
February 10, 2018 17:53 WSPC/INSTRUCTION FILE bvdbg

International Journal of Foundations of Computer Science
c⃝ World Scientific Publishing Company

Bidirectional Variable-Order de Bruijn Graphs∗

Djamal Belazzougui

CERIST, Algeria
djamal.belazzougui@gmail.com

Travis Gagie

Diego Portales University and CEBIB, Chile
travis.gagie@gmail.com

Veli Mäkinen

Helsinki Institute for Information Technology,
University of Helsinki, Finland

veli.makinen@cs.helsinki.fi

Marco Previtali

University of Milano-Bicocca
marco.previtali@disco.unimib.it

Simon J. Puglisi

Helsinki Institute for Information Technology,
University of Helsinki, Finland

simon.j.puglisi@gmail.com

Received (Day Month Year)
Accepted (Day Month Year)

Communicated by (xxxxxxxxxx)

Compressed suffix trees and bidirectional FM-indexes can store a set of strings and
support queries that let us explore the set of substrings they contain, adding and deleting
characters on both the left and right, but they can use much more space than a de
Bruijn graph for the strings. Bowe et al.’s BWT-based de Bruijn graph representation
(Proc. Workshop on Algorithms for Bioinformatics, pp. 225-235, 2012) can be made
bidirectional as well, at the cost of increasing its space usage by a small constant, but it
fixes the length of the substrings. Boucher et al. (Proc. Data Compression Conference,
pp. 383-392, 2015) generalized Bowe et al.’s representation to support queries about
variable-length substrings, but at the cost of bidirectionality. In this paper we show how

∗A preliminary version of this paper was presented at the 12th Latin American Theoretical Infor-
matics Symposium (LATIN ’16). This research was done while the fourth author was visiting the
University of Helsinki and the first and second authors were employed there. It was partly funded
by Academy of Finland grants 268324, 2845984 and 294143.

1

February 10, 2018 17:53 WSPC/INSTRUCTION FILE bvdbg

2 Belazzougui, Gagie, Mäkinen, Previtali and Puglisi

to make Boucher et al.’s variable-order implementation of de Bruijn graphs bidirectional.

Keywords: de Bruijn graphs; Burrows-Wheeler Transform; bidirectional FM-index.

1. Introduction

Suppose we have a set of strings and we want to build a compact data structure
that supports queries to let a user (a person or a piece of software) explore ef-
ficiently the set of substrings those strings contain. Such exploration is useful for,
e.g., approximate pattern matching and de novo genome assembly. We could build a
compressed suffix tree [1, 26, 27] or a bidirectional FM-index [4, 15, 28] and support
the following queries:

search(α) returns true and information allowing fast evaluation of other queries if
the pattern α occurs in any of the strings, and returns false otherwise;

add-left(c) prepends c to the current pattern and returns true if the resulting pat-
tern occurs in any of the strings, and returns false otherwise;

add-right(c) appends c to the current pattern and returns true if the resulting
pattern occurs in any of the strings, and returns false otherwise;

delete-left deletes the first character of the current pattern;
delete-right deletes the last character of the current pattern;
count returns the number of occurrences of the current pattern in the set of strings;
locate returns the positions of the occurrences of the current pattern in the set of

strings.

These queries are powerful enough for the user to recover the set of strings, so we
cannot hope to compress the structures more than we could losslessly compress the
strings themselves. It does not help us that the user is interested only in the set
of substrings rather than their multiset. More specifically, compressed suffix trees
and bidirectional FM-indexes are mainly based on Burrows-Wheeler Transforms
(BWTs) [8] and longest common prefix (LCP) arrays [14] of the strings, whose total
length is proportional to that of the strings themselves. Standard unidirectional FM-
indexes do not use LCP arrays but they support adding and deleting on only one
side and they still need a BWT of all the strings. With an LCP array as well they
can support deleting on both sides. For simplicity, in this paper we assume the
alphabet size is constant.

If the user is interested only in substrings up to a given maximum length K,
however, then we can support less powerful queries that cannot be used to recover
the strings, and thus perhaps save more space via lossy compression. For example,
the strings abracabradabra$ and abradabracadbra$ have the same set of distinct 5-
tuples (i.e. substrings of length 5) and so cannot be uniquely reconstructed from
that set; for K ≤ 4, the number of distinct K-tuples in each string is less than its
length, decreasing to six (i.e., the characters a, b, c, d and r) for K = 1. If we use a
hash-based implementation of the strings’ Kth-order de Bruijn graph (see, e.g., [5]
and references therein) then we can support the following queries while using space

February 10, 2018 17:53 WSPC/INSTRUCTION FILE bvdbg

Bidirectional Variable-Order de Bruijn Graphs 3

bounded in terms of the number of distinct K-tuples in the strings:

search=K(α) returns true and information allowing fast evaluation of other queries
if the pattern α has length K and occurs in any of the strings, and returns
false otherwise;

add-left-delete-right(c) prepends c to the current pattern and deletes the last char-
acter and returns true if the resulting pattern occurs in any of the strings,
and returns false otherwise;

add-right-delete-left(c) appends c to the current pattern and deletes the last char-
acter and returns true if the resulting pattern occurs in any of the strings,
and returns false otherwise.

Bowe, Onodera, Sadakane and Shibuya’s [7] (see also [17]) gave a BWT-based
implementation of de Bruijn graphs — which we henceforth refer to as BOSS,
for the authors’ initials — which supports only one of add-left-delete-right(c) or
add-right-delete-left(c) but, as we explain in Section 3, it is easy to add support for
both at the cost of increasing the space by a small constant factor. We note that
BOSS’s BWT is not of the strings but of the edge labels in the de Bruijn graphs,
so its length is also bounded in terms of the number of distinct K-tuples.

Boucher, Bowe, Gagie, Puglisi and Sadakane [6] described variable-order
de Bruijn graphs, a generalization of the BOSS representation, to support search(α)
with any pattern α of length at most K, and either add-left(c) and delete-right or
add-right(c) and delete-left, with the restriction that the pattern always has length
at most K. To do this, they added an longest common suffix (LCS) array with
the number of entries equal to the length of the BWT of the edge labels and each
entry between 0 and K, which increased the space bound by a factor of lgK. As
far as we know, similarly generalizing a hash-based implementation of a Kth-order
de Bruijn graph would increase the space bound by a factor of K. Apart from the
space increase, the main drawback to Boucher et al.’s version of BOSS is that it
does not support adding and deleting on both sides, and the easy extension that
makes the original BOSS bidirectional does not seem to work here.

In this paper we show how to make Boucher et al.’s variable-order implementa-
tion of de Bruijn graphs bidirectional. That is, our version efficiently and simulta-
neously supports all of the following queries:

search≤K(α) returns true and information allowing fast evaluation of other queries
if the pattern α has length at most K and occurs in any of the strings, and
returns false otherwise;

add-left≤K(c) prepends c to the current pattern and returns true if the resulting
pattern has length at most K and occurs in any of the strings, and returns
false otherwise;

add-right≤K(c) appends c to the current pattern and returns true if the resulting
pattern has length at most K and occurs in any of the strings, and returns
false otherwise;

February 10, 2018 17:53 WSPC/INSTRUCTION FILE bvdbg

4 Belazzougui, Gagie, Mäkinen, Previtali and Puglisi

Table 1. A comparison of (unidirectional) FM-indexes, bidirectional FM-indexes, compressed suffix
trees, hash-based de Bruijn graph (dBG) implementations, BOSS, variable-order BOSS and our
data structure.

data structure compression LCP/LCS needed pattern length bidirectional

FM-index [11] lossless no unrestricted no

bidirectional FM-index [4, 15, 28] lossless no unrestricted yes

compressed suffix tree [1, 26, 27] lossless yes unrestricted yes

hash-based dBG (e.g., [5]) lossy no exactly K yes

BOSS [7], Obs. 1 lossy no exactly K yes

variable-order BOSS [6] lossy yes at most K no

this paper lossy yes at most K yes

delete-left deletes the first character of the current pattern (as before);
delete-right deletes the last character of the current pattern (as before).

Table 1 compares (unidirectional) FM-indexes, bidirectional FM-indexes, com-
pressed suffix trees, hash-based de Bruijn graph (dBG) implementations, BOSS,
variable-order BOSS and our data structure. Our main idea is that, while with a
bidirectional FM-index we store a BWT of the set of strings and a BWT of their
reverses and keep the intervals for the current pattern synchronized by counting
characters, now we store BWTs for the forward and reversed edge labels and keep
the intervals for the current pattern synchronized by counting distinct characters.
In Section 2 we review FM-indexes and bidirectional FM-indexes. In Section 3 we
review de Bruijn graphs and BOSS and explain how to make it bidirectional, then
review variable-order BOSS. Finally, in Section 4 we explain how to add bidirec-
tionality to variable-order BOSS.

2. FM-Indexes and Bidirectional FM-Indexes

The suffix array [19] of a string S[1..n] is an array A[1..n] containing a permutation
of the integers [1..n] such that S[A[1]..n] < S[A[2]..n] < · · · < S[A[n]..n]. In other
words, A[j] = i iff S[i..n] is the jth suffix of S in lexicographical order. The Burrows-
Wheeler Transform (BWT) of a string S[1..n] is the permutation of S’s characters
derived from A. In particular, for 2 ≤ i ≤ n, if S[i..n] is the lexicographically jth
suffix of S, then BWT(S)[j] = S[i − 1]; if S itself is lexicographically ranked j
among its suffixes, then BWT(S)[j] = S[n]. For convenience, it is often assumed
that S ends with a unique delimiter symbol S[n] = $ lexicographically less than
any character in the alphabet. For example,

BWT(abracabradabra$) = ard$crraaaaabbb .

The BWT was first proposed as a pre-processing step for data compression [8],
because it gathers together characters that precede similar contexts, but perhaps
its most important use has come since, in the design of indexing data structures.

February 10, 2018 17:53 WSPC/INSTRUCTION FILE bvdbg

Bidirectional Variable-Order de Bruijn Graphs 5

a $abracabradabr
r a$abracabradab
d abra$abracabra
$ abracabradabra
c abradabra$abra
r acabradabra$ab
r adabra$abracab
a bra$abracabrad
a bracabradabra$
a bradabra$abrac
a cabradabra$abr
a dabra$abracabr
b ra$abracabrada
b racabradabra$a
b radabra$abraca

a $abracabradabr
r a$abracabradab
d abra$abracabra
$ abracabradabra
c abradabra$abra
r acabradabra$ab
r adabra$abracab
a bra$abracabrad
a bracabradabra$
a bradabra$abrac
a cabradabra$abr
a dabra$abracabr
b ra$abracabrada
b racabradabra$a
b radabra$abraca

Fig. 1. To prepend an r to the pattern a with an FM-index for abracabradabra$, we find the ranks
of the occurrences of r in the range of the BWT containing characters preceding occurrences of a
in the string (shown in red on the left), then compute the range those r’s are mapped to by stable
sorting (shown in red on the right).

Ferragina and Manzini [11] noted that, if we have pre-computed the number of
characters in BWT(S) (or, equivalently, S) less than each distinct character, have
a data structure supporting fast rank queries over BWT(S) — i.e., when given a
character c and a position i, it quickly returns how many occurrences of c there are in
the prefix BWT(S)[1..i] — and know the interval in BWT(S) containing characters
preceding a pattern P then, for any character c we can quickly compute the interval
in BWT(S) containing characters preceding occurrences of cP . Specifically, if query
rankc(i) returns the number of occurrences of the symbol c up to position i in a
string, by the definition of the BWT, if the interval for P is BWT(S)[i..j] then the
interval for cP is

BWT(S)
[
|{x : x ≺ c}|+ rankc(i− 1) + 1..|{x : x ≺ c}|+ rankc(j)

]
.

For example, as shown in Figure 1, if S = abracabradabra$ then the interval for a is
BWT(S)[2..7], |{x : x ≺ r}| = 12, rankr(2) = 0, rankr(7) = 3 and the interval for
ra is BWT(S)[13..15].

The number of occurrences of a pattern in S is just the length of its interval
in BWT(S) and if we keep track of the intervals (using, say, a stack) as we add
characters to the left of a pattern, we can always delete those characters again, so
with a basic FM-index we can support the following queries:

search(α) returns true and information allowing fast evaluation of other queries if
the pattern α occurs in any of the strings, and returns false otherwise;

February 10, 2018 17:53 WSPC/INSTRUCTION FILE bvdbg

6 Belazzougui, Gagie, Mäkinen, Previtali and Puglisi

a $abracabradabr 0
r a$abracabradab 0
d abra$abracabra 1
$ abracabradabra 4
c abradabra$abra 4
r acabradabra$ab 1
r adabra$abracab 1
a bra$abracabrad 0
a bracabradabra$ 3
a bradabra$abrac 3
a cabradabra$abr 0
a dabra$abracabr 0
b ra$abracabrada 0
b racabradabra$a 2
b radabra$abraca 2

Fig. 2. To delete the last three characters of the pattern abra, we find the positions of the last and
first LCP values less than 1 before and after the interval for abra, respectively, which tell us the
beginnings of the intervals for a and for the lexicographically next character b.

add-left(c) prepends c to the current pattern and returns true if the resulting pat-
tern occurs in any of the strings, and returns false otherwise;

delete-left deletes the first character of the current pattern;
count returns the number of occurrences of the current pattern in the set of strings.

More interestingly, if we can perform fast select queries over BWT(S) and
we store as well a sampled suffix array (composed only of every xth suffix, see
e.g., [20]) and a wavelet tree [13] (a data structure supporting various types of range
queries [12]) over a longest common prefix (LCP) array for S, in which LCP[1] = 0
and LCP[i] is the length of the longest common prefix between the lexicographically
(i− 1)st and ith suffixes of S, then we can support also the following queries:

delete-right deletes the last character of the current pattern;
locate returns the positions of the occurrences of the current pattern in the set of

strings.

For example, Figure 2 shows how, if we have the the BWT and a wavelet tree for the
LCP array of S = abracabradabra$ and know the interval for abra is BWT(S)[3..5],
then we can delete the three last characters of the pattern and find the interval for
a by querying the wavelet tree to find the positions of the last value less than 1
in LCP[1..2] and the first first value less than 1 in LCP[6..15]. We refer the reader
to Navarro’s recent text [21] for details on these auxiliary data structures and how
they are used to support these queries.

Lam et al. [16] (see also, e.g., [4, 15, 28]) showed how to make an FM-index

February 10, 2018 17:53 WSPC/INSTRUCTION FILE bvdbg

Bidirectional Variable-Order de Bruijn Graphs 7

bidirectional, allowing us to add (but not delete) characters on both the left and
right. To do this, we store BWTs both for S and for its reverse SR. If we add a
character on the left of the pattern, we update the interval in BWT(S) as normal. To
update the interval in BWT(SR), we use the fact that it will be a sub-interval of the
previous interval. For example, as shown in Figure 3, if we add an r on the right of
a then BWT(SR), shown on the right, the interval narrows from BWT(SR)[2..7] to
BWT(SR)[5..7]. Specifically, if the previous pattern is preceded in S by ℓ characters
strictly less than the character we added to the left and by e copies of that character
— which we can determine by examining the contents of the interval for the previous
pattern in BWT(S) — then the sub-interval for the new pattern will start ℓ positions
into the interval for the previous pattern in BWT(SR) and have length e. In our
example, ℓ = e = 3 since a is preceded by three characters ($, c, d)) less than r
and three occurrences of r in S. Adding a character on the right of the pattern is
symmetric, with the roles of the BWTs reversed, so we now have support for the
last query:

add-right(c) appends c to the current pattern and returns true if the resulting
pattern occurs in any of the strings, and returns false otherwise.

In summary, a bidirectional FM-index for a string or set of strings uses BWTs whose
total length is proportional to the total length of the strings, and supports adding
characters on both the left and right.

3. BOSS and Variable-Order BOSS

In bioinformatics, a Kth-order de Bruijn graph for a string or set of strings is a
directed graph in which there is a node for each distinct K-tuple in the strings and
an edge from a node u to a node v if there is a (K + 1)-tuple whose first and last
K characters are u and v, respectively. If there is such an edge, it is said to be
labelled with the last character of v. Pevzner et al. [25] introduced this definition —
different from that in combinatorics [10] — as a tool for de novo genome assembly.

For small K, the Kth-order de Bruijn graph can contain much less informa-
tion than the strings. For example, as we noted in Section 1, the strings abra-
cabradabra$ and abradabracadbra$ have the same set of distinct 5-tuples and so
cannot be uniquely reconstructed from that set. To see why this kind of informa-
tion loss can actually be useful when trying to assemble a genome, suppose we
are trying to reconstruct the unknown string abracabradabra$ from the substrings
abracabr, bracabra, racabrad, acabrada, cabradab, abradabr, bradabra and radabra$.
The total length of these substrings is 64 and so, if we build an FM-index for their
concatenation with separator characters or a multi-string FM-index [3] for them, to
use in the assembly, the underlying BWT will have far more characters than abra-
cabradabra$ itself. This is partly because, even if we were given abracabradabra$, to
recover the substrings we would still need to know that there are eight of them and
where they start and end; in some sense, this information is encoded in the extra

February 10, 2018 17:53 WSPC/INSTRUCTION FILE bvdbg

8 Belazzougui, Gagie, Mäkinen, Previtali and Puglisi

a $abracabradabr bracabradabra$ a
r a$abracabradab racabradabra$a b
d abra$abracabra radabra$abraca b
$ abracabradabra ra$abracabrada b
c abradabra$abra abradabra$abra c
r acabradabra$ab abra$abracabra d
r adabra$abracab abracabradabra $
a bra$abracabrad acabradabra$ar r
a bracabradabra$ adabra$abracar r
a bradabra$abrac a$abracabradar r
a cabradabra$abr bradabra$abrac a
a dabra$abracabr bra$abracabrad a
b ra$abracabrada cabradabra$abr a
b racabradabra$a dabra$abracabr a
b radabra$abraca $abracabradabr a

a $abracabradabr bracabradabra$ a
r a$abracabradab racabradabra$a b
d abra$abracabra radabra$abraca b
$ abracabradabra ra$abracabrada b
c abradabra$abra abradabra$abra c
r acabradabra$ab abra$abracabra d
r adabra$abracab abracabradabra $
a bra$abracabrad acabradabra$ab r
a bracabradabra$ adabra$abracab r
a bradabra$abrac a$abracabradab r
a cabradabra$abr bradabra$abrac a
a dabra$abracabr bra$abracabrad a
b ra$abracabrada cabradabra$abr a
b racabradabra$a dabra$abracabr a
b radabra$abraca $abracabradabr a

Fig. 3. To prepend an r to the pattern a with a bidirectional FM-index for abracabradabra$, we
update the range in our forward BWT (left) as with a standard unidirectional BWT. To update
the range in our reverse BWT (right), we use the forward BWT to compute 1) the number ℓ of
characters lexicographically less than r that precede occurrences of a in the string, in this case 3
($, c, d); 2) the number e of occurrences of r that precede occurrences of a in the string, in this
case also 3. The range for ra in the reverse BWT starts ℓ positions into the range for a and has
length e. To delete the r again we use select queries over relevant LCP arrays (not shown).

February 10, 2018 17:53 WSPC/INSTRUCTION FILE bvdbg

Bidirectional Variable-Order de Bruijn Graphs 9

Fig. 4. We can recover the string abracabradabra$ from the the 5th-order de Bruijn graph (top) for
the substrings abracabr, bracabra, racabrad, acabrada, cabradab, abradabr, bradabra and radabra$,
but not from the smaller 3rd-order de Bruijn graph (bottom).

characters in the BWT.
Overlaps between the substrings tend to cause runs of the same character in

the BWT and we can compress these easily, but the the LCP array and suffix
array sample also grow and are harder to compress. Worse, the values in those
arrays can be up to about the lengths of the overlaps and the total length of the
substrings, respectively. Therefore, it can be important to discard information about
the substrings while trying to retain information about the underlying string they
came from. Turning the substrings into the 5th-order de Bruijn graph shown at the
top of Figure 4 (whose nodes correspond to 5-tuples but whose edges correspond
to 6-tuples in the substrings) does that: it contains enough information to assemble
abracabradabra$, because it is a path, but not enough to recover the substrings.

The 3rd-order de Bruijn graph for the substrings is even smaller, as shown
at the bottom of Figure 4, although we cannot reconstruct abracabradabra$ from
it. In general, however, we may not be able to reconstruct the underlying string
even from the substrings themselves, and reducing the space used is important
enough to sacrifice some information, at least in the early stages of the assembly.
Of course, even though this graph looks small, since a pointer is so much larger
than a character, its space usage depends on how we implement it. For example,
as stated in Section 1, if we use a hash-based implementation then we can support
bidirectional navigation in the graph (i.e., appending and simultaneously deleting
on both the left and right of the current pattern, which correspond to crossing edges
in the graph forwards and backwards), with K fixed. In this paper, however, we are
more interested in Bowe et al.’s BOSS representation and how it can be extended.

To build the BOSS representation of a de Bruijn, we create dummy nodes by
padding normal nodes’ prefixes on the left with copies of the delimiter symbol $
until every normal node has a path of length at least K leading to it. We then sort

February 10, 2018 17:53 WSPC/INSTRUCTION FILE bvdbg

10 Belazzougui, Gagie, Mäkinen, Previtali and Puglisi

the nodes of the graph into right-to-left lexicographic order and write for each node
the labels of the edges leaving it in lexicographic order to obtain the edge-BWT
(so-called, because it is composed of edge labels). We also store the in- and out-
degrees of the nodes as bitvectors. Figure 5 shows the edge-BWTs abbbcd$rrraaaaa
and bb$cdrraaa of the 5th- and 3rd order de Bruijn graphs for the substrings in
our example, in the center and on the right, respectively, together with some aux-
iliary arrays on the left that we will explain later. Since we assume the alphabet
size is constant, BOSS uses a constant number of bits per edge (asymptotically
approximately 4 in the case of DNA sequences).

The key observation behind BOSS is that, considering the nodes in right-to-left
lexicographic order, edges with lexicographically smaller labels go to earlier nodes;
for edges with the same label, the order of their destination nodes is the same as
the order of their source nodes (although two edges with the same label are allowed
to point to the same node) so, for any character c, the rth outgoing edge labelled
c ̸= $ is also the rth incoming edge labelled c. Figure 6 illustrates this for the
3rd-order de Bruijn graph of our example, except that it does not include the edge
labelled $ or the node ra$ for simplicity and because, for many applications, we
do not want to cross edges labelled with delimiters. Because of this property, if
we already know the interval in the edge-BWT containing the labels of the edges
leaving a node u and we want to follow the edge e labelled c ̸= $ leaving u — i.e.,
the add-right-delete-left(c) query described in Section 1 — then we can compute the
interval for the node v reached by e: we find the rank r of the occurrence of c in
u’s interval; find the number ℓ of edges with labels strictly less than c (ignoring $s);
find the first partial sum at least ℓ + r of the nodes’ in-degrees, which is v’s index;
and use the bitvector encoding the nodes’ out-degrees to find v’s interval.

For example, if we know the interval for dab in the edge-BWT for the 3rd-order
de Bruijn graph for our example is [7] and we want to follow the edge labelled r to
abr, then we compute r = rankr(7) = 2; find the first partial sum of the in-degrees
that is at least 9 (2 plus the the number 7 of edges with labels less than r but not
$), which is the 8th partial sum; and use the bitvector encoding the out-degrees to
find the single-entry interval [10].

Bowe et al. noted that, if we have the interval for v, we can find the intervals
of its predecessors using something like the reverse procedure: from v’s index we
compute the range of its incoming edges; for each such edge, we use a select query to
find its label in the edge-BWT; then we again use the bitvector for the out-degrees
to find the interval of labels on edges leaving the same node. This is not symmetric
to add-right-delete-left, however, since we do not learn the first characters of v’s
predecessors. We can determine each first character by walking backwards across
K − 1 edges (which is always possible because of the dummy nodes we add when
building BOSS), but of course this incurs an Ω(K)-factor increase in the query time,
so it is unclear whether this approach merits being called bidirectionality.

For example, if we know the interval for abr is [10] and we want to find the
intervals of its predecessors, then we look at its in-degree and see that its in-edges

February 10, 2018 17:53 WSPC/INSTRUCTION FILE bvdbg

Bidirectional Variable-Order de Bruijn Graphs 11

0 0 $$$$$ a 1
0 $ 1 $$$$a b 1
1 a 1 braca b 1
1 a 1 brada b 1
1 $ 1 $abra c 1
4 a 1 cabra d 1
4 a 1 dabra $ 1
0 $ 1 $$$ab r 1
2 b 1 racab r 1
2 b 1 radab r 1
0 $ 1 abrac a 1
0 c 1 abrad a 1
0 $ 1 $$abr a 1
3 r 1 acabr a 1
3 r 1 adabr a 1

1 aca b 1
1 ada b 1
1 bra $ 0

bra c 0
bra d 1

1 cab r 1
1 dab r 1
1 rac a 1
1 rad a 1
2 abr a 1

Fig. 5. The BOSS representation for the 5th-order (center) and 3rd-order (right) de Bruijn
graphs of abracabr, bracabra, racabrad, acabrada, cabradab, abradabr, bradabra and radabra$, with
the in-degrees of the nodes (shown as numbers, not bitvectors), the nodes themselves, the edge-
BWTs, and bitvectors indicating whether each edge label is the last for its node (and thus encoding
the the node’s out-degree). The auxiliary arrays (left) indicate the lengths of the longest common
suffixes of the nodes in the 5th-order graph and the labels their incoming edges would have if their
directions were reversed.

Fig. 6. The 3rd-order de Bruijn graphs of abracabr, bracabra, racabrad, acabrada, cabradab, abradabr,
bradabra and radabra$ depicted as a bipartite graph, with edges’ colours indicating their labels:
red for a, blue for b, orange for c, purple for d and green for r. Edges of the same colour can merge
but not cross. We do not include the edge labelled $ or the node ra$ for simplicity and because,
for many applications, we do not want to cross edges labelled with delimiters.

February 10, 2018 17:53 WSPC/INSTRUCTION FILE bvdbg

12 Belazzougui, Gagie, Mäkinen, Previtali and Puglisi

are the first and second (and only) ones labelled r; we find the first and second
occurrences of r in the edge-BWT, which happen to be consecutive, and see from
the bitvector for the out-degrees that the intervals for the predecessors are [6] and
[7].

Of course, if we simply store the first character of each of v’s predecessors, in the
right-to-left lexicographic order of the predecessors, then we achieve bidirectionality
at the cost of approximately doubling the BOSS’s space. The second column of
Figure 5 shows the first characters of the nodes’ predecessors in the 5th-order graph
for our example.

Observation 1. We can make BOSS bidirectional, such that traversing an edge
forwards or backwards takes constant time when the alphabet size is constant, at the
cost of approximately doubling the space required.

We have not discussed how to choose the order K of the de Bruijn graph for as-
sembling a genome. This is an important concern because if K is too small then the
graph becomes dense and uninformative, but if it is too large then the graph frag-
ments into many disconnected pieces. There is software available that recommends
a good value of K for a set of substrings (see, e.g., [9]) but sometimes no single
K works well. This has become a particular concern with the development with
single-cell DNA sequencing, which can generate read sets with extremely variable
coverage. Some assemblers, such as IDBA [22, 23, 24] and SPAdes [2], try several
increasing orders, adding the results from each run to the input data. This slows
the assembly down, however, and to remain practical these assemblers must skip
most orders. Lin and Pevzner [18] proposed manifold de Bruijn graphs, in which
the nodes are a suffix-free set of variable-length strings with the lengths chosen to
improve assembly, but without offering a practical implementation.

Boucher et al. [6] noted that if we add a longest common suffix (LCS) array to
BOSS — which stores the length of the longest common suffix between the source
node for each edge and that of the preceding edge, and thus increases the space
bound by an O(logK)-factor — then we can vary the order of the graph on the fly,
up to the value of K chosen for the basic BOSS. This means, among other things,
that their variable-order version of BOSS can be used as a practical implementation
of manifold de Bruijn graphs. For example, the leftmost column of Figure 5 shows
the LCS array for the 5th-order de Bruijn graph for our example.

To see how this works, consider the BOSS representations for the 5th- and 3rd-
order graphs in Figure 5. By the definition of a de Bruijn graph, each node v in the
3rd-order graph is a suffix of at least one node in the 5th-order graph and, if we take
the union of the sets of edges leaving nodes suffixed by v in the 5th-order graph, we
obtain the set of edges leaving v. This means we can use the intervals of nodes that
share suffixes of length k ≤ K as if they were the intervals for nodes in a kth-order
de Bruijn graph. We can decrease the current order k, potentially widening the
current interval, by extending the interval to include the first and last nodes in the

February 10, 2018 17:53 WSPC/INSTRUCTION FILE bvdbg

Bidirectional Variable-Order de Bruijn Graphs 13

Kth-order de Bruijn graph that share a suffix of the new desired length with the
first and last node in the current interval. If we want to cross an edge labelled c in
the kth-order graph, we can choose any occurrence of c in the current interval and
cross the corresponding edge in the Kth-order graph, then use the LCS array to
widen the resulting interval to correspond to a node in the kth-order graph.

For example, if we know the union [13..15] of the intervals for nodes suffixed by
abr in the 5th-order graph and want to find the union for bra, then we can choose
any a in the former interval in the edge-BWT, say the one labelling the edge leaving
acabr, and follow it in the 5th-order graph. We arrive at cabra and, using the LCS
array to find the union of the intervals of nodes suffixed by bra, we obtain [5..7].

4. Adding Bidirectionality

As mentioned in Section 1, our main idea is to store BWTs for the forward and
reversed edge labels and keep the intervals for the current pattern synchronized
by counting distinct characters. Before we explain this idea, however, we feel it is
instructive to review why the two most obvious approaches — i.e., straightforward
generalizations to Boucher et al.’s data structure of the approaches to bidirection-
ality explained in Sections 2 and 3 — apparently fail.

Lam et al.’s [16] and other bidirectional FM-indexes use the fact that if we form
a matrix by taking the cyclic shifts of S and put them in right-to-left lexicographic
order — as for computing BWT(SR) — then the characters in the interval for P
in BWT(S) appear in the matrix in the (|P | + 1)st column from the right in the
interval for PR in BWT(SR) in lexicographic order and with the same frequencies;
the same is true if we swap the roles of S and SR and P and PR and form the
matrix with normal lexicographic sorting. For example, in Figure 3, the characters
in the interval for a in BWT(S) — i.e., r, d, $, c, r, r — shown in the top-left
matrix, appear in lexicographic order immediately to the left of the occurrences of
a shown in red in the top-right matrix. This symmetry does not hold for BOSS: to
see why not, consider that bra is preceded only by a but followed by $, c and d in
S = abracabradabra$; therefore, the interval for bra in the BOSS representation of
a 3rd-order de Bruijn graph has length 3, but the interval for rba has length only 1
in the BOSS representation of a 3rd-order de Bruijn graph for SR.

Just as the second column in Figure 5 — i.e., the predecessors’ first characters
in the 5th-order graph — would be the leftmost row of the matrix for the 6th-
order graph, if we could compute efficiently any entry of the grey matrix for the
5th-order graph, then we could use the ideas behind Observation 1 to obtain a
bidirectional variable-order BOSS. For example, if we know the interval for bra is
[5..7] then we use Bowe et al.’s technique and the LCS array to determine there
is a single predecessor of bra and that its interval is [13..15]; if we could compute
efficiently somehow that in the second column of the matrix there are copies of a in
the interval for bra, then we would know that bra’s predecessor is abr. We see no way
of supporting efficient access to the matrix directly, however. Of course, similarly to

February 10, 2018 17:53 WSPC/INSTRUCTION FILE bvdbg

14 Belazzougui, Gagie, Mäkinen, Previtali and Puglisi

how a bidirectional FM-index for S = abracabradabra$ implicitly supports access to
the matrices conceptually used to compute BWT(S) and BWT(SR), the technique
we describe below supports computation of the edge-BWTs.

Given a string or set of strings, we pad them on the left and the right with
copies of a delimiter symbol $ such that for every node v in the (K + 1)st-order
de Bruijn graph, there is a path from $K+1 to v and vice versa. We build Boucher
et al.’s variable-order BOSS representations for the resulting set of strings, and for
the resulting set of strings reversed. Consider any k-tuple α with k ≤ K, let VL be
the set of nodes prefixed by α, let VR be the set of nodes suffixed by α, let U be
the set of predecessors of nodes in VL and let W be the set of successors of nodes
in VR.

Lemma 2. The same set of characters appear as the last characters of nodes in W
as appear as the (k+1)st characters of nodes in VL, and the same set of characters
appear as the first characters of nodes in U as appear as the (k + 1)st characters
from the right of nodes in VR.

Proof. By the definition of a de Bruijn graph, the set of last characters of nodes in
W are those that appear immediately to the right of occurrences of α in the padded
strings (possibly not with the same frequencies). That is, a character c is in that
set if and only if αc occurs as a (k + 1)-tuple, which is equivalent to αc being the
prefix of some node (which is also prefixed by α).

Symmetrically, the set of first characters of nodes in U are those immediately
to the left of occurrences of α in the padded strings (possibly not with the same
frequencies). That is, a character c is in that set if and only if cα occurs as a (k+1)-
tuple, which is equivalent to cα being the suffix of some node (which is also suffixed
by α).

Lemma 2 means that we have at least a weaker form of the symmetry behind
bidirectional FM-indexes: we generally cannot tell the frequency with which a par-
ticular character occurs in the nodes to the right or left of a prefix or suffix α by
looking at the intervals for α and αR in the edge-BWTs, but we can at least tell
which characters occur like that. In fact, with the LCP and LCS arrays for the
nodes, this weak form of symmetry is sufficient for bidirectionality: if we already
know the intervals for α and αR in the edge-BWTs for the padded strings and
their reverses, then we can find the interval for αc in the edge-BWT for the padded
strings as normal; to find the interval for (αc)R in the edge-BWT of the reverses,
we count the number d of distinct characters there are strictly smaller than c in the
interval for α in the edge-BWT of the padded strings, and use the LCP array for
the reverses to skip over the intervals for that many nodes suffixed by αR in the
edge-BWT of the reversed strings.

This procedure is essentially the same as Lam et al.’s but, since we cannot rely
on the counts of characters being the same, we use the counts of distinct characters.
Notice this approach also works for bidirectional FM-indexes: in the example shown

February 10, 2018 17:53 WSPC/INSTRUCTION FILE bvdbg

Bidirectional Variable-Order de Bruijn Graphs 15

in Figure 3, we can find the interval for ra in the reverse BWT by skipping over the
intervals for $a, ca and da. A disadvantage to counting distinct characters instead of
counting characters is that, since adding a character to the left or right now requires
queries on the LCP arrays, all queries take O(logK) time using wavelet trees over
those arrays.

Since we are storing the LCP arrays, which take O(logK) bits per entry, we
can relax our assumption that the alphabet size is constant: we still use O(logK)
bits per edge as long as the alphabet size is polynomial in K. We can perform
add-right≤K or, symmetrically, add-left≤K in O(logK) time. By repeating these
queries at most K times we can perform search≤K in O(K logK) time. To perform
delete-left we update the interval in the edge-BWT for the padded edges using its
LCP array, and we update the interval in the edge-BWT for the reverses using a
select query and its LCP. Performing delete-right is symmetric. Summarizing, we
have the following theorem:

Theorem 3. Given K and a string or set of strings over a alphabet of size at
most polynomial in K, we can store a data structure in O(logK) bits per edge in
the (K + 1)st-order de Bruijn graph for the strings (padded on the left and right
such that there is a path from each node to $K+1 and vice versa), that supports the
following operations:

search≤K(α) returns true and information allowing fast evaluation of other queries
if the pattern α has length at most K and occurs in any of the strings, and
returns false otherwise;

add-left≤K(c) prepends c to the current pattern and returns true if the resulting
pattern has length at most K and occurs in any of the strings, and returns
false otherwise;

add-right≤K(c) appends c to the current pattern and returns true if the resulting
pattern has length at most K and occurs in any of the strings, and returns
false otherwise;

delete-left deletes the first character of the current pattern;
delete-right deletes the last character of the current pattern.

The query search≤K takes O(K logK) time and the other queries take O(logK)
time.

5. Conclusion and Future Work

We have shown how to make the variable-order de Bruijn graph representation of
Boucher et al.’s bidirectional without asymptotically increasing space usage. Imple-
menting this proposal in order to guage its effectiveness in practice, is perhaps the
most pressing direction for future work. It may also be possible to apply the ideas
behind Theorem 3 to speed up forward searching in Sirén’s GCSA2 index [29] for
genomic reference sequences, perhaps at the cost of doubling the space used.

February 10, 2018 17:53 WSPC/INSTRUCTION FILE bvdbg

16 Belazzougui, Gagie, Mäkinen, Previtali and Puglisi

References

[1] A. Abeliuk, R. Cánovas and G. Navarro, Practical compressed suffix trees, Algorithms
6(2) (2013) 319–351.

[2] A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov, V. M.
Lesin, S. I. Nikolenko, S. Pham, A. D. Prjibelski et al., SPAdes: a new genome assem-
bly algorithm and its applications to single-cell sequencing, Journal of computational
biology 19(5) (2012) 455–477.

[3] M. J. Bauer, A. J. Cox and G. Rosone, Lightweight algorithms for constructing and
inverting the BWT of string collections, Theoretical Computer Science 483 (2013)
134–148.

[4] D. Belazzougui, F. Cunial, J. Kärkkäinen and V. Mäkinen, Versatile succinct repre-
sentations of the bidirectional Burrows-Wheeler transform, European Symposium on
Algorithms, Springer (2013), pp. 133–144.

[5] D. Belazzougui, T. Gagie, V. Mäkinen and M. Previtali, Fully dynamic de Bruijn
graphs, International Symposium on String Processing and Information Retrieval ,
Springer (2016), pp. 145–152.

[6] C. Boucher, A. Bowe, T. Gagie, S. J. Puglisi and K. Sadakane, Variable-order de
Bruijn graphs, Data Compression Conference (DCC), 2015 , IEEE (2015), pp. 383–
392.

[7] A. Bowe, T. Onodera, K. Sadakane and T. Shibuya, Succinct de Bruijn graphs,
International Workshop on Algorithms in Bioinformatics, Springer (2012), pp. 225–
235.

[8] M. Burrows and D. J. Wheeler, A block-sorting lossless data compression algorithm,
Tech. Rep. 24, Digital Equipment Corporation (1994).

[9] R. Chikhi and P. Medvedev, Informed and automated k-mer size selection for genome
assembly, Bioinformatics (2013) p. btt310.

[10] N. G. de Bruijn, A combinatorial problem, Koninklijke Nederlandse Akademie van
Wetenschappen 49 (1946) 758–764.

[11] P. Ferragina and G. Manzini, Indexing compressed text, Journal of the ACM (JACM)
52(4) (2005) 552–581.

[12] T. Gagie, G. Navarro and S. J. Puglisi, New algorithms on wavelet trees and appli-
cations to information retrieval, Theor. Comput. Sci. 426 (2012) 25–41.

[13] R. Grossi, A. Gupta and J. S. Vitter, High-order entropy-compressed text indexes,
Proc. 14th Annual ACM-SIAM Symposium on Discrete Algorithms, (ACM/SIAM,
2003), pp. 841–850.

[14] J. Kärkkäinen, G. Manzini and S. J. Puglisi, Permuted longest-common-prefix array,
Proc. 20th Annual Symposium on Combinatorial Pattern Matching, Lecture Notes in
Computer Science 5577, (Springer, 2009), pp. 181–192.

[15] G. Kucherov, K. Salikhov and D. Tsur, Approximate string matching using a bidi-
rectional index, Theoretical Computer Science 638 (2016) 145–158.

[16] T. W. Lam, R. Li, A. Tam, S. Wong, E. Wu and S.-M. Yiu, High throughput
short read alignment via bi-directional BWT, Bioinformatics and Biomedicine, 2009.
BIBM’09. IEEE International Conference on, IEEE (2009), pp. 31–36.

[17] D. Li, C.-M. Liu, R. Luo, K. Sadakane and T.-W. Lam, MEGAHIT: an ultra-fast
single-node solution for large and complex metagenomics assembly via succinct de
Bruijn graph, Bioinformatics (2015) p. btv033.

[18] Y. Lin and P. A. Pevzner, Manifold de Bruijn graphs, International Workshop on
Algorithms in Bioinformatics, Springer (2014), pp. 296–310.

[19] U. Manber and G. W. Myers, Suffix arrays: a new method for on-line string searches,
SIAM J. Comp. 22(5) (1993) 935–948.

February 10, 2018 17:53 WSPC/INSTRUCTION FILE bvdbg

Bidirectional Variable-Order de Bruijn Graphs 17

[20] G. Navarro and V. Mäkinen, Compressed full-text indexes, ACM Computing Surveys
39(1) (2007) p. article 2.

[21] G. Navarro, Compact Data Structures: A Practical Approach (Cambridge University
Press, 2016).

[22] Y. Peng, H. C. Leung, S.-M. Yiu and F. Y. Chin, IDBA–a practical iterative de
Bruijn graph de novo assembler, Annual International Conference on Research in
Computational Molecular Biology , Springer (2010), pp. 426–440.

[23] Y. Peng, H. C. Leung, S.-M. Yiu and F. Y. Chin, Meta-IDBA: a de novo assembler
for metagenomic data, Bioinformatics 27(13) (2011) i94–i101.

[24] Y. Peng, H. C. Leung, S.-M. Yiu and F. Y. Chin, IDBA-UD: a de novo assembler
for single-cell and metagenomic sequencing data with highly uneven depth, Bioinfor-
matics 28(11) (2012) 1420–1428.

[25] P. A. Pevzner, H. Tang and M. S. Waterman, An Eulerian path approach to DNA
fragment assembly, Proceedings of the National Academy of Sciences 98(17) (2001)
9748–9753.

[26] L. Russo, G. Navarro and A. L. Oliveira, Fully compressed suffix trees, ACM trans-
actions on algorithms (TALG) 7(4) (2011) p. 53.

[27] K. Sadakane, Compressed suffix trees with full functionality, Theory of Computing
Systems 41(4) (2007) 589–607.

[28] T. Schnattinger, E. Ohlebusch and S. Gog, Bidirectional search in a string with
wavelet trees and bidirectional matching statistics, Information and Computation
213 (2012) 13–22.

[29] J. Sirén, Indexing variation graphs, 2017 Proceedings of the Ninteenth Workshop on
Algorithm Engineering and Experiments (ALENEX), SIAM (2017), pp. 13–27.

