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Anisotropic Generalized Bayesian Coherent Point
Drift for Point Set Registration
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Abstract—Registration is highly demanded in many real-
world scenarios such as robotics and automation. Registration
is challenging partly due to the fact that the acquired data
is usually noisy and has many outliers. In addition, in many
practical applications, one point set (PS) usually only covers a
partial region of the other PS. Thus, most existing registration
algorithms cannot guarantee theoretical convergence. This article
presents a novel, robust, and accurate three-dimensional (3D)
rigid point set registration (PSR) method, which is achieved
by generalizing the state-of-the-art (SOTA) Bayesian coherent
point drift (BCPD) theory to the scenario that high-dimensional
point sets (PSs) are aligned and the anisotropic positional noise
is considered. The high-dimensional point sets typically consist
of the positional vectors and normal vectors. On one hand, with
the normal vectors, the proposed method is more robust to noise
and outliers, and the point correspondences can be found more
accurately. On the other hand, incorporating the registration into
the BCPD framework will guarantee the algorithm’s theoretical
convergence. Our contributions in this article are three folds.
First, the problem of rigidly aligning two general PSs with normal
vectors is incorporated into a variational Bayesian inference
framework, which is solved by generalizing the BCPD approach
while the anisotropic positional noise is considered. Second,
the updated parameters during the algorithm’s iterations are
given in closed-form or with iterative solutions. Third, extensive
experiments have been done to validate the proposed approach
and its significant improvements over the BCPD.

Note to Practitioners—This paper was motivated by the prob-
lem of 3D rigid PSR for computer-assisted surgery (CAS),
especially in orthopedic applications. The proposed algorithm
is also suitable for other scenarios where the initial coarse
registration is conducted. The traditional registration methods
are susceptible to noise (especially anisotropic noise), outliers,
and incomplete partial data. This paper generalizes the recently
proposed BCPD method to the six-dimensional scenario where
anisotropic positional noise is considered and normal vectors
are incorporated. The proposed noise model is decomposed into
three parts to be solved alternately: the membership probability
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of mixture distributions, the soft correspondence estimation,
and the model parameters (i.e., the rotation matrix, translation
vector, the covariance matrix with the anisotropic positional
error, and the concentration parameter with the estimation of
the normal vectors). Especially, the convergence is guaranteed at
the theoretical level using the variational inference theory. The
experimental results demonstrate the superiority of our algorithm
on registration accuracy, convergence speed, and robustness to
noise, outliers, and partial data.

Index Terms—Rigid point set registration, correspondence
estimation, anisotropic positional error, variational Bayesian
inference.

I. INTRODUCTION

POINT set registration (PSR) is a fundamental research
topic in robotics, computer vision [1], augmented reality

(AR) and computer-assisted surgery (CAS) [2][3]. The target
of PSR is to recover the misalignment or the best transfor-
mation between two point sets (PS). In robotics, the camera
pose is usually estimated by minimizing the alignment error
of corresponding feature points in all the collected frames,
which is actually a global registration process [4]–[6]. To
enable the AR technique that overlays computer-generated
virtual components to the real environments, the registration
that aligns the coordinate frame associated with the virtual
environments to that of the real world is needed [7][8]. Med-
ical image registration is essential when clinicians intend to
analyze a pair of medical images from different times, different
viewpoints, and different sensors or modalities (i.e., multi-
modality registration). In CAS, registration is often utilized
to map the pre-operative image space with the intra-operative
patient space [9]–[11]. Registration problems can also be
classified into two categories: rigid and non-rigid registrations.
In the rigid registration, the transformation consists of a
rotation matrix and a translation vector, and possibly a scaling
factor [12]. In the non-rigid registration, the transformation
can be represented with the thin-plate spline (TPS) [13] or
displacement vectors [14]–[17]. In this paper, we focus on the
3D/3D rigid PSR for CAS applications. Three challenges can
be summarized in the registration of real-world PSs. First, the
points in two PSs have no known correspondences. Second,
one PS is usually a partial region of the other PS. Third, the
acquired PSs are often with noises and outliers.

A. Related Work

Registration methods can be divided into three categories:
(a) Iterative closest point (ICP)-based methods. (b) probabilis-
tic methods. (c) deep-learning-based methods.
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1) ICP and Its Variants: ICP is a classical correspondence-
free registration method, where two iterative steps (so called
the correspondence and transformation steps) are involved
[18]. In the correspondence step, the point correspondences
between two PSs are estimated according to the current rigid
transformation. In the transformation step, the rigid transfor-
mation is estimated with the updated point correspondences.
However, the optimization in ICP is usually not convex and
easily trapped into local optimization. Another problem of ICP
is its slow convergence speed [19]. Moreover, classical ICP
is sensitive to the quality of PSs including partial overlaps,
outliers, and noises. There are variants of ICP to overcome
the drawbacks. A globally optimal solution can be obtained by
the branch-and-bound (BnB) algorithm [20] or the geometric
analysis [4]. In [19], convergence speed is improved using
the Anderson acceleration (AA) method. In addition, `p-norm
minimization method [21] and a bidirectional KMPE loss [22]
are used to improve the robustness with incomplete PS, noises,
and outliers. The anisotropic-ICP (AICP) [23] utilizes the
inhomogeneous covariance matrix to introduce the anisotropic
localization error in the model. Although many attempts can
improve the performance of PSR in different aspects, due to
the ICP framework, the quality of registration will still be
affected by the disadvantages mentioned above.

2) Probabilistic Registration Algorithms: To solve the
problems of ICP-based methods, many probabilistic PSR
algorithms with soft correspondences between two PSs have
been proposed. Points in PS have varying degrees of mem-
bership between 0 and 1 in this class of algorithms. As
one typical and well-known probabilistic algorithm, coherent
point drift (CPD) [12] formulate the registration problem as a
maximum likelihood (ML) problem using Gaussian Mixture
Models (GMMs). The optimal solution is solved through
the expectation-maximization (EM) technique. The E-step
calculates the posterior of each correspondence, and the M-
step refines the transformation [24]. GMM-SQFD [25] models
two PSs as GMM and uses signature quadratic form distance
to represent the two PSs’ similarity. JRMPC [26] uses a
joint model that registers multiple PSs with the isotropic
assumption. Very recently, Bayesian CPD (BCPD) reformu-
lates CPD using variational Bayesian inference (VBI) [27].
The motion coherence theory of CPD is replaced by VBI,
and the problems about the convergence, parameter tuning,
restricted acceleration that exists in the above algorithms are
improved. BCPD also combines non-rigid and rigid cases into
one algorithm. However, these probabilistic methods are not
robust to noise and outliers without extra information of PSs.

3) Deep Learning-Based Methods: With the advancement
of deep learning on PSs, such as DGCNN [28] and PointNet
[29], a growing number of deep-learning-based PSR methods
have been proposed and proven effective for a variety of
PSR problems. These learning-based algorithms usually first
project the PSs to high-dimensional space where keypoints are
detected and features are extracted. Next, the correspondences
are solved by matching keypoints, after which the optimal
transformation is estimated for the best registration [30].
Deep learning techniques bring some successful and effective
cases in 3D points-based tasks, but we should still recognize

the limitations with learning-based methods. For example,
1) many learning-based methods take a supervised manner
to train their networks (e.g., PR-Net [31] and DGR [32])
which limits the scope of application, especially for real-world
unlabeled PS data [33]; 2) even the SOTA learning-based
methods struggle to obtain admissible inlier ratios in real-
world scenarios [30]; 3) especially for the application of CAS,
deep-learning-based methods cannot guarantee the desired
error bounds to surgeons in both theoretical and practical
aspects. On the contrary, several SOTA probabilistic algo-
rithms can deal with the registration under different outliers
rates and noise levels. Additionally, given the measurement
error of the markers (e.g. fiducial localization error (FLE)),
there exists the mature theory to accurately calculate the
registration error such as Target Registration Error (TRE) [34]
or Total Target Registration Error (TTRE) [35] model. Given
the above analysis, we decide not to compare with deep-
learning methods in this paper mainly targeted for CAS.

B. Contributions

In this paper, we significantly adapt the state-of-the-art
BCPD framework to the scenario where generalized PSs
are registered and anisotropic positional noise is considered.
A generalized point in the generalized PSs consists of a
positional vector and the corresponding normal vectors. The
problem of aligning two generalized PSs is thus termed as
generalized point set registration (GPSR). Our proposed regis-
tration method is thus called anisotropic generalized Bayesian
coherent point drift (AGBCPD). The convergence of our pro-
posed registration algorithm is theoretically guaranteed with
the variational Bayesian framework and the method is suitable
for the real-world scenarios where anisotropic positional error
usually exists. The multivariate Gaussian distribution and
von Mises–Fisher (vMF) distribution are utilized to form the
hybrid mixture models (HMMs), which are then incorporated
into the variational Bayesian framework. We have validated
the proposed algorithm in both cases of full-to-full and partial-
to-full registrations. Extensive results have demonstrated that
our method outperforms the BCPD under different cases of
outliers and noise.

To summarize, key contributions in this paper include:
1) The problem of rigidly aligning two general point sets

(PSs) with normal vectors is incorporated into a varia-
tional Bayesian inference framework, which is solved by
generalizing the Bayesian coherent point drift (BCPD)
method while the anisotropic positional noise being
considered;

2) The updated parameters used during the algorithm’s
iterations are given in closed-form or iterative solutions;

3) Extensive experiments have been done to validate the
proposed approach and its significant improvements over
the BCPD method.

II. PRELIMINARIES

In this part, we will introduce the variational Bayesian
inference (VBI) framework [36]. The target of VBI is to solve
the latent variables, Z, given observed data, D. The posterior
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Using q(Θ) to 

approximate the posterior 

p(Θ | X, X, Y, Y):

𝑞∗(Θ) = 𝑎𝑟𝑔𝑚𝑎𝑥ℒ(𝑞)

Decompose 𝑞 Θ =
ς𝑖=1
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Fig. 1. The detailed process of our proposed registration framework (here we take the femur as an example). At the beginning, the bone surface is segmented
from the CT volumetric images. The figure on the left illustrates the process of generating noisy target points with normals from the transformed source points
with normals in scenarios of isotropic and anisotropic positional error distributions. The difference between isotropic and anisotropic scenarios is that the
positional error distribution is generalized from the normal distribution (denoted as a circle in 2D) to multi-variate Gaussian distribution (denoted as an ellipse
in 3D). Blue and green dots denote the positional vectors of the transformed source point set (PS) and the target PS respectively. The blue and green solid
arrows represent the normal vectors of transformed source and target PS respectively. The dashed green arrows signify the sampled normals from the central
normal (i.e., the normals with the transformed source PSs) in the von-Mises Fisher (vMF) distribution. In the middle, the 3D model PS (Y, Ŷ) representing
the bone surface is extracted from the CT images. The normal vectors are further estimated from (Y, Ŷ) with PlanePCA technique. The target point set
(X, X̂) is corrupted with anisotropic positional noise, vMF noise, and outliers (denoted as red dots). On the right, we show that the positional vectors together
with the normal vectors in two spaces are taken as inputs for the anisotropic generalized Bayesian coherent point drift (AGBCPD) algorithm. The rotation
matrix and translation vector are estimated after the optimization process.

distribution p(Z|D) or the expectation E[Z] over p(Z|D) is
the first necessary step. Nevertheless, it is always unfeasible in
actual applications because of the difficult calculation of the
posterior. VBI can relax the computational complexity as an
approximation method. The true posterior p(Z|D) is replaced
by a tractable distribution q(Z). Generally, the marginal prob-
ability of the model evidence p(D) is defined as follows:

lnp(D) =∫
q(Z) ln

{
p(D,Z)

q(Z)

}
dZ︸ ︷︷ ︸

L(q)

−
∫
q(Z) ln

{
p(Z | D)

q(Z)

}
dZ︸ ︷︷ ︸

KL(q‖p)

(1)

VBI is the minimization of the KL divergence above. It can
also be regarded as maximizing the evidence lower bound
(ELBO) L(q). To solve the optimization problem, q(Z) is
decomposed as

∏N
i=1 qi (Zi), where each Zi is mutually

independent. Then, the general solution of the posterior ap-
proximate distribution q?j (Zj) can be solved as:

ln q?j (Zj) = Ei 6=j [ln p(D,Z)] + const, (2)

where Ei 6=j [ln p(D,Z)] =
∫

ln p(D,Z)
∏N
i( 6=j) qi dZi and the

constant term can be derived by normalizing the q?j (Zj).
The coordinate ascent algorithm is adopted to update qj ,
which guarantees monotonically increasing of ELBO and the
convergence of VBI.

III. METHODS

A. Problem Formulation

In the PSR problem, we aim to align together two
PSs X={xn}Nn=1 and Y={ym}Mm=1 and corresponding
unit normal vector sets X̂={x̂n}Nn=1, Ŷ={ŷm}Mm=1 with

xn,ym, x̂n, ŷm ∈ R3. On one hand, the points in Y are
considered as the centroids of the Gaussian Mixture Model
(GMM) while the mean directions of the Fisher Mixture Model
(FMM) is represented as the unit normal vectors from Ŷ.
On the other hand, the points in the target PS X and normal
vectors in the normal vector set X̂ are assumed to be generated
from the GMM and the FMM respectively. The final goal
of PSR is to solve the optimal rigid transformation matrix
between (X, X̂) and (Y, Ŷ). Under the framework of the
hybrid mixture model (HMM), the probability density function
(PDF) of xn given vn = m (where v = {vn}Nn is an index
vector that nth observed point xn belongs to the mth HMM
component ym) is defined as follows:
p (xn, x̂n | vn = m;R, t,Σ, κ) = N (µp,Σ) · F(µ̂o, κ) =

1√
(2π)3 |Σ|

e−
1
2

(xn−µp)>Σ−1(xn−µp)

︸ ︷︷ ︸
Multivariate Gaussian Distribution

·
κ

2π (eκ − e−κ)
eκ(Rŷm)>x̂n︸ ︷︷ ︸

Modified vMF Distribution

=
κ

2π (eκ − e−κ) · (2π)
3
2 |Σ|

1
2

eκ(Rŷm)>x̂n− 1
2

(xn−µp)>Σ−1(xn−µp)

(3)
where Σ is the covariance matrix of multivariate Gaussian
distribution, κ is the concentration parameter of the vMF
distribution, µp = Rym + t and µ̂o = Rŷm. We denote ϕmn
as a symbol of Eq. (3). The outliers are defined as a uniform
distribution pout(xn) = 1/V to satisfy the normalization
condition of pout(xn) , where V is the minimum volume
that can contain the whole X. ω represents the weight of
this uniform distribution, where ω ∈ [0, 1]. We introduce
c = {cn}Nn as an indicator vector, which means cn = 1 if
the nth point in X is an inlier, otherwise equals 0. We use
an explicit definition δm (vn) to indicate the correspondence
where if vn = m, δm (vn) is 1, otherwise 0. Moreover, we
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denote α = {αm}Mm ∈ [0, 1]M as the membership probabilities
(
∑M
m=1 αm = 1) which represents the mixing proportion of

HMM components.
Then, the joint PDF of p (xn, x̂n, cn, vn) given

(Y, Ŷ, α,R, t,Σ, κ) can be formulated as:

p
(
xn, x̂n, vn, cn | Y, Ŷ, α,R, t,Σ, κ

)
= {ωpout (xn)}1−cn

{
(1− ω)

∏M
m=1 (αmϕmn)

δm(vn)
}cn

(4)
which consists of two mixture distributions, the left item has
two components, and the right item has M components. Denote
Θ as the set of {α, c, v,R, t,Σ, κ}.

Next, we will describe in detail the method to obtain the
optimal parameters R, t,Σ, κ using VBI. The general concept
of our AGBCPD framework is given in Fig. 1.

B. Variational Bayesian Formulation

Under the VBI framework, the goal is to solve a distri-
bution q(Θ) to approximate the true posterior distribution
p(Θ|X, X̂,Y, Ŷ). At first, we define the prior distribution
over the items in Θ and the joint probability distribution to
formulate the variational solution of HMM.

1) Prior Distribution: We introduce a Dirichlet distribution
over the membership probabilities α as:

p(α) = Dir(α | λ1M ) = C(λ1M )

M∏
m=1

αλ−1m ,

where C(λ1M ) is the normalization constant and 1M is a
column vector of all ones with size M . The Dirichlet distribu-
tion can manage the mixture proportion of HMM components.
With smaller λ, the prior will affect less on the posterior, while
the data will bring more influence on the posterior. To reduce
the variational model, the priors over (Y, Ŷ), Σ, κ, and R, t
are not introduced.

2) Joint Probability Distribution: Combining the prior dis-
tribution into the HMM, the full joint probability distribution
is formulated as:

p(X, X̂,Y, Ŷ,Θ) ∝

p(α)

N∏
n=1

p
(
xn, x̂n, cn, vn | Y, Ŷ, α,R, t,Σ, κ

)
(5)

C. Variational Bayesian Approximate Posteriors

We derive the approximated posterior distributions based
on the VBI in this part. With the mean field theory and
the conditional independence relation between variables, we
factorize q(Θ) as:

q(Θ) = q1(α)q2(c, v)q3(R, t,Σ, κ). (6)

which guarantees a computable solution in our Bayesian
HMM. q(Θ) is updated in each iteration.

1) q1(α):
The optimal q?1(α) can be obtained using the solution (2)

and the product rule for probabilities as follows:

ln q?1(α) = Eq2,q3 [ln p(X, X̂,Y, Ŷ,Θ)] + const.

Substituting the full joint probability distribution (5) into the
ln q?1(α) above and removing the terms that don’t depend on
α into the normalization constant, we obtain

ln q?1(α) =

N∑
n=1

M∑
m=1

Eq2,q3 [cnδm(vn) ln(αmϕmn)]

+

M∑
m=1

lnαλ−1m + const =

M∑
m=1

lnαλ−1+ρmm + const,

(7)

where ρm =
∑N
n=1 pmn, and pmn = E[cnδm(vn)] which

defines the posterior that xn corresponds to ym. Taking the
exponential of the equation above, we can solve q?1(α) as:

q?1(α) = Dir(α | λ1M + ρ) (8)

where ρ = P1N , and P = (pmn) ∈ RM×N is the probability
matrix. It also follows a Dirichlet distribution.

2) q2(c, v):
In this part, we solve the optimal solution of q2(c, v) which

represents the shape correspondence between two PSs. Similar
to the previous using the general solution (2), the optimal
q?2(c, v) can be obtained as follows:

ln q?2(c, v) =

N∑
n=1

[
M∑
m=1

ln {(1− ω) 〈αm〉 〈ϕmn〉}cnδm(vn)

+ ln {ωpout (xn)}(1−cn)
]

+ const,

(9)
where 〈•〉 is the operator exp(E[ln •]). Using the standard
solution of the Dirichlet distribution q1, we obtain:

〈αm〉 = exp[ψ(λ+ ρm)− ψ(λM +Np)], (10)

where Np =
∑N
n=1

∑M
m=1 pmn and ψ(·) is the digamma

function. Because we only consider the rigid registration in
this paper, then we have

〈ϕmn〉 = ϕmn. (11)

Observing Eq. (9), we can rewrite q?2(c, v) in this form
q?2(c, v) =

∏N
n=1 q

?(n)
2 (cn, vn), where q

?(n)
2 (cn, vn) ∝

{ωpout (xn)}(1−cn)
∏M
m=1 {(1− ω) 〈αm〉 〈ϕmn〉}cnδm(vn) . In

one pair of (vn, cn), only one component is available. C
is a normalization constant which is defined as the sum
of all components q

?(n)
2 (cn, vn). It can be represented as

C = (1 − ω)
∑M
m=1 〈αm〉 〈ϕmn〉 + ωpout (xn) . Finally, we

can express the optimal solution to q?2(c, e) in closed form:

q?2(c, v) =

N∏
n=1

(1− ρ′n)
1−cn

{
ρ′n

M∏
m=1

(
pmn
ρ′n

)δm(vn)
}cn

,

(12)
where ρ′n =

∑M
m=1 pmn is the posterior that xn belongs

to a non-outlier, and ρ′ = PT 1M . Furthermore, q?2 consists
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of a categorical distribution and a Bernoulli distribution. The
posterior probability pmn is computed as follows:

pmn =
(1− ω) 〈αm〉 〈ϕmn〉

ωpout (xn) + (1− ω)
∑M
m=1 〈αm〉 〈ϕmn〉

. (13)

which is the fuzzy correspondence probability between xn
and ym. It is united with the previous definition because
pmn = q

?(n)
2 (cn, vn) = E[cnδm(vn)]. This part ensures that

the update of P with the Eq. (13) improves the lower bound.

3) q3(R, t,Σ, κ):
The solutions of q1 and q2 are solved using the VBI

methods. In these two parts, pmn and related terms will be
updated, which is analogous to the E-step of the EM algorithm.
In this part, different from previous methods, we assume
q3 as a Dirac delta function [37] which means that q3 is
only described by its mode. Therefore, we directly maximize
the ELBO L(q) to derive the closed-form solution of q3
instead of using the VBI’s general solution (2). The variational
optimization of this part can be regarded as the M-step of the
EM algorithm. Given q1(α) and q2(c, v), we have:

L(q) =∫
q3 · Eq1,q2 [ln p(X, X̂,Y, Ŷ,Θ)]d(R, t,Σ, κ) + const.

(14)
The derivation can be found in the appendix. Denote F(Θ) as
the expectation of the log of the joint probability distribution.
Then this optimization problem [36] is reduced to maximize
F(Θ):

F(Θ) = Eq1,q2 [ln p(X, X̂,Y, Ŷ,Θ)] =

− 1

2
NP log |Σ| −NP log

(
eκ − e−κ

)
+NP log κ

−
N∑
n=1

M∑
m=1

pmn

(
1

2
(xn − µp)>Σ−1(xn − µp)

−κ
(

(Rŷm)
T

x̂n

))
+ const.

(15)

where µp = Rym + t. To maximize the ELBO concerning
R, t,Σ and κ, the first step is to update the transforma-
tion [R, t] given current Σ, κ and pmn with the constraint
R ∈ SO(3). Denote [R̃, t̃] as the transformation between
two consecutive updates of q3 part. Then we adopt Rodrigues’
rotation formula, which can use a tri-vector θ = [θ1, θ2, θ3]>

to denote a rotation R(θ) ∈ SO(3) as follows:

R(θ) = I +
[θ]×
‖θ‖

sin(‖θ‖) +
[θ]2×
‖θ‖2

(1− cos(‖θ‖)) (16)

where [θ]× is a 3×3 skew-symmetric matrix. Then, we can
reformulate the transformation [R̃, t̃] as a vecter ξ = [θ̃; t̃]6×1,
where R̃ = R(θ̃). Removing the terms that are indepen-
dent of [R, t] in (15), the problem that maximizes Eq. (15)

can be rewritten as an unconstrained optimization problem
minξ Q(Θ), whose detailed form is obtained as follows:

min
ξ

N∑
n=1

M∑
m=1

(
1

2
pimn(xn − µip)>Σi−1−1

(xn − µip)︸ ︷︷ ︸
Qi

P,mn

−pimnκi−1
(
R̃Ri−1ŷm

)>
x̂n︸ ︷︷ ︸

Qi
N,mn

)
,

(17)

where i represents the current ith update, and µip =

R̃
(
Ri−1ym + ti−1

)
+ t̃.

For this optimization problem, we first need to acquire the
gradient of Q(Θ) in Eq. (17) w.r.t. ξ as follows,

∇Qi =

N∑
n=1

M∑
m=1

(
∇Qi

P,mn +∇Qi
N,mn

)
, (18)

where ∇Qi
P,mn = [Ji

Qi
P,mn,θ̃

,Ji
Qi

P,mn ,̃t
]> ∈ R6×1 and

∇Qi
N,mn = [JiQN,mn

,01×3]> ∈ R6×1. It can be written as
a 2 × 6 Jacobian matrix:

JQi
mn,ξ

=

[
Ji
Qi

P,mn,θ̃
Ji
Qi

P,mn ,̃t

JiQN,mn
01×3

]
=

[ ∂Qi
P,mn

∂θ̃1

∂Qi
N,mn

∂θ̃1

∂Qi
P,mn

∂θ̃2

∂Qi
P,mn

∂θ̃3

∂Qi
N,mn

∂t̃1

∂Qi
N,mn

∂t̃2

∂Qi
N,mn

∂t̃3
∂Qi

N,mn

∂θ̃2

∂Qi
N,mn

∂θ̃3
0 0 0

] (19)

Then we need to solve the above Jacobian matrix. From Eq.
(16), we know that R̃ is a function of θ̃. Therefore, using
the chain rule for matrix derivative [38], we can compute the
items

∂Qi
P,mn

∂θ̃j
as follows:

∂Qi
P,mn

∂θ̃j
= tr

[(
∂Qi

P,mn

∂R̃

)>
∂R̃

∂θ̃j

]
, j ∈ {1, 2, 3}

where

∂Qi
P,mn

∂R̃
=
(
Σi−1)−1 ·(−xn(I + t̃ + (Ri−1ym + ti−1))

· (Ri−1ym + ti−1)>),

and (∂R̃/∂θ̃j) can be solved according to Rodrigues’ rotation
formula, which is presented in Appendix.C. Similarly, we can
obtain:

∂Qi
P,mn

∂t̃j
= tr

[(
∂Qi

P,mn

∂t̃

)>
∂t̃

∂t̃j

]
, j ∈ {1, 2, 3}

where

∂Qi
P,mn

∂t̃
= (Σi−1)−1(−xn + t̃ + R̃(Ri−1ym + ti−1)),

and (∂t̃/∂t̃j) is its corresponding unit base vector. Then, using
the same method, we have:

∂Qi
N,mn

∂θ̃j
= −pimnκi−1 tr

[
Ri−1ŷmx̂>n

∂R̃

∂θ̃j

]
.
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After the gradient of Q(Θ) has been computed, we can
obtain the ξ. Then the transformation [R̃, t̃] can be solved
using Eq. (16). Finally, we obtain the transformation at the
ith update as follows:

Ri = R̃Ri−1, ti = R̃ti−1 + t̃ (20)

For the update of Σ, after differentiating F(Θ) regarding
Σ and equating it to 0, we obtain:

Σi =

∑N
n=1

∑M
m=1 p

i
mn(xn − µip)(xn − µip)>

N i
p

. (21)

In the same way, let ∂F∂κ = 0. The function w.r.t. κ is solved
as follows:

− 1

κ
+
eκ + e−κ

eκ − e−κ
=

1

N i
P

M∑
m=1

N∑
n=1

pimn
(
Riŷm

)>
x̂n. (22)

The closed-form solution of κ cannot be obtained from this
nonlinear function. Therefore, we utilize the fixed-point itera-
tion method to update its value.

Algorithm 1: Anisotropic Generalized Point Set Reg-
istration Based on VBI

Input: Point sets and corresponding normal vector sets
X, X̂,Y, Ŷ

Output: R? and t?

1 Initialization: R = I3, t = 03×1, ω = 0.5, κ, λ, Σ,
〈αm〉 = 1

M .
2 repeat
3 VB E-step:
4 -Update 〈αm〉, 〈ϕmn〉 and P = (pmn) by (10),

(11) and (13) respectively;
5 VB M-step:
6 -Update R and t by (20);
7 -Update Σ and κ by (21) and (22);
8 until Convergence;
9 return R? and t?.

D. Implementation Details

The AGBCPD algorithm is summarized in Algorithm 1.
Aside from the parameters that have been shown in Algorithm
1, the initial κ and Σ are set as κ = 10 and Σ = diag(100,
100, 100), respectively. This setup ensures the generality of
the algorithm which means we suppose that the two PSs
have a bad initial alignment. As the parameters are updated
iteratively, κ will be larger, and Σ will be smaller. To ensure
the calculability of κ, we empirically limit the maximum value
of κ to 50 during the algorithm’s iterations. The λ is set
as infinity which is the same as the BCPD. The following
conditions are used to conclude whether the method converges:
1) tr(Σ)/3 is less than 10−3; 2) the difference ∆tr(Σ)/3
between two successive iterations is less than 10−5; 2) the
maximum iterations are 100. All algorithms are developed
using MATLAB.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Dataset Preparation and Evaluation Metrics

Two sets of experiments, referred to as full-to-full and
partial-to-full cases, are conducted to validate the registration
accuracy and robustness of our algorithm. In computer-assisted
surgery (CAS), the source PS Y includes M = 1568 points
and is reconstructed from the computed tomography (CT) of
a human pelvis or femur bone as shown in Fig.1. The corre-
sponding normal vector set Ŷ is generated using the PlanePCA
method [39]. PlanePCA is to perform the principal component
analysis (PCA) of an augmented data matrix that consists of
one positional point and its neighbors [39]. Then the principal
component with the smallest variance is chosen as the normal
vectors. The Ninliers = 100 inlier intra-operative target PSs
(X, X̂) are randomly sampled from (Y, Ŷ). For each set
of experiments, two different types of zero-mean Gaussian
positional noise are added to X respectively: 1) isotropic
positional noise with the covariance matrix Σiso = I3×3; 2)
anisotropic positional noise with the covariance matrix

Σani = diag(1/11, 1/11, 9/11). (23)

For the orientation error in two groups, we use the same
1◦ standard deviation to produce the orientation noise, e.g.,
κ = 3200 [40], which are then injected into X̂. Then,
five different ratios of outliers from 10% to 90% with an
interval of 20% are added to (X, X̂) to generate the disturbed
(X, X̂). The positional vectors with outliers are produced
by applying a displacement vector uniformly sampled within
[20mm, 30mm] to the randomly sampled points from Y. The
normal vectors associated with outliers are randomly generated
within [0◦, 360◦]. Then we obtain the final disturbed (X, X̂)
with N = 110 to 190.

In each registration trial, the ground-truth values of rigid
transformation matrix [Rtrue, ttrue] is randomly generated
from [10◦, 25◦] and [10mm, 25mm]. 1 Then the source PS
(Y, Ŷ) are misaligned by applying the real [Rtrue, ttrue] to
(Y, Ŷ), denoted as the misaligned (Y, Ŷ). In all experiments,
disturbed (X, X̂) and misaligned (Y, Ŷ) are registered, after
which the rigid transformation matrix Rcal and tcal are
acquired. We conduct Ntrial = 100 registration trials in each
specific case of rigid transformation matrix and noise type
to further get the error statistics (e.g., mean and standard
deviation).

The rotation and translation error values in each registration
trial are computed to evaluate the registration performances.
The statistics including the mean and standard deviation are
further computed with the Ntrial error values and reported. We
compute and process the error values of Ntrial registration trials
in each case. In one specific registration trial, the rotation and
translation error values are defined as follows:

ErrorRot = arccos

[
tr
(
RtrueR

>
cal

)
− 1

2

]
× 180◦

π
(24)

1Note that our method focuses on improving the performance of the
local registration approaches, which assumes the coarse registration has been
done using the anatomical landmarks in the surgical scenario. Therefore, the
deviation angle and distance are reasonably not very large.
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TABLE I
ROTATION AND TRANSLATION ERRORS UNDER ISOTROPIC AND ANISOTROPIC NOISE. DIFFERENT OUTLIER RATIOS ARE ADDED TO (X, X̂).

THE PELVIS MODEL IS CHOSEN IN THIS SERIES OF EXPERIMENTS.

Error Type Outliers’ Percents 10% 30% 50% 70% 90% 10% 30% 50% 70% 90%

Methods
Noise type Isotropic Noise Anisotropic Noise

Rot (◦)

ICP [18] 1.0916 1.4291 1.6023 1.6663 1.9720 0.6201 1.2770 1.4827 1.7745 1.7631
CPD [12] 0.7563 0.6628 0.6589 1.2986 2.0406 0.2468 0.2443 0.4078 1.4165 2.1207

BCPD [27] 2.0070 1.3074 1.3672 1.5057 1.4941 1.0188 1.1445 1.2737 1.6637 1.4385
IGBCPD 0.5815 0.4925 0.4595 0.4275 0.5445 0.2413 0.4046 0.3631 0.2423 0.4428
AGBCPD 0.5501 0.5268 0.4885 0.5288 0.5278 0.1965 0.1512 0.1828 0.1911 0.1579

Trans (mm)

ICP [18] 0.8204 1.1200 1.2586 1.3810 1.5555 0.4528 1.0660 1.0903 1.5267 1.4029
CPD [12] 2.9234 2.8929 3.3056 3.5889 3.9524 3.2185 3.1238 3.2820 3.5479 3.8742

BCPD [27] 3.3070 3.4101 3.2869 3.2570 3.4621 3.3063 3.2344 3.3332 3.3730 3.4659
IGBCPD 0.5935 0.5423 0.5248 0.5815 0.5266 0.2614 0.3774 0.3439 0.2739 0.4190
AGBCPD 0.5745 0.5137 0.5116 0.5451 0.5645 0.2419 0.2591 0.2293 0.2090 0.2232

Before Registration

Rot Error: 10.9544°
Trans Error: 17.5552mm

(a)

Iteration 5

Rot Error: 0.2210°
Trans Error: 0.3767mm

(b)

Iteration 10

Rot Error: 0.1368°
Trans Error: 0.2044mm

(c)

Iteration 100

Rot Error: 0.0798°
Trans Error: 0.0722mm

(d)

Ground Truth

(e)

Fig. 2. Registration process using our AGBCPD method with 70% outliers and anisotropic positional noise. (a)~(d): the registration result before registration,
5th, 10th and 100th iteration using the proposed method, respectively; (e): ground truth. Blue, green, and red PSs indicate the source PS Y, the target PS X,
and outliers respectively.
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Fig. 3. Convergence speed of five methods with respect to the iterations.
Anisotropic positional noise and 70% outliers are chosen. Left: rotation error.
Right: translation error.

ErrorTrans = ‖tcal − ttrue‖2 (25)

where tr(•) represents the trace of a matrix, || • ||2 denotes the
L2-norm.

B. Full-to-Full Registration

In this set of experiments, the registration problems are in
a full-to-full manner, which means that (X, X̂) are randomly
sampled from the whole CT model of pelvis and femur bones.
We compare our method (i.e., AGBCPD) against three regis-
tration methods including: ICP [18], CPD [12], BCPD [27].
Furthermore, ablating the assumption of anisotropic positional
noise, we build and test the isotropic GBCPD (IGBCPD) as

an ablation study. Compared with AGBCPD, the difference is
that IGBCPD uses equal isotropic covariances σ2 to replace
the anisotropic covariance matrix Σ in the probability density
function Eq. (3) of HMM like the isotropic assumption in
CPD.

1) Pelvis Model: As shown in Table I, (1) our two GBCPD
variants outperform the other three methods in all tests under
isotropic positional noise while the rotation and translation
errors are very similar for both AGBCPD and IGBCPD; (2)
for anisotropic positional noise, AGBCPD has the smallest
rotation and translation errors, and it still maintains good
robustness with the increase of outliers, while the other four
methods do not.

Fig. 2 shows the registration process for different iterations
on the human pelvis model. It presents the registration results
using the AGBCPD method in the 0th (before registration),
5th, 10th, 100th iteration. As shown in Fig. 2, the result in the
10th iteration has little difference from the final 100th iteration,
which means our method can achieve fast convergence speed.

Furthermore, we quantitatively compare the convergence
speed of these five methods with respect to the iterations in
the same conditions. As shown in Fig. 3, under anisotropic
noise and 70% outliers, the convergence speeds of our two
GBCPD methods are faster than the other three methods. In
addition, our AGBCPD method achieves the smallest errors,
which also demonstrates that AGBCPD is insusceptible to
anisotropic noise and outliers.
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TABLE II
ROTATION AND TRANSLATION ERRORS UNDER ISOTROPIC AND ANISOTROPIC NOISE. DIFFERENT OUTLIER RATIOS ARE ADDED TO (X, X̂).

THE FEMUR MODEL IS CHOSEN IN THIS SERIES OF EXPERIMENTS.

Error Type Outliers’ Percents 10% 30% 50% 70% 90% 10% 30% 50% 70% 90%

Methods
Noise type Isotropic Noise Anisotropic Noise

Rot (◦)

ICP [18] 2.6877 3.9594 4.8543 5.3575 5.2281 2.0556 3.1001 4.5424 4.6535 4.6680
CPD [12] 1.5168 1.1783 1.8922 3.9650 5.3339 0.2909 0.6374 1.6639 4.0521 4.7526

BCPD [27] 1.6861 1.0474 2.8246 3.4831 3.4021 1.8640 1.6205 2.8059 3.2267 3.5296
IGBCPD 0.9530 1.0353 1.1096 0.9228 1.1005 0.3624 0.3586 0.4056 0.3391 0.4437
AGBCPD 0.9523 0.8310 1.0660 0.9795 0.9304 0.2759 0.3204 0.3670 0.3093 0.2792

Trans (mm)

ICP [18] 1.0479 1.6958 1.8395 2.1533 2.0304 0.9169 1.4334 1.8280 1.9296 1.7418
CPD [12] 3.3426 3.3414 3.5482 3.8305 4.0380 2.9218 3.1019 3.6909 3.9698 4.0524

BCPD [27] 3.2149 3.1210 3.3414 3.2779 3.4497 2.7982 3.0110 3.7082 3.4451 3.1228
IGBCPD 0.4804 0.5228 0.5204 0.5633 0.4781 0.3008 0.2624 0.3060 0.2837 0.3241
AGBCPD 0.4526 0.5171 0.5147 0.4974 0.4981 0.2521 0.2445 0.2021 0.2263 0.2119

Before Registration

Rot Error: 13.9614°
Trans Error: 10.4266mm

(a)

ICP

Rot Error: 9.2515 °
Trans Error: 9.3912mm

(b)

CPD

Rot Error: 93.3034 °
Trans Error: 18.2102mm

(c)

BCPD

Rot Error: 23.6097 °
Trans Error: 10.8839mm

(d)

Ground Truth

(g)

IGBCPD

Rot Error: 0.5865°
Trans Error: 0.2085mm

(e)

AGBCPD

Rot Error: 0.1670°
Trans Error: 0.3256mm

(f)

Fig. 4. Subfigure (a) represents the result before the registration. Subfigures (b)~(f) represent five registration results using ICP, CPD, BCPD, IGBCPD, and
our AGBCPD method respectively. Subfigure (g) is the ground truth. Anisotropic noise and 90% outliers are added into PS (X, X̂). Blue, green, and red PSs
indicate the source PS, the target PS, and outliers respectively.
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(c) Anisotropic Noise
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(d) Anisotropic Noise
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Fig. 5. Mean and standard deviation (std) of rotation and translation error
using AGBCPD & IGBCPD with different noises. (a) and (b) is under the
isotropic positional noise; (c) and (d) is under the anisotropic positional noise.

2) Femur Model: Table II shows the corresponding quan-
titative results in the femur model. As shown in Table II,
both IGBCPD and AGBCPD have a better performance than
other methods in all cases, which benefit from the incorporated
normal vectors. It should also be noted that AGBCPD demon-
strates significant advantages compared with others including

IGBCPD, especially in the case of anisotropic positional noise.
Moreover, we use the ttest function in MATLAB to compute

the p-value of our proposed methods compared with other
methods in both pelvis and femur tests. Almost all p-values
are within 0.05 significance level, which proves that the
difference between AGBCPD and other methods is statistically
significant.

C. Partial-to-Full Registration

In real-world surgical scenarios, such as total hip replace-
ment (THR) surgery, the intra-operative points usually concen-
trate in the proximal femur head while the femur includes the
region distal to the lesser trochanter, femur head, and femur
neck, as shown in Fig. 4(g). This region is small compared
with the whole preoperative femur model. Therefore, the
registrations are partial to full.

Fig. 4 shows the qualitative results with 90% outliers and
anisotropic noise injected. As shown in Fig. 4, the two PSs
are successfully registered with AGBCPD, while IGBCPD also
has an acceptable performance. However, other methods fail
to align the partial intraoperative points (X, X̂) (i.e., green
points) with the full preoperative PS (Y, Ŷ) (i.e., blue points).
Therefore, in partial-to-full registration, ICP, CPD, and BCPD
are not included in the quantitative analysis.
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Fig. 5 shows the quantitative results in partial-to-full regis-
tration2. As shown in Fig. 5, in all cases, AGBCPD achieves
both smaller rotation and translation error values than IG-
BCPD. Compared with the full-to-full case, the difference in
the partial-to-full case between two GBCPD methods becomes
bigger, which proves our anisotropic model AGBCPD can deal
with more complex and difficult scenarios and keep robust and
accurate.

D. Discussion

This paper generalizes the recently proposed Bayesian Co-
herent Point Drift (BCPD) method to the six-dimensional
scenario. The proposed noise model is decomposed into three
parts to be solved alternately: the membership probability of
mixture distributions, the soft correspondence estimation, and
the model parameters (i.e., the rotation matrix, translation
vector, the covariance matrix with the anisotropic positional
error, and the concentration parameter with the estimation of
the normal vectors). Especially, the convergence is guaranteed
at the theoretical level using the variational inference theory.

To summarize, the experimental results demonstrate that our
AGBCPD method outperforms other algorithms in the follow-
ing points: (a) convergence speed; (b) robustness and stability
to noise, outliers, and incomplete partial data; (c) registration
accuracy. Especially, the comparison between IGBCPD and
AGBCPD proves the correctness and effectiveness of the
more generalized assumption about the anisotropic positional
noise. It is common that the positional noise is anisotropic in
many CAS applications. For example, the standard deviation
of the reflective marker localization error in the line-of-sight
direction of an optical tracking device (e.g. NDI’s Polaris
Vega) is 3 or 5 times than those in the other two orthogonal
directions [34]. Our anisotropic model can deal with these
actual surgical applications.

In terms of orthopedic surgery, our experimental results
in partial-to-full registration demonstrated that our proposed
method can achieve the high accuracy requirement in surgical
scenarios. More importantly, the proposed method is quite
robust to increasing percentages of outliers.

Limitations: We expect that this study can motivate more
progressive PSR methods that consider the anisotropic cases
and orientational features (i.e., normal vectors). There are still
several limitations in our AGBCPD method. First, the source
PS Y and corresponding normal vector set Ŷ is defined as an
ideal point set without noise, while the target PS is assumed
to be generated from the source PSs. To extend the perfect
assumption, we can assume both source and target PSs with
noise are generated from probabilistic models. Second, the
proposed method doesn’t utilize the local structures among
adjacent points which can help to estimate the correspondences
[41]. In practice, it is effortless to incorporate the AGBCPD
method into these algorithms that consider the features of local
structures. Third, because of the complicated consideration of
the anisotropic noise and orientational features, the AGBCPD

2The rotation error values obtained when using IGBCPD with isotropic
noise reach 21◦ with a standard deviation of 43◦. These values are therefore
not shown in Fig. 5(a).

takes more time than the original BCPD in one iteration,
although it has the fastest convergence speed of these five
methods with respect to the iterations in the same conditions
as shown in Fig. 3.

V. CONCLUSIONS

In this work, we present a robust and accurate rigid point
set registration (RPSR) method under the variational bayesian
inference (VBI) framework, where both the positional and nor-
mal vectors are used while the anisotropic positional noise is
considered. Experimental results demonstrate its great clinical
values for computer-assisted surgery (CAS). The presented
work can be further improved in the following two aspects.
First, the prior distributions over Σ, κ, or the variables R, t
can be introduced to potentially make the generative model
more accurate [36]. Second, several ways to accelerate the
complex model will be explored [42].

APPENDICES

A. vMF Distribution

We choose the vMF distribution to represent the orienta-
tional feature in multi-dimension data [43]. It’s a common
and simple parametric distribution for directional data which is
parametrized by the mean direction µo and the concentration
κ. The PDF of the vMF distribution for d-dimensional unit
directional feature x̂n is defined as:

p(x̂n | µo,κ) = Z(κ)eκµ
>
o x̂n ,

where κ ≥ 0, ||µo|| = 1, and Z(κ) is the normalizer of the
vMF distribution as follows:

Z(κ) = (2π)−d/2
κd/2−1

Id/2−1(κ)
,

where d ≥ 2 and Id/2−1(•) is the modified Bessel function of
the first kind of order (d/2− 1). In this paper, the directional
data are three-dimensional normal vectors, i.e. d = 3. Then
we have

κ1/2

I1/2(κ)
=

√
π

2

κ

sinhκ
, sinhκ =

1

2
(eκ − e−κ).

Substituting these two equations into Z(κ), we can obtain:

Z(κ) =
κ

4π sinhκ
=

κ

2π (eκ − e−κ)
.

The concentration of the distribution about the mean direction
µo will be higher with increasing concentration κ.
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B. Derivation of Eq. (14)

To simplify writing, we denote x = (X, X̂), y =
(Y, Ŷ), θ12 = (α, c, v), θ3 = (R, t,Σ2, κ). Given q(θ12), we
have:

L(q) =
∫
q(θ) · ln p(x, y, θ)

q(θ)
dθ

=

∫
q (θ12, θ3) ln

p (x, y, θ12, θ3)

q (θ12)
dθ12dθ3

−
∫
q (θ1θ2) q(θ3) ln q(θ3)dθ12dθ3

=

∫
q(θ3)Eq(θ12)[ln p(x, y, θ12, θ3)]dθ3

− Eq(θ12) [ln q (θ12)]−
∫
q(θ3) ln q(θ3)dθ3

=

∫
q(θ3)Eq(θ12)[ln p(x, y, θ12, θ3)]dθ3

−
∫
q(θ3) ln q(θ3)dθ3 + const,

(26)

Because q3 (θ3) is a Dirac delta function, we can drop the
entropy term −

∫
q(θ3) ln q(θ3)dθ3. Then we obtain the form

of Eq. (14).

C. Derivation of ∂R̃

∂θ̃j

∂R̃

∂θ̃j
=
∂ sin(‖θ̃‖)

‖θ̃‖

∂θ̃j
[θ̃]× +

sin(‖θ̃‖)
‖θ̃‖

∂[θ̃]×

∂θ̃j

+
∂ 1−cos(‖θ̃‖)

‖θ̃‖2

∂θ̃j
[θ̃]2× +

1− cos(‖θ̃‖)
‖θ̃‖2

∂[θ̃]2×

∂θ̃j
,

j ∈ {1, 2, 3}.

(27)

REFERENCES

[1] L. Li, M. Yang, L. Weng, and C. Wang, “Robust localization for
intelligent vehicles based on pole-like features using the point cloud,”
IEEE Transactions on Automation Science and Engineering, 2021.

[2] L. Li, S. Bano, J. Deprest, A. L. David, D. Stoyanov, and F. Vasconcelos,
“Globally optimal fetoscopic mosaicking based on pose graph optimi-
sation with affine constraints,” IEEE Robotics and Automation Letters,
vol. 6, no. 4, pp. 7831–7838, 2021.

[3] K. Wu, Z. J. Daruwalla, K. L. Wong, D. Murphy, and H. Ren, “Develop-
ment and selection of asian-specific humeral implants based on statistical
atlas: toward planning minimally invasive surgery,” International journal
of computer assisted radiology and surgery, vol. 10, no. 8, pp. 1333–
1345, 2015.

[4] J. Wu, M. Liu, Y. Huang, C. Jin, Y. Wu, and C. Yu, “Se (n)++:
An efficient solution to multiple pose estimation problems,” IEEE
Transactions on Cybernetics, 2020.

[5] F. Pomerleau, F. Colas, and R. Siegwart, “A review of point cloud
registration algorithms for mobile robotics,” Foundations and Trends
in Robotics, vol. 4, no. 1, pp. 1–104, 2015.

[6] L. Han, L. Xu, D. Bobkov, E. Steinbach, and L. Fang, “Real-time global
registration for globally consistent rgb-d slam,” IEEE Transactions on
Robotics, vol. 35, no. 2, pp. 498–508, 2019.

[7] A. L. Fuhrmann, R. Splechtna, and J. Přikryl, “Comprehensive calibra-
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