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Abstract
Given a string T on an alphabet of size σ, we describe a bidirectional Burrows-Wheeler index that
takes O(|T | log σ) bits of space, and that supports the addition and removal of one character, on the
left or right side of any substring of T , in constant time. Previously known data structures that used
the same space allowed constant-time addition to any substring of T , but they could support removal
only from specific substrings of T . We also describe an index that supports bidirectional addition
and removal in O(log log |T |) time, and that takes a number of words proportional to the number
of left and right extensions of the maximal repeats of T . We use such fully-functional indexes to
implement bidirectional, frequency-aware, variable-order de Bruijn graphs with no upper bound on
their order, and supporting natural criteria for increasing and decreasing the order during traversal.
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1 Introduction

A bidirectional index on a string T is a data structure that represents any substring W of T
as a constant-size descriptor that recapitulates the set of all starting positions of W in T , and
the set of all ending positions of W in T . Such a representation allows extending W with a
character in both directions, enumerating the distinct characters that occur after W in both
directions, and switching direction during extension. All existing bidirectional indexes can
be seen as updating positions in the suffix tree of T and in the suffix tree of the reverse of T ,
either literally, as in the affix tree [30, 49], or in compact representations, like the affix array
[50] and the bidirectional Burrows-Wheeler transform (BWT) [47]. Synchronous bidirectional
indexes maintain a position in both trees at every extension step, whereas asynchronous
indexes maintain a position in just one tree, and compute the position in the other only when
the user needs to change direction [18]. Applications of bidirectional indexes to bioinformatics,
like read mapping with mismatches and searching for RNA secondary structures, have used
until now the ability of bidirectional indexes to add characters both to the left and to the
right of a string (an operation called extension: see e.g. [25, 28, 34, 45, 47, 50] for a small
sampler), whereas removing characters from the left and from the right (called contraction)
has only been conjectured to be useful [13, 18], and it has been supported efficiently just
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10:2 Fully-Functional Bidirectional Burrows-Wheeler Indexes

for right-maximal and left-maximal substrings of T , respectively (defined in Section 2),
or for strings that occur just once in T , for which the implementation is straightforward
(see e.g. [11, 38]).

In this paper we describe a simple method for removing characters from the left or from
the right of any substring of T , based just on the ability to measure the length of the maximal
repeats of T (defined in Section 2). Using the recent observation that all such lengths can
be represented in O(|T |) bits of space [6], we show that bidirectional contraction can be
supported in constant time with the bidirectional BWT index described in [11], within the
same space budget and without changing the complexity of its construction. Our contraction
algorithm can also be implemented on top of an existing representation of the suffix tree,
based on the Compact Directed Acyclic Word Graph (CDAWG), that takes a number of
words proportional just to the number of left and right extensions of the maximal repeats
of T [8]: this yields an index that supports, in the same asymptotic space, bidirectional
extension and contraction of any substring of T in O(log log |T |) time.

Having both bidirectional extension and contraction enables several applications, among
which a de Bruijn graph that stores the frequency of its k-mers, allows for bidirectional
navigation, and supports any value of k, as well as increasing and decreasing the value of k,
with no limit on the maximum k allowed. We call such a data structure an infinite-order de
Bruijn graph, and we describe an implementation that takes O(|T | log σ) bits of space (where
σ is the size of the alphabet), and that supports all operations in constant time, as well
as another implementation that takes a number of words proportional to the left an right
extensions of the maximal repeats of T , and that supports all operations in O(log log |T |) time.
The latter representation establishes a connection between de Bruijn graphs and CDAWGs
that was not known before. Our query times are comparable to those of the variable-order,
bidirectional representation described in [13], which supports navigation and changing order
in O(logK) time (assuming constant σ), but is frequency-oblivious and requires a maximum
order K to be specified during construction. This competitor has the advantage of taking
just O(m logK) bits of space, where m is the number of distinct K-mers, and of allowing the
user to specify by how much the order should be changed in each query (the changes in order
supported by our index are detailed in Sections 3 and 4). The variable-order representation
described in [22] takes constant time (assuming constant σ) to implement changes in order
that are similar to those supported by our index, and uses just O(m) bits of space; however,
it is unidirectional, frequency-oblivious, and it requires again a maximum K to be known at
construction time.

We conjecture that a de Bruijn graph representation based on the CDAWG might be
useful for assembling the recently introduced PacBio CCS reads, which have the same 2%
error rate as Illumina short reads but an average length of 15 kilobases (see e.g. [51]). Such
read sets contain long exact repeats, of length up to ten thousand, so it might be desirable to
set k to large values and to decrease it dynamically, down to a minimum value τ . Moreover,
most maximal repeats are short (Figure 1, bottom right), and we can remove from the
CDAWG all maximal repeats shorter than τ , and all arcs adjacent to them, while still being
able to represent all de Bruijn graphs of order at least τ (see Section 4). For practical
values of k, the number of nodes and arcs in such a pruned CDAWG grows more slowly
than the number of distinct k-mers (Figure 1, top right; reads from the Genome in a Bottle
consortium1), suggesting that our data structure might be competitive in space with the

1 ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/
PacBio_CCS_15kb/

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_CCS_15kb/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_CCS_15kb/
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Illumina

Genomes

CCS

Figure 1 Number of k-mers and repeated k-mers (lines), maximal repeats and bidirectional
extensions of maximal repeats (white circles), and maximal repeats of length at least 20 and
the bidirectional extensions connecting them (black circles), for prefixes of a human read dataset
produced with Illumina and PacBio CCS technologies. Bottom left: prefixes of the concatenation
of 5 human genome assemblies. Bottom right: fraction of maximal repeats of each length in the
three datasets (the vertical line is at length 20). Inserts show the number of maximal repeats
and extensions, divided by the number of repeated k-mers (in log10 scale for CCS and genomes).
Decreasing k down to 20 (Illumina), 50 (CCS) and 25 (genomes) yields similar plots. k-mers are
counted with KMC 3 [27], and are considered distinct from their reverse complements.

state of the art, whose size is proportional to the number of k-mers for a specific value of k.
The same observation applies to repetitive datasets: for example, the de Bruijn graph of a
set of individuals from the same species has applications in population genomics, and the
de Bruijn graph of a set of genomes from related species is used in comparative genomics
[35, 36]. In Figure 1, bottom left, we experiment with the concatenation of assemblies hg16,
hg17, hg18, hg19 and hg38 of the human genome from the UCSC Genome Browser2 (a

2 http://hgdownload.soe.ucsc.edu/downloads.html#human
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10:4 Fully-Functional Bidirectional Burrows-Wheeler Indexes

benchmark dataset from [3, 36]), and we observe exact repeats of length up to 489 million.
Our data structure might also be useful with noisy long reads after error correction. Even in
short-read Illumina datasets, the number of maximal repeats and of their extensions after
pruning is just a small multiple of the number of distinct k-mers (Figure 1, top left; reads
from the Illumina Platinum project3).

Finally, recall that our de Bruijn graph representations allow access to the frequency of
a node or arc: this might be useful for avoiding repetitive regions during assembly, or for
reconstructing only those [26], for assembling metagenomes with non-uniform sequencing
depths [29], or for inferring transcripts with different expression levels [42].

2 Preliminaries

2.1 Strings
Let Σ = [1..σ] be an integer alphabet, let # = 0 be a separator not in Σ, and let T = [1..σ]n−1

be a string. We denote by W the reverse of a string W , i.e. string W written from right
to left, and we call W a k-mer iff |W | = k. We denote by fT (W ) the number of (possibly
overlapping) occurrences of a string W in the circular version of T . A repeat W is a string
that satisfies fT (W ) > 1. We denote by Σ`

T (W ) the set of left-extensions of W , i.e. the set
of characters {a ∈ [0..σ] : fT (aW ) > 0}. Symmetrically, we denote by Σr

T (W ) the set of
right-extensions of W , i.e. the set of characters {b ∈ [0..σ] : fT (Wb) > 0}. A repeat W is
right-maximal (respectively, left-maximal) iff |Σr

T (W )| > 1 (respectively, iff |Σ`
T (W )| > 1). It

is well-known that T can have at most n− 1 right-maximal substrings and at most n− 1
left-maximal substrings. A maximal repeat of T (called balanced substring in [50]) is a repeat
that is both left- and right-maximal.

The unidirectional de Bruijn graph of order k of T is a directed graph (V,E) whose node
set V is in one-to-one correspondence with the set of distinct k-mers that occur in T ; there is
an arc (v, w) ∈ E for every distinct (k + 1)-mer W such that both W [1..k] and W [2..k + 1]
occur in T , and such arc is labelled with character W [k + 1]. In some formulations, E
contains just those arcs that correspond to (k + 1)-mers that occur in T : in this case, a
k-mer is right-maximal (respectively, left-maximal) in T iff its corresponding node in V has
at at least two outgoing (respectively, incoming) arcs. The bidirectional de Bruijn graph is
defined symmetrically.

We denote by STT the suffix tree of T#, and by STT the suffix tree of T#. We assume
the reader to be already familiar with the basics of suffix trees, including suffix links, which
we do not further describe here. We denote by `(v) the label of a node v of a suffix tree,
and we say that v is the locus of all substrings W [1..k] of T where |`(u)| < k ≤ |`(v)|, u is
the parent of v, and W = `(v). It is well-known that a substring W of T is right-maximal
(respectively, left-maximal) iff W = `(v) for some internal node v of STT (respectively, for
some internal node v of STT ). Suffix links and internal nodes of STT form a tree, called the
suffix-link tree of T and denoted by SLTT , and inverting the direction of all suffix links yields
the so-called explicit Weiner links. Given an internal node v and a character a ∈ [0..σ], it
might happen that string a`(v) occurs in T but is not right-maximal, i.e. it is not the label
of any internal node of STT : all such left extensions of internal nodes that end in the middle
of an edge are called implicit Weiner links. An internal node v of STT can have more than

3 https://www.ebi.ac.uk/ena/data/view/PRJEB3381, run ERR194146, file ERR194146_1.fastq.gz, read
length 101.
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one outgoing Weiner link, and all such Weiner links have distinct labels: in this case, `(v)
is a maximal repeat, as well as the label of a node in STT . Maximal repeats and implicit
Weiner links are related by the following simple property, which was already hinted at in [2]:

I Property 1. Let v be an internal node of STT . If there is an implicit Weiner link from v,
then `(v) is a maximal repeat of T .

It is known that the number of suffix links (or, equivalently, of explicit Weiner links) is
upper-bounded by 2n−2, and that the number of implicit Weiner links can be upper-bounded
by 2n− 2 as well. We call SLT∗T a version of SLTT augmented with implicit Weiner links and
with nodes corresponding to their destinations. We say that a maximal repeat W of T is
rightmost if no string WV with V ∈ [0..σ]+ is left-maximal in T . Symmetrically, we say that
a maximal repeat W of T is leftmost if no string VW with V ∈ [0..σ]+ is right-maximal in
T . Since left-maximality is closed under prefix operation, it is easy to see that the maximal
repeats of T are all and only the nodes of STT that lie on paths that start from the root and
that end at nodes labelled by rightmost maximal repeats. We call this the maximal repeat
subgraph of STT (Figure 2b). Clearly the maximal repeats of T coincide with the branching
nodes of SLT∗T (Figure 2a), and the rightmost maximal repeats of T coincide with the leaves
of SLTT . Thus, it is easy to see that SLTT (a trie) is a subdivision of the maximal repeat
subgraph of STT (a compact trie), and that the nodes in the unary paths of SLTT are in
one-to-one correspondence with the internal nodes of STT that are not maximal repeats (see
Figures 2a and 2b for an example, and see Section 2.1 in [6] for an extended explanation).
The following property is thus immediate (and symmetrical notions hold for STT , SLT∗T , and
leftmost maximal repeats):

I Property 2. Let v be an internal node of STT . The locus w of `(v) in STT is such that
`(w) is the reverse of a maximal repeat of T .

The compact directed acyclic word graph of a string T (denoted by CDAWGT in what
follows) is the minimal compact automaton that recognizes the suffixes of T [16, 20]. We
denote by CDAWGT the CDAWG of the reverse of T , by eT the number of arcs in CDAWGT ,
and by eT the number of arcs in CDAWGT . The CDAWG of T can be seen as the minimization
of STT , in which all leaves are merged to the same node (the sink, that represents T itself),
and in which all nodes except the sink are in one-to-one correspondence with the maximal
repeats of T [44]. Every arc of CDAWGT is labeled by a substring of T , and the out-neighbors
w1, . . . , wk of every node v of CDAWGT are sorted according to the lexicographic order of
the distinct labels of arcs (v, w1), . . . , (v, wk). Since there is a bijection between the nodes
of CDAWGT and the maximal repeats of T , the node v′ of CDAWGT with `(v′) = W is
the equivalence class of the nodes {v1, . . . , vk} of STT such that `(vi) = W [i..|W |] for all
i ∈ [1..k], and such that vk, vk−1, . . . , v1 is a maximal unary path of explicit Weiner links.
The subtrees of STT rooted at all such nodes are isomorphic. It follows that a right-maximal
string can be identified by the maximal repeat W it belongs to, and by the length of the
corresponding suffix of W (see [8] for an extended explanation).

We assume the reader to be familiar with the Burrows-Wheeler transform of T , which
we denote by BWTT (we use BWTT to denote the BWT of the reverse of T ) and we don’t
further describe here. We say that BWTT [i..j] is a run iff: (1) BWTT [k] = c ∈ [0..σ] for
all k ∈ [i..j]; (2) every substring BWTT [i′..j′] such that i′ ≤ i, j′ ≥ j, and [i′..j′] 6= [i..j],
contains at least two distinct characters. We denote by RT the set of all triplets (c, i, j) such
that BWTT [i..j] is a run of character c, and we use RT to denote the set of runs of BWTT .
It is known that |RT | is at most equal to the number of arcs in CDAWGT [10].

CPM 2019



10:6 Fully-Functional Bidirectional Burrows-Wheeler Indexes

Figure 2 Left-contraction of a substrings that is not right-maximal. (a) The extended suffix-
link tree SLT∗

T of string T = CGCGCGAGAGCGAGA#. Nodes that correspond to maximal repeats are
highlighted in grey. Implicit Weiner links are dashed. (b) STT (thin lines) with SLTT overlaid
(thick lines). Nodes that correspond to maximal repeats are in grey. Labels of edges to leaves are
shortened. (c) Left-contraction of substring aW = CGC. The edge to which aW belongs is projected
to another edge by suffix links (thick grey lines). (d) Left-contraction of substring aW = CGA. The
edge to which aW belongs is projected to a path by suffix links.

Given a second string S ∈ [1..σ]+, the matching statistics array MSS,T of S with respect
to T is an array of length |S| such that MSS,T [i] is the largest j such that S[i..i + j − 1]
occurs in T .

In the rest of the paper we drop subscripts whenever they are clear from the context.

2.2 String indexes
A bidirectional index is a data structure that, given a constant-space descriptor id(W )
of a substring W of T , supports the following operations: extendRight(id(W ), a) =
id(Wa) if f(Wa) > 0, or an error otherwise; enumerateRight(id(W )) = {id(Wa) : a ∈
Σ, f(Wa) > 0}; isRightMaximal(id(W )) = true iff |enumerateRight(id(W ))| > 1. Op-
erations extendLeft, enumerateLeft and isLeftMaximal are defined symmetrically. We
consider bidirectional indexes based on the BWT: specifically, we denote with I(W,T ) the
function that maps a substring W of T to the interval of W in BWT, i.e. to the interval
of all suffixes of T# that start with W , and we use id(W ) = (I(W,T ), I(W,T ), |W |) as a
constant-space descriptor of W . A number of bidirectional BWT indexes have been described
in the literature; in this paper we are just interested in the data structure from [11], which
supports all operations in constant time in the size of their output, takes O(|T | log σ) bits of
space, and can be built in randomized O(|T |) time and O(|T | log σ) bits of working space.
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Given a string T ∈ [1..σ]n−1#, we call run-length encoded BWT (RLBWTT ) any repres-
entation of BWTT that takes O(|RT |) words of space and supports the well-known rank and
select operations (see e.g. [31, 32, 48]). It is easy to implement a version of RLBWTT that
supports rank and select in O(log logn) time [10]. In this paper we use the representation of
the suffix tree based on the CDAWG described in [8], which takes just O(e+e) words of space
by augmenting CDAWG and CDAWG with the RLBWT of T and T . Such a data structure de-
scribes a node v of ST as a tuple id(v) = (v′, |`(v)|, i, j), where v′ is the node in CDAWG that
corresponds to the equivalence class of v, and [i..j] is the interval of `(v) in BWT. For every
node v of CDAWG, the index stores, among other things: |`(v)| in a variable v.length; the
number v.size of right-maximal strings that belong to its equivalence class; and the interval
[v.first..v.last] of `(v) in BWTT . For every arc γ = (v, w) of CDAWG, the index stores the
first character of `(γ) in a variable γ.char, and the number of characters of the right extension
implied by γ in a variable γ.right. Finally, we add to the CDAWG all arcs (v, w, c) such that
w is the equivalence class of the destination of a Weiner link from v labeled by character c in
STT , as well as the reverse of all explicit Weiner link arcs. See [8] for an extended description
of the data structure and of the complexity of its operations. Here we just mention that the
index supports operations stringDepth(id(v)) and child(id(v), c) in constant time, and
parent(id(v)), suffixLink(id(v)), weinerLink(id(v), c) in O(log log |T |) time.

In this paper we need to store the topology of SLT and the topology of ST efficiently. It is
well-known that the topology of an ordered tree of n nodes can be represented using 2n+o(n)
bits, as a sequence of 2n balanced parentheses [39]. Let id(v) be the rank of a node v in
the preorder traversal of the tree. Given the balanced parentheses representation of the tree
encoded in 2n+ o(n) bits, it is also well-known that one can build a data structure that takes
2n+ o(n) bits, and that supports several common operations in constant time [40, 41, 46],
among which: parent(id(v)), which returns id(u), where u is the parent of v, or an error if
v is the root; lca(id(v), id(w)), which returns id(u), where u is the lowest common ancestor
of nodes v and w; leftmostLeaf(id(v)) and rightmostLeaf(id(v)), which return one plus
the number of leaves that, in the preorder traversal of the tree, are visited before the first
(respectively, the last) leaf that belongs to the subtree rooted at v; depth(id(v)), which
returns the distance of v from the root. This data structure can be built in O(n) time and
in O(n) bits of working space. Moreover, given a node v and a length d, a level-ancestor
query asks for the ancestor u of v such that the path from the root to u contains exactly
d nodes. The level ancestor data structure described in [14, 15] takes O(n) words of space
and answers queries in constant time. Assuming that some nodes of the tree are marked, a
lowest marked ancestor data structure allows one to move in constant time from any node,
to its lowest ancestor that is marked [33].

We use the tree data structures described above to store the topology of ST and of SLT.
Moreover, we mark in two bitvectors the nodes of SLT and of ST that are maximal repeats
(in preorder), and we index such bitvectors to support constant-time rank and select queries.
Since SLT is a subdivision of the subgraph of ST induced by maximal repeats, the i-th one
in the two bitvectors correspond to the same maximal repeat. Thus, if node v is a maximal
repeat, and if we know its preorder position in ST, we can compute the length of `(v) by
moving to the corresponding node v′ in SLT and by computing the depth of v′ in the topology
of SLT (see [6] for an extended explanation).

The rest of the paper focuses on representations of variable-order, bidirectional de Bruijn
graphs that support the following primitives (for brevity we list here just operations in one
direction). Let k be the current order of the de Bruijn graph. Operation v = node(W ),
called membership, returns the identifier of the node associated with k-mer W , or an error

CPM 2019



10:8 Fully-Functional Bidirectional Burrows-Wheeler Indexes

if W does not occur in T . Operation C = arcLabels(v) returns the set of characters C
that label all arcs from node v in the right direction, and operation degree(v) returns the
number of such arcs. Query e = arc(v, c) returns the identifier of the arc that corresponds
to string `(v) · c, if any, where v is a node in the current de Bruijn graph, `(v) is the k-mer
that corresponds to node v, and c is a character; it returns an error if no such arc exists.
Operation w = followArc(v, c) is similar, but returns the identifier of the node w reached
by the arc, if any. Queries freq(v) and freq(e) return the number of occurrences of the
k-mer associated with node v and of the (k + 1)-mer associated with arc e (the number of
occurrences of an arc might be zero). Representations that support such queries are called
frequency-aware or weighted (see e.g. [42]). Operation v′ = increaseK(v, c) for c ∈ [0..σ]
returns the node v′ associated with string `(v) · c in the de Bruijn graph of order k + 1, if
any, or an error otherwise. Operation v′ = decreaseK(v) returns the node v′ associated with
the prefix of length k − 1 of `(v) in the de Bruijn graph of order k − 1.

In addition to increasing and decreasing the order by one unit, some variable-order
representations allow the user to specify the desired amount of change [13, 17]. In the rest of
the paper we argue that it is more natural to change the order based on the frequency or
on the extensions of k-mers, as proposed in [22]. Specifically, given a node v of the current
de Bruijn graph, let `(v) ·W , W ∈ Σ∗, be the longest string with the same frequency as
`(v) in T . Operation (v′, k′) = increaseK(v) returns the node v′ associated with `(v) ·W in
the de Bruijn graph of order k + |W |, and sets k′ to the new order k + |W |. Given a node
v of the current de Bruijn graph, let W be the longest prefix of `(v) that has a different
frequency from `(v) in T . Operation (v′, k′) = decreaseK(v) returns the node v′ associated
with W in the de Bruijn graph of order |W |, and sets k′ to |W |. Alternatively, one might
want W to be the longest prefix of `(v) such that the left-extensions of W are a superset
of the left-extensions of `(v). A de Bruijn graph that supports such operations without
returning the value of the new order is called hidden-order [22].

3 Contracting in constant time

As mentioned, existing bidirectional BWT indexes support left-contraction just from right-
maximal substrings (and symmetrically, they support right-contraction just from left-maximal
substrings). Specifically, if the substring aW is right-maximal and labels a node v of ST,
then I(W,T ) is the interval of node suffixLink(v) in ST, and since we are removing one
character from the right of aW , the locus of W in ST is either the same as the locus w of
aW , or it is parent(w), whichever has the same frequency as I(W,T ) [11, 38].

To support left-contraction from a substring that is not right-maximal, it is enough to
have access to the topology of SLT:

I Theorem 1. Let T be a string on alphabet Σ. There is a data structure that supports
operations extendRight, extendLeft, contractRight and contractLeft in constant time
and in O(n log σ) bits of space. Such a data structure can be built in randomized O(n) time
and O(n log σ) bits of working space.

Proof. We use the data structures described in [11], augmented with the topology of SLT
and with a bitvector to commute between the topology of ST and the topology of SLT
(see [6] for details on commuting). Such data structures take O(n log σ) bits of space, and
they can be built in randomized O(n) time using the algorithms in [4, 12]. They support
operations extendRight(id(W ), a) = id(Wa) and extendLeft(id(W ), a) = id(aW ), where
id(W ) = (I(W,T ), I(W,T )). We additionally assume the knowledge of |W |, i.e. id(W ) =
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(I(W,T ), I(W,T ), |W |). We only show how to support contractLeft(id(aW )) = id(W ),
since supporting contractRight(id(Wa)) = id(W ) is symmetric. Since [11] already sup-
ports contractLeft(id(aW )), we assume for now that aW is not right-maximal. Note
that we can decide whether aW is right-maximal or not by using I(aW, T ), and, if W is
right-maximal, we can just use the contraction algorithm described above. Let v be the locus
of aW in ST: this can be computed from I(aW, T ) using lca queries on ST. Since aW is
not right maximal, aW 6= `(v) and aW ends in the middle of edge (u, v) of ST. We take in
constant time the suffix link (u, u′) from u and the suffix link (v, v′) from v, and we decide
whether (u′, v′) is an edge or a path of ST by comparing u′ to parent(v′), which can be
computed in constant time. If (u′, v′) is an edge of ST (Figure 2c), then v′ is the locus of W
and we compute I(`(v′), T ) in constant time. Otherwise (Figure 2d), we compute in constant
time z = parent(v′): this node is a maximal repeat by Property 1, since it is an internal
node of ST with an implicit Weiner link whose destination falls inside (u, v). We use the
data structures in Section 2.2 to measure the length of `(z) in constant time. If |W | > |`(z)|,
the locus of W is again v′. Otherwise, since z is a maximal repeat, we move in constant time
to the node z′ of SLT that corresponds to `(z), we issue a constant-time level ancestor query
from z′ on SLT with length |W |, and, from the destination x′ of such a level ancestor query,
we move in constant time to the first branching descendant y′ of x′, by using leftmostLeaf,
rightmostLeaf, and lca queries on SLT. Finally, we move in constant time to the node
y of ST that corresponds to y′, and we compute I(`(y), T ) in constant time. We compute
I(W,ST) as described at the beginning of Section 3. J

Note that the algorithm in Theorem 1 works even when aW is right-maximal; moreover,
if the information on whether aW is right maximal or not is given in input, the algorithm
can decide whether W is right maximal or not. In a practical implementation, once we have
taken the suffix link (v, v′) from v, we could check whether v′ is a maximal repeat, and in the
positive case we could immediately commute to SLT and issue level ancestor queries. If v′ is
not a maximal repeat, we could move in constant time to the lowest ancestor v′′ of v′ that is
a maximal repeat, using a lowest marked ancestor data structure on ST, we could measure
|`(v′′)|, and if |`(v′′)| ≥ |W |, we could again issue level ancestor queries in SLT (otherwise,
the locus of W is again v′).

A bidirectional index on T that supports extension and contraction in constant time,
can be used to implement in linear time several applications that slide a window S[i..j] of
fixed length over a query string S, and that compute the frequency of every S[i..j] in T ,
without the size of the window being known during construction4. For example, measuring the
frequency of windows of fixed length for read correction [43], computing the inner product
between the k-mer composition vectors of S and T (a step in k-mer kernels), estimating
the probability of S according to a fixed-order Markov model trained on T , and checking
whether S is a path in the de Bruijn graph of T . Our index enables also applications in which
the sliding window needs to be extended or contracted during the scan, like variable-order
and interpolated Markov models (see [21] for an overview). A fully-functional bidirectional
index is not needed for computing the matching statistics array between S and T , in linear
time and in O(|T | log σ) bits of space, since one can use the algorithms in [5] on top of the
data structures in [4]. However, achieving such bounds with our bidirectional index becomes
trivial.

4 If the size k of the window is fixed and known during construction, most such applications do not need
the contract operation, and can be made to work using just one BWT and a bitvector of length |T | that
marks the boundaries of k-mer intervals in the BWT.
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In practical applications of matching statistics, one typically needs to maintain the
intervals in both BWT and BWT just after every successful right extension, and, when the
current match S[i..j] cannot be extended with S[j + 1] in T any longer, one might need both
BWT intervals just for the proper suffixes S[k..j] such that Σr

T (S[i..j]) ⊂ Σr
T (S[k..j]), i.e.

just for the suffixes of S[i..j] from which a right-extension with S[j + 1] is attempted again.
Every such suffix is a maximal repeat ancestor of S[i..j] in ST [9], thus, once we reach the
locus of such a suffix in ST with parent operations, we can compute its interval in BWT, we
can measure its string length p, and we can compute its interval in BWT by issuing MS[i]− p
contract operations from the locus of S[i..j] in ST, but without updating the interval in BWT
after each contraction. Even more aggressively, we can just issue MS[i]− p suffix links from
the locus of S[i..j] in ST. Note that such a locus might correspond to the right-maximal
string S[i..j] ·V for some nonempty V , thus taking MS[i]−p suffix links might lead to a node
of ST that corresponds to the right-maximal string S[k..j] · V : thus, we need to move in
constant time from such a node, to its lowest ancestor in ST that is a maximal repeat; from
there, we can then issue a level ancestor query with value p. Such a lazy synchronization
might be faster than issuing MS[i]− p full contract operations in practice.

Our index can be seen as a representation of a de Bruijn graph that supports bidirectional
navigation, that allows access to the frequency of every k-mer and (k + 1)-mer, and that
has no upper bound on the order: we call infinite-order such a de Bruijn graph. Note that,
for a given order k, we can support both the variant in which arcs must occur in T (calling
extendRight and then contractLeft to implement arc and followArc), and the variant
in which arcs do not have to occur in T (calling contractLeft and then extendRight).
Membership queries reduce to backward searches, and we can move from a higher to a lower
order using the same algorithm as in matching statistics. Indeed, one typically wants to
switch to a suffix of the current k-mer whenever there is only one arc in the graph of the
current order, and this arc is labelled with the terminator character [22]; or, more generally,
whenever one needs to increase the number of outgoing arcs from the current k-mer (for
example because the existing ones have already been explored [37]), or to increase the
frequency of the current right-maximal k-mer. In all such cases, one wants to switch to the
largest order with the desired property, and the corresponding suffix is always a maximal
repeat (for example, the longest suffix, of the current right-maximal k-mer, that has strictly
greater frequency, is a maximal repeat). Symmetrically, when increasing the order, one may
want to switch e.g. from the current k-mer W that is left-maximal but not right-maximal,
to the maximal repeat WV with shortest V . Clearly I(WV, T ) = I(W,T ), we know |V | since
we can access |WV |, and we can compute I(WV , T ) by taking |V |Weiner links from I(W,T ).
All such Weiner links are implicit, so in practice we can just update the first position of the
interval at every step.

In the next section, we describe a representation of an infinite-order de Bruijn graph in
which the time to decrease or increase the order does not depend on the difference between
the source and the destination order.

4 Implementing de Bruijn graphs with CDAWGs

An affix link A(w) is a mapping from a node w of ST, to the locus of `(w) in ST (we use
A(w) to denote the symmetrical mapping from a node w of ST, to the locus of `(w) in ST)
[49, 50]. We use A(W ) as a shorthand for A(w) where w is the locus of W . In asynchronous
bidirectional indexes, affix links are used to switch direction when the user desires [50]. In
this section we are more interested in their ability to extend a non-maximal repeat in a
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bidirectional index: for example, if W is right-maximal but not left-maximal, and if it has
loci (v, w) in ST and ST, respectively, then its shortest left-maximal extension VW with
|V | ≥ 0, i.e. the shortest maximal repeat that contains W as a (not necessarily proper) suffix,
has loci (A(w), w); and if W is neither left- nor right-maximal, then the shortest maximal
repeat UWV with the same frequency as W has loci (A(A(v)),A(v)) = (A(w),A(A(w))) [50].
Thus, in what follows we ignore affix links from leaves.

Rather than storing A(w) for every internal node w of ST, it has been proposed to
sample A(w) every p suffix links [18]: indeed, A(w) is either v = A(suffixLink(w)), if
|`(v)| ≥ |`(w)|, or it is the child of v obtained by following the first character of `(w) [50].
This allows one to compute A(w) in O(p) time, paying O((|T |/p) logn) bits of space. We
briefly observe that, compared to existing sampling schemes for bidirectional indexes, we can
further reduce space to O((|T |/p) logm) bits, where m is the number of maximal repeats of
T , since, by Property 2, A(v) is a maximal repeat of T for every internal node v of STT . In
practice following Weiner links is faster than following suffix links: thus, one could sample
the value of A(w) for every maximal repeat, and then sample every p characters inside an
edge of ST that connects two maximal repeats, i.e. every p explicit Weiner links. If A(w) is
not sampled, then `(w) is not left-maximal, so we take the only possible Weiner link from
it and we repeat the search from there, returning the value of the first sampled node we
find. This sampling scheme takes O((m+ (|T | −m)/p) logm) bits of space. One could even
waive sampling the nodes of ST that are not maximal repeats, but to retrieve their value
one would have to pay a number of Weiner links that is at most equal to the length of the
longest edge of ST connecting two maximal repeats. Clearly, sampling just maximal repeats
works also for the scheme based on suffix links.

In this section we store A(w) and A(w) explicitly, but just for maximal repeats, together
with CDAWGT and CDAWGT , to implement an infinite-order de Bruijn graph in which the
time to increase or decrease the order does not depend on the difference between the source
and the destination order:

I Theorem 2. Given a string T , there are a fully-functional bidirectional index, and an
infinite-order representation of the de Bruijn graph of T , that take space proportional to the
number of left and right extensions of the maximal repeats of T , and that support all queries
in O(log log |T |) time.

Proof. We represent ST and ST using CDAWGs, as described in [8] and summarized in
Section 2.2 of this paper. In addition to RLBWT, RLBWT, CDAWG and CDAWG, to support
Theorem 1 we store also a weighted level ancestor data structure on the maximal repeat
subgraph of ST and ST, which takes O(m) space and answers queries in O(log log |T |) time
[1, 24], and we store A and A to support changes in the order of the de Bruijn graph. We
represent an arbitrary substringW of T as a triple (id(v), id(w), |W |), where v is the locus of
W in ST, w is the locus of W in ST, and id is the identifier of a node in the CDAWG-based
representation of a suffix tree, i.e. id(v) = (v′, |`(v)|, i, j) where v′ is a node of a CDAWG
and [i..j] is a BWT interval.

To implement extendRight(W, c), where Wc is assumed to occur in T , we first check
whether W is right-maximal, by comparing |W | to |`(v)|: if W is not right-maximal, then
the representation of Wc is (id(v), weinerLink(id(w), c), |W |+ 1). Otherwise, the repres-
entation is (child(id(v), c), weinerLink(id(w), c), |W |+ 1). If we assume that procedure
extendRight(W, c) can be called with an invalid c, we first have to check whether Wc

occurs in T using the interval of W in BWT. To implement contractLeft(aW ), we first
check whether aW is right-maximal, by comparing |aW | to |`(v)|: if so, the representation
of W is (suffixLink(id(v)), id(w′), |W |), where w′ is either the parent of w or w itself,
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depending on which one of them has the same frequency as the locus of W in ST. If aW is
not right-maximal, we run the algorithm in Theorem 1 using the suffixLink and parent
operations provided by the CDAWG-based representation of ST.

To implement decreaseOrder and increaseOrder in the de Bruijn graph, we proceed as
follows. If the current k-mer W is right-maximal, the representation of the longest suffix of
W that is a maximal repeat is clearly (id(z), id(A(z)), |`(z)|), where z is the maximal repeat
reached by taking a suffix link arc from the node of the CDAWG pointed by id(v). One could
further move to a suitable ancestor of such a maximal repeat, by marking the topology of
the maximal repeat subgraph of ST. If the current W is left-maximal but not right-maximal,
the representation of the shortest maximal repeat of the form WV for some nonempty V
is (id(z), id(A(z)), |`(z)|), where z is the node of the CDAWG pointed by id(v). The same
holds if W is neither left- nor right-maximal, and if we want to move to the shortest k-mer
that contains W and is both left- and right-maximal. Implementing the other operations
of a bidirectional de Bruijn graph is straightforward and is left to the reader. We use data
structures from [7] to answer the membership query node(W ) in O(|W |) time. J

Our construction based on two CDAWGs is reminiscent of the symmetric compact DAWG
described in [16], which was used however just for bidirectional extension. Theorem 2 could
be simplified in several ways for a practical implementation. For example, as noted already
in [16], since CDAWG and CDAWG share the same set of nodes, every such node could
be stored only once, in which case A and A would not need to be represented explicitly.
If the descriptor of a substring W is (id(v), id(w), |W |) with id(v) = (v′, |`(v)|, i, j) and
id(w) = (w′, |`(w)|, i′, j′), then v′ and w′ would become pointers to the same node, |`(w)|
could be derived from |`(v′)| − |`(v)|+ |W |, and rather than storing i, j and i′, j′, we could
just store i, i′, f(W ). Our representation collapses to the sink of a CDAWG all k-mers that
occur just once in the dataset, which are likely induced by sequencing errors and are thus
not useful for most applications: in this case, we don’t even need to store left and right
extensions of maximal repeats directed to the sink. If the target application never uses orders
smaller than a threshold τ , we could remove from the index all maximal repeats of length
smaller than τ and prune the top part of the corresponding tree data structures, as described
in [22]. We could proceed in a similar way when the user specifies a lower bound on the
frequency of k-mers (called solid, see e.g. [29, 37]).

5 Discussion and extensions

Our CDAWG-based representation of the de Bruijn graph might be practical: a full experi-
mental study and a careful implementation of each primitive would be an interesting research
direction. Given a node v in the de Bruijn graph, it would also be interesting to know if we
can traverse an entire maximal non-branching path, i.e. a path in which no k-mer except
for v and the destination has more than one arc to the left and to the right, without taking
time proportional to the length of such a path: this would provide a fast implementation
of the compacted de Bruijn graph (see e.g. [19, 36] and references therein). It is natural
to wonder whether one can support the operations of an infinite-order de Bruijn graph in
less space than our indexes. Another open question is whether the CDAWG can be used as
a substrate for implementing the string graph as well, and whether we can design a single
compact index, as wished by [23], that supports both the primitives of a string graph and
of an infinite-order de Bruijn graph efficiently, allowing the user to take advantage of both
approaches in genome assembly.
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