22 research outputs found

    Variational bayes for estimating the parameters of a hidden Potts model

    Get PDF
    Hidden Markov random field models provide an appealing representation of images and other spatial problems. The drawback is that inference is not straightforward for these models as the normalisation constant for the likelihood is generally intractable except for very small observation sets. Variational methods are an emerging tool for Bayesian inference and they have already been successfully applied in other contexts. Focusing on the particular case of a hidden Potts model with Gaussian noise, we show how variational Bayesian methods can be applied to hidden Markov random field inference. To tackle the obstacle of the intractable normalising constant for the likelihood, we explore alternative estimation approaches for incorporation into the variational Bayes algorithm. We consider a pseudo-likelihood approach as well as the more recent reduced dependence approximation of the normalisation constant. To illustrate the effectiveness of these approaches we present empirical results from the analysis of simulated datasets. We also analyse a real dataset and compare results with those of previous analyses as well as those obtained from the recently developed auxiliary variable MCMC method and the recursive MCMC method. Our results show that the variational Bayesian analyses can be carried out much faster than the MCMC analyses and produce good estimates of model parameters. We also found that the reduced dependence approximation of the normalisation constant outperformed the pseudo-likelihood approximation in our analysis of real and synthetic datasets

    Computing the Cramer-Rao bound of Markov random field parameters: Application to the Ising and the Potts models

    Get PDF
    This report considers the problem of computing the Cramer-Rao bound for the parameters of a Markov random field. Computation of the exact bound is not feasible for most fields of interest because their likelihoods are intractable and have intractable derivatives. We show here how it is possible to formulate the computation of the bound as a statistical inference problem that can be solve approximately, but with arbitrarily high accuracy, by using a Monte Carlo method. The proposed methodology is successfully applied on the Ising and the Potts models.% where it is used to assess the performance of three state-of-the art estimators of the parameter of these Markov random fields

    A cross-center smoothness prior for variational Bayesian brain tissue segmentation

    Full text link
    Suppose one is faced with the challenge of tissue segmentation in MR images, without annotators at their center to provide labeled training data. One option is to go to another medical center for a trained classifier. Sadly, tissue classifiers do not generalize well across centers due to voxel intensity shifts caused by center-specific acquisition protocols. However, certain aspects of segmentations, such as spatial smoothness, remain relatively consistent and can be learned separately. Here we present a smoothness prior that is fit to segmentations produced at another medical center. This informative prior is presented to an unsupervised Bayesian model. The model clusters the voxel intensities, such that it produces segmentations that are similarly smooth to those of the other medical center. In addition, the unsupervised Bayesian model is extended to a semi-supervised variant, which needs no visual interpretation of clusters into tissues.Comment: 12 pages, 2 figures, 1 table. Accepted to the International Conference on Information Processing in Medical Imaging (2019

    Hidden Gibbs random fields model selection using Block Likelihood Information Criterion

    Full text link
    Performing model selection between Gibbs random fields is a very challenging task. Indeed, due to the Markovian dependence structure, the normalizing constant of the fields cannot be computed using standard analytical or numerical methods. Furthermore, such unobserved fields cannot be integrated out and the likelihood evaluztion is a doubly intractable problem. This forms a central issue to pick the model that best fits an observed data. We introduce a new approximate version of the Bayesian Information Criterion. We partition the lattice into continuous rectangular blocks and we approximate the probability measure of the hidden Gibbs field by the product of some Gibbs distributions over the blocks. On that basis, we estimate the likelihood and derive the Block Likelihood Information Criterion (BLIC) that answers model choice questions such as the selection of the dependency structure or the number of latent states. We study the performances of BLIC for those questions. In addition, we present a comparison with ABC algorithms to point out that the novel criterion offers a better trade-off between time efficiency and reliable results

    Pre-processing for approximate Bayesian computation in image analysis

    Get PDF
    Most of the existing algorithms for approximate Bayesian computation (ABC) assume that it is feasible to simulate pseudo-data from the model at each iteration. However, the computational cost of these simulations can be prohibitive for high dimensional data. An important example is the Potts model, which is commonly used in image analysis. Images encountered in real world applications can have millions of pixels, therefore scalability is a major concern. We apply ABC with a synthetic likelihood to the hidden Potts model with additive Gaussian noise. Using a pre-processing step, we fit a binding function to model the relationship between the model parameters and the synthetic likelihood parameters. Our numerical experiments demonstrate that the precomputed binding function dramatically improves the scalability of ABC, reducing the average runtime required for model fitting from 71 hours to only 7 minutes. We also illustrate the method by estimating the smoothing parameter for remotely sensed satellite imagery. Without precomputation, Bayesian inference is impractical for datasets of that scale.Comment: 5th IMS-ISBA joint meeting (MCMSki IV
    corecore