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Abstract—Point set registration (PSR) is an essential problem
in surgical navigation and computer-assisted surgery (CAS). In
CAS, PSR can be used to map the intra-operative surgical space
with the pre-operative volumetric image space. The performances
of PSR in real-world surgical scenarios are sensitive to noise
and outliers. This paper proposes a novel point set registration
approach where the additional features (i.e., the normal vectors)
extracted from the point sets are utilized, and the convergence
of the algorithm is guaranteed from the theoretical perspective.
More specifically, we formulate the PSR with normal vectors
by generalizing the Bayesian coherent point drift (BCPD) into
the six-dimensional scenario. The proposed algorithm is more
accurate and robust to noise and outliers, and the theoreti-
cal convergence of the proposed approach is guaranteed. Our
contributions of this paper are summarized as follows. (1)
The PSR problem with normal vectors is formally formulated
through generalizing the BCPD approach; (2) The formulas for
updating the parameters during the algorithm’s iterations are
given in closed forms; (3) Extensive experiments have been done
to verify the proposed approach and specifically its significant
improvements over the BCPD has been validated.

Index Terms—Computer-assisted surgery (CAS), point set reg-
istration, fuzzy correspondence estimation, variational Bayesian
inference.

I. INTRODUCTION

POINT set registration (PSR) is an essential problem in
research areas of robotics, computer vision [1], aug-

mented reality [2][3], and computer-assisted surgery (CAS)
[4][5]. The PSR aims to estimate the best transformation
and correspondences between two point sets (PSs). PSR is a
critical step in CAS to map the intra-operative space with the
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preoperative volumetric image space [6]. In computer-assisted
orthopedic surgery (CAOS), the image to patient registration
can be broadly classified into two categories: (1) fiducial-based
registration; (2) surface-based registration. In fiducial-based
registration, artificial fiducials (e.g., either steel implants or
landmarks) are first localized in two spaces, and then the
3D position sets with known correspondence are registered
together. In surface-based registration, two surfaces usually
represented by point sets are registered together. The methods
in the first category have their corresponding drawbacks: (1)
the artificial implants are invasive to the patients; (2) the
anatomical landmarks are error-prone to locate in both spaces;
(3) other skin-attached markers can easily move. In contrast,
surface-based registration (mainly point set registration) elim-
inates the additional step of attaching artificial markers or im-
plants to the patient, which brings inconvenience to physicians
and also has the potential to enhance the registration accuracy.
However, PSR in CAS faces several challenges. First, the
intra-operative data is susceptible to noise and outliers which
can negatively affect the registration accuracy. Second, the
convergence of one PSR algorithm should be guaranteed in
both theoretical and practical aspects. The encountered noise
and outliers in practical applications influence adversely both
the correspondence stage where the correspondences between
points in two PSs are constructed, and the transformation stage
where the desired transformation is estimated.

Registration can be categorized into rigid registration [7][8]
and non-rigid registration [9]–[12]. Due to the rigid nature
of bones, rigid registration is used in CAOS. The iterative
closest point (ICP) [13] algorithm is widely used to solve
the rigid registration problem. It takes an iterative approach:
first, to solve the optimal correspondences between points
from two PSs; second, to update the rigid transformation. ICP
iterates these two steps until a certain convergence condition
is satisfied. Despite its many successes, ICP has several
drawbacks, including: 1) being sensitive to noises, outliers,
and the initial parameter values; 2) being easily trapped into
local optimization [14]. We analyze that the above-mentioned
drawbacks are attributed to the following: (1) only positional
information is used; (2) the hard one-to-one correspondence
strategy is used.

Unlike the binary correspondence strategy, fuzzy correspon-
dence estimation can achieve a caution registration [15][16].
In fuzzy sets theory, elements in fuzzy sets have varying
degrees of membership between 0 (False) and 1 (True) [17]. To
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overcome the challenges in PSR for CAS and the drawbacks
of ICP-based methods, we extract the features (the normal vec-
tors) from the raw point set and utilize them in both the fuzzy
correspondence and transformation estimation stages. More
specifically, the fuzzy point correspondences are constructed
in a soft manner, which means one point in the first PS X may
correspond to many points in the second PS Y. The potential
benefit of using more useful information from the raw PS
is that the transformation and the fuzzy correspondences can
be recovered in a more precise manner. The soft-assignment
technique makes the algorithm more robust to noise and
outliers.

In this paper, we propose a novel rigid PSR approach where
the normal vectors extracted from the raw PSs are utilized, and
the algorithm’s convergence is guaranteed in the theoretical
aspect. A generalized PS is composed of positional points and
corresponding normal vectors. In real-world scenarios where
generalized PSs are registered, the normal vectors can be
readily obtained with approaches like these: 1) using the PCA
method for a point and its neighbors [18]; 2) using a tracked
probe with a force/torque sensor or other approaches for range
sensing [19]. Experimental results indicate that the normal
vectors can help significantly to make the PSR more robust and
accurate. Particularly, we formulate the generalized PSR as a
variational Bayesian inference (VBI) problem [20] by utilizing
the Bayesian coherent point drift (BCPD) framework [21].
Naturally, the proposed method is named generalized BCPD
(GBCPD). A hybrid mixture model (HMM) is presented in
GBCPD. HMM is composed of a Gaussian Mixture Model
(GMM) and a Fisher Mixture Model (FMM) [22]. It is a prob-
abilistic model to estimate fuzzy correspondences. Thereinto,
the FMM is defined to represent the error distribution relating
to the normal vectors, while th GMM is chosen to model the
distribution associated with the positional localization error.
The maximum of the posterior probability of the overall HMM
is approximated by an alternative distribution using VBI. The
important benefit over treating PSR as a maximum likelihood
estimation (MLE) problem is that our GBCPD can guarantee
theoretical convergence under variational inference [21].

In this paper, we cast the generalized point set registration
problem into a VBI framework for the first time. To summa-
rize, the main contributions of this paper include:

1) The PSR problem with normal vectors is formally
formulated through generalizing the state-of-the-art
Bayesian Coherent Point Drift (BCPD) approach, whose
convergence is guaranteed in a theoretical manner;

2) The formulas to update the relevant parameters during
the algorithm’s iterations are derived and given in closed
forms;

3) We have conducted extensive experiments on human
femur bone models to verify the effectiveness of the
proposed approach and its significant improvements over
the state-of-the-art registration methods.

II. RELATED WORK

Researchers have put in a lot of effort to tackle the PSR
problem. We briefly review those approaches and their contri-
butions in the following three parts.

A. ICP and Its Variants

ICP is the most commonly used and effective method in
rigid registration. Two steps (correspondence estimation and
update of transformation) are involved in the ICP method.
With the one-to-one correspondence strategy and limited in-
formation, ICP relies on the stringent assumptions of small
disturbance (noise and outliers) and an acceptable initial
alignment which are different to meet in practical applica-
tions. Lots of research has been presented to improve the
ICP’s performance [23]. Two previous studies using the ICP
framework combine both positional points with orientational
vectors in a probabilistic model to improve the robustness of
the 3D/3D rigid registration problem [19][24]. Moreover, some
algorithms aim to solve a globally optimal solution. Go-ICP
[25] utilizes Branch-and-Bound (BnB) method [26] to find the
globally optimal result while it will improve computational
cost. Recently, Anderson acceleration (AA) [27] has been
adopted to improve the convergence speed of ICP. However,
because those methods belong to the ICP framework, they still
suffer heavily from disturbance.

B. Probabilistic Algorithms

A fuzzy assignment strategy is adopted in the category
of probabilistic PSR algorithms, where the fuzzy correspon-
dences in two PS are represented with probabilities in [0, 1].
Coherent Point Drift (CPD) [28] is one typical probabilistic
PSR method that formulates PSR as a maximum likelihood
problem based on a GMM in CPD. The fuzzy correspondences
are built based upon the motion coherence theory [29]. The
EM algorithm is adopted for the maximum likelihood problem,
which means CPD alternates between the calculation of the
posterior of latent variables in E step and updates of the
alignment in M step. A generative model is presented to jointly
register multiple PSs in JRMPC [30]. Its performance exceeds
CPD and other probabilistic models such as GMMReg [31].

Very recently, one variant of CPD, named Bayesian CPD
(BCPD), adopted the VBI method to reformulate CPD as an
analytical approximation problem [21]. The motion coherence
theory of CPD is replaced by variational inference. The
performances of the convergence, acceleration, and parameter
tuning are improved. Without extra features, those methods,
including CPD, JRMPC, and BCPD, are not robust to noise
and outliers.

C. Deep Learning Methods

In recent years, deep-learning-based methods have been
applied to PS problems, such as PointCNN [32] and DGCNN
[33]. Registration is also one of the challenging topics that
use deep learning. Generally, point sets will be cast to a
high-dimensional space to learn features. Then the correspon-
dences can be generated from learned features, and the best
transformations will be estimated. PR-Net [34] estimates the
soft correspondence from features learned by DGCNN and
optimizes the alignment in an end-to-end manner. PointDSC
[35] introduces the constraint of the pairwise similarity to
estimate correspondences.
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Although deep PSR methods bring many improvements
in different aspects, this strategy still has severe limitations.
First, even the SOTA deep PSR approaches are difficult to
generate acceptable inlier ratios for real-world applications
[36] due to the equal treatment between inliers and outliers
in the correspondence estimation; second, many scenarios
exist untagged point cloud data, which cannot satisfy many
supervised approaches; third, for surgical scenarios, deep PSR
methods are unable to give error bounds either theoretically
or practically, which is important for surgeons. By com-
parison, the probabilistic methods can solve effectively the
PSR problems with different inliers rates and noise levels.
More importantly, there are complete methods (e.g., Target
Registration Error (TRE) [37] or Total TRE (TTRE) [38]
model) that can precisely compute the error metric, given the
spatial distributions of the fiducial localization error. Due to
the above reasons, we focus on the probabilistic registration
algorithms in both theoretical and experimental sections in this
article.

D. Motivations

In this paper, we concentrate specifically on the rigid PSR
problem in CAOS applications. There exist noises (e.g., mea-
suring errors) and outliers in the actual medical applications.
With the directional information extracted from the raw PSs,
the proposed method can improve registration accuracy and
robustness even when the PSs are contaminated by noises and
outliers. We also introduce the BCPD backbone architecture
to reformulate the 6D generalized PSR problem. The BCPD
guarantees convergence from the theoretical level and also
demonstrates improved performances.

III. NOTATIONS AND PRELIMINARIES

We obey the following notations in this paper:
• X = [x1, · · · ,xN ] ∈ R3×N - the target positional PS.
• X̂ = [x̂1, · · · , x̂N ] ∈ R3×N - the corresponding target

normal vector set.
• Dx = [X; X̂] ∈ R6×N - the target generalized PS, where

the nth column vector is represented by dn
x.

• Y = [y1, · · · ,yM ] ∈ R3×M - the source positional PS.
• Ŷ = [ŷ1, · · · , ŷM ] ∈ R3×M - the corresponding source

normal vector set.
• Dy = [Y; Ŷ] ∈ R6×N - the source generalized PS,

where the mth column vector is represented by dm
y .

• σ2 ∈ R - isotropic variances of GMMs.
• κ ∈ R - concentration parameter of FMMs.
• α = (α1, · · · , αM )T ∈ [0, 1]M - the membership proba-

bilities which meets
∑M
m=1 αm = 1, where the element

αm represents mixing proportion of HMM components.
• c = (c1, · · · , cN )T ∈ {0, 1}N - cn = 1 represents that

the nth point in X is a inlier, and takes 0 otherwise.
• v = (v1, · · · , vN )T - the index symbols that vn = m

means ym corresponds to xn.
• Θ - the related parameter set {α, c, v,R, t, σ2, κ}.
We briefly introduce a basic understanding of the variational

Bayesian inference (VBI) framework [20]. VBI aims to esti-
mate the latent variables and parameters, Θ, given the data, D.

Therefore, the posterior p(Θ|D) is required. Because of the
expensive computational cost of the posterior distribution, it
is always unworkable in many actual models. To simplify the
computational complexity, we can find a simple distribution
q(Θ) to approximate the real posterior distribution p(Θ|D).
We first introduce the log-marginal probability:

lnp(D) =∫
q(Θ) ln

{
p(D,Θ)

q(Θ)

}
dΘ︸ ︷︷ ︸

L(q)

−
∫
q(Θ) ln

{
p(Θ | D)

q(Θ)

}
dΘ︸ ︷︷ ︸

KL(q‖p)

Next, we want to minimize the KL divergence to solve the
approximate distribution q(Θ). Given the data, we need to
convert the minimization problem into the maximization of
the evidence lower bound (ELBO) L(q). For this optimization
problem, Θ is decomposed as mutually independent compo-
nents Θi, which satisfy q(Θ) =

∏N
i=1 qi(Θi). Then, we can

obtain the general solution of q?j (Θj):

ln q?j (Θj) = Ei 6=j [ln p(D,Θ)] + const, (1)

where Ei 6=j [ln p(D,Θ)]=
∫

ln p(D,Θ)
∏N
i(6=j) qidΘi. Finally,

each qj can be updated alternately using the coordinate ascent
algorithm, which makes L(q) increase monotonically and
guarantees convergence.

IV. METHODS

A. Problem Formulation

Given two 6D generalized PSs (Dx,Dy), the positional
points and normal vectors in Dy are regarded as the centroids
of the Gaussian Mixture Model (GMM) and the mean direc-
tions of the Fisher Mixture Model (FMM) respectively. The
positional vectors and normal vectors in generalized target PS
Dx are sampled from GMMs and FMMs respectively. The
rigid point set registration (PSR) aims to find the optimal
rotation matrix R ∈ SO(3) and the translation vector t for
the best alignment between Dx and Dy. Given vn = m (nth
generalized target point is generated from the m-th HMM
component), the probability density function (PDF) of dn

x is
defined as follows:

p
(
dn
x | vn = m; R, t, σ2, κ

)
=

κ

2π (eκ − e−κ)
eκ(Rŷm)>x̂n︸ ︷︷ ︸

x̂n∼F(µo(ŷm,R),κ)

· 1

(2πσ2)
3
2

e
− 1

2σ2
‖xn−(Rym+t)‖2

︸ ︷︷ ︸
xn∼N(µp(ym,(R,t)),σ2)

=
κ

(2πσ2)
3
2 · 2π (eκ − e−κ)

e
κ(Rŷm)>x̂n− 1

2σ2
||xn−(Rym+t)‖2

,

(2)
where F(µo, κ) indicates the vMF distribution while
N (µp, σ

2) represents the Gaussian distribution. We use the
symbol ϕmn to represent Eq. (2). Different from the setting
of CPD, we add a constraint for the outlier distribution: the
integral of pout(xn) over R3 should be one. In CPD, this
integral will be approximately zero when the number of points
in target PS becomes larger. Therefore, we assume that V
is the minimum volume that includes all points in Dx. The
outlier distribution is defined as pout(xn) = 1/V to avoid the
normalization problem.
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Fig. 1. The GBCPD framework in CAOS. First, the bone (here we use the human femur as an example) is segmented from the medical images. Afterward,
the femur model, which can be represented with point sets, is reconstructed from the segmented images. Meanwhile, the normal vectors are calculated from
the raw PS. In the target PS, both the positional and normal vectors are usually disturbed by noise and outliers. To model the error distributions with positional
and normal vectors, we use the Gaussian and von-mises Fisher distributions. Then the 6D PSs are inputted into the GBCPD. Finally, transformation parameters
are obtained after the optimization process.

In addition, to make the point correspondence clearer, we
introduce a new definition δm (vn) where δm (vn) takes 1 if
vn = m, and is 0 otherwise. Then, the joint probability density
function of p (dn

x, cn, vn) given (Dy, α,R, t, σ
2, κ) is defined

as:

p
(
dn
x, vn, cn | Dy, α,R, t, σ

2, κ
)

= {ωpout (xn)}1−cn
{

(1− ω)
∏M
m=1 (αmϕmn)

δm(vn)
}cn

,

(3)
which includes two cases depending on whether dn

x is an
outlier. ω ∈ [0, 1] is the outlier probability that dn

x belongs
to outliers. The whole process of our proposed registration
framework for CAOS is shown in Fig. 1.

In what follows, we will integrate the HMM into the BCPD
framework and solve the optimal transformation by the VBI
method.

B. Variational Bayesian Formulation

Our purpose is to solve the parametric optimization prob-
lem. In this article, we adopt the VBI method to obtain
a distribution q(Θ) which can represent the real posterior
distribution p(Θ|Dx,Dy) approximatively. We first introduce
the prior distribution of the parameters in Θ and then integrate
the prior into the HMM to formulate the joint distribution
which is used to make the variational processing for the
proposed model.

1) Prior Distribution:
To control the mixture proportion of HMM components, a

Dirichlet distribution is defined as the prior p(α):

p(α) = Dir(α | λ1M ) = C(λ1M )

M∏
m=1

αλ−1m ,

where 1M is an M × 1 all-ones vector, and C(λ1M ) can be
regarded as a normalization constant. λ is the effective prior
number. With bigger λ, comes more influence by the prior
rather than by the data. For the simplicity of the variational

model, we don’t introduce the priors over the source general-
ized PS Dy and other parameters in Θ.

2) Joint Probability Distribution: Integrating the prior into
the HMM, the full joint probability distribution is formulated:

p(Dx,Dy,Θ) ∝ p(α)

N∏
n=1

p
(
dn
x, cn, vn | Dy, α,R, t, σ

2, κ
)
(4)

C. Variational Bayesian Approximate Posteriors
In this part, we derive the approximate posterior distribu-

tions based on the variational Bayesian formulation mentioned
in the previous Section B. Considering the mean field theory
and the conditional independence relation between parameters,
we define a variational distribution which can be factorized as:

q(Θ) = q1(α)q2(c, v)q3(R, t, σ2, κ). (5)

which can solve a tractable practical solution for our HMM.
Then we will update these three factors using the general
solution (1).

1) q1(α):
According to the product rule for probabilities and the

general result (1), given q2(c, v) and q3(R, t, σ2, κ), we can
derive the log of the optimized solution for q?1(α):

ln q?1(α) = Eq2,q3 [ln p(Dx,Dy,Θ)] + const. (6)

Substituting the decomposition (4) into the above equation
and absorbing the terms that don’t depend on α into the
normalization constant, we obtain

ln q?1(α) =

N∑
n=1

M∑
m=1

Eq2,q3 [cnδm(vn) ln(αmϕmn)]

+

M∑
m=1

lnαλ−1m + const

=

M∑
m=1

lnαλ−1+ρmm + const,

(7)
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where ρm =
∑N
n=1 pmn. We define pmn as the posterior

probability of HMM components which represents the fuzzy
correspondence probability between ym and xn, and it is de-
fined as pmn = E[cnδm(en)] ∈ [0, 1]. Taking the exponential
of ln q?1(α), we obtain q?1(α) which also follows a Dirichlet
distribution:

q?1(α) = Dir(α | λ1M + ρ) (8)

where ρ = P1N , P = (pmn)M×N is the probability matrix.
2) q2(c, v):
Next, we continue to update q2(c, v) which represents the

fuzzy shape correspondences between two PSs. Same as the
previous update of q1(α), the log of the optimized solution
for q2(c, v) is written as follows:

ln q?2(c, v) =

N∑
n=1

[
ln {ωpout (xn)}(1−cn)

+

M∑
m=1

ln {(1− ω) 〈αm〉 〈ϕmn〉}cnδm(vn)

]
+ const,

(9)
where 〈•〉 represents the operator exp(E[ln •]). We have
solved q1(α) following a Dirichlet distribution. According to
the standard solutions of the Dirichlet distribution, we can find:

〈αm〉 = exp[ψ(ρm + λ)− ψ(Np + λM)], (10)

where ψ(•) represents the digamma function and Np =∑N,M
n,m=1 pmn. In this paper, we focus on the rigid PSR with

isotropic positional assumption, so 〈ϕmn〉 can be simplified
as follows:

〈ϕmn〉 = ϕmn. (11)

We can rewrite q?2(c, v) into q?2(c, v) =
∏N
n=1 q

?(n)
2 (cn, vn),

where

q
?(n)
2 (cn, vn) ∝

{ωpout (xn)}(1−cn)
M∏
m=1

{(1− ω) 〈αm〉 〈ϕmn〉}cnδm(vn) .

(12)
We define the normalization constant of the q

?(n)
2 above as

A = ωpout (xn)+(1−ω)
∑M
m=1 〈αm〉 〈ϕmn〉 , which includes

all pairs of vn and cn. For each pair of vn and cn, only
one component is available. Then, we derive the closed-form
solution as the following:

q?2(c, e) =

N∏
n=1

(1− ρ′n)
1−cn

{
ρ′n

M∏
m=1

(
pmn
ρ′n

)δm(en)
}cn

,

(13)
where ρ′n =

∑M
m=1 pmn represents the posterior probability

that xn belongs to an inlier. The probability vector ρ′ =
(ρ′1, · · · , ρ′N ) can be represented as PT 1M .

The fuzzy correspondence probability pmn is defined as:

pmn =
(1− ω) 〈αm〉 〈ϕmn〉

ωpout (xn) + (1− ω)
∑M
k=1 〈αk〉 〈ϕkn〉

. (14)

Note that these three representations about pmn are consistent,
which means pmn = q

?(n)
2 (cn = 1, vn = m) = E[cnδm(vn)].

From Eq. (13), we can easily observe that q?2(c, v) is composed

of a Bernoulli distribution (the posterior marginal distribution
of cn) and a categorical distribution (the posterior conditional
distribution of vn when cn is 1). This part about q2(c, v)
guarantees that the update of the posterior probability matrix P
improves the ELBO. Meanwhile, other parameters associated
with pmn (e.g., Np, ρ and ρ′) are updated.

3) q3(R, t, σ2, κ):
Different from the VBI method to update q1 and q2, for

q3 we update the Θ3 = (R, t, σ2, κ) by directly maximizing
the ELBO L(q). Here, we use the Dirac delta function [39] to
represent q3, which ensures that it is characterized by its mode.
By maximizing the ELBO over the parameters of Θ3, we can
obtain a point mass which can improve the lower bound. With
q1 and q2, the ELBO can be defined as:

L(q) =

∫
q3 · Eq1,q2 [ln p(Dx,Dy,Θ)]dΘ3 + const.

(15)
The derivation can be found in Appendix-C. Moreover, we
denote the expected log joint probability distribution by Q(Θ).
Then this optimization problem [20] is simplified to solve the
maximization of Q(Θ):

Q(Θ) =Eq1,q2 [ln p(Dx,Dy,Θ)] =

−
N∑
n=1

M∑
m=1

pmn

(
1

2σ2
(xn − µp)>(xn − µp)

−κ((Rŷm)
T

x̂n)
)
− 3

2
NP log σ2

−NP log
(
eκ − e−κ

)
+NP log κ+ const.

(16)

where µp = t + Rym and Np =
∑N,M
n,m=1 pmn. For the

maximization Q(Θ) with respect to each parameter in Θ3,
we first compute the partial derivative of (16) over σ2 and set
it to zero. Then the optimized σ2? can be solved as:

(σ2)? =

∑N
n=1

∑M
m=1 pmn

(
‖xn − µp‖2

)
3Np

(17)

Then, to find the optimal t?, we set Eq. (17) as a function
of t, denoted by ξ(t). Observing Eqs. (16) and (17), we can
find that minimization of ξ(t) is to maximize the Q(Θ) and
L(q). The minimization problem t? = arg mint ξ(t) can be
solved by differentiating ξ(t) with respect to t and setting it to
zero. After simple manipulations, t? can be solved as follows:

t? = x̄−Rȳ, (18)

where

x̄ = 1
Np

∑N,M
n,m=1 pmnxn = 1

Np
XTPT1M ,

ȳ = 1
Np

∑N,M
n,m=1 pmnym = 1

Np
YTP1N .

x̄ and ȳ represent the expectations of two positional PSs
respectively.
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Before Registration

Rot Error: 19.6522°
Trans Error: 17.2971mm

(a)

Iteration 5

Rot Error: 6.2953°
Trans Error: 3.5669mm

(b)

Iteration 10

Rot Error: 2.3782°
Trans Error: 0.8877mm

(c)

Iteration 100

Rot Error: 0.8753°
Trans Error: 0.2072mm

(d)

Ground Truth

(e)

Fig. 2. Registration process using proposed GBCPD with 50% outliers and 1mm/1◦ noise. (a)~(d): the registration result before registration, 5th, 10th, and
100th iteration respectively; (e): ground truth. The points in the target set X, points in the source set Y, and outliers are represented by green, blue, and red
dots respectively.

To solve optimal R? that maximizes the ELBO, we should
solve the constrained maximization problem as follows:

R? = arg max
R

Q(Θ)

= arg max
R
−

N∑
n=1

M∑
m=1

pmn

(
1

2σ2
‖xn − (Rym + t)‖2

−κ
(

(Rŷm)
T

x̂n

))
, s.t. RTR = I3, det(R) = 1

(19)
To succinctly represent the calculation process of Eq. (19), we
introduce these notations:

x̃n = xn − x̄, ỹm = ym − ȳ,

Ho = κ
∑N,M
n,m=1 pmnŷmx̂T

n,

Hp = 1
σ2

∑N,M
n,m=1 pmnỹmx̃T

n,

H = Ho + Hp.

Then substituting the optimized t? (18) into R? (19), we can
rewrite R? as follows:

R? = arg max
R

(
1

σ2

N∑
n=1

M∑
m=1

pmnx̃T
nRỹm

+κ

N∑
n=1

M∑
m=1

pmn(Rŷm)Tx̂n

)
= arg max

R
Tr (R(Hp + Ho)) ,

(20)

where Tr(•) represents the trace of a matrix. Using the lemma
proposed in [40], we can obtain the optimal R?:

R? = Vd(1, 1, det(VUT))UT, (21)

where U and V are from the factorization of the form H =
UH′V

T after performing the SVD of matrix H, and d(•)
represents the diagonal matrix of a vector. Then applying the
optimal R? into (17) and (18), we have:

t? = x̄−R?ȳ,

(σ2)? =

∑N
n=1

∑M
m=1 pmn

(
‖xn − (R?ym + t?)‖2

)
3Np

.
(22)

Finally, we adopt the method proposed in [22] to update
κ. According to the different sources, κ is divided into two

parts: positional error part and orientational error part. The
part caused by the positional error is defined as:

errp =

∑NM
n,m=1 pmnx̃T

nR?ỹm∑NM
n,m=1 pmn ‖R?ỹm‖ ‖x̃n‖

. (23)

The other part generated from the orientational error is repre-
sented as:

erro =
1

Np

NM∑
n,m=1

pmn (R?ŷm)
T

x̂n. (24)

We combine these two parts and obtain err = εerrp + (1 −
ε)erro with ε = 0.5. Then the optimal κ? can be updated as
follows:

κ? =
err(3− err2)

1− err2
. (25)

D. Implementation Details

According to the closed-form solutions above, q1, q2, q3 are
updated alternately until convergence. The detailed procedures
of our GBCPD method are summarized in Algorithm 1. We
first illustrate the initialization of the model parameters. we
empirically initialize κ= 10, and ω = 0.5. We also initialize
〈αm〉 to 1/M and λ to infinity to keep consistent with BCPD
and CPD. One important constraint is that the upper bound κ
is set to 100 in each iteration to guarantee the computability
of eκ. We adopt the following criteria as conditions of con-
vergence: 1) the change ∆σ2 between successive iterations is
smaller than 10−6; 2) σ2 is below the threshold value 10−6;
3) the maximum iterations exceed 100 times.

V. EXPERIMENTS

Two series of experiments are designed to validate our
GBCPD method. As shown in Figs. 1 and 2, the noise-free
source PS Y is sampled from the CT model of the femur.
The corresponding unit normal vector set Ŷ is extracted using
the PCA technique. The noise-free target generalized PS Dx

is generated by sampling from the source generalized PS
Dy. We add noise vectors sampled from the two different
noise levels into Dx in two series of experiments respec-
tively. Moreover, each group further consists of nine cases
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TABLE I
ROTATION AND TRANSLATION ERRORS UNDER THE LOW NOISE LEVEL. DIFFERENT RATES OF OUTLIERS ARE INJECTED INTO Dx .

Error Type Method 10% 20% 30% 40% 50% 60% 70% 80% 90%

Rotation (◦)

ICP [13] 2.6877 3.6509 3.9594 4.5431 4.8543 5.2485 5.3575 4.8144 5.2281
CPD [28] 1.5168 1.1019 1.1783 1.4665 1.8922 2.8537 3.9650 4.6353 5.3339

BCPD [21] 1.6861 1.8341 1.0474 2.5165 2.8246 2.9246 3.4831 3.2950 3.4021
Proposed Method 0.9530 1.0261 1.0353 1.0143 1.1096 1.0123 0.9228 1.0080 1.1005

Translation (mm)

ICP [13] 1.0479 1.4309 1.6958 1.7979 1.8395 2.0176 2.1533 2.1878 2.0304
CPD [28] 3.3426 3.4244 3.3414 3.3038 3.5482 3.7009 3.8305 4.2901 4.0380

BCPD [21] 3.2149 3.1650 3.1210 2.9859 3.3414 3.1810 3.2779 3.4989 3.4497
Proposed Method 0.4804 0.5800 0.5228 0.5771 0.5204 0.5696 0.5633 0.5968 0.4781

TABLE II
ROTATION AND TRANSLATION ERRORS UNDER THE HIGH NOISE LEVEL. DIFFERENT RATES OF OUTLIERS ARE INJECTED INTO Dx.

Error Type Method 10% 20% 30% 40% 50% 60% 70% 80% 90%

Rotation (◦)

ICP [13] 3.5297 4.2803 4.5789 5.0979 5.3169 4.9937 5.2821 5.9766 5.1078
CPD [28] 2.3523 2.2863 2.6430 3.1757 2.7845 3.9739 4.7553 5.2052 5.1097

BCPD [21] 2.5191 2.3988 2.7055 3.2340 3.0436 3.4137 3.5485 3.7751 3.7763
Proposed Method 2.2005 2.2277 2.5437 2.3418 2.2074 2.3365 2.1846 2.4130 2.8599

Translation (mm)

ICP [13] 1.3525 1.7002 1.9964 1.9823 2.1776 2.0680 2.0100 2.1745 2.0908
CPD [28] 3.0710 3.3535 3.4965 3.4642 3.5874 3.7885 4.1659 4.4055 3.8958

BCPD [21] 3.1502 3.3460 3.2847 3.3272 3.1086 3.2112 3.3821 3.3514 3.1342
Proposed Method 1.1780 1.1585 1.1992 1.2345 1.1735 1.1423 1.2638 1.3381 1.2843

Algorithm 1 Robust Generalized Bayesian Coherent Point
Drift

1: Initialization: R = I3, t = 03×1, ω, κ, λ, σ2 =
1

3MN

∑NM
n,m=1 ‖xn − ym‖2, 〈αm〉 = 1

M .
2: repeat
3: - Update 〈αm〉, 〈ϕmn〉 and P = (pmn)M×N by (10),

(11) and (14) respectively
4: - Update the transformation R and t by (21) and (22)
5: - Update HMM’s parameters σ2 and κ by (22) and (25)
6: until Convergence.
7: return R? and t?.

where the different ratios of outliers are injected into Dx to
generate the disturbed Dx. We conduct 100 registration trials
in each case and set the number of inliers in Dx to 100.
The ground truth of the rigid transformation [Rtrue, ttrue]
in each case is randomly sampled from the range [10◦, 25◦]
and [10mm, 25mm] respectively. Note that our generalized
BCPD method is intended to solve the local fine registration
problem in computer-assisted orthopedic surgery (CAOS). In
the general procedure of CAOS, the coarse registration that
utilizes the biological anatomical landmarks will be finished
before the fine registration. Therefore, the misalignment is set
in a small range. Then the final misaligned source generalized
PS Dy is generated by performing the real [Rtrue, ttrue] to
(Y, Ŷ). In each registration trial, the misaligned source PS
Dy and disturbed target PS Dx (with further noise injected)
are registered together.

The rotation error and translation error are chosen as reg-
istration metrics: θerror = arccos

[(
tr(RtrueR

>
cal)− 1

)
/2
]
,

and terror = ‖tcal− ttrue‖2, where Rcal and tcal are the es-
timated transformation between disturbed Dx and misaligned
Dy. We calculate the mean error values of 100 registration
trials in each case. The performance of our GBCPD method
is evaluated by comparing it with several SOTA registration

algorithms: ICP [13], CPD [28], and BCPD [21].

A. Low Noise Level

In the first group of experiments, the final disturbed Dx are
further processed by two steps: 1) adding the noise vectors
sampled from the zero-mean Gaussian (positional) noise with
1mm standard deviations (std) and vMF (orientation) noise
with 1◦ std to PSs X and X̂ respectively, where κ = 3200
corresponds to 1◦ std [19]; 2) injecting outliers with different
rates from 10% to 90% with an interval of 10%. As we have
mentioned, the number of inliers is set to 100 in each case.
The outliers are produced by applying displacement vectors
uniformly sampled from [20mm, 30mm] to points randomly
sampled from the CT model PS. Then the final disturbed Dx

is obtained with N = 110 to 190.

B. High Noise Level

Like the setting of the low-level noise group, κ is equated
to 800 to obtain 2◦ std noise. Then both positional and
orientational noises sampled from 2mm/2◦ stds are injected
into Dx. After outliers are also injected, we obtain the second
group of disturbed Dx.

VI. RESULTS AND DISCUSSION

A. Two Noise Levels

1) Quantitative Results: The mean values of rotation and
translation errors with different ratios of outliers under low-
level and high-level noise are summarized in Tables I and
II respectively. In the first group, the low-level noise vectors
are injected into the target PS Dx. Table I indicates that in
ICP [13], CPD [28], and BCPD [21] methods, both rotation
and translation error values increase as the rate of outliers
increases. In contrast, the performance of our GBCPD method
is still stable with different outliers. In each case, our proposed
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Before Registration

Rot Error: 10.7861°
Trans Error: 11.2275mm

(a)

ICP

Rot Error: 1.8169°
Trans Error: 1.0803mm

(b)

CPD

Rot Error: 0.9807°
Trans Error: 2.0361mm

(c)

BCPD

Rot Error: 1.9166°
Trans Error: 2.3771mm

(d)

Ours

Rot Error: 0.5515°
Trans Error: 0.4728mm

(e)

Fig. 3. Subfigure (a) represents the result before the registration. Subfigures (b)~(d) represent three registration results using ICP [13], CPD [28], BCPD
[21], and our method respectively. 1mm/1◦ noise and 20% outliers are injected into Dx. The points in the source PS, points in the target PS, and outliers
are represented by blue, green, and red dots respectively.

Before Registration

Rot Error: 19.5839°
Trans Error: 20.8690mm

(a)

ICP

Rot Error: 3.9371°
Trans Error: 1.7429

(b)

CPD

Rot Error: 5.6520°
Trans Error: 6.9649

(c)

BCPD

Rot Error: 4.7897°
Trans Error: 6.1769

(d)

Ours

Rot Error: 0.9697°
Trans Error: 0.8766

(e)

Fig. 4. Subfigure (a) represents the result before the registration. Subfigures (b)~(d) represent three registration results using ICP, CPD, BCPD, and our
method respectively. 1mm/1◦ noise and 90% outliers are injected into Dx. The points in the source PS Dy , points in the target PS Dx and outliers are
represented by blue, green, and red dots respectively.

method outperforms ICP, CPD, and BCPD, especially in the
cases with larger percentages of outliers. With 90% outliers
injected, the difference of rotation error is up to about 4◦

compared with ICP and CPD. Meanwhile, the difference of
translation error is more than 3mm compared with CPD
and BCPD. Our method achieves the smallest rotation and
translation errors, where the mean values of nine cases are
1.0202◦ and 0.5432mm respectively.

In the second group, the high-level noise is injected into
Dx. Compared with Table I, Table II shows that all methods
perform worse with high-level noise, especially for rotation
results. However, when the outliers increase, our GBCPD
method is still stable like in Table I and performs best among
these four algorithms, which demonstrates the accuracy and
robustness of the GBCPD method.

Through these two sets of experiments, we can also find
that CPD and BCPD perform badly on the estimation of
the translation vector, even worse than ICP. By utilizing the
normal vectors in the registration process, the performance
of estimating the translation vector is significantly improved,
which greatly exceeds the accuracy of the ICP algorithm.

We further use the ttest function in MATLAB to compute
the p-value of our algorithm compared with ICP, CPD, and
BCPD respectively. Almost all p-values are not more than
0.05, which represents a 0.05 significance level. It indicates
that the results in our experiments are statistically significant.

2) Qualitative Results: Figs. 3, 4, 5, and 6 show the
qualitative registration results using ICP, CPD, BCPD, and our
methods respectively. For each noise level, we choose 20% and
90% outliers to show the results. As it can be seen from these
figures, the green points which represent the intra-operative
inlier points are well registered to their corresponding blue
points after registration using our method even with a large
percentage of outliers (90% outliers) in the target set Dx.

In Fig. 4, a sagittal view is adopted to obtain a more
intuitive display. The other three figures are observed from the
coronal view. We can find that the condition of noise and the
number of outliers have a great influence on the registration
performances. Compared results under low-level noise (Fig. 3
and Fig. 4) with high-level noise (Fig. 5 and Fig. 6), high-level
noise leads to worse registration performances for all methods,
while our methods are still in a small range. Compared Fig.
3 with Fig. 5, we can clearly observe that two PSs(denoted
with green and blue dots respectively) are successfully aligned
using our method with a large percentage of outliers.

B. Convergence Speed

Fig. 2(a)-(d) shows the process of PSR in 0th (before
registration), 5th, 10th, and 100th iteration using the GBCPD
method. Fig. 2(e) presents the registration result with the
ground truth [Rtrue, ttrue]. We can see that the performance
in the 10th iteration is pretty close to the performance in
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Before Registration

Rot Error: 16.3366°
Trans Error: 15.0596mm

(a)

ICP

Rot Error: 5.2715°
Trans Error: 2.0598mm

(b)

CPD

Rot Error: 3.2524°
Trans Error: 3.0739mm

(c)

BCPD

Rot Error: 2.5750°
Trans Error: 2.9107mm

(d)

Ours

Rot Error: 2.3122°
Trans Error: 1.2603mm

(e)

Fig. 5. Subfigure (a) represents the result before the registration. Subfigures (b)~(d) represent three registration results using ICP, CPD, BCPD, and our
method respectively. 2mm/2◦ noise and 20% outliers are injected into Dx. The points in the source PS, points in the target PS, and outliers are represented
by blue, green, and red dots respectively.

Before Registration

Rot Error: 21.7981°
Trans Error: 16.2458mm

(a)

ICP

Rot Error: 5.6561°
Trans Error: 1.1438mm

(b)

CPD

Rot Error: 4.7220°
Trans Error: 6.1322mm

(c)

BCPD

Rot Error: 4.4497°
Trans Error: 3.8934mm

(d)

Ours

Rot Error: 1.9157°
Trans Error: 0.7601mm

(e)

Fig. 6. Subfigure (a) represents the result before the registration. Subfigures (b)~(d) represent three registration results using ICP, CPD, BCPD, and our
method respectively. 2mm/2◦ noise and 90% outliers are injected into Dx. The points in the source PS Dy , points in the target PS Dx, and outliers are
represented by blue, green, and red dots respectively.

the 100th iteration. Furthermore, we choose one case which
is injected 1mm/1◦ noise and 50% outliers to evaluate the
convergence speed of four algorithms.

Fig. 7 indicates the convergence speeds of the rotation error
and translation error respectively. Compared with the other
three methods, our GBCPD method achieves the smallest error
with the fastest convergence speed. BCPD also converges fast
at first, but after about the 10th iteration it becomes slower
and the final results are worse in terms of both rotation and
translation errors. The convergence speed of CPD is similar
to that of BCPD, and its result is only a little lower than
that of BCPD. ICP has a slower convergence speed and the
biggest errors for the rotation error. For the translation error,
there are fluctuations after about the 10th iteration and the
final translation error is bigger than ours and smaller than that
of CPD and BCPD.

C. Robustness to Parameter ω

The parameter ω denotes the weight of pout(xn) which also
means the prior that xn is an outlier. Five different ω from
0.1 to 0.9 with an interval of 0.2 are chosen to evaluate the
effect of ω on the PSR results. We also perform 100 trials

in each case. Fig. 8 shows the rotation errors and translation
errors with 1mm/1◦ noise and 50% outliers injected into the
target PS Dx. We find that ω has a small influence on the final
registration results under different values. Finally, we choose
ω = 0.5 in our experiments.

D. Discussion

To summarize, our proposed GBCPD method exceeds the
SOTA methods in the following aspects: 1) registration ac-
curacy; 2) robustness to noise and outliers; 3) convergence
speed.

This paper generalizes the recently proposed Bayesian Co-
herent Point Drift (BCPD) method to the six-dimensional
scenario. The posterior distribution of the model parameters
is factorized into the product of three components: (1) that
of the membership probability of both inliers’ and outliers’
distributions; (2) that of the fuzzy correspondence variables;
(3) that of the rotational matrix, translational vector, the
variance with the positional localization error, and the con-
centration parameter with the estimation of the normal vectors.
With the variational Bayesian setting, the convergence of the
algorithm is guaranteed in the theoretical aspect. In terms of
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Fig. 7. Convergence speed of four methods with respect to the iterations. 1mm/1◦ noise and 50% outliers are injected into the generalized target PS Dx.
Left: rotation error. Right: translation error.
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Fig. 8. Boxplots of rotation errors (left) and translation errors (right). 1mm/1◦ noise and 50% outliers are injected into the generalized target PS Dx.

the performances, compared to the BCPD, both the rotation
and translation error values are reduced with the additional
normal vectors. More importantly, the proposed method is
quite robust to increasing rates of outliers.

We look forward to inspiring more advanced PSR methods
that utilize orientational features. Three main limitations exist
in the proposed GBCPD method: (1) GBCPD is still to solve
the local rigid PSR which means the coarse registration should
be performed before using our GBCPD. We will develop the
global method to get rid of the dependence on anatomical land-
marks in the coarse registration. (2) The features of local struc-
tures that can help to estimate the correspondences [41] are
not considered in our GBCPD. These local structures can be
lightly incorporated into our GBCPD. (3) The positional error
distribution is assumed to be isotropic. However, anisotropic
uncertainty is very common in biomedical applications. In the

future, we will introduce the anisotropic positional error to
satisfy the actual situation.

VII. CONCLUSIONS

In this paper, we propose a robust variational bayesian
inference based registration method under the hybrid mixture
model (HMM) framework. In addition to the positional infor-
mation in the raw point sets, the normal vectors generated from
the raw point sets are also used in the registration process. Our
method demonstrates a better performance on robustness and
accuracy compared with the SOTA registration approaches.
At the same time, the proposed GBCPD method guarantees
theoretical convergence. The results demonstrate great clinical
potentials in computer-assisted surgery (CAS) and other point
set registration (PSR) applications.

The work can be further improved in the following aspects.
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Firstly, the prior distributions over σ, κ, or the variables R, t
can be introduced to make the generative model more accurate,
such as the Gaussian-Wishart distribution and the Gaussian-
Gamma distribution [20]. Secondly, we explore several ways
to accelerate the complex model [42]. Thirdly, we will further
consider the anisotropic cases in both rotation and transla-
tion errors to reduce related errors motivated by practical
computer-assisted surgery (CAS) applications. The anisotropic
uncertainty is very common in biomedical applications. For
example, there are larger standard deviations in different di-
rections of an optical tracking system (OTS) used for surgical
instrument tracking [19].

APPENDIX

A. Introduction to vMF Distribution

The vMF distribution is widely used to model the directional
features in high-dimensional data [22]. In general, the mean
and concentration parameters (µo and κ) of FMM should be
estimated. Based on the vMF distribution, the 3-dimensional
normal vectors x̂n are distributed on the unit hypersphere. Its
PDF is formulated as:

p(x̂n | µo,κ) =
κ

2π (eκ − e−κ)
eκµ

>
o x̂n (26)

where ||x̂n|| = 1, and µo is the mean direction.

B. Derivation of Eq. (9)

Given q?1(α) and q?3(R, t, σ2, κ), the closed-form solution
of q?2(c, v) can be obtained using the general result of VBI in
Eq. (1) as follows:

ln q?2(c, v) = Eq1,q3 [ln p(Dx,Dy,Θ)] + const. (27)

Then, substituting the full joint probability density function
Eq. (4) into this equation, we have:

Eq.(27) = Eq1,q3

[
ln

(
p(α)·

N∏
n=1

p
(
dn
x, cn, vn | Dy, α,R, t, σ

2, κ
))]

+ const.

(28)

Substitute the joint probability density function Eq. (3) and
remove the terms that are independent of (c, v) into the

normalization constant as follows,

Eq.(28)

= Eq1,q3

[
ln

(
p(α)

N∏
n=1

{ωpout (xn)}1−cn

{
(1− ω)

M∏
m=1

(αmϕmn)
δm(vn)

}cn)]
+ const.

= Eq1,q3

[
N∑
n=1

[
ln {ωpout (xn)}(1−cn)

]
+

N∑
n=1

ln(1− ω)(cn)

+

N∑
n=1

cn

M∑
m=1

δm (vn) ln (αmϕmn)

]
+ const.

=

N∑
n=1

{
ln {ωpout (xn)}(1−cn) + cn ln(1− ω)

+

M∑
m=1

cnδm (vn)Eq1,q3 [ln (αmϕmn)]

}
+ const.

(29)
By definition, we have cn =

∑M
m=1 cnδm (vn), and denote

〈αm〉 = exp(E[lnαm]) and 〈ϕmn〉 = exp(E[lnϕmn]). Then,
the Eq. (29) can be written as follows:

ln q?2(c, v) =

N∑
n=1

[
ln {ωpout (xn)}(1−cn)

+

M∑
m=1

ln {(1− ω) 〈αm〉 〈ϕmn〉}cnδm(vn)

]
+ const,

(30)
which is the equation in Eq. (9). Then, following the instruc-
tions in the section IV.C.2, the final closed-form solution of
q?2(c, v) can be obtained.

C. Derivation of Eq. (15)

We denote Θ12 = (α, c, v),Θ3 = (R, t, σ2, κ) in this part.
Given q(Θ12), we have:

L(q) =

∫
q(Θ) · ln p(Dx, Dy,Θ)

q(Θ)
dΘ

=

∫
q (Θ12Θ3) · ln p (Dx, Dy,Θ12,Θ3)

q (Θ12) · q (Θ3)
dΘ12dΘ3

=

∫
q (Θ12Θ3) ln

p (Dx, Dy,Θ12,Θ3)

q (Θ12)
dΘ12dΘ3

−
∫
q (Θ12) q(Θ3) ln q(Θ3)dΘ12dΘ3

=

∫
q (Θ3)Eq(Θ12)[ln p (Dx, Dy,Θ12,Θ3)]dΘ3

− Eq(Θ12) [ln q (Θ12)]−
∫
q(Θ3) ln q(Θ3)dΘ3

=

∫
q (Θ3)Eq(Θ12)[ln p (Dx, Dy,Θ12,Θ3)]dΘ3

−
∫
q(Θ3) ln q(Θ3)dΘ3 + const,

(31)

Because q3 (Θ3) is a Dirac delta function, we can remove
the entropy term −

∫
q(Θ3) ln q(Θ3)dΘ3. Then Eq. (15) is

derived.



12

REFERENCES

[1] A. Fan, J. Ma, X. Jiang, and H. Ling, “Efficient deterministic search with
robust loss functions for geometric model fitting,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, pp. 1–1, 2021.

[2] A. L. Fuhrmann, R. Splechtna, and J. Přikryl, “Comprehensive calibra-
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