13 research outputs found

    Master of Science in Computing

    Get PDF
    thesisThis document introduces the Soft Shadow Mip-Maps technique, which consists of three methods for overcoming the fundamental limitations of filtering-oriented soft shadows. Filtering-oriented soft shadowing techniques filter shadow maps with varying filter sizes determined by desired penumbra widths. Different varieties of this approach have been commonly applied in interactive and real-time applications. Nonetheless, they share some fundamental limitations. First, soft shadow filter size is not always guaranteed to be the correct size for producing the right penumbra width based on the light source size. Second, filtering with large kernels for soft shadows requires a large number of samples, thereby increasing the cost of filtering. Stochastic approximations for filtering introduce noise and prefiltering leads to inaccuracies. Finally, calculating shadows based on a single blocker estimation can produce significantly inaccurate penumbra widths when the shadow penumbras of different blockers overlap. We discuss three methods to overcome these limitations. First, we introduce a method for computing the soft shadow filter size for a receiver with a blocker distance. Then, we present a filtering scheme based on shadow mip-maps. Mipmap-based filtering uses shadow mip-maps to efficiently generate soft shadows using a constant size filter kernel for each layer, and linear interpolation between layers. Finally, we introduce an improved blocker estimation approach. With the improved blocker estimaiton, we explore the shadow contribution of every blocker by calculating the light occluded by potential blockers. Hence, the calculated penumbra areas correspond to the blockers correctly. Finally, we discuss how to select filter kernels for filtering. These approaches successively solve issues regarding shadow penumbra width calculation apparent in prior techniques. Our result shows that we can produce correct penumbra widths, as evident in our comparisons to ray-traced soft shadows. Nonetheless, the Soft Shadow Mip-Maps technique suffers from light bleeding issues. This is because our method only calculates shadows using the geometry that is available in the shadow depth map. Therefore, the occluded geometry is not taken into consideration, which leads to light bleeding. Another limitation of our method is that using lower resolution shadow mip-map layers limits the resolution of the shadow placement. As a result, when a blocker moves slowly, its shadow follows it with discrete steps, the size of which is determined by the corresponding mip-map layer resolution

    Visually pleasing real-time global illumination rendering for fully-dynamic scenes

    Get PDF
    Global illumination (GI) rendering plays a crucial role in the photo-realistic rendering of virtual scenes. With the rapid development of graphics hardware, GI has become increasingly attractive even for real-time applications nowadays. However, the computation of physically-correct global illumination is time-consuming and cannot achieve real-time, or even interactive performance. Although the realtime GI is possible using a solution based on precomputation, such a solution cannot deal with fully-dynamic scenes. This dissertation focuses on solving these problems by introducing visually pleasing real-time global illumination rendering for fully-dynamic scenes. To this end, we develop a set of novel algorithms and techniques for rendering global illumination effects using the graphics hardware. All these algorithms not only result in real-time or interactive performance, but also generate comparable quality to the previous works in off-line rendering. First, we present a novel implicit visibility technique to circumvent expensive visibility queries in hierarchical radiosity by evaluating the visibility implicitly. Thereafter, we focus on rendering visually plausible soft shadows, which is the most important GI effect caused by the visibility determination. Based on the pre-filtering shadowmapping theory, wesuccessively propose two real-time soft shadow mapping methods: "convolution soft shadow mapping" (CSSM) and "variance soft shadow mapping" (VSSM). Furthermore, we successfully apply our CSSM method in computing the shadow effects for indirect lighting. Finally, to explore the GI rendering in participating media, we investigate a novel technique to interactively render volume caustics in the single-scattering participating media.Das Rendern globaler Beleuchtung ist für die fotorealistische Darstellung virtueller Szenen von entscheidender Bedeutung. Dank der rapiden Entwicklung der Grafik-Hardware wird die globale Beleuchtung heutzutage sogar für Echtzeitanwendungen immer attraktiver. Trotz allem ist die Berechnung physikalisch korrekter globaler Beleuchtung zeitintensiv und interaktive Laufzeiten können mit "standard Hardware" noch nicht erzielt werden. Obwohl das Rendering auf der Grundlage von Vorberechnungen in Echtzeit möglich ist, kann ein solcher Ansatz nicht auf voll-dynamische Szenen angewendet werden. Diese Dissertation zielt darauf ab, das Problem der globalen Beleuchtungsberechnung durch Einführung von neuen Techniken für voll-dynamische Szenen in Echtzeit zu lösen. Dazu stellen wir eine Reihe neuer Algorithmen vor, die die Effekte der globaler Beleuchtung auf der Grafik-Hardware berechnen. All diese Algorithmen erzielen nicht nur Echtzeit bzw. interaktive Laufzeiten sondern liefern auch eine Qualität, die mit bisherigen offline Methoden vergleichbar ist. Zunächst präsentieren wir eine neue Technik zur Berechnung impliziter Sichtbarkeit, die aufwändige Sichbarkeitstests in hierarchischen Radiosity-Datenstrukturen vermeidet. Anschliessend stellen wir eine Methode vor, die weiche Schatten, ein wichtiger Effekt für die globale Beleuchtung, in Echtzeit berechnet. Auf der Grundlage der Theorie über vorgefilterten Schattenwurf, zeigen wir nacheinander zwei Echtzeitmethoden zur Berechnung weicher Schattenwürfe: "Convolution Soft Shadow Mapping" (CSSM) und "Variance Soft Shadow Mapping" (VSSM). Darüber hinaus wenden wir unsere CSSM-Methode auch erfolgreich auf den Schatteneffekt in der indirekten Beleuchtung an. Abschliessend präsentieren wir eine neue Methode zum interaktiven Rendern von Volumen-Kaustiken in einfach streuenden, halbtransparenten Medien

    Shadow mapping algorithms: Applications and limitations

    Get PDF
    This study provides an overview of popular and famous algorithms and techniques in shadow maps generation.Well- known techniques in shadow maps generation is described detail, along with a discussion of the advantages and drawbacks of each. Basic ideas, improvements and future works of the techniques are also comprehensively summarized and analyzed in depth. Often, programmers have difficulty selecting an appropriate shadow generation algorithm that is specific to their purpose. We have classified and systemized these techniques. The main goal of this paper is to provide researchers with background on a variety of shadow mapping techniques so as make it easier for them to choose the method best suited to their aims. It is al-so hoped that our analysis will help researchers find solutions to the shortcomings of each technique. © 2015 NSP Natural Sciences Publishing Co

    Rendering of light shaft and shadow for indoor environments enhancing technique

    Get PDF
    The ray marching methods have become the most attractive method to provide realism in rendering the effects of light scattering in the participating media of numerous applications. This has attracted significant attention from the scientific community. Up-sampling of ray marching methods is suitable to evaluate light scattering effects such as volumetric shadows and light shafts for rendering realistic scenes, but suffers of cost a lot for rendering. Therefore, some encouraging outcomes have been achieved by using down-sampling of ray marching approach to accelerate rendered scenes. However, these methods are inherently prone to artifacts, aliasing and incorrect boundaries due to the reduced number of sample points along view rays. This study proposed a new enhancing technique to render light shafts and shadows taking into consideration the integration light shafts, volumetric shadows, and shadows for indoor environments. This research has three major phases that cover species of the effects addressed in this thesis. The first phase includes the soft volumetric shadows creation technique called Soft Bilateral Filtering Volumetric Shadows (SoftBiF-VS). The soft shadow was created using a new algorithm called Soft Bilateral Filtering Shadow (SBFS). This technique was started by developing an algorithm called Imperfect Multi-View Soft Shadows (IMVSSs) based on down-sampling multiple point lights (DMPLs) and multiple depth maps, which are processed by using bilateral filtering to obtain soft shadows. Then, down-sampling light scattering model was used with (SBFS) to create volumetric shadows, which was improved using cross-bilateral filter to get soft volumetric shadows. In the second phase, soft light shaft was generated using a new technique called Realistic Real-Time Soft Bilateral Filtering Light Shafts (realTiSoftLS). This technique computed the light shaft depending on down-sampling volumetric light model and depth test, and was interpolated by bilateral filtering to gain soft light shafts. Finally, an enhancing technique for integrating all of these effects that represent the third phase of this research was achieved. The performance of the new enhanced technique was evaluated quantitatively and qualitatively a measured using standard dataset. Results from the experiment showed that 63% of the participants gave strong positive responses to this technique of improving realism. From the quantitative evaluation, the results revealed that the technique has dramatically outpaced the stateof- the-art techniques with a speed of 74 fps in improving the performance for indoor environments

    Predicted Virtual Soft Shadow Maps with High Quality Filtering

    Get PDF
    International audienceIn this paper we present a novel image based algorithm to render visually plausible anti-aliased soft shadows in a robust and efficient manner. To achieve both high visual quality and high performance, it employs an accurate shadow map filtering method which guarantees smooth penumbrae and high quality anisotropic anti-aliasing of the sharp transitions. Unlike approaches based on pre-filtering approximations, our approach does not suffer from light bleeding or losing contact shadows. Discretization artefacts are avoided by creating virtual shadow maps on the fly according to a novel shadow map resolution prediction model. This model takes into account the screen space frequency of the penumbrae via a perceptual metric which has been directly established from an appropriate user study. Consequently, our algorithm always generates shadow maps with minimal resolutions enabling high performance while guarantying high quality. Thanks to this perceptual model, our algorithm can sometimes be faster at rendering soft shadows than hard shadows. It can render game-like scenes at very high frame rates, and extremely large and complex scenes such as CAD models at interactive rates. In addition, our algorithm is highly scalable, and the quality versus performance trade-off can be easily tweaked

    Studio e Realizzazione di una Libreria Software per la Visualizzazione Interattiva di Ambienti Virtuali Complessi

    Get PDF
    Questo lavoro tratta la progettazione e realizzazione di una libreria software per la costruzione di applicazioni di realtà virtuale. Tale libreria costituisce un vero e proprio motore di rendering e simulazione fisica in tempo reale, e si configura come un modulo stand-alone utilizzabile in C++. Il presente lavoro è stato realizzato nell'ambito del progetto XVR del laboratorio PERCRO della Scuola Superiore Sant'Anna (attualmente mantenuto da VRMedia Srl, una spin-off della scuola). XVR è un complesso sistema per lo sviluppo di applicazioni di realtà virtuale, e si basa su una libreria software per effettuare la visualizzazione a schermo delle scene tridimensionali (la VRLib). La nuova libreria progettata e costruita durante il lavoro di tesi (la VR3Lib) costituisce una nuova versione profondamente modificata della VRLib (ormai alquanto datata), e nasce con esigenze lievemente diverse. In particolare la nuova libreria fornisce un'interfaccia molto semplice anche per la simulazione fisica in tempo reale degli oggetti presenti nell'ambiente virtuale, consentendo inoltre accesso diretto a moderne e sofisticate tecniche di rendering mirate ad ottenere scene virtuali realistiche. La nuova libreria è stata costruita mantenendo ed estendendo l'interfaccia della VRLib, in modo tale che una sua integrazione all'interno del sistema XVR fosse il più agevole possibile

    Variance soft shadow mapping

    No full text

    Variance Soft Shadow Mapping

    No full text
    We present variance soft shadow mapping (VSSM) for rendering plausible soft shadow in real-time. VSSM is based on the theoretical framework of percentage-closer soft shadows (PCSS) and exploits recent advances in variance shadow mapping (VSM). Our new formulation allows for the efficient computation of (average) blocker distances, a common bottleneck in PCSS-based methods. Furthermore, we avoid incorrectly lit pixels commonly encountered in VSM-based methods by appropriately subdividing the filter kernel. We demonstrate that VSSM renders highquality soft shadows efficiently (usually over 100 fps) for complex scene settings. Its speed is at least one order of magnitude faster than PCSS for large penumbra

    Variance Soft Shadow Mapping

    No full text
    We present variance soft shadow mapping (VSSM) for rendering plausible soft shadow in real-time. VSSM is based on the theoretical framework of percentage-closer soft shadows (PCSS) and exploits recent advances in variance shadow mapping (VSM). Our new formulation allows for the efficient computation of (average) blocker distances, a common bottleneck in PCSS-based methods. Furthermore, we avoid incorrectly lit pixels commonly encountered in VSM-based methods by appropriately subdividing the filter kernel. We demonstrate that VSSM renders highquality soft shadows efficiently (usually over 100 fps) for complex scene settings. Its speed is at least one order of magnitude faster than PCSS for large penumbra
    corecore