We introduce a deep encoder-decoder architecture for image deformation
prediction from multimodal images. Specifically, we design an image-patch-based
deep network that jointly (i) learns an image similarity measure and (ii) the
relationship between image patches and deformation parameters. While our method
can be applied to general image registration formulations, we focus on the
Large Deformation Diffeomorphic Metric Mapping (LDDMM) registration model. By
predicting the initial momentum of the shooting formulation of LDDMM, we
preserve its mathematical properties and drastically reduce the computation
time, compared to optimization-based approaches. Furthermore, we create a
Bayesian probabilistic version of the network that allows evaluation of
registration uncertainty via sampling of the network at test time. We evaluate
our method on a 3D brain MRI dataset using both T1- and T2-weighted images. Our
experiments show that our method generates accurate predictions and that
learning the similarity measure leads to more consistent registrations than
relying on generic multimodal image similarity measures, such as mutual
information. Our approach is an order of magnitude faster than
optimization-based LDDMM.Comment: Accepted as a conference paper for ISBI 201