30 research outputs found

    Fully-Functional Bidirectional Burrows-Wheeler Indexes and Infinite-Order De Bruijn Graphs

    Get PDF
    Given a string T on an alphabet of size sigma, we describe a bidirectional Burrows-Wheeler index that takes O(|T| log sigma) bits of space, and that supports the addition and removal of one character, on the left or right side of any substring of T, in constant time. Previously known data structures that used the same space allowed constant-time addition to any substring of T, but they could support removal only from specific substrings of T. We also describe an index that supports bidirectional addition and removal in O(log log |T|) time, and that takes a number of words proportional to the number of left and right extensions of the maximal repeats of T. We use such fully-functional indexes to implement bidirectional, frequency-aware, variable-order de Bruijn graphs with no upper bound on their order, and supporting natural criteria for increasing and decreasing the order during traversal

    Space-efficient merging of succinct de Bruijn graphs

    Full text link
    We propose a new algorithm for merging succinct representations of de Bruijn graphs introduced in [Bowe et al. WABI 2012]. Our algorithm is based on the lightweight BWT merging approach by Holt and McMillan [Bionformatics 2014, ACM-BCB 2014]. Our algorithm has the same asymptotic cost of the state of the art tool for the same problem presented by Muggli et al. [bioRxiv 2017, Bioinformatics 2019], but it uses less than half of its working space. A novel important feature of our algorithm, not found in any of the existing tools, is that it can compute the Variable Order succinct representation of the union graph within the same asymptotic time/space bounds.Comment: Accepted to SPIRE'1

    Relative Select

    Full text link
    Motivated by the problem of storing coloured de Bruijn graphs, we show how, if we can already support fast select queries on one string, then we can store a little extra information and support fairly fast select queries on a similar string

    Regular Languages meet Prefix Sorting

    Full text link
    Indexing strings via prefix (or suffix) sorting is, arguably, one of the most successful algorithmic techniques developed in the last decades. Can indexing be extended to languages? The main contribution of this paper is to initiate the study of the sub-class of regular languages accepted by an automaton whose states can be prefix-sorted. Starting from the recent notion of Wheeler graph [Gagie et al., TCS 2017]-which extends naturally the concept of prefix sorting to labeled graphs-we investigate the properties of Wheeler languages, that is, regular languages admitting an accepting Wheeler finite automaton. Interestingly, we characterize this family as the natural extension of regular languages endowed with the co-lexicographic ordering: when sorted, the strings belonging to a Wheeler language are partitioned into a finite number of co-lexicographic intervals, each formed by elements from a single Myhill-Nerode equivalence class. Moreover: (i) We show that every Wheeler NFA (WNFA) with nn states admits an equivalent Wheeler DFA (WDFA) with at most 2n1Σ2n-1-|\Sigma| states that can be computed in O(n3)O(n^3) time. This is in sharp contrast with general NFAs. (ii) We describe a quadratic algorithm to prefix-sort a proper superset of the WDFAs, a O(nlogn)O(n\log n)-time online algorithm to sort acyclic WDFAs, and an optimal linear-time offline algorithm to sort general WDFAs. By contribution (i), our algorithms can also be used to index any WNFA at the moderate price of doubling the automaton's size. (iii) We provide a minimization theorem that characterizes the smallest WDFA recognizing the same language of any input WDFA. The corresponding constructive algorithm runs in optimal linear time in the acyclic case, and in O(nlogn)O(n\log n) time in the general case. (iv) We show how to compute the smallest WDFA equivalent to any acyclic DFA in nearly-optimal time.Comment: added minimization theorems; uploaded submitted version; New version with new results (W-MH theorem, linear determinization), added author: Giovanna D'Agostin
    corecore