4,526 research outputs found

    Generalized Point Set Registration with Fuzzy Correspondences Based on Variational Bayesian Inference

    Get PDF
    Point set registration (PSR) is an essential problem in surgical navigation and computer-assisted surgery (CAS). In CAS, PSR can be used to map the intra-operative surgical space with the pre-operative volumetric image space. The performances of PSR in real-world surgical scenarios are sensitive to noise and outliers. This paper proposes a novel point set registration approach where the additional features (i.e., the normal vectors) extracted from the point sets are utilized, and the convergence of the algorithm is guaranteed from the theoretical perspective. More specifically, we formulate the PSR with normal vectors by generalizing the Bayesian coherent point drift (BCPD) into the six-dimensional scenario. The proposed algorithm is more accurate and robust to noise and outliers, and the theoretical convergence of the proposed approach is guaranteed. Our contributions of this paper are summarized as follows. (1) The PSR problem with normal vectors is formally formulated through generalizing the BCPD approach; (2) The formulas for updating the parameters during the algorithm's iterations are given in closed forms; (3) Extensive experiments have been done to verify the proposed approach and specifically its significant improvements over the BCPD has been validated

    Anisotropic Generalized Bayesian Coherent Point Drift for Point Set Registration

    Get PDF
    Registration is highly demanded in many real-world scenarios such as robotics and automation. Registration is challenging partly due to the fact that the acquired data is usually noisy and has many outliers. In addition, in many practical applications, one point set (PS) usually only covers a partial region of the other PS. Thus, most existing registration algorithms cannot guarantee theoretical convergence. This article presents a novel, robust, and accurate three-dimensional (3D) rigid point set registration (PSR) method, which is achieved by generalizing the state-of-the-art (SOTA) Bayesian coherent point drift (BCPD) theory to the scenario that high-dimensional point sets (PSs) are aligned and the anisotropic positional noise is considered. The high-dimensional point sets typically consist of the positional vectors and normal vectors. On one hand, with the normal vectors, the proposed method is more robust to noise and outliers, and the point correspondences can be found more accurately. On the other hand, incorporating the registration into the BCPD framework will guarantee the algorithm's theoretical convergence. Our contributions in this article are three folds. First, the problem of rigidly aligning two general PSs with normal vectors is incorporated into a variational Bayesian inference framework, which is solved by generalizing the BCPD approach while the anisotropic positional noise is considered. Second, the updated parameters during the algorithm's iterations are given in closed-form or with iterative solutions. Third, extensive experiments have been done to validate the proposed approach and its significant improvements over the BCPD

    Fast Predictive Image Registration

    Full text link
    We present a method to predict image deformations based on patch-wise image appearance. Specifically, we design a patch-based deep encoder-decoder network which learns the pixel/voxel-wise mapping between image appearance and registration parameters. Our approach can predict general deformation parameterizations, however, we focus on the large deformation diffeomorphic metric mapping (LDDMM) registration model. By predicting the LDDMM momentum-parameterization we retain the desirable theoretical properties of LDDMM, while reducing computation time by orders of magnitude: combined with patch pruning, we achieve a 1500x/66x speed up compared to GPU-based optimization for 2D/3D image registration. Our approach has better prediction accuracy than predicting deformation or velocity fields and results in diffeomorphic transformations. Additionally, we create a Bayesian probabilistic version of our network, which allows evaluation of deformation field uncertainty through Monte Carlo sampling using dropout at test time. We show that deformation uncertainty highlights areas of ambiguous deformations. We test our method on the OASIS brain image dataset in 2D and 3D

    Combining Functional Data Registration and Factor Analysis

    Full text link
    We extend the definition of functional data registration to encompass a larger class of registered functions. In contrast to traditional registration models, we allow for registered functions that have more than one primary direction of variation. The proposed Bayesian hierarchical model simultaneously registers the observed functions and estimates the two primary factors that characterize variation in the registered functions. Each registered function is assumed to be predominantly composed of a linear combination of these two primary factors, and the function-specific weights for each observation are estimated within the registration model. We show how these estimated weights can easily be used to classify functions after registration using both simulated data and a juggling data set.Comment: The paper was updated with a better real data exampl

    Posterior Mean Super-Resolution with a Compound Gaussian Markov Random Field Prior

    Full text link
    This manuscript proposes a posterior mean (PM) super-resolution (SR) method with a compound Gaussian Markov random field (MRF) prior. SR is a technique to estimate a spatially high-resolution image from observed multiple low-resolution images. A compound Gaussian MRF model provides a preferable prior for natural images that preserves edges. PM is the optimal estimator for the objective function of peak signal-to-noise ratio (PSNR). This estimator is numerically determined by using variational Bayes (VB). We then solve the conjugate prior problem on VB and the exponential-order calculation cost problem of a compound Gaussian MRF prior with simple Taylor approximations. In experiments, the proposed method roughly overcomes existing methods.Comment: 5 pages, 20 figures, 1 tables, accepted to ICASSP2012 (corrected 2012/3/23

    Bayesian data assimilation in shape registration

    Get PDF
    In this paper we apply a Bayesian framework to the problem of geodesic curve matching. Given a template curve, the geodesic equations provide a mapping from initial conditions\ud for the conjugate momentum onto topologically equivalent shapes. Here, we aim to recover the well defined posterior distribution on the initial momentum which gives rise to observed points on the target curve; this is achieved by explicitly including a reparameterisation in the formulation. Appropriate priors are chosen for the functions which together determine this field and the positions of the observation points, the initial momentum p0 and the reparameterisation vector field v, informed by regularity results about the forward model. Having done this, we illustrate how Maximum Likelihood Estimators (MLEs) can be used to find regions of high posterior density, but also how we can apply recently developed MCMC methods on function spaces to characterise the whole of the posterior density. These illustrative examples also include scenarios where the posterior distribution is multimodal and irregular, leading us to the conclusion that knowledge of a state of global maximal posterior density does not always give us the whole picture, and full posterior sampling can give better quantification of likely states and the overall uncertainty inherent in the problem

    Fast Predictive Multimodal Image Registration

    Get PDF
    We introduce a deep encoder-decoder architecture for image deformation prediction from multimodal images. Specifically, we design an image-patch-based deep network that jointly (i) learns an image similarity measure and (ii) the relationship between image patches and deformation parameters. While our method can be applied to general image registration formulations, we focus on the Large Deformation Diffeomorphic Metric Mapping (LDDMM) registration model. By predicting the initial momentum of the shooting formulation of LDDMM, we preserve its mathematical properties and drastically reduce the computation time, compared to optimization-based approaches. Furthermore, we create a Bayesian probabilistic version of the network that allows evaluation of registration uncertainty via sampling of the network at test time. We evaluate our method on a 3D brain MRI dataset using both T1- and T2-weighted images. Our experiments show that our method generates accurate predictions and that learning the similarity measure leads to more consistent registrations than relying on generic multimodal image similarity measures, such as mutual information. Our approach is an order of magnitude faster than optimization-based LDDMM.Comment: Accepted as a conference paper for ISBI 201

    Task adapted reconstruction for inverse problems

    Full text link
    The paper considers the problem of performing a task defined on a model parameter that is only observed indirectly through noisy data in an ill-posed inverse problem. A key aspect is to formalize the steps of reconstruction and task as appropriate estimators (non-randomized decision rules) in statistical estimation problems. The implementation makes use of (deep) neural networks to provide a differentiable parametrization of the family of estimators for both steps. These networks are combined and jointly trained against suitable supervised training data in order to minimize a joint differentiable loss function, resulting in an end-to-end task adapted reconstruction method. The suggested framework is generic, yet adaptable, with a plug-and-play structure for adjusting both the inverse problem and the task at hand. More precisely, the data model (forward operator and statistical model of the noise) associated with the inverse problem is exchangeable, e.g., by using neural network architecture given by a learned iterative method. Furthermore, any task that is encodable as a trainable neural network can be used. The approach is demonstrated on joint tomographic image reconstruction, classification and joint tomographic image reconstruction segmentation
    • …
    corecore