)
: variational solution of Q(~π∗)

Similarly, the logarithm of the variational solution Q
(
~π∗
)

is given as,

lnQ
(
π∗j
)

=
〈

ln p
(
X ,Θ

)〉
Θ 6=π∗

j

=
N∑
i=1

〈
Zij
〉

lnπ∗j +
(
cj − 1

)
ln π∗j + const

= lnπ∗j

[
N∑
i=1

〈
Zij
〉

+ cj − 1

]
+ const (B.10)

This equation shows that it has the same logarithmic form as that of equation
(
2.9
)
. So we

can write the variational solution of Q
(
~π∗
)

as,

Q
(
~π∗
)

=

(
1−

s∑
k=1

πk

)−M+s
Γ
(∑M

j=s+1 c
∗
j

)∏M
j=s+1 Γ

(
c∗j
) M∏
j=s+1

(
π∗j

1−
∑s

k=1 πk

)c∗j−1

(B.11)

where

c∗j =
N∑
i=1

〈
Zij
〉

+ cj (B.12)〈
Zij
〉

= r∗ij in the above equation.

71



B.3 Proof of equation
(
4.17

)
: variational solution of Q

(
~α
)

As in the other two cases the logarithm of the variational solution Q
(
αjl
)

is given by,

lnQ
(
αjl
)

=
〈

ln p
(
X ,Θ

)〉
Θ 6=αjl

=
N∑
i=1

〈
Zij
〉[
J
(
αjl
)

+ αjl lnXil − αjl ln
( D∑
i=1

Xil

)]
+
(
ujl − 1

)
lnαjl − νjlαjl + const (B.13)

where,

J
(
αjl
)

=

〈
ln

Γ
(
αjl +

∑D+1
s 6=l αjs

)
Γ
(
αjl
)∏D+1

s 6=l Γ
(
αjs
)〉

Θ 6=αjl

(B.14)

Similar to what we encountered in the case ofRj the equation forJ
(
αjl
)

is also intractable.

We solve this problem finding the lower bound for the equation by calculating the first-order

Taylor expansion with respect to αjl. The calculated lower bound is given by,

L
(
αjl
)
≥ αjl lnαjl

[
ψ

(
D+1∑
l=1

αjl

)
− ψ

(
αjl
)

+
D+1∑
s6=l

αjs

× ψ′
(

D+1∑
l=1

αjl

)(〈
lnαjs

〉
− lnαjs

)]
+ const (B.15)

This approximation is also found to be a strict lower bound of L
(
αjl
)
. Substituting this

equation for lower bound in equation
(
B.13

)
lnQ

(
αjl
)

=
N∑
i=1

〈Zij〉αjl lnαjl

[
ψ

( D∑
l=1

αjl

)
− ψ

(
αjl
)

+ ψ′
( D∑
l=1

αjl

) D∑
d6=l

(
〈lnαjl〉 − lnαjl

)
αjl

]
(B.16)

+
N∑
i=1

αjl〈Zij〉

[
lnXil − ln

( D∑
l=1

Xil

)]
+ const

This equation can be rewritten as,

lnQ
(
αjl
)

= lnαjl
(
ujl + ϕjl − 1

)
− αjl

(
νjl − ϑjl

)
+ const (B.17)

72



where,

ϕjl =
N∑
i=1

〈Zij〉αjl

[
ψ

( D∑
l=1

αjl

)
− ψ

(
αjl
)

+ ψ′
( D∑
l=1

αjl

) D∑
d 6=l

(
〈lnαjl〉 − lnαjl

)
αjl

]
ψ′

(
D+1∑
l=1

αjl

)(〈
lnαjs

〉
− lnαjs

)]
(B.18)

ϑjl =
N∑
i=1

〈Zij〉

[
lnXil − ln

( D∑
l=1

Xil

)]
(B.19)

Eq.
(
B.17

)
is the logarithmic form of a Gamma distribution. If we exponentiate both the

sides, we get,

Q
(
αjl
)
∝ α

ujl+ϕjl−1

jl e−
(
νjl−ϑjl

)
αjl (B.20)

This leaves us with the optimal solution for the hyper-parameters ujl and νjl given by,

u∗jl = ujl + ϕjl, ν∗jl = νjl − ϑjl (B.21)

By following the same procedure we can get the variational solutions for Q(~α), Q(~β) and

Q(~λ).

73


	List of Figures
	List of Tables
	Introduction
	Cluster Analysis via Finite Mixture Models
	Contributions
	Thesis Overview

	Finite Inverted Dirichlet Mixture Model with Variational Component Splitting
	Model Specification
	Finite Inverted Dirichlet mixture model
	Component splitting for model selection

	Variational inference
	Variational learning
	Incremental algorithm using component splitting

	Experimental results
	Synthetic data
	Energy Saving in Smart Homes
	Image Clustering
	Video Clustering


	Finite Generalized Inverted Dirichlet Mixture Model with Variational Component Splitting and Variational Feature Selection
	Model specification
	Experimental Results
	The Mathematical Model with Feature Selection
	Experimental Results
	Image Clustering
	Dynamic Texture Clustering


	Finite Inverted Beta-Liouville Mixture Model with Variational Component Splitting
	The Statistical Model
	Experimental Results
	Speech Categorization
	Image Categorization
	Software Defect Categorization


	Conclusion
	Proof of equations (to.2.18)to., (to.2.19)to., (to.2.20)to.
	Proof of equation (to.2.18)to.: variational solution for Q(to.Z)to.
	Proof of equation (to.2.19)to.: variational solution of Q(*)
	Proof of equation (to.2.20)to.: variational solution of Q(to.)to.

	Proof of equations (4.15), (4.16), (4.17) and (4.18)
	Variational Solution for Q(Z) Eq. (4.15)
	Proof of eq. (to.4.16)to.: variational solution of Q(*)
	Proof of equation (to.4.17)to.: variational solution of Q(to.)to.



